

Single Stage Amplifier

Analog IC Analysis and Design **3-1 Chin-Cheng Hsieh**

Outline

1. Common-Source Amplifier

- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

Vision

- An important part of a designer's job is to use proper approximations so as to create a simple mental picture of a complicated circuit.
- The intuition thus gained makes it possible to formulate the behavior of most circuits by inspection rather than by lengthy calculations

Basic Concepts

• The input-output characteristic of an amplifier is generally a nonlinear function

$$
y(t) \approx \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t) \qquad x_1 \le x \le x_2
$$

• For a sufficiently narrow range of *x*

 $y(t) \approx \alpha_0 + \alpha_1 x(t)$, α_0 : operationg point, α_1 : small signal gain

- As *x(t)* increases in magnitude, higher order terms manifest themselves, leading to nonlinear distortion.
- Input-output characteristic of a nonlinear system

Analog Design Octagon

• Analog design octagon

Common Source Stage (I)

• M1 off

$$
V_{in} \leq V_{TH} \Rightarrow V_{out} = V_{DD}
$$

• M1 in the saturation region (Let $V_{TH} \leq V_{in} \leq V_{in1} \Rightarrow V_{in} - V_{TH} \leq V_{out}$) – To find *Vin1*

$$
V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2
$$

• M1 in the triode region $(V_{in} > V_{in1})$

$$
V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \Big[2(V_{in1} - V_{TH}) V_{out} - V_{out}^2 \Big]
$$

Analog IC Analysis and Design 3- **Chih-Cheng Hsieh**

Common Source Amplifier (II)

• Since the transconductance drops in the triode region, (the r_o also becomes smaller), we usually ensure that

$$
V_{out} > V_{in} - V_{TH}
$$
\n
$$
A \text{s} \quad V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2
$$
\n
$$
\Rightarrow \quad \frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH}) = -g_m R_D
$$
\n
$$
\Rightarrow \quad A_v = -g_m R_D
$$

• Since g_m itself varies with the input signal, the gain of the circuit changes substantially if the signal swing is large.

Common Source Amplifier (III)

• To take channel length modulation effect into account :

$$
V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 (1 + \lambda V_{out})
$$

• We have

$$
\frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})(1 + \lambda V_{out}) - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}}
$$

• As

$$
I_D \approx \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 \implies A_v = -R_D g_m - R_D I_D \lambda A_v \implies A_v = -\frac{g_m R_D}{1 + R_D \lambda I_D}
$$

$$
\lambda I_D = \frac{1}{r_O} \implies A_v = -g_m \frac{r_O R_D}{r_O + R_D} = -g_m (r_O \parallel R_D)
$$

Analog IC Analysis and Design **3-8 Chin-Cheng Hsieh**

Design Trade-off

• To maximize gain

$$
A_{\nu} = -\sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \frac{V_{RD}}{I_D} = -\sqrt{2\mu_n C_{ox} \frac{W}{L} \frac{V_{RD}}{\sqrt{I_D}}}
$$

- Increase *W/L* → greater device capacitance (*Gain ↔ BW*)
- $-$ Higher $V_{RD} \rightarrow$ smaller voltage swing (*Gain* \leftrightarrow *Voltage swing*)
- $−$ Reduce I_D while V_{RD} is constant $→$ larger RC time constant at the output $node (Gain \leftrightarrow BW)$

Diode Connected Load

• In many CMOS technologies, it is difficult to fabricate resistors with tightly controlled values or a reasonable size. Replace R_D with a MOS transistor.

• Diode connected : gate and drain shorted \rightarrow V_{DS} = V_{GS} > V_{GS} - V_{TH} \rightarrow the transistor always in saturation region.

CS Stage + Diode Connected Load

- If the variation of *η* with the output voltage is neglected, the gain is independent of the bias current and voltages (so long as M_1 stays in saturation). $\mu_n C_{ox} (W/L)_2 I_{D2} 1 + \eta$

but voltage is neglected, the gair

and voltages (so long as M₁ stay

CS stage with diode connected

N_{TH1}

V_{IH1}

Chih-Cheng H₃
- Input-output characteristics of a CS stage with diode connected load.
- Operated at point A.

CS Stage + Diode-Connected PMOS

- The circuit is free from body effect. $(V_{GS1} - V_{TH1})^2 \approx \mu_{p} \left(\frac{V}{I} \right) (V_{GS2} - V_{TH2})^2$ 2 'TH2 2 2 1 $'TH1$ 1 *ⁿ GS TH p* $\frac{U}{L}$ \int_{0}^{L} $(V_{GS2} - V_{TH}$ *W* $V_{\alpha\alpha}$ $-V_{\alpha}$ *L W* $\mid (V_{GS} \int$ $\bigg)$ $\overline{}$ \setminus $\bigg($ $\left(V_{GS1} - V_{TH1} \right)^2 \approx$ \int $\bigg)$ \mid \setminus $\bigg($ $|\mu_{n}| = |V_{GS1} - V_{TH1}| \approx \mu$ 2 $TH2$ 1 $TH1$ $|V_{GS2} - V_{TH2}|$ *v GS*¹ *TH*¹ $A \approx -\frac{|V_{GS2} - V_{TH2}|}{|V_{GS2} - V_{TH2}|}$ $V_{\text{C31}} - V_{\text{Z11}}$ $V_{\text{in}} \longrightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\approx -$ 2 $V_{GS1} - V_{TH1}$ 1 (W/L) (W/L) W/L W/L *A p n* $\sqrt[n]{\mu}$ $=-\left|\frac{\mu_{\text{\tiny\it\mu}}}{\mu}\right|$
- Example :

If $A_v = 10$, V_{GSI} ^{*-V*} $_{TH1}$ = 200 mV, → V_{GSI} ^{*-V*} $_{TH2}$ = 2 V, V_{TH2} = 0.7 V → V_{GSI} = 2.7 V </sub></sub>

 \rightarrow V_{omax} = $V_{\text{DD}} - V_{\text{G}}$ ₂ \rightarrow Trade-off between gain and output swing

• To take the effect of channel length modulation effect into account

$$
A_{v} \approx -g_{m1} \left(\frac{1}{g_{m2}} \| r_{o1} \| r_{o2} \right)
$$

CS Stage + Current Source Load

• For resistor or diode connected load, increasing the load resistance limits the output voltage swing \rightarrow CS stage with current source load.

- The output bias voltage of the circuit needs a feedback loop to force *Vout* to a known value.
- If $A_v \nightharpoonup \rightarrow L \nightharpoonup \rightarrow W \nightharpoonup$ (for constant I) $\rightarrow C_{load} \nightharpoonup \rightarrow$ *Gain-Bandwidth Trade-off*
- Keep *W* constant, *L* ↑ → V_{DSmin} ↑ → $V_{out, swing}$ ↓

CS Stage + Triode Load

The gate of M2 is biased at a sufficiently low level, ensuring the load is in deep triode region for all output voltage swings.

$$
V_{DD} - V_b - V_{TH} > V_{DD} - V_{out} \implies V_{out} - V_{TH} > V_b
$$

$$
R_{on2} = \frac{1}{\mu_p C_{ox} (W/L)_2 (V_{DD} - V_b - |V_{THP}|)}
$$

- Consume less voltage headroom than diode connected devices.
- *Drawback*
	- *Ron2 depends on μpCox , V^b , and VTHP , which vary with process and Temp.*
	- *Difficult to use.*

Analog IC Analysis and Design 3- 14 **Chinese Structure 2 and Except 2 and Exc**

Outline

- 1. Common-Source Amplifier
- **2. Common-Source Amp with Source Degeneration**
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CS Stage + Source Degeneration (I)

• Common source Gain

$$
V_{out} = -I_D R_D \Rightarrow A_v = \frac{\partial V_{out}}{\partial V_{in}} = -\frac{\partial I_D}{\partial V_{in}} R_D = -G_m R_D
$$

- Improve the linearity of the gain amplifier
	- Higher linearity, Lower gain

: equivalent transconductance of circuit *m G*

Linear!

Analog IC Analysis and Design 3- **Chih-Cheng Hsieh**

 $V_{\text{in}} \longrightarrow \begin{array}{c}\nV_{\text{DD}} \\
\searrow R_{\text{D}} \\
\searrow H_{\text{out}} \\
\searrow H_{\text{out}} \\
\searrow H_{\text{S}} \\
\searrow H_{\text{S}}\n\end{array}$

CS Stage + Source Degeneration (II)

• To take the body effect and channel length modulation effect into account l _{out}

Formulate Gain by Inspection

• Magnitude of gain as the resistance seen at the drain node divided by the total resistance in the source path

Analog IC Analysis and Design **3- 18 Chin-Cheng Hsieh Chin-Cheng Hsieh**

CS Stage + Source Degeneration (III)

 $\begin{array}{c}\n\downarrow \\
\searrow^r \circ \\
\hline\nR_s\n\end{array}$

By Inspection

By inspection
\n
$$
\Delta V_{RS} = \Delta V \frac{\frac{1}{g_m + g_{mb}} || R_S}{\frac{1}{g_m + g_{mb}} || R_S + r_o}, \Delta I = \frac{\Delta V_{RS}}{R_S} = \Delta V \frac{1}{[1 + (g_m + g_{mb})R_S]r_o + R_S}
$$
\n
$$
\frac{\Delta V}{\Delta I} = [1 + (g_m + g_{mb})R_S]r_o + R_S
$$
\n
$$
\frac{\Delta V}{\Delta I} = [1 + (g_m + g_{mb})R_S]r_o + R_S
$$
\n
$$
\frac{\Delta V}{\Delta I} = [1 + (g_m + g_{mb})R_S]r_o + R_S
$$

Analog IC Analysis and Design 3- 19 3- 19 **Chih-Cheng Hsieh**

CS Stage + Source Degeneration (IV)

• Voltage gain with r_{o} & g_{mb}

with
$$
r_o
$$
 & g_{mb}
\n
$$
\frac{V_{out}}{V_{in}} = -\frac{g_m r_o R_p}{R_p + R_s + r_o + (g_m + g_{mb})R_s r_o}
$$
\n
$$
= -\frac{g_m r_o}{R_s + r_o + (g_m + g_{mb})R_s r_o} \cdot \frac{R_p [R_s + r_o + (g_m + g_{mb})R_s r_o]}{R_p + R_s + r_o + (g_m + g_{mb})R_s r_o}
$$
\n
$$
= -G_{meff} R_o = -G_{meff} \{R_p || [R_s + r_o + (g_m + g_{mb})R_s r_o] \}
$$
\nand Design $\frac{3}{20}$ Chih-Cheng

Analog IC Analysis and Design 3- **Chih-Cheng Hsieh**

CS Stage + Source Degeneration (V)

• I_0 = constant, $I(R_s)$ = constant, small-signal voltage drop across R_s = 0

$$
A_{v} = -\frac{g_{m}r_{O}}{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{O}} \{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{O}\}\
$$

$$
= -g_{m}r_{O} = \text{intrinsic gain, independent of } R_{S}
$$

Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- **3. Common-Drain Amplifier**
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CD Stage: Source Follower (I)

- The source follower can operate as a voltage buffer High input impedance, low output impedance.
- Gain \approx 1, but not equal to 1 even with R_s = infinity.

$$
\frac{1}{2}\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH}-V_{out})^{2}R_{S}=V_{out}
$$
\n
$$
\frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH}-V_{out})R_{S}}{1+\mu_{n}C_{ox}\frac{W}{L}(V_{in}-V_{TH}-V_{out})R_{S}(1+\eta)}
$$

$$
g_m = \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})
$$

$$
A_v = \frac{g_m R_S}{1 + (g_m + g_{mb}) R_S}
$$

CD: Small-signal equivalent circuit

• Calculate the voltage gain by small-signal equivalent circuit of source follower with body effect

R_{out} of Source Follower

Body effect decrease R_{out} of source follower

• Less-than-unity voltage gain of source follower with body effect

Source Follower with r_{o}

• Source follower with finite channel-length modulation

$$
A_{v} = \frac{\frac{1}{g_{mb}} \parallel r_{o1} \parallel r_{o2} \parallel R_{L}}{\frac{1}{g_{mb}} \parallel r_{o1} \parallel r_{o2} \parallel R_{L} + \frac{1}{g_{m}}}
$$

Source Follower Drawback

- Voltage headroom consumption due to level shift.
- **Nonlinearity**
	- $-$ Nonlinear dependence of V_{TH} upon the source potential.
	- r_O of the transistor also changes substantially with V_{DS} .
- PMOS source follower with no body effect

• Higher output impedance using PMOS source follower.

Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- **4. Common-Gate Amplifier**
- 5. Cascode Amplifier

CG: Common-Gate Stage

• If M_1 is saturated, the V_{out} can be expressed as ξR_D 1 *W* $V_{\text{tot}} = V_{\text{DD}} - \frac{1}{2} \mu \left(C_{\text{tot}} - V_{\text{tot}} - V_{\text{tot}} \right)^2$ $V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{I} (V_b - V_{in} - V_{TH})^2 R_{DD}$ $= V_{DD} - -\mu_{n}C_{ox} - (V_{b} - V_{in})$ 2 *L* $\bigg($ $\bigg)$ \widehat{O} \widehat{O} *V W V* $\overline{}$ $\left(V_b - V_{in} - V_{TH}\right) - 1 - \frac{UV_{TH}}{2V}R_D$ *TH* $\frac{\partial u}{\partial t} = -\mu C \quad -V$, $-V$, $-V$, V , V $-V$, V $-1 - \frac{V}{\mu}$ R $\mu_{n}C_{\alpha x} - (V_{b} - V_{m} - V_{TH}) - 1$ *C* V_{ι} $-V_{\iota}$ $-V_{\iota}$ I $\frac{1}{\partial V_{in}} = -\mu_n C_{ox} \frac{1}{L} (V_b - V_{in} - V_{TH}) - 1$ $n \infty_{\text{ox}}$ **b** *in TH* \setminus ∂ \int *V L V in in* V_{in} \widehat{O} \widehat{O} *V V TH TH* For $=\eta$ $\frac{1}{\partial V} =$ \widehat{O} *V V in S B* ∂ $\xi_{\mathsf{B}_{\mathsf{D}}}$ *V W* $_{n}C_{ox}\frac{W}{I}$ $(V_{b}-V_{in}-V_{TH})$ $(1+\eta)R_{D}=g_{m}(1+\eta)R_{D}$ $\frac{\partial u}{\partial x} = \mu_n C_{\alpha x} \left(V_p - V_m - V_{TH} \right) (1 + \eta) R_D = g_m (1 + \eta) R$ $= \mu_{n} C_{\alpha x} - (V_{b} - V_{in} - V_{TH})(1 + \eta) R_{D} = g_{m}(1 + \eta)$ *C* \widehat{O} *V L in* • Body effect increases the equivalent g_m of the stage.
• Body effect deceases the input impedance of CG.
 $\begin{array}{cc} c_1 \\ \downarrow \end{array}$
 $\begin{array}{cc} 7 & - \end{array}$ 1 M_1 Body effect deceases the input impedance of CG. 1 1 *Z*Ξ $\frac{1}{1+q} =$

in

 $(1 + \eta)$

^m mb ^m

 $g_m + g_{m b}$ *g*

 $+ \eta$

CG Stage- Input Impedance

• By taking into account both the output impedance of the transistor *ro* , find the input impedance *Zin*:

• For $R_D = 0$, same as source follower

$$
Z_{in} = \frac{V_X}{I_X} = \frac{r_O}{1 + (g_m + g_{mb})r_O} = \frac{1}{g_m + g_{mb} + 1/r_O} = r_O \left\| \frac{1}{g_m} \right\| \frac{1}{g_{mb}}
$$

• For $R_D = \infty$, $Z_{in} = \infty$

Analog IC Analysis and Design **3- 10** and 3- 30

CG Stage- Output Impedance

• The output impedance is similar to that of a common source gain stage with source degeneration. $R_{\mathcal{S}}$ is the impedance of signal source.

$$
R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_S + r_O \} || R_D
$$

CG Stage- Voltage gain

• Voltage gain is similar to CS + Source degeneration, it's slightly higher due to body effect

1 () 1 () [()] () () () 1 () () *out m mb O m mb O O m mb O S S D D in O m mb O S S D O m mb O S S O m mb O S S D m mb O out O m mb O S S V g g r g g r r g g r R R R ^R V r g g r R R R r g g r R R r g g r R R R g g r ^R r g g r R R* [()] () () *out ^m O O ^m mb O S S D in O ^m mb O S S O ^m mb O S S D CS SD V g ^r ^r g g ^r R R R ^V ^r ^g ^g ^r ^R ^R ^r ^g ^g ^r ^R ^R ^R in out*

Analog IC Analysis and Design 3- **Chih-Cheng Hsieh**

Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- **5. Cascode Amplifier**

CAS: Cascode Stage (I)

• Without consideration of r_{o} , The voltage gain is independent of the transconductance and body effect of M2.

CAS: Cascode Stage (II)

• If both M_1 and M_2 operate in saturation.

$$
G_m \approx g_{m1}
$$

\n
$$
R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}
$$

\n
$$
R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}
$$

\n
$$
A_v = -(g_{m2} + g_{mb2})r_{O2}g_{m1}r_{O1}
$$

• The maximum voltage gain is roughly equal to the square of the intrinsic gain of the transistors

NMOS CAS Amp + PMOS CAS Load

- Cascode as a constant current source with high output impedance
- The maximum output swing is equal to

$$
V_{out, swing} = V_{DD} - V_{DS1} - V_{DS2} - V_{SD3} - V_{SD4}
$$

$$
R_{out} = \left\{ \left[1 + \left(g_{m2} + g_{mb2} \right) r_{O2} \right] r_{O1} + r_{O2} \right\}
$$

$$
|| \left\{ \left[1 + \left(g_{m3} + g_{mb3} \right) r_{O3} \right] r_{O4} + r_{O3} \right\}
$$

Folded Cascode

- A PMOS-NMOS combination.
- The total bias current in this case must be higher to achieve comparable performance.

Analog IC Analysis and Design **3- 37** 37 **Chin-Cheng Hsieh**

R_{out} of Folded-Cascode

$$
R_{out} = \left[1 + \left(g_{m2} + g_{mb2}\right)r_{O2}\right] (r_{O1} \parallel r_{O3}) + r_{O2}
$$

Analog IC Analysis and Design **3- 18** and $3-38$ **Chin-Cheng Hsieh**

Designer's Intuition

- Simulation is essential because the behavior of short-channel MOSFET can't be predicted accurately by hand calculations.
- Don't avoids a simple and intuitive analysis of the circuit and skip the task of gaining inside, you can't interpret the simulate results intelligently.
- Don't let the computer think for you!