2015 Analog IC: Final Examination (110%)

 An amplifier with feedback capacitor C_E open-loop gain A, and equivalent circuit as shown in Fig. 1. Find Z₁ and Z₂ using Miller effect (5%)

- Fig. 2 shows a common gate amplifier with C_D = 20 fF, C_S = 20 fF, C_L = 100 fF, g_{int} = 0, r_n = ∞, g_{int} = 1mA/V, R_S = 10kΩ, and R_D = 100kΩ. (5%)
 (a) Find the input and output impedances.
 - (2.5%)
 (b) Find the correlated input pole ω_m and output pole ω_{on} (2.5%)

- 3. A two-stage Op Amp in Fig. 3 has $A_{v1} = 20$, $A_{v2} = 40$. The output referred noise of $A1 = 2x10^{-12}$ V^2/Hz and $A2 = 4x10^{-12} V^2/Hz$. (5%)
 - (a) Find the output referred noise of amplifier A. (2.5%)
 - (b) Find the "best" input referred noise with same total gain A = 800. (2.5%)

- 4 A common source amplifier is shown in Fig. 4. The thermal noise and flicket noise of M_1 are $4kTg_{\perp}(\frac{2}{3})$ and $\frac{K}{C_{\perp}BT_{\perp}}\frac{1}{f}$, the thermal noise of R_D is $4KTR_D$ (5%)
 - (a) Derive the output referred noise (2.5%)(b) Derive the input referred noise (2.5%)
- An amphifier with a DC gain = 60dB and two poles at 1Mhz and 100Mhz. (10%)
 - (a) Sketch the Bode plot with amplitude and phase. (2.5%)
 - (b) Determine and explain the system is stable or not (Phase margin > 45°). (2.5%)
 - (c) Do the frequency compensation to get a phase margin = 45° and explain the new locations of poles. (5%)
- Fig. 6 shows a differential pair with C_E = 20fF,
 C_L = 100fF, g_{mb} = 0, r_o = 100kΩ, g_m = 1mA/V,
 |V_{ov}| = 0.2V, |V_{th}| = 0.6V, (10%)
 - (a) Find the minimum input DC bias voltage with V(I_{SS}) = 0.3V (2.5%)
 - (b) Find the voltage gain V_{ool}/V_{in} (2.5%)
 - (e) Find the dominant pole ω_{p1}. (2.5%)
 - (d) Find the value of zero ωz (2.5%)

Fig 6

CCHsieh 2015.06.16

- A general block diagram of feedback system is 1° 10 Fig. 10 shows a closed-loop amplifier with r₀= shown in Fig. 7. Assume $\Lambda(s) = \Lambda_0/[1+(s/\omega_0)]$. answer the following questions: (10%)
 - (a) State the oscillation condition. (Barkhausen's Criteria). (2%)
 - (b) Find the equation of closed loop gain (2%)
 - (c) Explain the bandwidth modification of closed-loop system (2%)
 - (d) List down 4 types of feedback topology. (2%)
 - (e) Explain the impedance modification of the 4 feedback structures in terms of equations of R_{m closed}/R_{m open} and R_{o closed}/R_{o open} (2%)

Fig. 7

- 8. A closed-loop amplifier is shown in Fig. 8 with $R1 = 400 \text{K}\Omega$ and $R2 = 100 \text{K}\Omega$. (5%)
 - (a) With the open loop gain A = 100, find the closed-loop gain. (2.5%)
 - (b) Find the requirement of A to get an error of closed-loop gain smaller than 1% of ideal one (A = 10) (2.5%)

9. Explain the definitions and purposes of the

- following terminologies (10%) (a) Miller compensation (2%)
- (b) Noise power spectrum density (2%)
- (c) Flicker noise (2%)
- (d) Slewing in an Op Amp. (2%)
- (e) Power-supply rejection ratio (PSRR). (2%)

- $100k\Omega$ and $g_w = \text{tm}\Delta/V$ (10%).
 - (e) Find the feedback factor (2%)
 - (d) Find the open-loop gain with loading effect (425)
 - (e) Find closed-loop gain V_{sno}/V_{in} (2%)
 - (f) Find closed-loop output impedance (2%)

11. An impedance boosting circuit is as shown in Fig. 11. Find the R_{out} in term of $r_{o(n)}$ and $g_{m(n)}$ (5%)

Fig 12

CCHsieh 2015.06.16

- Find slew rate of the following Op Amps. (5%)
 - (a) The differential-to-single-ended amphifier with capacitive feedback (2.5%)
 - (b) 2-stage OP Amp with capacitor C_v (2.5%)

Fig. 13(b)

- f 14 In Fig. 14, $g_{ss} = 1$ mA/V, $r_{o} = 100$ KΩ, $C_{GD} = C_{GS}$ = 10fF, $C_{DB} = C_{SB} = 5$ fF, $R_{S} = 10$ kΩ, and $R_{D} = 100$ kΩ (5%)
 - (a) Use Miller effect to find the equivalent C_{in} at node X and C_{out} at node V_{out}. (2.5%)
 - (b) Find the input pole ω_m and output pole ω_{out} (2.5%)

- y 15 Fig. 15 shows a common-source amplifier with $g_{mi} = g_{mi} = ImA/V$ $r_{mi} = r_{mi} = 100k\Omega$, $V_0 = 2.5V$, $V_m = 1V$, $V_{100} = 3.3V$, $|V_m| = |V_m| = 0.5V$ (5%)
 - (a) Find the available output swing (2.5%)
 - (b) Find the small-signal voltage gain V_{min}/V_m (2.5%)

- 16. Answer the following questions with TRUE or FALSE (10%)
 - (a) Flicker noise of MOS device and noise of resistor are all white noise. (1%)
 - (b) Phase margin is defined of the phase shift distance to -180° at 0dB. (1%)
 - (c) CMRR is defined by the ratio between A_{DM}/A_{CM} and it will degrade at high frequency (1%)
 - (d) Left half plane zero will degrade the stability due to its negative phase shift. (1%)
 - (c) Usually the noise types in a circuit are from device and environmental noise. (1%)
 - (f) The linear response is degraded when Op Amp enters the slewing condition (1%)
 - (g) Oscillation happens only in closed-loop architecture (1%)
 - (h) The input/output port impedance of closed-loop system is increase by serial/serial feedback. (1%)
 - (i) Noise performance is usual illustrated by power spectral density express in V²/Hz. (1%)
 - (j) The common-mode feedback circuit is necessary in fully-differential OP Amp. (1%)

6.6-3-1400