1. Derive the equations of Miller effect to express Z₁ and Z₂ in terms of A and Z. (5%)

- 2. A common source amplifier is shown in Fig. 2 with $g_m = 2 \text{mA/V}$, $R_D = R_S = 100 \text{k}\Omega$, $C_{GS} = 5 \text{fF}$ $= C_{GD} = C_{DB} = 5 fF$, and $r_o = \infty$. (10%)
 - (a) Use Miller effect to find the equivalent Cin at node X and Cout at node Vout. (2.5%)
 - (b) Find the correlated input pole ωin and output pole ω_{out} . (2.5%)
 - (c) Derive and find the zero ω_z . (2.5%)
 - (d)) Find Z_{in} at high frequency with Z(C_{GD})=0. (2.5%)

Fig. 2

3. A differential pair with capacitance loading is shown in Fig. 3 with all g_m = 2mA/V, R_{out} = 50kΩ, $C_E = 20$ fF, $C_L = 100$ fF and $r_o = \infty$. (10%)

(a) Find the value of dominant note on (2.5%)

(d) Find Z_{in} at high frequency with Z(C_{GD})=0. (2.5%)

Fig. 2

- 3. A differential pair with capacitance loading is shown in Fig. 3 with all $g_m = 2\text{mA/V}$, $R_{\text{out}} = 50\text{k}\Omega$, $C_E = 20\text{fF}$, $C_L = 100\text{fF}$ and $r_o = \infty$. (10%)
 - (a) Find the value of dominant pole ω_{p1}. (2.5%)
 - (b) Find the alue of second pole ω_{p2} . (2.5%)
 - (c) Find the value of zero ωz. (2.5%)
 - (d) Explain the relation of ω_z and ω_{p2} . (2.5%)

Fig. 3

- 4. In Fig. 4, M_1 and M_2 are biased with $g_m = 1 \text{mA/V}$ and $r_0 = 100 \text{k}\Omega$. The thermal noise of M_1 (M_2) is $\overline{i_n^2} = 4kTg_m(2/3)$, $4kT = 1.5 \text{x} 10^{-20}$ $V^2/(\text{Hz}*\Omega)$. (10%)
 - (a) Find the output referred noise $v_{n,out}^2$. (4%)
 - (b) Find the input referred noise $v_{n,m}^2$. (4%)
 - (c) How to modify g_{m1} and g_{m2} to improve the noise performance? (2%)

Fig. 4

- 5. In Fig. 5, the input and output impedance of feed-forward amplifier are R_{in} and R_{out}. (10%)
 - (a) Find the loop gain. (2%)
 - (b) Find the closed loop gain. (2%)
 - (c) Find the input impedance of closed-loop amplifier. (2%)
 - (d) Find the output impodence of alread lace

- 5. In Fig. 5, the input and output impedance of feed-forward amplifier are R_{in} and R_{out}. (10%)
 - (a) Find the loop gain. (2%)
 - (b) Find the closed loop gain. (2%)
 - (c) Find the input impedance of closed-loop amplifier. (2%)
 - (d) Find the output impedance of closed-loop amplifier. (2%)
 - (e) Explain bandwidth modification of closed loop system compared to open loop. (2%)

- 6. Explain the following terminologies (10%)
 - (a) Power Spectrum (Spectral) Density. (2%)
 - (b) Flicker noise. (2%)
 - (c) Corner Frequency. (2%)
 - (d) Phase margin. (2%)
 - (e) Noise bandwidth. (2%)

7. Fig 7 shows an impedance boosting circuit with $R_S = 50k\Omega$. M_2 and M_3 are biased with $g_m =$ 2mA/V and $r_0 = 100k\Omega$. Find the R_{out}. (5%)

Fig. 7

- 8. A shunt-series feedback amplifier as shown in Fig. 8 is biased with $g_m = 2mA/V$, $R_D = R_S =$ 100kΩ, $R_F = 50$ kΩ and $r_o = \infty$. (10%)
 - (a) Find the feedback factor. (2%)
 - (b) Find the open-loop gain with loading effect.
 - (c) Find the closed-loop gain Vout/Vin. (4%)

Sketch a common-mode feedback circuit for the 2-stage Op Amp as shown in Fig. 9. (5%)

- (b) Find the open-loop gain with loading effect. (4%)
- (c) Find the closed-loop gain Vout/Vin. (4%)

Fig. 10

9. Sketch a common-mode feedback circuit for the 2-stage Op Amp as shown in Fig. 9. (5%)

10. Find slew rates of the following Op Amps in Fig. 10 with $I_{SS} = 10uA. (10\%)$

th

- (a) Folded cascade Amp with $C_L = 2pF$. (2.5%) (b) 2-stage OP Amp with $C_1 = 0.2pF$ and $C_2 = 0.4pF$. (2.5%)
 - (c) With $I_d(M_9) = 8uA$, explain the behavior of node voltage X when slewing. (2.5%)
 - (d) Sketch a possible solution of condition (c). (2.5%)

11. A two-stage Op Amp is shown in Fig. 11 with $R_{\text{out1}} = R_{\text{out2}} = 100 \text{k}\Omega$, $C_{\text{out1}} = 50 \text{fF}$, $C_{\text{out2}} = 10 \text{fF}$, and $A_{v1} = 40$, $A_{v2} = 400$. (5%)

(a) Find frequencies of 1st and 2nd poles.

Fig. 10(b)

- 11. A two-stage Op Amp is shown in Fig. 11 with $R_{out1} = R_{out2} = 100k\Omega$, $C_{out1} = 50fF$, $C_{out2} = 10fF$, and $A_{v1} = 100$, $A_{v2} = 100$. (5%)
 - (a) Find frequencies of 1st and 2nd poles. (2.5%)
 - (b) Use Miller compensation to move the 1st pole to become 0.001x smaller. Sketch the compensated circuit and find the value of Cc. (2.5%)

Fig. 11

CCHsieh 2013.06.18

- 12. A telescopic amplifier is shown in Fig. 12 with $V_{TH} = 0.6V$ and $V_{ov} = 200 \text{mV}$ for each MOS, and $V_{bl} = 1.2V$. (5%)
 - (a) Find the maximum and minimum output voltage. (2.5%)
 - (b) Find the maximum output swing. (2.5%)

Fig. 12

- 13. Assume an OpAmp with DC-gain = 60dB, pole1 = 1Mhz, pole2 = 1000Mhz, and right half plan (RHP) zero = 100Mhz. (5%)
 - (a) Sketch the Bode-Plot (amplitude & phase). (2.5%)
 - (b) Find the unity-gain frequency. (2.5%)
- 14. A two stage OpAmp is shown in Fig. 14, answer the following questions. (5%)
 - (a) Sketch a compensation Cc and explain the pole-splitting effect. (2.5%)
 - (b) Explain the right half plane zero effect and provide one solution. (2.5%)

15. As

15. A Ban

dV_{BE3}

(b) F

(a) I

16. A

(5

(3

17

- (5
- •
- 13. Assume an OpAmp with DC-gain = 60dB, pole1 = 1Mhz, pole2 = 1000Mhz, and right half plan (RHP) zero = 100Mhz. (5%)
 - (a) Sketch the Bode-Plot (amplitude & phase). (2.5%)
 - (b) Find the unity-gain frequency. (2.5%)
- 14. A two stage OpAmp is shown in Fig. 14, answer the following questions. (5%)
 - (a) Sketch a compensation Cc and explain the pole-splitting effect. (2.5%)
 - (b) Explain the right half plane zero effect and provide one solution. (2.5%)

Fig. 14

17

%)

2 with MOS,

output

15. A Bandgap voltage reference is shown in Fig. 15. Assume n = 8, $I_{C1} = I_{C2} = I_{D5}$, $V_{BE1} = 0.7V$, $\Delta V_{BE}(Q_1 - Q_2) = V_T \ln(n)$, $dV_T/dT = 0.08 \text{mV/K}$, $dV_{BE3}/dT = -1.5 \text{mV/K}$. (5%)

- (a) Design R_2/R_3 to get $dV_{out}/dT = 0. (2.5\%)$
- (b) Find the $V_{out} = ?$ volts in (a). (2.5%)

Fig. 15

16. A source follower as shown in Fig. 16 with $g_m = 1.5 \text{mA/V}$, $g_{mb} = 0.2 g_m$, $R_S = 50 \text{K}\Omega$, and $r_o = \infty$. (5%)

- (a) Sketch the small signal equivalent circuit. (2.5%)
- (b) Find the voltage gain Vout/Vin. (2.5%)

Fig. 16

17. A cascode current mirror as shown in Fig. 17, assume $Q_1 \sim Q_4$ are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.6 \text{V}$, $I_{BIAS} = 5 \text{uA}$, $g_m = 2 \text{mA/V}$, $r_0 = 10.0 \text{m}$

12

B,

:).

er

е

1

Fig. 15

16. A source follower as shown in Fig. 16 with $g_m = 1.5 \text{mA/V}$, $g_{mb} = 0.2 g_m$, $R_S = 50 \text{K}\Omega$, and $r_o = \infty$. (5%)

- (a) Sketch the small signal equivalent circuit. (2.5%)
- (b) Find the voltage gain Vout/Vin. (2.5%)

Fig. 16

- 17. A cascode current mirror as shown in Fig. 17, assume $Q_1 \sim Q_4$ are biased with $|V_{ov}| = 200 \text{mV}$, $|V_{th}| = 0.6 \text{V}$, $I_{BIAS} = 5 \text{uA}$, $g_m = 2 \text{mA/V}$, $r_o = 100 \text{k}\Omega$, $(W/L)_1 = (W/L)_3$, $(W/L)_2/(W/L)_1 = (W/L)_4/(W/L)_3 = 4$, and $V_{DD} = 1.8 \text{V}$. (5%)
 - (a) Find the optimized V_b and related output voltage V_{out} for correct current mirror operation. (2.5%)
 - (b) For $(W/L)_1 = 1 \text{um}/2 \text{um}$, find the size of Q5 to get the optimized V_b . (2.5%)

CCHsieh 2013.06.18

g. 12

odB,

se).

ver

he

d

- 18. Answer the following questions with TRUE or FALSE: (10%)
 - (a) Source follower is commonly used as a voltage buffer due to its low R_{out}. (1%)
 - (b) The threshold voltage of nMOS is increased by p+ channel implantation. (1%)

 (c) Differential amplifier has smaller common noise and low power performance. (1%)

Reference Material

> For current-voltage feedback (Z)

- (d) Junction capacitance is proportional to device length. (1%)
- (e) The transconductance g_m of MOSFET is proportional to V_{ov} at a known constant biasing current. (1%)
- (f) The g_m of pMOS is larger than nMOS at same bias current and device size. (1%)
- (g) The gate-to-body capacitance of a MOS device is in strong inversion is smaller than that in accumulation region. (1%)
- (h) The subthreshold slope limits the leakage current when turning off MOS device. (1%)
- (i) The output impedance and voltage swing of common-source amplifier can be increased by a cascode structure. (1%)
- (j) The r_o of MOSFET will be decreased at high V_{DS} bias due to the channel length modulation effect. (1%)

modulation effect. (1%)

Reference Material

> For current-voltage feedback (Z)

$$V_1 = Z_{11}I_1 + Z_{12}I_2$$

 $V_2 = Z_{21}I_1 + Z_{22}I_3$

For voltage-current feedback (Y)

> For current-current feedback (H)

$$V_1 = H_{11}I_1 + H_{12}V_2$$

$$I_2 = H_{21}I_1 + H_{22}V_2$$

> For voltage-voltage feedback (G)

