CHAPTER 2

Device Modeling
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect
 Small-signal model

* Scaling & Short-channel effects
* Simulation models
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Symbol Convention

Vps, Ip = bias and DC quantities
Vg, Iy = small signal quantities

l; > sum of bias and signal
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Junction Formation

Acceptor _ Donor
. Junction :
ion ion
\ \
i ED é
— Electron
Hole — S 1

¢ P-N junction is the basis of semiconductor operation.

< There are a variety of methods for junction formation, like
alloying, epitaxy, diffusion, and implantation.
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P-N Junction - Open

— I, = Majority diffusion due to
concentration gradient

Bound charges
Holes
o by b e
i i ks, Ty o e
s Lt e s
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++++ °

Free electrons
— I = Minority drift driven by
- junction electric field

e * Junction Built-in Voltage V,, :

Delpletioln regilon 20.6~O.8V

PRI

o N,N

W:c/ep V, =V; In( ?]-2 D] (see p.2-10)
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- IR A * Width of Depletion Region W,
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& \Eioltage Vo
b, W,/ W, = N,/N,
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P-N Junction - Forward
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P-N Junction - Reverse

Ip << g o Iy<<l(I=1—1,)
Ve< Vi — Reverse bias V1%, Majority leave
- ™, Depletion region width
Ip——>
-~ — | =1,=10°A (Thermal leak)
s g g - * Junction charge g;
+ e s
° e L 4 — NAND
8y F qJ T qAWde
© 0 "N, + N
=+ e c Ak A D
* Depletion width with V,
2¢.(1 1
@/ Wdep:xn+xp:\/ ] (NA+ND)(VO+VR)

* Junction capacitance
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Small Signal Junction Capacitance

e small signal junction capacitance C;

G : C. dQJ _A[ qENAND ]% 1

?“\More accurate b dVR - 2( N A + N D) \ (DO +VR

/| | calculation

Simple theory
(Equation 1.21)

In general, C, can be expreased as

C =
J V
1-—=)"
A Do
Yo g
| 2 . 1 1
Reverse bias Forward bias m =3 for abrupt junction, m =3 for graded junction

geN Ny Y
C.. = 2
0 A[Z(NA+ND)¢0]

V,, : positive for F.B., V, :negative for R.B.
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P-N Junction - Breakdown

Vo> Vs e Zener breakdown

— Reverse bias V1T, E of depletion
region %, Covalent bond break

P n . . .
— Hole-electron pair generation in

depletion region, electrons swept

to n-type (holes swept to p-type)

 Avalanche breakdown

— Reverse bias V1%, minority swept
by electric filed E, kinetic energy
break covalent bond

=Y

— lonizing collision , Hole-electron
pair generation in depletion region

* Punch through

— Two neighboring junction depletion
regions meet.

Analog IC Analysis and Design - Chih-Cheng Hsieh



Junction Built-in Voltage

Open-Circuit p-n Junction :

dp
Jptota = Jpoairt T Jpoann = —AD, &—i_qpﬂpE =0
D
Dp@: pu,E, E:—g, dv=—de:——p@
dx dx M, P
2 2 2 D
V-V, =["dv=—[ " Edx=- % 2o dP
Vi X1 R /L[p p
—p:VT’ jPZd_p_|nﬂ
lup A p PZ
2
I:)1: NA! Pz :n—i’ |nﬂ:| NAIZ\ID
D PZ ni
Junction Built-in Voltage :
P N,N
V,=V, -V, =V, InglzvT In%
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charge
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect
 Small-signal model

* Scaling & Short-channel effects
* Simulation models
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BJT operation mode

npn bipolar
Metal
 n-type p-type n-type Genact
) Emitter Base - Collector
ETE;” region region A region Co:l(c;tor
Er’pitter.—base Collector—base
junction Base junction
(EBJ) (B) (CBJ)

BJT Modes of Operation _

Mode EBJ

Cutoff Reverse
Active Forward
Reverse active Reverse
Saturation Forward

pnp bipolar
Metal
contact :
P n P
E Emitter Base Collector C
region -~ region region
B

CBJ Operation
Reverse Switch OFF
Reverse Amplifier
Forward

Forward Switch ON
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NPN vs PNP

Reverse-biased

Forward-biased
Ie"BEVT
ip
— Recombined
electrons B B
(i) D,
E
(ISE - 15/(1,.—)
O i o 0] y; ; ] /‘:
B
. =i L - %} = |||l el
l"l o 'l/ | E
—: VBE - Vep + .
_ Large signal
Carrier flow model
E
Forward-biased Reverse-biased
V'
+
i 1 D[-
B En
E iE (I\/ar)
™ Recombined B
holes
ISEI!EB/VT
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npn

Circuit symbol and
polarity

oFE
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Current Relationship

oC
Ic= /3 Iz
Bc»——L/A g =lc +ig= (1+1/p) Ic
c=alz,a=pl(1+p)=1
OFE
Common-Emitter Current Gain f
VCCS
-1
c 4 D, N, W 1 w?
Ik D, N, L, 2 D.z,
Ise"BE'VT Qapip
in i 1.Width of base region W, f T
b e ¥ B o Thinner B can get a higher gain.
g P CoHm ., 2. Relative doping N,(B)/Ny(E)\, BT
D g lighter B and heavier E get a higher gain
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Bipolar Device Small Signal Model

Collector Base o Emitter
oC

< T %?I%%ﬂ

g o TN
npn @ «1 Injected electron

moto
Cc WV ° Buried layer

@ Substrate
’
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Bipolar Transistor Parameters

Quantity Formula

Large-Signal Forward-Active Operation

Vp

Collector current I. = Isexp 7*
T
Small-Signal Forward-Active Operation
_gle _ Ic
Transconductance 8n = F Vs
. g 1
Transconductance-to-current ratio ==
Ie  Vr
I : - ﬁD
nput resistance Py = o
Va 1
Output resistance rp = — = —
p O P
Collector-base resistance o = Boro to SBor,
Base-charging capacitance Cp = Trgm
Base-emitter capacitance Cr =G +Cje
Emitter-base junction depletion capacitance  Cj, = 2Cj.0
C
Collector-base junction capacitance C, = %
)
!pOc
H : . Cc.\'O
Collector-substrate junction capacitance  C = AT
- sc)
( ¢’05
Transition frequency fr= L
20 Cr + Cy
Effective transit time T = ! =7+ Cie + &
217f T &m Em
Maximum gain Zuto = Va _ 1
nto VT 'T’
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect
 Small-signal model

* Scaling & Short-channel effects
* Simulation models
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NMOS Structure

S (i P(\)ﬂly E Oxlide
9 | A - /’
: J/"'//I < A -
/""'/--- %{ AL, AT e 2
SR | Ler | GEHSEE
p-substrate ‘ SN elip o
G
B S D
) s i,
p* ] nt nt Lq{f il Ldrawn “Ll)
p-substrate ’ _ _ .
For L, =015um 1, =50A

L. is the effective length, L., is the total length. L, is the
amount of side diffusion. t_, is the oxide thickness.

* In a general case, the substrate is connected to the most
negative supply in the system.
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Threshold Voltage

Formation of depletion region

= +0.1V
||}1 1|

Le ) e o

p-substrate

Onset of Inversion
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A

p-substrate Negative lons

Formation of inversion layer

+0.1V

= 5 o
e
p-substrate \

Electrons
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MOS Transistors

MOS Symbols

Gato S0,
, /- Drain D D
nMos  Gate — E Body G —IIf| G—||:
Source S S R Rt e T .
|, Pype — niype )
Source S S
pMOS  Gate —| E'| Body G q[: G -||‘_Jl
Drain D D
S Ve<c0 S0, ﬂ\_
— ?_ T'(_ — ==
Dupicnmgien. = ::;;ﬂ"i““"‘“”'w * I'gate = I-Iayout - 2LD
+ * For nMOS, V>V, > V,,
Source Ve>>0 g, Orain
el S * For enhancement mode device, V,, >0,
1D and V< 0.
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Threshold Voltage

* As V. becomes more positive, the holes in the substrate are
repelled from the gate area, leaving negative ions behind so as
to mirror the charge on the gate. - depletion region

* AsV; increases, so do the width of the depletion region and the
potential at the oxide-silicon interface.

* If Vgrises further, the charge in the depletion region remain
relatively constant while the channel charge density continue to
increase, providing a greater current from S to D.

* Threshold voltage V;, ( for the interface is as much n-type as
the substrate is p-type).
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Threshold Voltage

V; =¢ . +2¢ + Q _Os —¢ +20, _,_Qbo Qs _|_Qb_QbO

Co Co Cx C» C,
=Vio +7/(\/2¢f +Veg =/ 29; )
¢ms = work function difference between metal and this silicon

20, +& = cause inversion layer and sustain depletion layer change

10),6

Qg = Si-SiO, surface change
¢f = kT/q In(Ngyy, /ni) - Fermilevel

1
Y = +/2q€N,,, /Cox -+ typical 0.5V2
CoX = €4y /toy =+ 3.5 fF /um? for 100A
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Threshold Voltage Adjustment

* Implementation of p+ dopants to alter the threshold.

p-substrate P

If a thin sheet of p+ is created, the gate voltage required to deplete
the region increases, V,, T

 Formation of inversion layer in a PFET (similar to NMOS with reversed
polarities) Vg

e 0.1
il i T
= = |
NEVES %%
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|/V Characteristic

o 12 Magge, e
p-substrate — %
* Q, (coulombs/m) : Charge density along the direction of current. |1 =Q, ev

* v(m/sec) : velocity of the charge.

* The inversion charge density produced by the gate oxide capacitance is
proportional to V.- V.

Qd :WCox (VGS _VTH )
 Let V(x)is the channel potential at x ~ Qy(X) =WC,_, (Vg5 —V (X) —V;,)
I, =-WC,, [V =V (X) =V, |V v=uE  E(X)=-dV/dx

dV (x
ID — _WCox [VGS -V (X) _VTH ]/un ( )

L Vbs
.‘-x=0 IDdX - VZOWCOX/UH [VGS -V (X) _VTH ]dV

w 1
I, = u,C,, T |:(VGS — Vi )VDS - EVSS }
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|/V Characteristic

e Channel charge with unequal source and drain voltage

Ip # Triode Region

-

—__=

“v Vasa
VG | - v, =
, N, Yas2  ©
l 7 j‘ ’ I M A
o = ! : h Yo,
P o - Vo§+ FFEF Vps
L 0_x el L > > =
5 8 &
- .
* The peak current of I, can be found by calculating
ol 1 W 2
D __ — —
=0 = Vpg =V —Viy o max = 5 4,Cox _(VGS —Vry )
OV 2 L

* V.-V, Overdrive voltage V,,, W/L: Aspect ratio

o |f
VDS SVGS _VTH

the device is operated in the triode region.
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Deep Triode Region

i Vs << 2(\/GS —Viy)
1

W
/unCox T (VGS _VTH )

W
ID,max ~ :unCox T (VGS _VTH )VDS — I:aon —

* |/V Characteristic «  MOSFET as a controlled linear resistor

Vasa , Vesa ) G

t \1 Vas
r Vaso |
1
1,\ VGS1 _.-! E>
Vogt .-~ /S se—l—ep s D
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Example

A
:/f Ron
[ .
+ M
1V
= =
1.7V Vs

* “ON” resistance of M1 as a function of V; with u,C_ =50 uA/V?,
W/L= 10, V;, = 0.7V. Note that the drain terminal is open.

* ForVo;<1V+V,,=17V
R,, =

on

* ForV;>1V+V, =17V
1

T 50 uA/VE X 10(Vg — 1V — 0.7 V)

O
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Saturation of Drain Current

* As the local charge density of inversion layer is proportional to
Q,(X)=WC,_, (Vo -V (X)-V;,) = IV (X)=Vy Vo, then Q, =0 (pinched - off)

* The inversion layer stops at x <L

* As V. increases further, the point at which Q, equals zero gradually moves toward
the source.

Va

Vps2> Vps1

V(x4=V gs-V 1H V(x9=V g5V 1H
* Where L’ is the point at which Q, drops to zero (L’ = L).
Ves—Vru 1
J. I dX = J.WCOXlLln [VGS V(X) VTH ]dV I E:un (o) (VGS VTH)
V=0
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MOS I-V Relation

« Triode region (Vg >Viy = Vas —Vpe > Vo =V —Viy > Vi)

los = £4,Cox |:(\/GS )DS_%VDZSi| (N) lsp = 1,Coy |:(VSG |V DVsp — ;VSZD:| (P)

* Saturation region (Voo <V = Vas =Vis <V =Vgg —Viy <Vis)

1 1

| s E,Un ox (VGS Vig)® (N) lso Eﬂp ox (VSG Vi ) (P)

e Saturated MOSFETs operating as current source

Ve I G)'z
- .5
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Transconductance (in Sat.)

gm - aID :luncox\ﬂ(\/GS _VTH):\/zlunCox\ﬂlD — 2ID
5\/@5 VDS ,const L L VGS _VTH
- , - -
VasV 1H Ip VasV 1H
W/L Constant W/L Constant Ip Constant
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Transconductance (in Tri.)

* Plot the transconductance as a function of V.
M1 is operated in saturation region for V>V, -V,

W
On = :unCox T (Vb _VTH )

M1 is operated in triode region for

o |1 W W
On = @ {E /unCox T [Z(VGS _VTH )\/DS _VI§S ]} — :unCox TVDS

* g,,drops if device enters the triode region, therefore, we usually employ
MOSFET in saturation for amplification.
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

* Second-order effect
 Small-signal model

* Scaling & Short-channel effects
* Simulation models
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Second Order Effect

* Body Effect (Back Gate Effect)

p-substrate p-substrate

Qe
Vig =@ ys + 20 + Cd "+ O Vg =Vino +7/(\/| 2D +Vgg |_\/| 20, |)

oX 0X

y =4/20e,N, /C,, : Body effect coefficient
* AsVg, <O
— More holes are attracted to the substrate connection.
— The depletion region becomes wider ( Q,, increases)
— V5, also increases.
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Example: Body Effect
Dr A,D

+12v._||: 2V

1 -

¢
Vx
* Plot the drain current if V, varies from -eo to 0. Assume V;,, = 0.6
V, y=0.4V%> and 20.=0.7 V

* If V,is sufficiently negative, the threshold voltage of M, exceeds
1.2 V and the device is off.

1.2V =0.6+0.4(0.7-V,, —0.7 )=V, =—4.76V
* For —476V <V,, <0

I :Eﬂncoxv_v os ~Vrho _7(\/ 20 =V _\/ﬁ)]2

2 L
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Body Effect of Source Follower

M, A A
Vin o—II-: _______ A Vin Vin

~Y
=~y

(a) (b) (€)
e (b) without body effect
* (c) with body effect
— The source and bulk increases, raising the value of V..

1 % ,
II — Eiuvncox f(‘/.t - Vout - VTH)
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Channel Modulation Effect

* The actual length of the inverted channel gradually decreases as the potential
difference between the gate and the drain increases.

e [’ is afunction of V.
Ip _

oL_AL = L 1¥AL/L
L' L

AL 1
if T~/1VDS = g Z,Un ox (Ves —Viy) @A+ AVps)

g :un 0X (V GS VTH )(1+ /1VDS) \/Zluncox(vv / L) I (1+ ﬂ’VDS)

A . Channel-length modulation coefficient

. AL _
* The linear approximation TocVDS becomes less accurate in short-channel

transistors, resulting in a variable slope in the saturated I,/ V.
* Result in a nonideal current source.
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Example

* Keeping all other parameters constant, plot I,/V,s characteristic of

a MOSFET forL=1L, and L=2L,
1 W

1
| D~ E /unCox T (VGS _VTH )2 (1+ lVDs ) A oc—

* If the length is doubled, the slop of I vs V. is divided by four.

* ForagivenV,, alarger L gives a more ideal current source, and W
need to be increased proportionally to keep the current capability.
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Subthreshold Conduction

* Weak Inversion : V =V, , a weak inversion layer exists, small /, .

* Subthreshold Conduction : V_ <V, I, is finite, it exhibits an exponential
dependence on V.. For V¢ greater than roughly 200 mV,
VGS
I, =1, exp —=
:
— With typical values of {, at room temperature V. must decrease ~80 mV

for I, to decrease by one decade.

— If V;,= 0.3V, the drain current decreases by only a factor of 1037> when
Vs is reduced to zero.

. . Exponential Square Law
— Inrough calculations, we often view Vi, 15914 /
as the gate source voltage yielding . ¢ \
Io/ W = 1uA / um g T
B I
— The transconductance of MOSFET -4 ) :
in subthreshold regionis g_ _ 1o > - v;
¢Vr 80mv v,

— Which is inferior to that of bipolar transistors.
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Voltage Breakdown/Punch Through

* Voltage breakdown : At high gate-source voltages, the gate oxide
breaks down irreversibly, damaging the transistor.

* Punch through : In short channel devices, an excessively large
drain source voltage widens the depletion region around the
drain so much that it touches around the source, creating a very
large drain current.
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect

* Small-sighal model

* Scaling & Short-channel effects
* Simulation models

Analog IC Analysis and Design - Chih-Cheng Hsieh



Layout Example

f ;: E EREHR
E — J/
M1 C B ey .
Ct | g7 | | M, 5__H I
Bo—l_m N N =
[, | | M, | rl\
1 F -
N F

e Share the source drain junction at node C and M2 and M3 also do
so at node N .

* The gate polysilicon of M3 is connected to C by metal
interconnect.
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MQOS Device Capacitance

CaD Cpe
— —
G I *— B
— ——
Inversion Depletion Cas Cse
Layer Layer ||
p-substrate Cas

C, : Oxide capacitance between the gate and the channel, C, = WLC,,

C, : Depletion capacitance between the channel and the substrate
C, =WL./qe N, /4D,

C,;, C, : Overlap capacitance of the gate poly with the source and drain areas
C:GD = C:GS — C:ovW zWI—D(:ox

sub

Junction capacitance between the source drain areas and the substrate.
- C | F/m?) : bottom plate capacitance from the bottom of the junction.
— Ci (F/m) : side-wall capacitance due to the perimeter of the junction.
C,=C, /[1+Vg /@]
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Example

* For the transistorin (a) m 73:::»
I\ n
C AN |
Cos =Cg =WEC, +2(W +E)C,, W -;YI U
CIRE |
Y Sourco/
* For the transistor in (b) : “folding” = & =- Lam—

e Less “drain” junction cap. k% [ : |
Hit i
W

Cos :?Ecj +2(VEV+ E)C. o =

jsw

Cy = Z{V—V EC. +2(V—V+ EJC. }:WEC. +2(W +2E)C,
2 J 2 JswW J Jsw
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Ces and Cgp Vv.s. V.

%wwwwc o= — 5

Saturation
Triode

Vp C
WC“
Off Cap
-
Vg = V1H Vp+Vy Vgs

— Cgp=Cpss = C, W

GS
|
|
|

e |f the device is off

— Cgg = C,, WL : gate to substrate overlap capacitance.

* If the device is weakly on: C5 consists of the series comb. of C

Jate and Cdep.

* If the device is in the deep triode region
Cep =Cgs =WLC, /2+WC,,
* If the device is in the saturation region

— The potential difference V. 1, channe

at the pinch-off point. 2
Ces = §WLCOX +WC,, Cep =WC,,

;varies from V, at the source to V-V,
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MOSFET Small Signal Model

G T D D
V g I g Cap Cps
GS mYGs < 'O mbYBS | ——a—1
T G L. t— B
S |
- C c
. VEE GS ISIE
B 11
Cab
' s
* g,V..and g, Vg have the same polarity.
_ Vs 1 _ 1 _ 1
o - - I~
6ID aID /aVDS ;/‘lnCOXVI\_/(\/GS _VTH )2 ﬂ lID

ol W oV y
mb — = nCox o -V - = m = m
o oV H L Ves —Viy )( oV J g 2\/2q)|: v n9

where Vi _NVm _ 7 (20, +V) ™" = Om £ 0.1-03
6VSB 2 gm

BS

Chih-Cheng Hsieh
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Complete MOS Small-Signal Model

* Complete MOS small signal -
model :

Gab S Csg Con
Vps
. | L
* Reduction of gate resistance =] -
by folding _-§ - | _Jiljlj.ﬁ Im
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NMOQOS v.s. PMOS Devices

¢ upCox = 0.25 U, Cox Vg <0
* For given W/L and I,,,,, NMOS
exhibit a higher output resistance.

 MOS device as a capacitor

— Accumulation (V < 0)
Css=C,, WL
— Weak inversion (V< V;,), a

depletion region begins to form Coe
under the oxide. Accumulation &

CGS = Cox WL Cdep / ( Cox WL + Cdep)

— Strong Inversion (V;, <V, ), the
oxide-silicon interface sustains a

channel. -

0oV
Coe=C, WL ™ Vs

Strong Inversion
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Example

A A
2 WLCox+WC
3 [0)4 ov &FB
WL Cox
2_ ' WCOV CNB \
WCov

: e =
= 1.4 Vx (V) 1.0 Vy (V)

Sketch the capacitance of M, as V, varies from zero to 3V.
Assume V;, =0.6Vand A=y =0.

C\g is independent of V,

ForV,~ 0, M1 is in the triode region

Coy =Cpr :%WLCOX+WCOV C, Mmaximum

For V, > 1V, the role of the source and drain is exchanged
M, is out of triode region for V, =2V —-0.6V
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect
 Small-signal model

e Scaling & Short-channel effects
* Simulation models

Analog IC Analysis and Design - Chih-Cheng Hsieh



Scaling Theory

* The square-law characteristic provide accuracies for devices with
minimum channel lengths of greater than 4 um.

* The two principal reasons for the dominance of CMQOS technology
in today’s semiconductor industry

— Zero static power dissipation
— Scalability

* Scaling theory follows three rules

— Reduce all lateral and vertical dimensions by o (a>1)
* W, L, t,, depth and perimeter of the source drain junctions
— Reduce the threshold voltage and supply voltage by o (Vpp, V)

* Constant field scaling : dimensions and voltage scale together
— Increase all the doping level by a

Analog IC Analysis and Design
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ldeal Scaling of MOS Transistor

77777 o> bl
i s : n
p

BUEAR p BULEAR

* The current capability of the transistor drops by a factor of a (>1)

1 W/a)(Ve. Vo) 1 W 1
I =—u (aC 6 T | =Z4C —(V..-V.,.)=
D,scaled 2 /un( ox)( L/Ol j( a a j 2/un 0X |_ ( GS TH) a

e Reduction of capacitances and power dissipation

— The channel capacitance drops by a factor of a

= ViL(aCOX) = lWLC0X

a o a
— The depletion width drops by a factor of a

C

ch,scaled

* The depletion region capacitance per unit area increases by a factor of o

W, o~ 26, 1 . 1 VRzl 28 1+ 1 V.
’ g \aN, aNyja a\ g (N, N,
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Scaling of S/D Junction Capacitance

E

L i J\f
L F‘

I/:Iélni—" """"""""" -lTl'é ---------- ]
P BIEHR p BUEAMR

* The bottom-plate capacitance of the S/D junction (per unit area),
C, increases by a factor of .

C o« C

j,scaled deplete

* The side-wall capacitance (per unit width) remains constant

D
C o« C. . —%N _ constant
a

jsw,scaled deplete

* In summary, the source drain junction capacitance drops by a

factor of a W E W E 1

CS/D,scaled - o a (0£C )+2(;+;j(cjsw) |:WEC +2(W + E) JSW:|0[
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Gate Delay and Power Dissipation

The gate delay T,
ALY C/“\“—Dz(gvm}l Voo
a

d,scale DD -
I |l /a « I

The speed of the digital circuit

1 Vin l ° Vout
f oc oc o
T | I C

d,scale

The dynamic power dissipation

2 2
P=fCVZ = f EEVD_DJ _ 1CVop

al\ «a o’

The layout density (the number of transistors per unit area)

Density = a°

Reduction of power and delay while increase the circuit density

— Extremely attractive for digital systems
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Effect of Ideal Scaling in Analog Circuits

W

-----

; 777 > Y

p RUEAR H1k X %S E p BUEAR

 If all of the dimensions and voltages (and currents) scale down.

W
V.. -V W
gm,scaled - :u(acox) L/a = o ™ = :ucox _(VGS _VTH )
Y

* If dimensions scale down while overdrive voltage remain constant

W
W
gm,scaled = ILI(OCCOX)L—A(VGS _VTH ) = a:ucox T(VGS _VTH )
(04

Ve

* Consider output impedance
— The width of the depletion region around the drain decreases by a

AL/«
AL : : 1 :
[a remains constant, 4 = =/ increases by a, (o categ = = , §..I, remains constant.
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Impact of Scaling on Analog Circuit

e Reduction of the supply voltage

— Maximum allowable voltage swings decreases by a

— 8., constant and hence thermal noise remain constant

* The lower end of the dynamic range is limited by thermal noise.

— The dynamic range (SNR) is decreased by a.
* V ' = VS|g/a Vn0|se n0|se' S/N’ V5|g /Vn0|se’ = (S/N)/a

— How to recover dynamic range (SNR)?
* Since i, =4KTg, =g.v,, V,c\KkT/g,

) _ ) ~2
¢ Vnoise - Vnoise/a' g m- a gm
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Impact of Scaling on Analog Circuit

* To restore the dynamic range
— The transconductance of the transistors must be increased by a?

— The thermal noise voltages and currents scale with,/g_

21 W
On = V—D = IUCOX(TJ(VGS _VTH )

ov

— V,_, decreases by a factor of a, /, must increase by a factor of a, power
dissipation remain constant.

— C,isscaled up bya, L and V,, are scaled down by a, then W must
increase by a.

— For a constant (thermal noise limited) dynamic range, ideal scaling of
linear circuits requires a constant power dissipation and a higher
device capacitance.

Yooy ol ) =Viploy  (@W)(L/a)(@C,) = aWLC,

a

Analog IC Analysis and Design - Chih-Cheng Hsieh



Short Channel Effect

* Small geometry effects arise because

— The electric fields tend to increase because the supply voltage has not
scaled proportionally.

— The built in potential is neither scalable nor negligible.
— The depth of S/D junctions cannot be reduced easily.
— The mobility decreases as the substrate doping increases.

— The subthreshold slope is not scalable.
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Threshold Voltage Variation

* For the threshold voltage

— The upper bound is roughly equal to VDD/4 to avoid degrading the speed
of digital CMOS gates.

— The lower bound is determined by subthreshold behavior, variation with
temperature, process, and dependence upon the channel length.

* temperature coefficient ~-1mV/°K, yielding a 50-mV change across
the commercial temperature range (0-50°C).

* Process induced variation is ¥~50 mV, raising the margin to
approximately 100 mV.

* Itis difficult to reduce V;, below several hundred millivolts.
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Threshold Voltage Variation

* For long-channel devices, the subthreshold drain current

|, = uC, (VTV)VTQ [exp \%j[l exp %j
T T

c, = |ZiMNwn dep letion capacitance under the gate area v, = KT ¢ =1+ S
d 44, T q C

0X

— As V| exceeds a few V;, I, becomes independent of the drain source voltage.

— The slope of I, on a logarithmic scale becomes

(199 Lo) =(log e)i Sub threshold slope: S= 0(10g, 1) ’ ~23v. | 1+5e | irdec
aVc;s ° gVT | . 8VGS o Cox
* C,=0.67C,,, S=100mV/dec, a change of 100 mV in V leads to a ten-fold

reduction in the drain current.

 To turn off the transistor by lowering V below V.,
— S must be as small as possible, C,/C_, must be minimized.
— Constant magnitude of S severely limits the scaling of the V.
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Threshold Voltage Variation

FH+++

777 | A
#S/D R A
s Ba ES

* Different lengths yield lower V., as L decreases.

— The depletion regions associated with the source/drain is comparable to
channel area.

p BUEAR

Lﬂf

— Gate voltage required to create an inversion layer decreases.
— Length variation also introduces additional variations in V..

* If the length is increased for a higher output impedance, then the
threshold voltage also increases by as much as 100 ~ 200 mV.
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DIBL

* DIBL: Drain Induced Barrier Lowering

V
_L_‘C(;*__L — In short channel devices, the drain
b - ; Vos voltage also makes the surface more
AR B T ‘ positive by creating a two-dimensional
Ln"‘ _______ J Cﬂfﬁn" _______ J field in the depletion region.
== — The drain introduces a capacitance C,’
p BIEAMR that raises the surface potential in a

manner similar to C,.

— The barrier to the flow charge and
hence the threshold voltage are
decreased.

— The principal impact of DIBL on circuit
design is the degraded output
impedance. (p.2-67)

Vin1 Vrhe Ves

(b)
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Mobility Degradation

* High vertical electrical field E ., filed between the gate and the channel confines
the charge carriers to a narrow region below the oxide-silicon interface, leading

to more scattering and hence lower mobility.
* Small geometry devices experience significant mobility degradation.

Mo = o
. 1"“9(\/65 _VTH)

— M, denotes the low-field mobility and 8 is a fitting parameter ~ 107/t,, (V).

— Orises as t_, drops.
— Ift,, =100 A, 8~ 1V, the mobility begins to fall considerably as the
overdrive exceeds 100 mV.
1 1,C W )
== o T (V.. -V
© 21460(Vg -Vy) L Vos =Vow)
Assume 0(Vg—Vqy) <<1

1

W 1 W

lp = Eﬂocox T[l_g(ves —Viy )](Ves —Viy )2 ~ Eﬂocox T[(Ves —Viy )2 _‘9(\/@5 —Viy )3}
— Lead to higher harmonics in the drain current.

— The mobility degradation with the E . affects the device g,, as well.

Chih-Cheng Hsieh
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Velocity Saturation

Ind v=uE approaches a saturated value 107cm /s
VGSD+ 3AV
Vaso+ 24V« The y also depends on the lateral
Veso+ AV electric filed in the channel, beginning
Veso to drop as the field reaches 1V/um.

| » * V: saturated value about 10’ cm/s.
Vbs

* Carriers may reach a saturated velocity at some point along the channel.
* In the case carriers experience velocity saturation along the entire channel
ID = Vsath = VsatWCOX (VGS _VTH )
* The current is proportional to the V,, only and does not depend on the length.

* Devices with L< 1 um reveal velocity saturation because equal increments in
Vs-Vqy result in roughly equal increments in |.

* The transconductance is a weak function of the /, and channel length.
gm = VsatWCOX
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Effect of Velocity Saturation

I d
° Cmmmmmmmm e REERERMIERT |, =WC,_,V,,, (Vs ~Voy )
P : VsatL
R g Vg = Vo +
. ; SEEMAIER T Her
i | V. = B 2 o L(Vgs =V )
- - e Do ~ VDS,sat —
Voo Vas—Vn Vos t 2 L +Vgs =Voy
_WC_v (Vs =V )2
ox " sat 2V L
Vas =V + 725 [140(Vgs —Viy)]
Ip A Ty | . TH GS
ATEARERIERT | e av Ve VY
- - =" - W
. Vosgs AV CoXVsat 2vsatL (1 n 2vsatL0 ) (VGS - )
Veso 1 W Voo =V, )
= E /JOCOX -

L 24 ( 520 +6) (Vas — Vi)

sat

Vbs

Typical bias conditions, MOSFETs experience some velocity saturation,
displaying a characteristic between linear and square-law behavior.

As V. increases, the drain current saturates well before pinch-off occurs,
vielding a constant current lower than that obtained if the device saturated.

The transconductance is also lower than that predicted by the square law.
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Effect of Velocity Saturation

* Put mobility degradation & velocity saturation together

2

V.. -V 1 W (Voo =V, )
ID :WCoszat ( = = 3/ L = EILJOCOX T m = -
Vg =V +22 1+ ( vl T ‘9) (Ves = Vi)
Hest

e IfLorv

o+ 1S large, the expression reduces to the square law relationship.

* If the overdrive voltage is so small that the denominator is approximated as

Vg, L
2= and gy ~ 4

H et

— the device still follows the square law behavior even if L is relatively small.

* The degradation of the mobility with both lateral and vertical fields can be
represented by adding the terms

Ho and 6
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Hot Carrier Effect

* The instantaneous velocity and hence the kinetic energy of
carriers continue to increase as they accelerate towards the drain.

* Hot carriers may hit the silicon atoms at high speeds, thereby
creating impact ionization.

— New electrons and holes are generated, with the electrons absorbed by
the drain and the holes by the substrate.

— A finite drain substrate current appears.

— If the carriers acquire a very high energy, they may be injected into the
gate oxide and even flow out the gate terminal, introducing the gate
current.

— Supply voltage scaling becomes inevitable.
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r, Variation with V

FURATS S FERIPZ K

_____ ! rod  EEEE

e Vos: N ) HTERR
1] o)
T
: : - V-;
Vpsi Vps1+AV Vpgs Vpga+tAV  Vpg DS

* As Vs increases and the pinch off point moves
toward the source, the rate at which the depletion
region around the drain becomes wider decreases,
resulting in a higher incremental output impedance.

* The W,,, is a strong function of the voltage of small
vV and becomes weak with large V,

reverse reverse*

* Impact ionization limits the maximum gain that can
be obtained from cascode structures because it
introduces a small-signal resistance from the drain
to the substrate rather than to the source.
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Outline

1. P-N Junction
2. Bipolar Junction Transistor

3. MOS Field-Effect Transistor

* |/V characteristic

e Second-order effect
 Small-signal model

* Scaling & Short-channel effects
* Simulation models
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Why Modeling?

* Analog circuits more sensitive to detailed transistor
behavior

— Precise currents, voltages, etc. matter
— Digital circuits have much larger “margin of error”
* Models allow us to reason about circuits

— Provide window into the physical device and process
— “Experiments” with SPICE much easier to do
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Levels of Abstraction

e Best abstraction depends on questions you want to
answer
e Digital functionality:
— MOSFET is a switch
* Digital performance:

— MOSFET is a current source and a switch

* Analog characteristics:
— MOSFET described by BSIM with 100’s of parameters?
— MOSFET described by measurement results?
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Device Corners

* Run-to-run parameter variations:
— E.g. implant doses, layer thickness, dimensions
— Affect Vo, 1, Copy Ry, ..
— How model in SPICE?

 Nominal / slow / fast parameters (tt, ss, ff)

— E.g. fast: low Vyy, high , high C_,, low R

ox’

— Combine with supply & temperature extremes
— Pessimistic but numerically tractable

—>improves chances for working Silicon
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Corner Example: V,

* Corners will shift Vo,

— V;, depends on channel length and process corner as well

* Variations probably bigger than reality too
— Fab wants you to buy everything they make

-V
™ VTH
70m
629m
E28m
5e@m . - S
S5e@m - _ SS — — Ss
oA > 40dm
408m ——— e - v & i - 1T
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Why not Square Law?

e Square law model most widely known:

1
ID,sat :Elun oX (VGS Vth)

|”

e But, totally inadequate for “short-channel” behavior

e Also doesn’t capture moderate inversion

— (i.e., in between sub-threshold and strong inversion)
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Square Law Model Assumptions

e Charge density determined only by vertical field
* Drift velocity set only by lateral field

* Neglect diffusion currents (“magic” V)

e Constant mobility

 And many more...
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A Real Transistor

Gate Electrodef_ Ultra-thin Gate Dielectric

Gate Depletion Direct Tunneling Current
Quantum Effect Quantum Effects

S/D Engineering
S/D resistances
S/D leakage

Short Channel Effects

‘ ;' Velocity Saturation and Overshoot
. Source-end Velocity Limit

Retrograde Dopin
godyeffect ol Pocket Implant

Reverse short channel effect
Slower output resistance scaling with L
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Now What?

* Rely purely on simulator to tell us how devices
behave?

— Models not always based on real measurements
— Model extraction is hard
— Models inherently compromise accuracy for speed

* Need to know about important effects
— So that know what to look for
— Model might be wrong, or doesn’t automatically

include some effects
* E.g., gate leakage
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Level |

* Level 1: Deployed during mid-1960s~late-1970s (Shichman and Hodges Model).

1 W
lp = EKP L-2L, |:2(VGS =V Vos _VDzs](l"'/WDs)
1 W
Iy :EKP W(VGS_VTH)2(1+/1VDS)
D

Where Kp=uC, and V., =V, . +y(\/2(p8 — Vs _\/2¢B)

* Does not include subthreshold conduction or any short-channel effects.

* For the capacitance to change value continuously from one region to another

. . 2
CGS — EWLCOX {1 (VGS VDS VTH) : }+WCOV
3 [Z(VGS _VTH)_VDS_

ov

_ 2
CGDZWLCOX{l— Ves ~Vr) ~t+WC
3 [Z(VGS _VTH)_VDS] j

* It predicts the output impedance of transistors in saturation quite poorly.
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Level Il

* L<=4 um, need level Il for higher
: e 7 : order effect.
T o ]

—. ' R ——— d * Not constant threshold.

ISE RS —
=

X

 With a varying threshold voltage
W Ve 2
lp = uC,, T{(VGS ~VinoVos _%_57[(\/03 Vg +205 )" = (Vs + Z(DF)M}
* Evenfor Vg =0, I, exhibits some dependence on .

e Forsmall V, the equation reduces to that of the Level 1 model, but for large
Vs the drain current is less than that predicted by the square law.

2
VD,sat =Ves =Vino — 9¢ +72 [1_\/1+7/_2(VGS Vi +¢F)
| — | #
DS D,sat 1_1VD3

In the saturation region, the drain current is
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Level II: Channel Length Modulation

The depletion region of a PN junction

2¢ .
AL = \/qNg:b [(DB + (Vg _VD,sat):|

Vp st - Pinch-off voltage, 1, is discontinuous at the edge of the triode region.
A fixed-up equation
2¢. VDS _VD sat AL
AL =SB (v eV V, = ' A=
\/qNsub l+ ' : 1 4 LVDs
— The output conductance of the transistor varies as V¢ increases.
The degradation of the mobility with the vertical field in the channel

U, = U [gsi . Uc ju
S ’ Cox VGS _VTH _UtVDS

U.:gate-channel critical electric field, U, : A fitting parameter (~0-0.5), U_: (~0.15)
The subthreshold behavior defines a voltage V_,

N C : .
V,, =V, +¢V. =1+ q—FS+C—d N., isanempirical constant
Vs =V , : .
los = o exp% I, = 1o [Ves =V, instrong inversion
T
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Level II: Kink in /,

IogID‘
Vs =V
IDS = Ion eXp > -
&V
|, =15 |Ves =V, Instrong inversion
==
Vin Vas

* |, is the drain current calculated in strong inversion for Vo = V.
* The discontinuity in the slope of I, from the subthreshold to strong inversion

* Provide reasonable I/V accuracy for wide/short devices in the saturation region
with L~ 0.7 um.

e Represent two short channel phenomena
— (1)The variation of V;, with L. (2) Velocity saturation

» Suffers from substantial error in representing the output impedance and the
transition point between saturation and triode regions.

* For narrow or long devices, the model is quite inaccurate.

Analog IC Analysis and Design - Chih-Cheng Hsieh



Level Il

* Many empirical constants introduced to improve the accuracy for channel
lengths as small as 1 um.

* The threshold voltage is expressed as
8.15x107%
Vig =V + Fs7x/2¢)F ~Vgs + F (20, V) +¢ CTVDS

ox —eff

— where F, and F, represent short channel and narrow channel effects, and §
models drain induced barrier lowering.

* The mobility equation involves both vertical and lateral field effects:

1 = Hest u
Lo V where  u, = -
1+ Hett T os et 1+60(Ves —Viy)
VmaxLl

v denotes the maximum velocity of carriers in the channel

max

* u.4 models the effect of the vertical field, p, adds that of the lateral field as well.
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Level Il

e The drain current is realized as

Ves _VTHO -1+ FSJ/ + Fn h VD'S
429 Vg

Weff
I D~ :ulCox L—

eff

— where V' =V, ., if the device is in saturation.

* Exhibits moderate accuracy for wide, short channels but suffers from large

errors for longer channels.
* Drawback: Discontinuity of the derivative of I with respect to V. at the edge of

the triode region.

rol

* Poorly model of r, for a short-channel device. /_

Chih-Cheng Hsieh
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BSIM (Berkeley Short-channel IGFET Model)

* It became more difficult to introduce physically meaningful equations that
would be both accurate and computationally efficient.

e BSIM adopted numerous (~50) empirical parameters to simply the equations
— At the cost of losing touch with the actual device operation

— Represent the geometry dependence of many of the device parameters

general form: P = R, s Zp Pe Pr mobility: g = y, + —+ Py

eff Weff eff Weff

— where P, is the value of the parameter for a long, wide transistor, and a,
and B, are fitting factors.

— Become less accurate at small dimension.
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BSIM, BSIM2, BSIM3

* Improvement

— The dependence of mobility upon the vertical field includes the substrate
voltage

— The threshold voltage is modified for substrates with nonuniform doping.

— The currents in the weak and strong inversion regions are derived such
that their values and first derivatives are continuous.

— New equations are devised for velocity saturation, dependence of mobility
upon lateral field, and the saturation voltage.

* |ts accuracy for narrow, short transistors is somewhat poor.

e L<0.25um, BSIM3, has returned to the physical principles of device operation
while maintaining many of the useful features of BSIM and BSIM?2.

— Still suffering from large errors in predicting the output impedance.

Analog IC Analysis and Design - Chih-Cheng Hsieh



Other Models

* HSPICE Level 28

— Improves the dependence of accuracy upon device dimensions by
expressing the parameters as

P=PF+a 1.1 + 1 1 +y 1.1
L I‘ref W Wref L I‘ref

-t and W_; denote the dimensions of a measured reference.

1 1

W W

ref

— where L

— The dependence is expressed in terms of “increments” with respect to
characterized transistors than the absolute value of dimensions.

— Proportional to the product of the L and W increments helps curve fitting.
e MOS9

* Enz-Krummenacher-Vittoz (EKV) model
— Considering the bulk rather than the source as the reference point.

— Introduce a single drain-source current that is both valid for subthreshold
and saturation region.
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Charge and Capacitance Modeling

Vin

X =
inc—1 Vout t
M v

e mEENEN
t

* Level 1 gate capacitance model does not conserve charge

— Integrating voltages respect to time, small accumulated errors.

— Droop at the output because in every period some charge at node X is lost.
* The following assumptions are inaccurate for short channel devices

— In the triode region
Ces =Cqp = %WLCOX +WC,,
— In the saturation region

Cqe = %wu:ox +WC,, Cop =WC

ov

— Require flexible partitioning for ease of curve fitting (40%/60%, 50%/50%,
and 0%/100% for BSIM and BSIM3)
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Temperature Dependence

* In Level 1-3 models as well as BSIM and BSIM2, the following parameters have
temperature dependence

— Viy
— Built-in potential of S/D junctions
— The intrinsic carrier concentration of silicon (n))

— The bandgap energy (E;)

— The mobility
* Most equations are empirical
7.02x107T?2 300"
E,=1.16- H=Ho| 4~
T +1108

— where p,=p (T =300°K)

 BSIM 3 incorporates a few more parameters to represent the T dependence
— Velocity saturation
— The effect of subthreshold voltage on V.
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Process Corners

R PFET A
(=) = .
o o PHER&ER
o (o]
=
NFET
RE

 MOSFETSs suffer from substantial parameter variations from wafer to wafer and
from lot to lot.

* Transistors having a thinner gate oxide and lower threshold voltage fall near
the fast corner.
* Four corners (FF, FS, SF, SS)

e Simulation of circuits for various process corners and temperature extremes is
essential to determining the yield.
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