[Analog Integrated Circuits Analysis and Design](http://lms.nthu.edu.tw/course/5960) Midterm

Answer ver.1

1.

(a) A process of depositing films by reacting chemical vapors to produce a film on a substrate.

(b) DIBL: In short channel devices, the drain voltage makes the surface more positive by creating a two-dimensional field depletion region. The barrier to the flow charge and hence the V_{TH} are decreased.

(c) The number of transistors on a chip doubles every 18 months (12 months).

(d) High vertical electrical field E_{ver} between the gate and the channel confines the charge carriers to a narrow region below the oxide-silicon interface, leading to more scattering and hence lower mobility.

(e) Carriers may reach a saturated velocity $v = uE$ at some point along the channel. In the case carriers experience velocity saturation along the entire channel. The current is proportional to the V_{ov} only and does not depend on the length. Devices with $L < 1$ μ m reveal velocity saturation because equal increments in V_{GS}-V_{TH} result in roughly equal increments in I_D . The transconductance is a weak function of the I_D and channel length.

2.

Region I: Channel length modulation--> r_{o1} 變大 Region II: Channel length modulation--> r_{o1} 變大 , DIBL--> r_{o1} 變小 Region III: Impact ionization --> r_{o1} 變小

(5% no partition)

4.

$$
A_v \approx -g_{m1} \left(\frac{1}{g_{m2}} || r_{o1} || r_{o2} \right)
$$

5.
\n
$$
A_V = -g_{m1} \times (r_{o1}/r_{o2})
$$

$$
V_{in} \begin{array}{c}\n & V_{DD} \\
 & \searrow R_D \\
 & M_1 \end{array}
$$
\n
$$
V_{in} \begin{array}{c}\n & M_1 \\
 \searrow R_D \\
 & V_{out} \\
 & \searrow R_S \\
 & \downarrow\n\end{array}
$$

$$
A_v = -G_m R_D = \frac{-g_m R_D}{1 + g_m R_S} = -\frac{R_D}{1/g_m + R_S}
$$

7.

$$
A_V = \frac{g_{m1} \times R_S}{1 + (g_{m1} + g_{mb1})R_S} = \frac{R_S / \sqrt{\frac{1}{g_{mb1}}}}{\frac{1}{g_{m1}} + (R_S / \sqrt{\frac{1}{g_{mb1}}})} = g_{m1} \times (\frac{1}{g_{m1}} / \sqrt{\frac{1}{g_{mb1}}}) / R_S)
$$

8.

$$
R_{out} = \{ [1 + (g_m + g_{mb})r_o]R_S + r_o \} / / R_D
$$

(5%)
9.

$$
V_{in} (V_a) = |V_a| + |V_b| = 0.9V
$$

$$
V_{gs}(V_{sg}) = |V_{ov}| + |V_{th}| = 0.9V
$$

\n
$$
V_{b1} = |V_{ov1}| + V_{gs2} = 1.1 V
$$
 (1.5%)
\n
$$
V_{b2} = V_{DD} - |V_{ov4}| - V_{sg3} = 0.7 V
$$
 (1.5%)
\n
$$
|V_{ov1}| + |V_{ov2}| < V_{out} < V_{DD} - |V_{ov3}| - |V_{ov4}| \rightarrow 0.4V < V_{out} < 1.4V
$$

\n
$$
\text{Max } V_{out} \text{ swing} = 1V
$$
 (2%)
\n10.
\n(a)
\n
$$
-\sqrt{(2 * 0.9)} \le \text{Vid} \le \sqrt{(2 * 0.9)}
$$

\n** or
\n
$$
-\sqrt{(2)} \le \text{Vid} \le \sqrt{(2)}
$$

(b) $V_{CMmax} = V_t + V_{dd}-(1/2 * R_D) = 1.5$ $V_{\text{CMMin}} = V_{\text{ov}} + V_{\text{t}} + V_{\text{ov}} = 1.1$

6.

(a)
\n
$$
\frac{V_{\text{out1}} - V_{\text{out2}}}{V_{\text{in1}} - V_{\text{in2}}} = A_{\text{dm}} = -g_{\text{m}}(R_{\text{D}}//r_{\text{o}}) = -10^{-3} \times 50 \times 10^{3} = -50 \text{ V/V} \quad (2.5\%)
$$

(b)

$$
A_{cm} = -\frac{g_m R_D}{1 + 2g_m R_{SS}}
$$

\n
$$
V_{out1} = -\frac{g_m R_{D1}}{1 + 2g_m r_o} V_{icm} \t V_{out1} = -\frac{g_m R_{D2}}{1 + 2g_m r_o} V_{icm}
$$

\n
$$
\frac{V_{out1} - V_{out2}}{V_{icm}} = -\frac{g_m (R_{D1} - R_{D2})}{1 + 2g_m r_o} = -\frac{10^{-3} \times (110 - 100) \times 10^{3}}{1 + 2 \times 10^{-3} \times 100 \times 10^{3}}
$$

\n= -0.04975 V/V (2.5%)

12.

(a) In order to operate as a current mirror correctly, MOSFET have to work in saturation region.

Minimal V_{out}=0.2V (b)

$$
\begin{cases}\nI_{\text{out}} = Kn' \times 4 \times \left(\frac{W}{L}\right) \times (V_{GS} - V_{\text{th}})^2 \times \left(\frac{10 + 1.5}{10 + 0.2}\right) \\
I_{\text{REF}} = Kn' \times \left(\frac{W}{L}\right) \times (V_{GS} - V_{\text{th}})^2 \times \left(\frac{10 + 0.9}{10 + 0.2}\right), I_{\text{out}} = 4 \times \left(\frac{10 + 1.5}{10 + 0.9}\right) \times I_{\text{REF}} \\
= 42.2 \mu A\n\end{cases}
$$

11.

13. (a) $V_b = 1.4V$. $V_{\text{out,min}} = V_b - V_{\text{th}} + V_{\text{ov}}$. $V_{\text{out,min}} = 1.4 - 0.7 + 0.2 = 0.9 V$. (b) At matching, $V_{\text{out}} = V_x = 0.9V$. With early effect, $\Delta i_{\text{out}} = \Delta V_{\text{out}} / R_{\text{out}}$. $\Delta i_{\text{out}} = (1.5 -$ 0.9) / $1M = 0.6$ uA. $I_{out} = 40uA + 0.6uA = 40.6$ uA. 14. (a) $V_{in,dc,min} = V_{ov} + V_{GS} = 2V_{ov} + V_{th} = 0.4 + 0.7 = 1.1 V$ (b) $V_{\text{out,max}} = V_{\text{DD}} - V_{\text{ov4}} = 1.6V$. $V_{\text{out,min}} = V_{\text{ov5}} + V_{\text{ov2}} = 0.4V$ Vout,swing = 1.6 - 0.4 = 1.2V. (c) $A_{id} = g_m(r_{o2}//r_{o4}) = 10^{-3} * 5k = 5 V/V$ (d) $A_{id} = 5$ V/V $A_{cm} = 1/(1+2g_m r_o) = 1/20$ or 1/21 V/V. CMRR = $|A_{id}/A_{cm}| = 100$ or 105 V/V. 15. $(a)^\sim(j)$ TFFTFFFFTF 16. $(a)^\sim(i)$ FTFFTFTTFF