2012 Analog IC: Midterm Examination (110%)

- 1. Answer definitions of the following effects and explain the physical mechanisms. (10%)
 - (a) Channel Length Modulation effect. (2%)
 - (b) Mobility Degradation. (2%)
 - (c) Drain Induced Barrier Lowering. (2%)
 - (d) Body effect. (2%)
 - (e) Velocity Saturation. (2%)
- 2. Sketch the small signal model of MOSFET in Fig. 2 with g_m , g_{mb} , r_o , and all the parasitic capacitances. (5%)

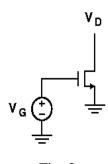
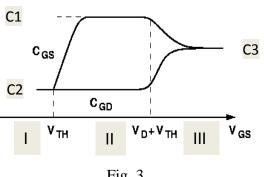
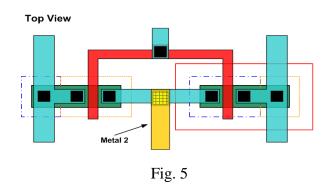
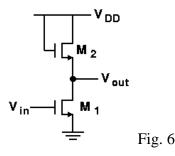


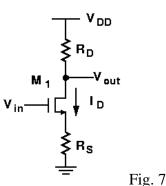
Fig. 2

- 3. Sweep V_G in Fig. 2 with a constant V_D , the C_{GS} and C_{GD} curves are shown in Fig. 3. (10%)
 - (a) Find values of C1, C2, and C3 in W, L, C_{ox}, and C_{ov}. (6%)
 - (b) Define the operation regions I, II, and III.(4%)

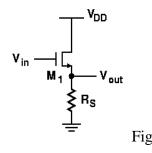



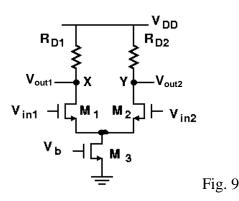

Fig. 3

 Write down the drain current equations of MOSFET in triode and saturation region with channel length modulation effect. (5%)


- 5. Fig. 5 is a layout of CMOS inverter. (5%)
 - (a) Identify and index all the name of layers.(2.5%)
 - (b) Make the orders of masks in semiconductor process flow. (2.5%)

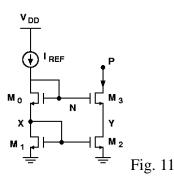
Derive the equation of voltage gain V_{out}/V_{in} of amplifier as shown in Fig. 6 in terms of g_{m<n>}, g_{mb<n>} and r_{o<n>} (5%)


- 7. Assume $r_o = \infty$, $g_{mb} \neq 0$ in the circuit of Fig. 7. (10%)
 - (a) Sketch the small signal equivalent circuit.(3%)
 - (b) Find the short circuit transconductance G_m of this amplifier. (3%)
 - (c) Find the voltage gain V_{out}/V_{in} . (4%)

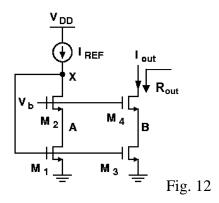

CCHsieh 2012.04.24

2012 Analog IC: Midterm Examination (110%)

- 8. A source follower as shown in Fig. 8. (10%)
 - (a) Sketch the small signal equivalent circuit.(3%)
 - (b) Derive the equation V_{out}/V_{in} of amplifier in terms of g_{m<n>}, g_{mb<n>}, and R_S. Assume there is no λ effect. (4%)
 - (c) Derive output impedance R_{out} with $Rs=\infty$. (3%)

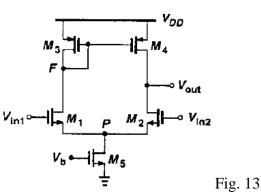


- 9. A differential pair is shown in Fig. 9. Assume all the MOSFETs are biased with $|V_{ov}| = 200$ mV and $|V_{th}| = 0.5$ V. The I_D(M₃) = 20uA, $g_{m1} = g_{m2}$ = 2mA/V, R_{D1} = R_{D2} = 100k Ω , $r_0(M_1) = r_0(M_2)$ = $r_0(M_3) = 100$ k Ω , and V_{DD} = 1.8V. (10%)
 - (a) Find the differential gain $A_{v.DM}$. (2.5%)
 - (b) Find the common-mode gain $A_{v.CM}$. (2.5%)
 - (c) Find the maximum differential input signal range. (2.5%)
 - (d) Find the input common mode range. (2.5%)



- 10. Use the amplifier and bias condition in Fig. 9, assume $g_{m1} = 1$ mA/V and $g_{m2} = 2$ mA/V. (5%)
 - (a) Find the common mode to differential mode gain $A_{v,CM-DM}$. (2.5%)
 - (b) Assume $A_{v,DM}$ = the value in 11(a), find the *CMRR*. (2.5%)

- 11. A current mirror as shown in Fig. 11, assume all MOSs are biased with $|V_{ov}| = 200$ mV, $|V_{th}| = 0.5$ V, $I_{REF} = 10$ uA, $(W/L)_2/(W/L)_1 = 4$, and $V_{DD} = 1.8$ V. (5%)
 - (a) Find the minimum output voltage V_p for correct current mirror operation. (2.5%)
 - (b) Find the optimum output voltage V_p for exactly accurate current ratio. (2.5%)


- 12. A cascode current mirror as shown in Fig. 12, assume all MOSs are biased with $|V_{ov}| = 200$ mV, $|V_{th}| = 0.5$ V, $I_{REF} = 10$ uA, $g_m = 2$ mA/V, $r_o = 100$ k Ω , $(W/L)_3/(W/L)_1 = (W/L)_4/(W/L)_2 = 4$, and $V_{DD} = 1.8$ V. (5%)
 - (a) Find the minimum V_b and related output voltage V_{out} for correct current mirror operation. (2.5%)
 - (b) Find the output resistance R_{out} . (2.5%)

CCHsieh 2012.04.24

2012 Analog IC: Midterm Examination (110%)

- 13. A differential to single-ended amplifier is shown in Fig. 13. Assume all the MOSFETs are biased with $|V_{ov}| = 200$ mV, $|V_{th}| = 0.5$ V, $r_o =$ 100k Ω , and $g_m = 2$ mA/V. The I_D(M₅) = 20uA and V_{DD} = 1.8V. (10%)
 - (a) Find the minimum input DC bias voltage.(2.5%)
 - (b) Find the maximum output swing V_{out} . (2.5%)
 - (c) Find the differential gain $V_{out}/(V_{in1}-V_{in2})$. (2.5%)
 - (d) Assume $A_{v.CM} = 1/(2g_m r_o)$, find the CMRR. (2.5%)

- 14. Answer the following questions with TRUE or FALSE: (15%)
 - (a) Silicide is used to reduce the sheet resistance of metal. (1%)
 - (b) The voltage gain of source follower is independent of body effect. (1%)
 - (c) Common gate amplifier is commonly used as current buffer due to its low output impedance. (1%)
 - (d) Junction capacitance is proportional to depletion width and area. (1%)
 - (e) The threshold voltage of nMOS is increased by n+ channel implantation. (1%)
 - (f) The depletion width of p/n ratio (W_p/W_n) in diode is correlated to doping concentration (N_A/N_D) as $W_p/W_n = N_A/N_D$. (1%)
 - (g) Hot carrier effect is due to the high lateral electrical field of channel. (1%)

- (h) The main free carrier in pMOS is hole and from source/drain. (1%)
- (i) The transconductance g_m of MOSFET is proportional to V_{ov} at known constant biasing current. (1%)
- (j) The channel charge of MOSFET is proportional to W*L and overdrive voltage V_{ov} as well. (1%)
- (k) The output resistance of MOSFET at saturation region is proportional to bias current. (1%)
- The drain current of nMOS at subthreshold region is exponential proportional to applied V_{gs}. (1%)
- (m)For nMOS at triode region, $C_{GS} = C_{GD} = C_{GB}$. (1%)
- (n) The output impedance and gain of common-source amplifier can be increased by cascade structure. (1%)
- (o) The r_o of MOSFET will be decreased at high V_{DS} bias due to the DIBL effect.