2012 Analog IC: Midterm Examination (110%)

- 1. Answer definitions of the following effects and explain the physical mechanisms. (10%)
 - (a) Hot carrier effect. (2%)
 - (b) Mobility Degradation. (2%)
 - (c) Punch Through. (2%)
 - (d) Body effect. (2%)
 - (e) Velocity Saturation. (2%)
- 2. A NMOS is biased with a gate voltage V_G and a drain voltage V_D as shown in Fig. 2. (10%)
 - (a) Sketch the I_D-V_D transfer curves with different V_G. (2.5%)
 - (b) Illustrate the boundary line of linear / saturation regions on the curves. (2.5%)
 - (c) Illustrate the early voltage and ro. (2.5%)
 - (d) Illustrate the threshold voltage V_{TH}. (2.5%)

Fig. 2

- 3. Figure 3 shows a NMOS with parameters of $V_{TH} = 0.7V$, W = 10um, L = 1um, $C_{ox} = 1 fF/um^2$ and $C_{ov} = 0.1 fF/um$. (10%)
 - (a) Find and sketch the capacitances of C_{EN} and C_{EF} as V_X varies from 0 to 3V, identify V_X value of the transition point also. (5%)
 - (b) Sketch the capacitances of C_{FB} and C_{NB} as V_X varies from 0 to 3V, identify V_X value of the cross point also. (5%)

Fig. 3

- 4. Fig. 4 is a layout of CMOS inverter. (5%)
 - (a) Draw the cross section from A-A'. (2.5%)
 - (b) Identify and make the orders of masks in semiconductor process flow. (2.5%)

- 5. Fig. 5 is a common-source amplifier. (5%)
 - (a) Sketch the small signal equivalent circuit. (2.5%)
 - (b) Derive the equation of voltage gain V_{out}/V_{in} in terms of $g_{m < n > p}$, $g_{mb < n > p}$ and $r_{o < n > p}$. (2.5%)

- 6. Assume $r_o = 100$ k, $I_D=10$ uA, $|V_{ov}| = 200$ mV, g_{mb} = 0, and $R_S=100$ K Ω in Fig. 6. (5%)
 - (a) Sketch the small signal equivalent circuit.

in terms of $g_{m < n > }$, $g_{mb < n > }$ and $r_{o < n > }$. (2.5%)

- 6. Assume $r_o = 100$ k, $I_D=10$ uA, $|V_{ov}| = 200$ mV, g_{mb} = 0, and $R_S=100$ K Ω in Fig. 6. (5%)
 - (a) Sketch the small signal equivalent circuit. (2.5%)
 - (b) Find the output resistance Rout. (2.5%)

Town to the second seco

CCHsieh 2013.04.23

2012 Analog IC: Midterm Examination (110%)

- Write down the drain current equations of MOSFET in triode and saturation region with channel length modulation effect. (5%)
- 8. A source follower as shown in Fig. 8 with $g_m =$ 2mA/V, $g_{mb} = 0.2g_m$, $R_S = 100K\Omega$, and $r_o = \infty$. (5%)
 - (a) Sketch the small signal equivalent circuit. (2.5%)

(b) Find the voltage gain Vout/Vin. (2.5%)

F18.8

9. A differential pair is shown in Fig. 9. Assume all the MOSFETs are biased with $|V_{ov}| = 200 \text{mV}$ and $|V_{TH}| = 0.6V$. The $I_D(M_3) = 20uA$, $g_{m1} = g_{m2}$ = 2mA/V, $R_{D1} = R_{D2} = 100k\Omega$, $r_0(M_1) = r_0(M_2)$

Fig. 8

- 9. A differential pair is shown in Fig. 9. Assume all the MOSFETs are biased with $|V_{ov}| = 200 \text{mV}$ and $|V_{TH}| = 0.6 \text{V}$. The $I_D(M_3) = 20 \text{uA}$, $g_{m1} = g_{m2} = 2 \text{mA/V}$, $R_{D1} = R_{D2} = 100 \text{k}\Omega$, $r_o(M_1) = r_o(M_2) = r_o(M_3) = 200 \text{k}\Omega$, and $V_{DD} = 1.8 \text{V}$. (10%)
 - (a) Find the differential gain A_{v.DM}. (2.5%)
 - (b) Find the common-mode gain Av.CM. (2.5%)
 - (c) Find the maximum differential input signal range. (2.5%)
 - (d) Find the input common mode range. (2.5%)

Fig. 9

- 10. A current mirror as shown in Fig. 10, assume all MOSs are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{TH}| = 0.5 \text{V}$, $I_{REF} = 10 \text{uA}$, $(W/L)_2/(W/L)_1 = 4$, and $V_{DD} = 1.8 \text{V}$. (5%)
 - (a) Assume early voltage $V_A = 50V$, find I_{out} at $V_{out} = 0.5V$. (2.5%)
 - (b) Find the minimum output voltage Vout for current source Iout. (2.5%)

- 11. A cascode current mirror as shown in Fig. 11, assume all MOSs are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.5 \text{V}$, $I_{BIAS} = 10 \text{uA}$, $g_m = 2 \text{mA/V}$, $r_o = 100 \text{k}\Omega$, $(\text{W/L})_1 = (\text{W/L})_3$, $(\text{W/L})_2/(\text{W/L})_1 = (\text{W/L})_4/(\text{W/L})_3 = 4$, and $V_{DD} = 1.8 \text{V}$. (5%)
 - (a) Find the optimized V_b and related output

- 11. A cascode current mirror as shown in Fig. 11, assume all MOSs are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.5 \text{V}$, $I_{BIAS} = 10 \text{uA}$, $g_m = 2 \text{mA/V}$, $r_0 = 100 \text{k}\Omega$, $(W/L)_1 = (W/L)_3$, $(W/L)_2/(W/L)_1 = (W/L)_4/(W/L)_3 = 4$, and $V_{DD} = 1.8 \text{V}$. (5%)
 - (a) Find the optimized V_b and related output voltage V_{out} for correct current mirror operation. (2.5%)
 - (b) For $(W/L)_1 = 2um/4um$, find the size of Q_5 to get the optimized V_b . (2.5%)

5 Fig. 11

CCHsieh 2013.04.23

2012 Analog IC: Midterm Examination (110%)

- 12. A common source amplifier is shown in Fig. 12 with the MOSFET bias of $g_m = 2\text{mA/V}$, $r_o = 100\text{K}\Omega$, $R_S = 10\text{k}\Omega$ and $R_D = 100\text{k}\Omega$. Assume $C_{GD} = C_{GS} = 5\text{fF}$ and $C_{DB} = C_{SB} = 2\text{fF}$. (10%)
 - (a) Use Miller effect to find the equivalent C_{in} at node X and C_{out} at node V_{out}. (5%)
 - (b) Find the correlated input pole ω_{in} and output pole ω_{out} . (5%)

- 3. A differential to single-ended amplifier is shown in Fig. 13. Assume all the MOSFETs are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.6 \text{V}$, $r_o = 100 \text{k}\Omega$, and $g_m = 1 \text{mA/V}$. The $I_D(M_5) = 10 \text{uA}$ and $V_{DD} = 1.8 \text{V}$. (10%)
 - (a) Find the minimum input DC bias voltage

Fig. 12

- 13. A differential to single-ended amplifier is shown in Fig. 13. Assume all the MOSFETs are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.6 \text{V}$, $r_o = 100 \text{k}\Omega$, and $g_m = 1 \text{mA/V}$. The $I_D(M_5) = 10 \text{uA}$ and $V_{DD} = 1.8 \text{V}$. (10%)
 - (a) Find the minimum input DC bias voltage. (2.5%)
 - (b) Find the maximum output swing V_{out}. (2.5%)
 - (c) Find the differential gain $V_{out}/(V_{in1}-V_{in2})$. (2.5%)
 - (d) Assume $A_{v.CM} = 1/(2g_m r_o)$, find the CMRR. (2.5%)

Fig. 13

14. Answer the following questions with TRUE or FALSE: (15%)

(a) Source/drain is implanted before gate formation. (1%)

(b) Source follower is commonly used as a voltage buffer due to its low R_{out}. (1%)

(c) Common gate amplifier is commonly used as current buffer due to its low R_{in}. (1%)

(d) Junction capacitance is proportional to device width. (1%)

(e) The threshold voltage of nMOS is Tincreased by p+ channel implantation. (1%)

(f) Differential amplifier has smaller common noise and low power performance. (1%)

(g) Available voltage swing can be increased by using a larger bias current. (1%)

(h) Chemical vapor deposition is used to form the source/drain region. (1%)

(i) The transconductance g_m of MOSFET is proportional to width at a known constant biasing current. (1%)

(j) The g_m of pMOS is larger than nMOS at | same bias current and device size. (1%)

(k) The gate-to-body capacitance of a MOS device is almost the same in strong inversion and accumulation region. (1%)

(1) The subthreshold slope limits the leakage

- noise and low power performance. (1%) (g) Available voltage swing can be increased by using a larger bias current. (1%) (h) Chemical vapor deposition is used to form the source/drain region. (1%) (i) The transconductance gm of MOSFET is T proportional to width at a known constant
- biasing current. (1%)
- (j) The gm of pMOS is larger than nMOS at | same bias current and device size. (1%)
- (k) The gate-to-body capacitance of a MOS device is almost the same in strong inversion and accumulation region. (1%)
- (1) The subthreshold slope limits the leakage current when turning off MOS device. (1%)
- (m) The amplitude of a single-pole amplifier is decreased at a slope of -20dB/dec after 0hz. (1%)
- (n) The output impedance and voltage swing of common-source amplifier can be increased by a cascode structure. (1%)
- (o) The ro of MOSFET will be decreased at high V_{DS} bias due to the channel length modulation effect.

