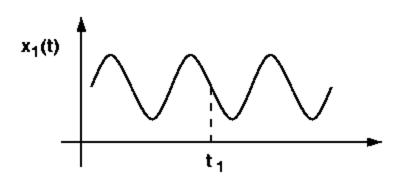


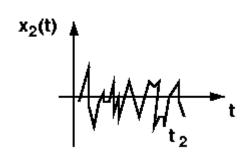
Noise

Outline

- 1. Statistical Characteristics of Noise
- 2. Types of Noise
- 3. Representation of Noise in Circuits
- 4. Noise in Single-Stage Amplifiers
- 5. Noise in Differential Pairs

Statistical Behavior of Noise





- The value of noise can not be predicted at any time even if the past values are known.
- Observe the noise for a long time and using the measured results to construct a "statistical model".
- In many cases, the average power of noise is predictable.

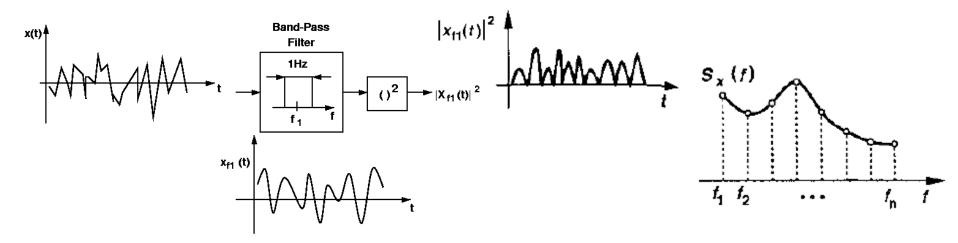
$$P_{av} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \frac{v^{2}(t)}{R_{L}} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x^{2}(t) dt$$

$$unit : (V^{2}) \text{ in stead of (W)}$$

Normalize the area under waveform to T

Noise Spectrum

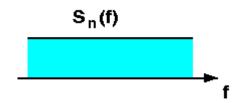
 The concept of noise power becomes more versatile if defined with regard to the frequency content of noise – Power spectral density (PSD)



- The PSD, $S_x(f)$, of a noise waveform x(t) is defined as the average power carried by x(t) in a one-Hertz bandwidth around f, expressed in V^2/Hz .
- The square root of $S_x(f)$ expressed in V/\sqrt{Hz} .
- Input noise = $3n V / \sqrt{Hz}$ at 100Mhz means average power in a 1Hz bandwidth at 100Mhz = $(3e-9)^2V^2$.

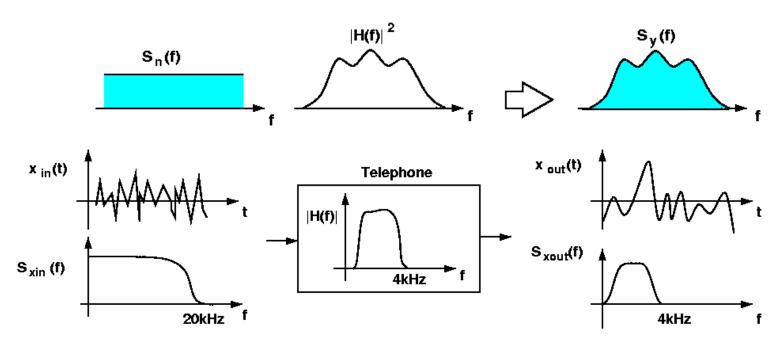
Spectral Shaping

 White noise – the PSD displays the same value at all frequencies.



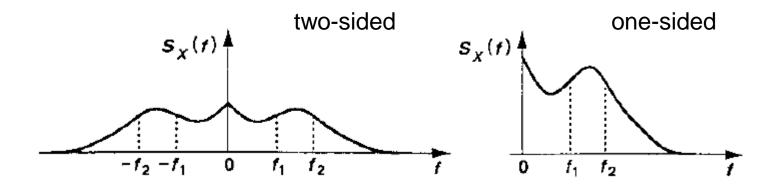
• If a signal with spectrum $S_x(f)$ is applied to a linear time-invariant system with transfer function H(s), then the output spectrum is given by

$$S_Y(f) = S_X(f) |H(f)|^2$$
 where $H(f) = H(s = j2\pi f)$

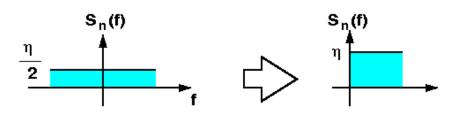


Noise Spectra

• Since $S_x(f)$ is an even function of f for real x(t).



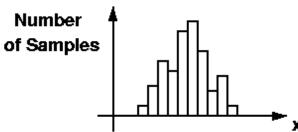
 The negative frequency part of the spectrum is folded around the vertical axis and added to the positive frequency part.



$$P_{f1,f2} = \int_{-f2}^{-f1} S_X(f) df + \int_{f1}^{f2} S_X(f) df = 2 \int_{f1}^{f2} S_X(f) df$$

Amplitude Distribution

- Distribution of amplitude Probability density function (PDF).
- The distribution of x(t) is defined as
 - $-p_x(x)dx = probability of x < X < x + dx, X is the measured value of x(t)$



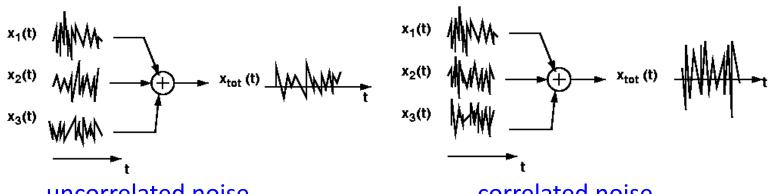
- Gaussian (Normal) Distribution
 - The central limit theorem states that if many independent random process with arbitrary PDFs are added, the PDF of the sum approaches a Gaussian distribution.
 - The Gaussian PDF is defined as $p_X(f) = \frac{1}{\sigma\sqrt{2\pi}} \exp \frac{-(x-m)^2}{2\sigma^2}$

Correlated and Uncorrelated Sources

- For deterministic voltages and currents, use the superposition principle.
- In noise analysis, the average noise power is of interest.

$$\begin{split} P_{av} &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} \left[x_1(t) + x_2(t) \right]^2 dt \\ &= \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_1^2(t) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_2^2(t) dt + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} 2x_1(t) x_2(t) dt \\ &= P_{av1} + P_{av2} + \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} 2x_1(t) x_2(t) dt \end{split}$$

- $-P_{\alpha v_1}$ and $P_{\alpha v_2}$ denote the average power of $x_1(t)$ and $x_2(t)$.
- The third term is the "correlation" between $x_1(t)$ and $x_2(t)$.
- If generated by independent devices, the correlation = 0.



uncorrelated noise

correlated noise

Outline

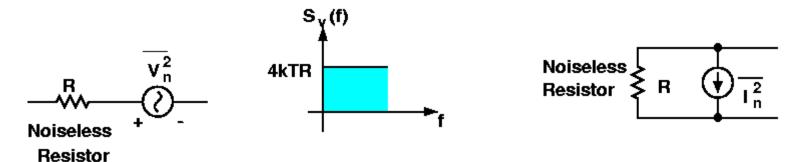
- 1. Statistical Characteristics of Noise
- 2. Types of Noise
- 3. Representation of Noise in Circuits
- 4. Noise in Single-Stage Amplifiers
- 5. Noise in Differential Pairs

Types of Noise

- Device electronics
 - Thermal noise
 - Flicker noise
- Environmental noise
 - Supply
 - Ground
 - Substrate

Thermal Noise

- Thermal noise (white noise)
 - Resistor thermal noise the random motion of electrons in a conductor introduces fluctuations in the voltage measured across the conductor even if the average current is zero.
 - The spectrum of thermal noise is proportional to the absolute temperature.



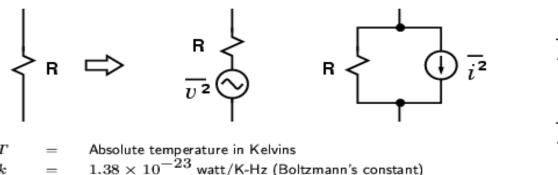
$$S_{v}(f) = 4kTR (V^{2}/Hz) \quad f \ge 0, \quad \overline{V_{n}^{2}} = 4kTR \times 1Hz (V^{2}), \quad k = 1.38 \times 10^{-23} (J/K) \quad \text{Boltzmann constant}$$

- Example : a 50 Ω resistor at T = 300° K exhibits 8.28 x 10⁻¹⁹ V²/Hz of thermal noise, or $0.91\,nV/\sqrt{Hz}$
- The thermal noise of a resistor can be represented by a parallel current source as well. $\overline{I_n^2} = 4kT/R$ (A²/Hz)

Thermal Noise

- The thermal noise is white. In reality, $S_{\nu}(f)$ is flat for up to roughly 100 THz, dropping at higher frequencies.
- The polarity used for the voltage source is unimportant.

Thermal Noise



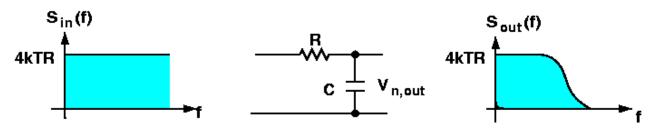
$$\frac{\overline{\Delta f}}{\Delta f} = 4kTR$$

$$\frac{\overline{i^2}}{\Delta f} = 4kT\frac{1}{R}$$

$$f = 0 - \infty$$

Bandwidth per Hertz

Noise Spectrum Shaping: LP Filter



- Modeling the noise of R by a series voltage source V_R . The transfer function from V_R to V_{out} $\frac{V_{out}}{V_-}(s) = \frac{1}{1 + sRC}$
- We have $S_{out}(f) = S_R(f) \left| \frac{V_{out}}{V_P} (j\omega) \right|^2 = 4kTR \frac{1}{4\pi^2 R^2 C^2 f^2 + 1}$
- The total noise power at the output

$$P_{n,out} = \int_0^\infty \frac{4kTR}{4\pi^2 R^2 C^2 f^2 + 1} df = \frac{2kT}{\pi C} \tan^{-1} u \Big|_{u=0}^{u=\infty} = \frac{kT}{C} (V^2) \qquad \text{for} \qquad \int \frac{dx}{x^2 + 1} = \tan^{-1} x$$

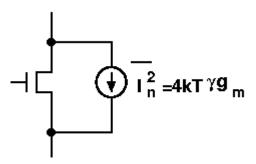
- Example: for a 1 pF capacitor, the total noise voltage is equal to 64.3 $\mu V_{rms.}$
- The total noise at the output of the circuit is independent of the value R.
- Low temperature operation can decrease noise in analog circuits. The mobility
 of charge carriers in MOS devices also increase at low temperatures.

Thermal Noise in MOSFET

 For long-channel MOS devices operating in saturation region, the channel noise can be modeled by

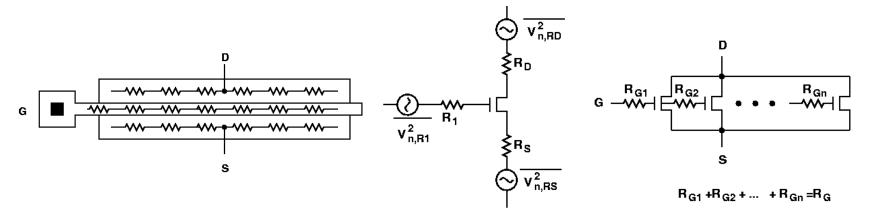
$$\overline{I_n^2} = 4kT\gamma g_m$$

• The coefficient γ is derived to be equal to 2/3 for long channel transistors and may need to be replaced by a larger value for submicron MOSFETs. (ex. 2.5 for 0.25-um MOS devices)

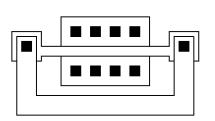


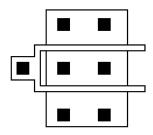
Thermal Noise in MOSFET

- The ohmic sections of a MOSFET also contribute thermal noise.
- For a relatively wide transistor, the gate distributed resistance may become noticeable.



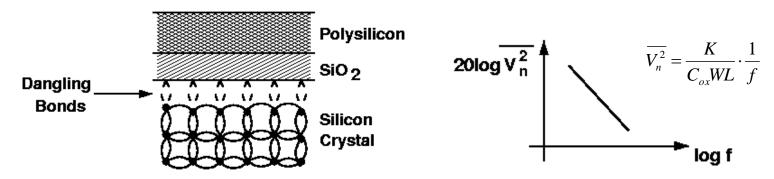
- A lumped resistor R_1 represents the distributed gate resistance. $R_1 = R_G / 3$
- Reduction of gate resistance by adding contacts to both sides or folding.





Flicker Noise

- Since the silicon crystal reaches an end at the interface, many dangling bonds appear, give rise to extra energy states.
- As carriers move to the interface, some are randomly trapped and later released by such energy states, introducing "flicker" noise in the drain current.



The flicker noise is modeled as a voltage source series with the gate :

$$\overline{V_n^2} = \frac{K}{C_{ox}WL} \cdot \frac{1}{f}, \quad WL \uparrow, \quad f \uparrow, \quad \overline{V_n^2} \downarrow$$

- Where K is a process-dependent constant on the order of 10⁻²⁵ V² F.
- Our notation assumes a bandwidth of 1 Hz.
- The trap-and-release phenomenon occurs at low frequencies more often. (1/f noise)
- PMOS devices exhibits less 1/f noise than NMOS.

Flicker Noise Corner Frequency

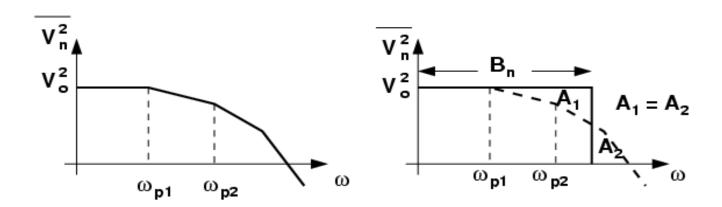
- As f approaches DC, noise becomes indistinguishable from thermal drift or aging of devices.
- Corner frequency: the intersection point serves as a measure of what part of the band is mostly corrupted by flicker noise.



$$4kT\left(\frac{2}{3}g_{m}\right) = \frac{K}{C_{ox}WL} \cdot \frac{1}{f_{C}} \cdot g_{m}^{2}$$
$$f_{C} = \frac{K}{C_{ox}WL} g_{m} \frac{3}{8kT}$$

- f_C generally depends on device dimensions and bias current. However, for a given L, the dependence is relatively weak.
- The 1/f noise corner is relatively constant, falling in the vicinity of 500 kHz to 1
 MHz for submicron transistors.

Noise Bandwidth



• Noise bandwidth B_n : allows a fair comparison of circuits that exhibit the same low-frequency noise V_0^2 , but different high-frequency transfer functions.

$$\overline{V_{n,out,tot}^2} = \int_0^\infty \overline{V_{n,out}^2} df, \qquad V_0^2 \bullet B_n = \int_0^\infty \overline{V_{n,out}^2} df, B_n \equiv \text{Noise Bandwidth}$$

 The total noise must be evaluated by calculating the total area under the spectral density, for a single-pole filter

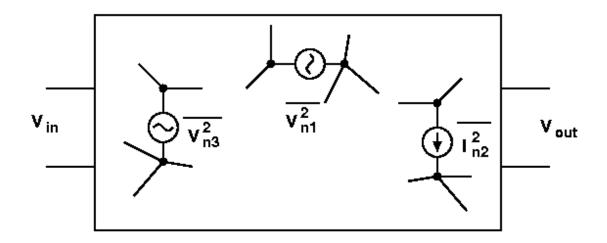
$$H(s) = (1 + s / \omega_0)^{-1}, B_n = \int_0^\infty |H(j2\pi f)|^2 df = \int_0^\infty \left[1 + \left(\frac{f}{f_0} \right)^2 \right]^{-1} df = \frac{\pi}{2} f_0$$

Outline

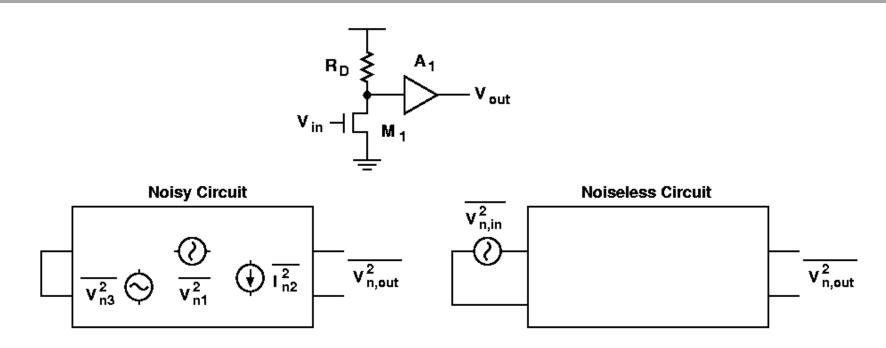
- 1. Statistical Characteristics of Noise
- 2. Types of Noise
- 3. Representation of Noise in Circuits
- 4. Noise in Single-Stage Amplifiers
- 5. Noise in Differential Pairs

Representation of Noise in Circuits

 Set the input to zero and calculate the total noise at the output due to various sources of noise in the circuit.

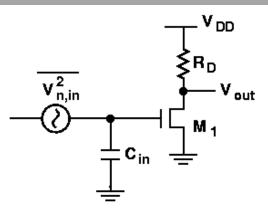


Representation of Noise in Circuits



- A₁ amplifies the noise and signal also at the output.
- Input referred noise: to represent the effect of all noise sources in the circuit by a single source, $\overline{V_{n,in}^2}$.
 - If the voltage gain is A_{v} , then we must have $\overline{V_{n,out}^2} = A_{v}^2 \overline{V_{n,in}^2}$
 - Indicating how much the input signal is corrupted by the circuit's noise.

Noise Analysis of CS Gain Stage



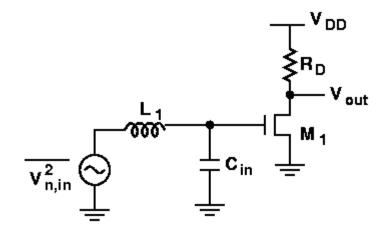
Neglect the flicker noise

$$\overline{V_{n,out}^{2}} = (4kT\gamma g_{m}R_{D}^{2} + 4kTR_{D}), \quad A_{v} = g_{m}R_{D}$$

$$\overline{V_{n,in}^{2}} = \frac{(4kT\gamma g_{m}R_{D}^{2} + 4kTR_{D})}{(g_{m}R_{D})^{2}} = \frac{4kT\gamma}{g_{m}} + \frac{4kT}{g_{m}^{2}R_{D}}$$

The preceding stage is modeled by a Thevenin equivalent with inductive output

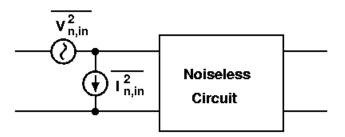
• The effect of $V_{n,in}^2$ vanishes as L_1 approaches infinity \rightarrow incorrect.



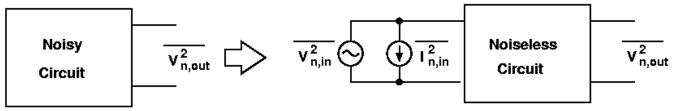
With a finite input impedance, modeling the input referred noise by merely a voltage source, the output noise vanishes as the source impedance becomes large.

Representation of Noise by V/I Sources

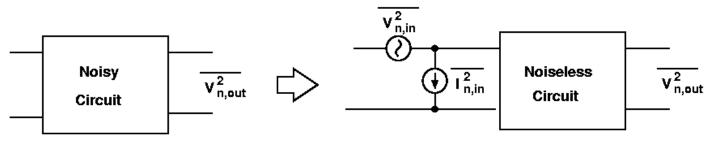
Consider two extreme cases: zero and infinite source impedances.



• If the source impedance is zero, $\overline{I_{n,in}^2}$ flows through $\overline{V_{n,in}^2}$ and has no effect on the output.



• If the input is open, then $\overline{V_{n,in}^2}$ has no effect and the $\overline{V_{n,out}^2}$ is due to only $\overline{I_{n,in}^2}$



CS Stage Simulated by a Source Imp.

• Assuming Z_s is noiseless for simplicity.

$$V_{n,in} = V_{n,M1} + \frac{1}{g_m R_D} V_{n,R_D},$$

$$I_{n,in} = sC_{in}V_{n,M1} + \frac{sC_{in}}{g_m R_D} V_{n,R_D}$$

$$Z_S \qquad V_{n,in}$$

$$= \sum_{m=1}^{\infty} C_{m,m} V_{n,n}$$

- The two sources $\overline{V_{n,in}^2}$ and $\overline{I_{n,in}^2}$ are in general *correlated simply* because they may represent the same noise mechanisms in the circuit.
- $V_{n,M1}$ and $V_{n,RD}$ appear in both $\overline{V_{n,in}^2}$ and $\overline{I_{n,in}^2}$
- $V_{n,X}$ is independent of Z_s and C_{in} .

$$V_{n,X} = V_{n,in} \frac{\frac{1}{sC_{in}}}{\frac{1}{sC_{in}} + Z_s} + I_{n,in} \frac{\frac{Z_s}{sC_{in}}}{\frac{1}{sC_{in}} + Z_s} = \frac{V_{n,in} + I_{n,in}Z_s}{sZ_sC_{in} + 1} = V_{n,M1} + \frac{1}{g_mR_D}V_{n,R_D}$$

$$\overline{V_{n,out}^2} = g_m^2 R_D^2 \overline{V_{n,X}^2} = 4kT \left(\frac{2}{3}g_m + \frac{1}{R_D}\right) R_D^2$$

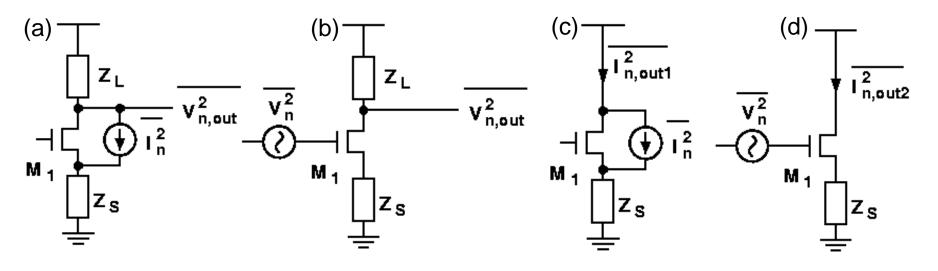
Outline

- 1. Statistical Characteristics of Noise
- 2. Types of Noise
- 3. Representation of Noise in Circuits
- 4. Noise in Single-Stage Amplifiers
- 5. Noise in Differential Pairs

Noise in Single Stage Amplifier

- The circuits in (a) and (b) are equivalent at low frequencies if $\overline{V_n^2} = \frac{I_n^2}{g_m^2}$
- Since the circuits have equal output impedance, we simply examine the output short-circuit currents
- The output noise current of the circuit (c) is $I_{n,out1} = \frac{I_n}{Z_S(g_m + 1/r_o) + 1}$
- The output noise current of the circuit (d) is $I_{n,out2} = \frac{g_m V_n}{Z_S (g_m + 1/r_o) + 1}$

$$I_{n,out2} = I_{n,out1}, \quad V_n = I_n / g_m$$

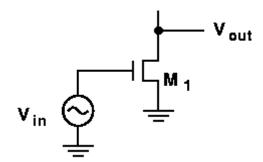


Common Source Stage

The input-referred noise voltage per unit bandwidth of CS

$$\overline{V_{n,in}^2} = 4kT \left(\frac{2}{3g_m} + \frac{1}{g_m^2 R_D} \right) + \frac{K}{C_{ox}WL} \frac{1}{f}$$

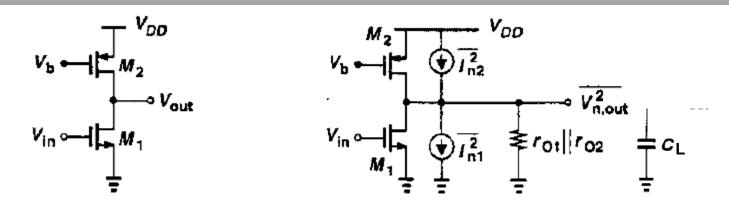
- To reduce the input-referred noise voltage
 - The g_m of M₁ must be maximized if the transistor is to amplify a voltage signal applied to its gate.



- If $g_{m1} \uparrow \rightarrow I_D \uparrow \rightarrow$ greater power dissipation and limited voltage swings.
- − If g_{m1} ↑ → W/L ↑ → larger input and output capacitance.
- The transconductance of M_1 must be minimized if the transistor operates as a current source.
- Noise contributed by R_D decreases as R_D increases.
 - Limiting the voltage headroom and lowering the speed.
- The noise voltage due to R_D at the output proportional to $(R_D)^{0.5}$
- The voltage gain of the circuit is proportional to R_D .
- Trade-off between noise, power dissipation, voltage headroom, and speed.

7- 27

SNR of CS Stage



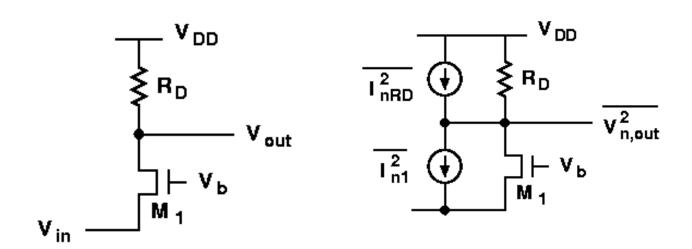
$$\overline{V_{n,out}^{2}} = 4kT \frac{2}{3} (g_{m1} + g_{m2}) (r_{01} \parallel r_{02})^{2} = \overline{V_{n,in}^{2}} (g_{m1})^{2} (r_{01} \parallel r_{02})^{2}, \ \overline{V_{n,in}^{2}} = 4kT \frac{2}{3} \frac{(g_{m1} + g_{m2})}{(g_{m1})^{2}}$$

$$\overline{V_{n,out,tot}^{2}} = \int_{0}^{\infty} 4kT \frac{2}{3} (g_{m1} + g_{m2}) (r_{01} \parallel r_{02})^{2} \frac{df}{1 + (r_{01} \parallel r_{02})^{2} C_{L}^{2} (2\pi f)^{2}} = \frac{2}{3} (g_{m1} + g_{m2}) (r_{01} \parallel r_{02}) \frac{kT}{C_{L}}$$

$$SNR_{out} = \left[\frac{g_{m1} (r_{01} \parallel r_{02}) V_{m}}{\sqrt{2}} \right]^{2} \frac{1}{(2/3)(g_{m1} + g_{m2}) (r_{01} \parallel r_{02}) (kT/C_{L})} = \frac{3C_{L}}{4kT} \frac{g_{m1}^{2} (r_{01} \parallel r_{02})}{g_{m1} + g_{m2}} V_{m}^{2}$$

- $C_{1} \uparrow$ bandwidth \downarrow $SNR \uparrow$
- $g_{m1} \uparrow g_{m2} \downarrow V_m \uparrow SNR \uparrow$

Common-Gate Stage

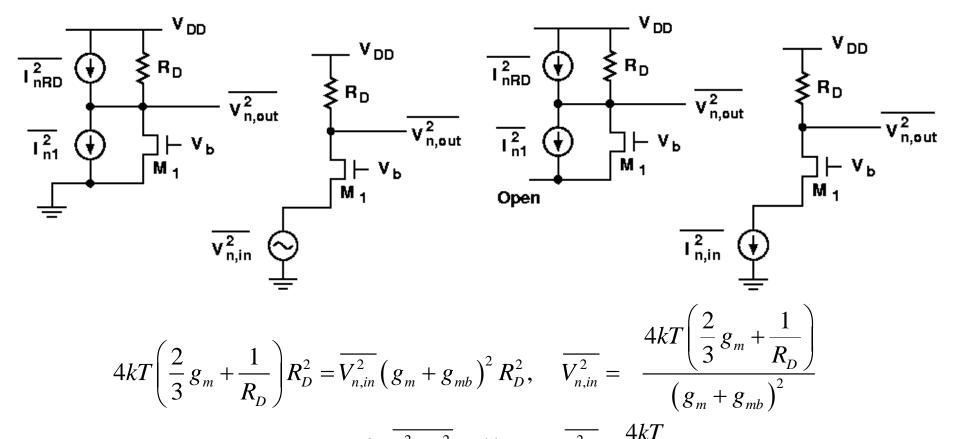


- Neglect channel length modulation effect. Represent the thermal noise of M₁ and R_D by two current sources.
- Due to low input impedance of CG, the input-referred noise current is not negligible at low frequencies
- They directly refer the noise current produced by the load to the input (current-gain = 1).

Input-referred Noise of CG

• To calculate input referred noise V_n:

To calculate input referred noise I_n:

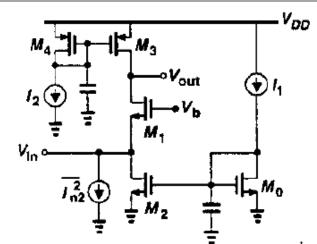


$$I_{n1} + I_{D1} = 0$$
, $\overline{I_{n,in}^2 R_D^2} = 4kTR_D$, $\overline{I_{n,in}^2} = \frac{4kT}{R_D}$

They directly refer the noise current produced by the load to the input (I-gain = 1).

Noise Contributed by Current Source

- The drain noise current of M_2 directly adds to the input referred noise current of I_{n2}^2 .
- For low noise performance, $g_{m2} \stackrel{n2}{\downarrow}$, $g_{m2} = \frac{2I_{D2}}{(V_{GS2} V_{TH2})}$
- For a given bias current, this requires a high voltage of V_b and limiting the voltage swing at the output node.



For input-referred noise voltage, short the input to ground

$$\overline{V_{n,out}^2} = 4kT \frac{2}{3} (g_{m1} + g_{m3}) (r_{O1} || r_{O3})^2 = \overline{V_{n,in}^2} (g_{m1} + g_{mb1})^2 (r_{O1} || r_{O3})^2$$

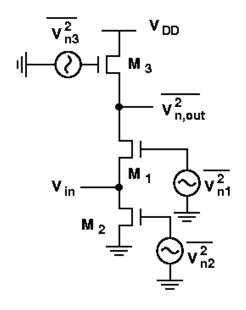
$$\overline{V_{n,in}^2} = 4kT \frac{2}{3} \frac{(g_{m1} + g_{m3})}{(g_{m1} + g_{mb1})^2} \propto g_{m3}$$

• For input-referred noise current, open the input

$$\overline{V_{n,out}^2} = (\overline{I_{n2}^2} + \overline{I_{n3}^2})R_{out}^2 = \overline{I_{n,in}^2}R_{out}^2, \quad \overline{I_{n,in}^2} = (\overline{I_{n2}^2} + \overline{I_{n3}^2}) = 4kT\frac{2}{3}(g_{m2} + g_{m3}) \quad \propto \quad g_{m2}, g_{m3}$$

Noise Contributed by 1/f Noise

- Consider Flicker noise
 - Each 1/f noise is modeled by a voltage source in series with the gate of the corresponding transistor.
- Let K_N and K_P denote the flicker noise coefficient of NMOS and PMOS devices. When the input shorted to ground, we have

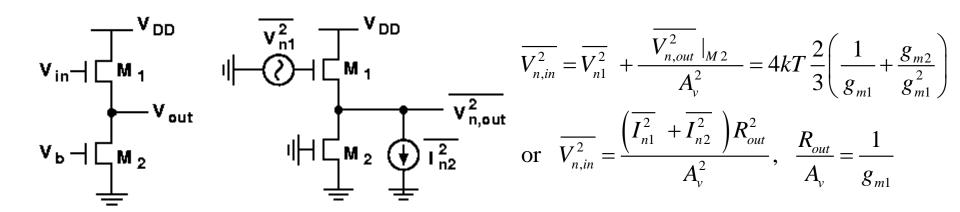


$$\overline{V_{n,out}^2} = \frac{1}{C_{ox}f} \left[\frac{g_{m1}^2 K_N}{(WL)_1} + \frac{g_{m3}^2 K_P}{(WL)_3} \right] (r_{O1} \parallel r_{O3})^2 \quad \text{Thus} \quad \overline{V_{n,in}^2} = \frac{1}{C_{ox}f} \left[\frac{g_{m1}^2 K_N}{(WL)_1} + \frac{g_{m3}^2 K_P}{(WL)_3} \right] \frac{1}{(g_{m1} + g_{mb1})^2}$$

With the input open

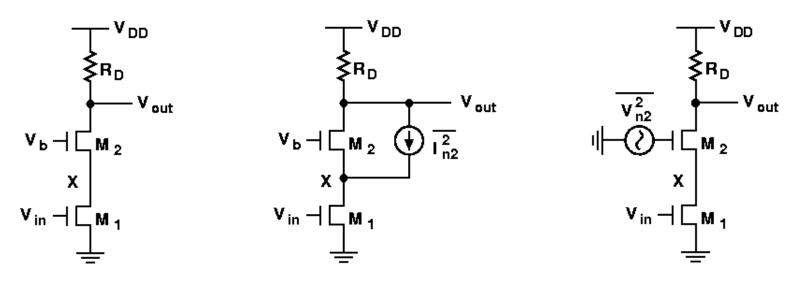
$$\overline{V_{n,out}^{2}} = \frac{1}{C_{ox}f} \left[\frac{g_{m2}^{2}K_{N}}{(WL)_{2}} + \frac{g_{m3}^{2}K_{P}}{(WL)_{3}} \right] R_{out}^{2} \quad \text{yielding} \quad \overline{I_{n,in}^{2}} = \frac{1}{C_{ox}f} \left[\frac{g_{m2}^{2}K_{N}}{(WL)_{2}} + \frac{g_{m3}^{2}K_{P}}{(WL)_{3}} \right]$$

Source Followers



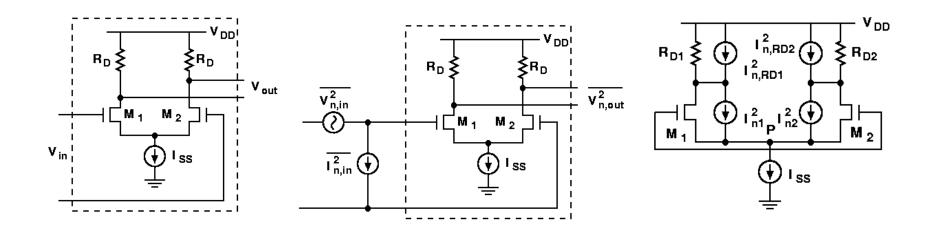
- M₂ serves as the bias current source.
- Since the input impedance of the circuit is quite high, even at relatively high frequencies, the input-referred noise current can usually be neglected for moderate driving source impedances.
- Since source followers add noise to the input signal while providing a voltage gain less than unity, they are usually avoided in low-noise amplification.

Cascode Stage



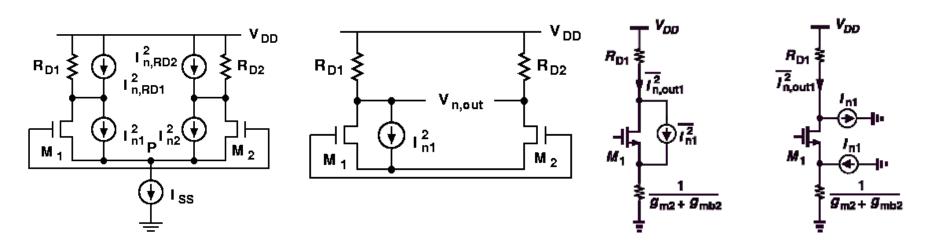
- Consider the noise current of M_1 and R_D . At low frequencies, the noise currents of M_1 and R_D flow through R_D $\overline{V_{n,in}^2}\Big|_{M1,RD} = 4kT\left(\frac{2}{3g_{m1}} + \frac{1}{g_{m1}^2R_D}\right)$
- Consider the noise current of M_2 , $\frac{V_{n,out}}{V_a} \approx \frac{-R_D}{1/sC_D + 1/\sigma}$
- The input referred noise of a cascode stage may rise considerably at high freq.

Noise in Differential Pairs



- For low frequency operation, the magnitude of $\overline{I_{n,in}^2}$ is typically negligible.
- To calculate the thermal component of $\overline{V_{n,in}^2}$, short input
 - Since I_{n1}^2 and I_{n2}^2 are uncorrelated, node P can not be considered a virtual ground.

Input Referred Noise of DP



- Decomposing I_{n1} into two (correlated) current sources and calculating their effect at the output. $V_{n,out} |_{M1} = \frac{I_{n1}}{2} R_{D1} + \frac{I_{n1}}{2} R_{D2}$
- If $R_{D1} = R_{D2} = R_D$ $\overline{V}_{n,out}^2 \Big|_{M1} = \overline{I}_{n1}^2 R_D^2$, $\overline{V}_{n,out}^2 \Big|_{M2} = \overline{I}_{n2}^2 R_D^2$, $\overline{V}_{n,out}^2 \Big|_{M1,M2} = \left(\overline{I}_{n1}^2 + \overline{I}_{n2}^2\right) R_D^2$
- Taking into account the noise of $R_{D1} = R_{D2}$

$$\overline{V_{n,out}^{2}} = \left(\overline{I_{n1}^{2}}R_{D}^{2} + \overline{I_{n2}^{2}}R_{D}^{2}\right) + 2(4kTR_{D}) = 8kT\left(\frac{2}{3}g_{m}R_{D}^{2} + R_{D}\right)$$

$$\sqrt{\frac{2}{3}g_{m}} = \left(\overline{I_{n1}^{2}}R_{D}^{2} + \overline{I_{n2}^{2}}R_{D}^{2}\right) + 2(4kTR_{D}) = 8kT\left(\frac{2}{3}g_{m}R_{D}^{2} + R_{D}\right)$$

7- 36

• Dividing the result by the square of the differential gain: $V_{n,in}^2 = 8kT \left(\frac{2}{3a} + \frac{1}{a^2R} \right)$

$$\overline{V_{n,in}^2}(CS) = 4kT\left(\frac{2}{3g_m} + \frac{1}{g_m^2 R_D}\right)$$

$$= 8kT\left(\frac{2}{3g} + \frac{1}{g^2 R_D}\right)$$

Input-Referred Noise of DP

• Placing the voltage sources given by $K/(C_{ox}WL)$ in series with each gate

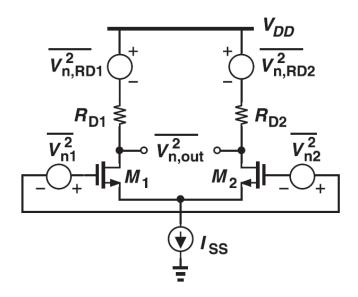
$$\overline{V}_{n,in}^{2} = 8kT \left(\frac{2}{3g_{m}} + \frac{1}{g_{m}^{2}R_{D}} \right) + \frac{2K}{C_{ox}WL} \frac{1}{f}$$

 The noise of tail current modulates the transconductance of each device

$$\Delta I_{D1} - \Delta I_{D2} = g_m \Delta V_{in} = \sqrt{2\mu_n C_{ox} \frac{W}{L} \left(\frac{I_{SS} + I_n}{2}\right)} \Delta V_{in}$$

 In essence, the noise modulates the transconductance of each device

$$\overline{V_{n,in}^2}(CS) = 4kT \left(\frac{2}{3g_m} + \frac{1}{g_m^2 R_D}\right) + \frac{K}{C_{ox}WL} \frac{1}{f}$$



$$\Delta I_{D1} - \Delta I_{D2} \approx \sqrt{2\mu_n C_{ox} \frac{W}{L} \cdot \frac{I_{SS}}{2}} \left(1 + \frac{I_n}{2I_{SS}} \right) \Delta V_{in} = g_{m0} \left(1 + \frac{I_n}{2I_{SS}} \right) \Delta V_{in}$$

 g_{m0} : g_m of noiseless circuit

The effect is nonetheless usually negligible.