

Single Stage Amplifier

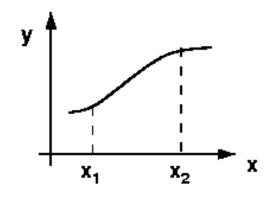
Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

Vision

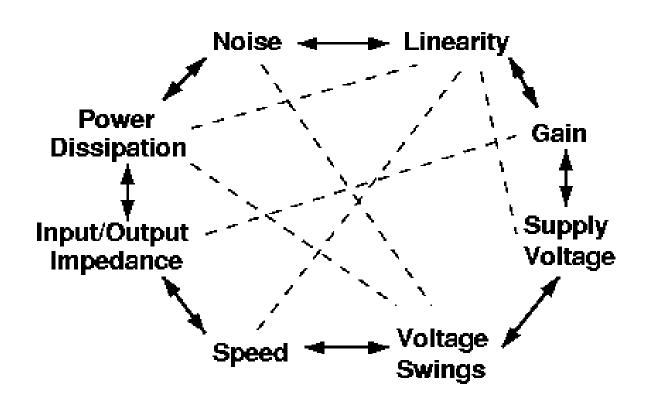
- An important part of a designer's job is to use proper approximations so as to create a simple mental picture of a complicated circuit.
- The intuition thus gained makes it possible to formulate the behavior of most circuits by inspection rather than by lengthy calculations

Basic Concepts

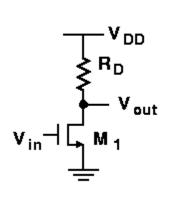

 The input-output characteristic of an amplifier is generally a nonlinear function

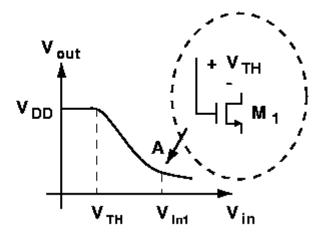
$$y(t) \approx \alpha_0 + \alpha_1 x(t) + \alpha_2 x^2(t) + \dots + \alpha_n x^n(t)$$
 $x_1 \le x \le x_2$

For a sufficiently narrow range of x


$$y(t) \approx \alpha_0 + \alpha_1 x(t)$$
, α_0 : operation point, α_1 : small signal gain

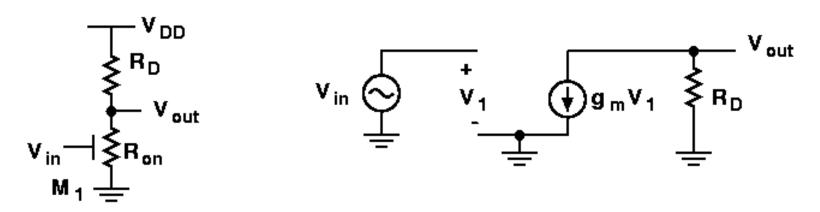
- As x(t) increases in magnitude, higher order terms manifest themselves, leading to nonlinear distortion.
- Input-output characteristic of a nonlinear system




Analog Design Octagon

Analog design octagon

Common Source Stage (I)


M1 off

$$V_{in} \le V_{TH} \implies V_{out} = V_{DD}$$

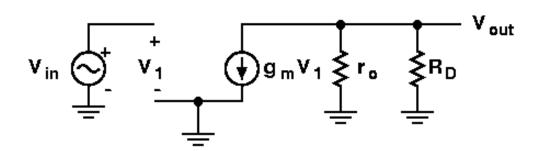
- M1 in the saturation region (Let $V_{TH} \le V_{in} \le V_{in} \implies V_{in} V_{TH} \le V_{out}$)
 - $\ \, \text{To find } V_{in1} V_{TH} = V_{DD} R_D \, \frac{1}{2} \, \mu_n C_{ox} \, \frac{W}{L} \big(V_{in1} V_{TH} \big)^2$
- M1 in the triode region $(V_{in} > V_{in1})$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[2(V_{in1} - V_{TH}) V_{out} - V_{out}^2 \right]$$

Common Source Amplifier (II)

• Since the transconductance drops in the triode region, (the r_o also becomes smaller), we usually ensure that

$$V_{out} > V_{in} - V_{TH}$$


$$As \quad V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$

$$\Rightarrow \frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH}) = -g_m R_D$$

$$\Rightarrow A_v = -g_m R_D$$

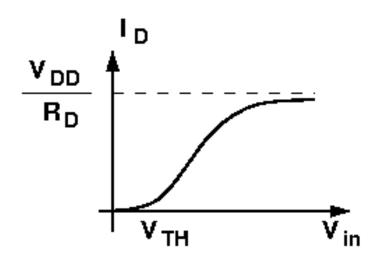
• Since g_m itself varies with the input signal, the gain of the circuit changes substantially if the signal swing is large.

Common Source Amplifier (III)

To take channel length modulation effect into account :

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 (1 + \lambda V_{out})$$

We have

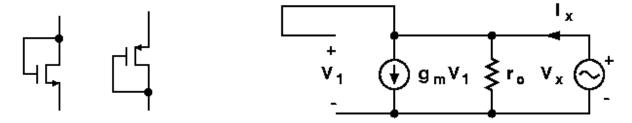

$$\frac{\partial V_{out}}{\partial V_{in}} = -R_D \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH}) (1 + \lambda V_{out}) - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2 \lambda \frac{\partial V_{out}}{\partial V_{in}}$$

As

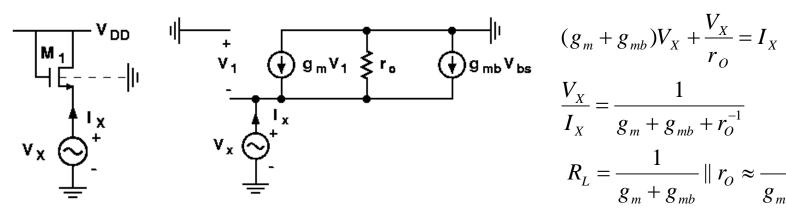
$$I_{D} \approx \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^{2} \implies A_{v} = -R_{D} g_{m} - R_{D} I_{D} \lambda A_{v} \implies A_{v} = -\frac{g_{m} R_{D}}{1 + R_{D} \lambda I_{D}}$$

$$\lambda I_{D} = \frac{1}{r_{O}} \implies A_{v} = -g_{m} \frac{r_{O} R_{D}}{r_{O} + R_{D}} = -g_{m} (r_{O} \parallel R_{D})$$

Design Trade-off


• To maximize gain

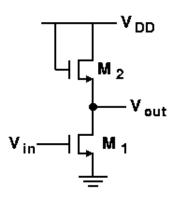
$$A_{v} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}}\frac{V_{RD}}{I_{D}} = -\sqrt{2\mu_{n}C_{ox}\frac{W}{L}\frac{V_{RD}}{\sqrt{I_{D}}}}$$


- Increase $W/L \rightarrow$ greater device capacitance ($Gain \leftrightarrow BW$)
- − Higher V_{RD} → smaller voltage swing ($Gain \leftrightarrow Voltage swing$)
- − Reduce I_D while V_{RD} is constant → larger RC time constant at the output node ($Gain \leftrightarrow BW$)

Diode Connected Load

In many CMOS technologies, it is difficult to fabricate resistors with tightly controlled values or a reasonable size. Replace R_D with a MOS transistor.

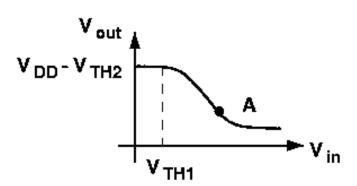
• Diode connected: gate and drain shorted $\rightarrow V_{DS} = V_{GS} > V_{GS} - V_{TH} \rightarrow$ the transistor always in saturation region.



$$(g_{m} + g_{mb})V_{X} + \frac{V_{X}}{r_{O}} = I_{X}$$

$$\frac{V_{X}}{I_{X}} = \frac{1}{g_{m} + g_{mb} + r_{O}^{-1}}$$

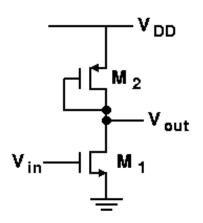
$$R_{L} = \frac{1}{g_{m} + g_{mb}} \parallel r_{O} \approx \frac{1}{g_{m} + g_{mb}}$$


CS Stage + Diode Connected Load

$$A_{v} = -g_{m1} \frac{1}{g_{m2} + g_{mb2}} = -\frac{g_{m1}}{g_{m2}} \frac{1}{1+\eta} \qquad \eta = \frac{g_{mb2}}{g_{m2}}$$

$$V_{\text{out}} \qquad A_{v} = -\frac{\sqrt{2\mu_{n}C_{ox}(W/L)_{1}I_{D1}}}{\sqrt{2\mu_{n}C_{ox}(W/L)_{2}I_{D2}}} \frac{1}{1+\eta} = -\frac{\sqrt{(W/L)_{1}}}{\sqrt{(W/L)_{2}}} \frac{1}{1+\eta}$$

- If the variation of η with the output voltage is neglected, the gain is independent of the bias current and voltages (so long as M₁ stays in saturation).
- Input-output characteristics of a CS stage with diode connected load.
- Operated at point A.



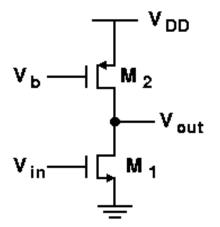
CS Stage + Diode-Connected PMOS

The circuit is free from body effect.

$$A_{v} = -\sqrt{\frac{\mu_{n}(W/L)_{1}}{\mu_{p}(W/L)_{2}}} \qquad A_{v} \approx -\frac{|V_{GS2} - V_{TH2}|}{V_{GS2} - V_{TH1}}$$

$$\mu_n \left(\frac{W}{L}\right)_1 (V_{GS1} - V_{TH1})^2 \approx \mu_p \left(\frac{W}{L}\right)_2 (V_{GS2} - V_{TH2})^2$$

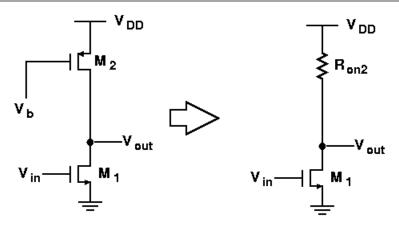
• Example:


If
$$A_v = 10$$
, V_{GS1} - $V_{TH1} = 200 \text{ mV}$, $\rightarrow V_{GS2}$ - $V_{TH2} = 2 \text{ V}$, $V_{TH2} = 0.7 \text{ V}$ $\rightarrow V_{GS2} = 2.7 \text{ V}$
 $\rightarrow V_{omax} = V_{DD} - V_{GS2}$ \rightarrow Trade-off between gain and output swing

To take the effect of channel length modulation effect into account

$$A_{v} \approx -g_{m1} \left(\frac{1}{g_{m2}} \parallel r_{o1} \parallel r_{o2} \right)$$

CS Stage + Current Source Load


 For resistor or diode connected load, increasing the load resistance limits the output voltage swing → CS stage with current source load.

$$A_{v} = -g_{m1}(r_{O1} \parallel r_{O2})$$

$$|V_{DS2,min}| = |V_{GS2} - V_{TH2}|$$

$$\lambda \propto 1/L \implies r_{O} \propto L/I_{D}$$

- The output bias voltage of the circuit needs a feedback loop to force V_{out} to a known value.
- If $A_v \uparrow \rightarrow L \uparrow \rightarrow W \uparrow$ (for constant I) $\rightarrow C_{load} \uparrow \rightarrow Gain-Bandwidth Trade-off$
- Keep W constant, $L \uparrow \rightarrow V_{DSmin} \uparrow \rightarrow V_{out,swing} \downarrow$

CS Stage + Triode Load

• The gate of M2 is biased at a sufficiently low level, ensuring the load is in deep triode region for all output voltage swings.

$$V_{DD} - V_b - V_{TH} > V_{DD} - V_{out} \implies V_{out} - V_{TH} > V_b$$

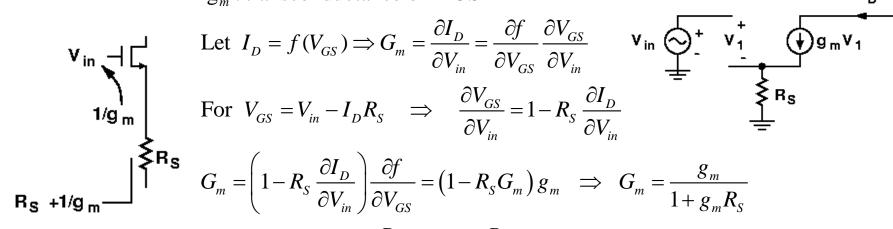
$$R_{on2} = \frac{1}{\mu_p C_{ox} (W/L)_2 (V_{DD} - V_b - |V_{THP}|)}$$

- Consume less voltage headroom than diode connected devices.
- Drawback
 - R_{on2} depends on $\mu_p C_{ox}$, V_b , and V_{THP} , which vary with process and Temp.
 - Difficult to use.

Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CS Stage + Source Degeneration (I)


Common source Gain

$$V_{out} = -I_D R_D \implies A_v = \frac{\partial V_{out}}{\partial V_{in}} = -\frac{\partial I_D}{\partial V_{in}} R_D = -G_m R_D$$

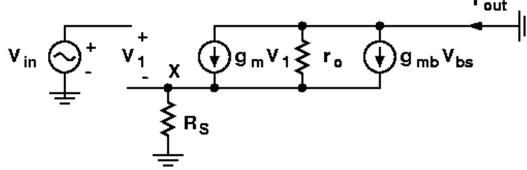
- Improve the linearity of the gain amplifier
 - Higher linearity, Lower gain

 G_m : equivalent transconductance of circuit

 g_m : transconductance of MOS

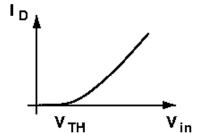
Let
$$I_D = f(V_{GS}) \Rightarrow G_m = \frac{\partial I_D}{\partial V_{in}} = \frac{\partial f}{\partial V_{GS}} \frac{\partial V_{GS}}{\partial V_{in}}$$

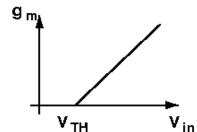
For
$$V_{GS} = V_{in} - I_D R_S$$
 \Rightarrow $\frac{\partial V_{GS}}{\partial V_{in}} = 1 - R_S \frac{\partial I_D}{\partial V_{in}}$

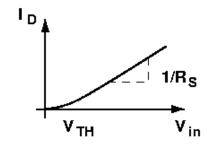

$$G_{m} = \left(1 - R_{S} \frac{\partial I_{D}}{\partial V_{in}}\right) \frac{\partial f}{\partial V_{GS}} = \left(1 - R_{S} G_{m}\right) g_{m} \quad \Rightarrow \quad G_{m} = \frac{g_{m}}{1 + g_{m} R_{S}}$$

$$A_{v} = -G_{m}R_{D} = \frac{-g_{m}R_{D}}{1 + g_{m}R_{S}} = -\frac{R_{D}}{1/g_{m} + R_{S}}$$
 \Rightarrow For $R_{S} >> 1/g_{m}$ $G_{m} \approx 1/R_{S}$

Linear!

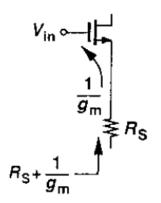

CS Stage + Source Degeneration (II)


To take the body effect and channel length modulation effect into account

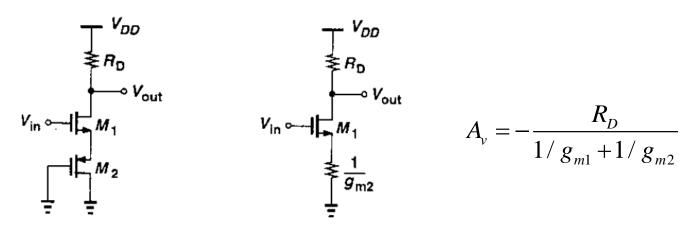


$$I_{out} = g_m V_1 - g_{mb} V_X - \frac{V_X}{r_O} = g_m (V_{in} - I_{out} R_S) + g_{mb} (-I_{out} R_S) - \frac{I_{out} R_S}{r_O}$$

$$G_{m} = \frac{I_{out}}{V_{in}} = \frac{g_{m}}{1 + (g_{m} + g_{mb})R_{S} + R_{S} / r_{O}}$$



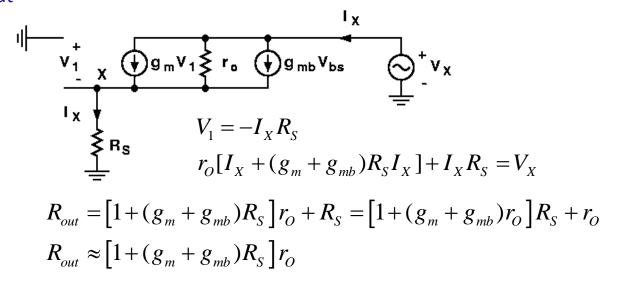
Common source amp


Common source amp + source degeneration

Formulate Gain by Inspection

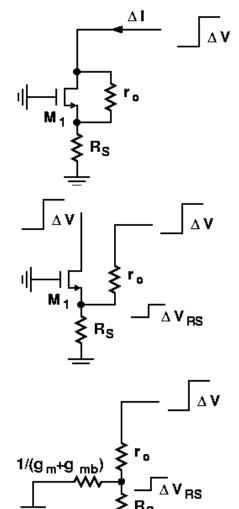
Magnitude of gain as the resistance seen at the drain node divided by the total resistance in the source path

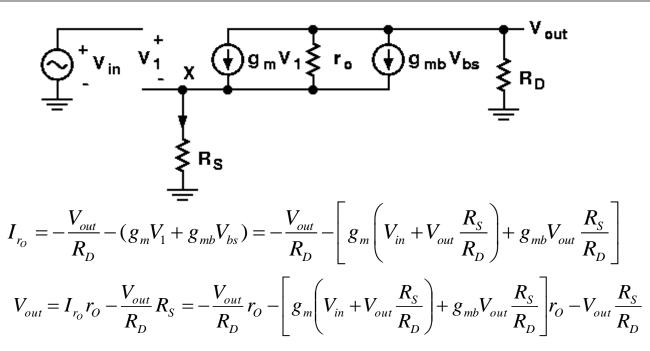
$$A_{v} = -\frac{R_{D}}{1/g_{m} + R_{S}}$$



$$A_{v} = -\frac{R_{D}}{1/g_{m1} + 1/g_{m2}}$$

CS Stage + Source Degeneration (III)


R_{out} of CS + Source degeneration

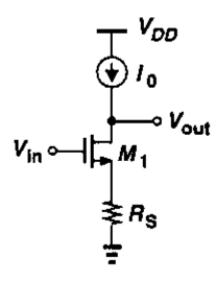

By Inspection

$$\Delta V_{RS} = \Delta V \frac{\frac{1}{g_{m} + g_{mb}} || R_{S}}{\frac{1}{g_{m} + g_{mb}} || R_{S} + r_{O}}, \Delta I = \frac{\Delta V_{RS}}{R_{S}} = \Delta V \frac{1}{[1 + (g_{m} + g_{mb})R_{S}]r_{O} + R_{S}}$$

$$\frac{\Delta V}{\Delta I} = [1 + (g_{m} + g_{mb})R_{S}]r_{O} + R_{S}$$

CS Stage + Source Degeneration (IV)

• Voltage gain with $r_o \& g_{mb}$


$$\frac{V_{out}}{V_{in}} = -\frac{g_{m}r_{o}R_{D}}{R_{D} + R_{S} + r_{o} + (g_{m} + g_{mb})R_{S}r_{o}}$$

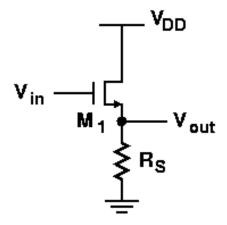
$$= -\frac{g_{m}r_{o}}{R_{S} + r_{o} + (g_{m} + g_{mb})R_{S}r_{o}} \cdot \frac{R_{D}[R_{S} + r_{o} + (g_{m} + g_{mb})R_{S}r_{o}]}{R_{D} + R_{S} + r_{o} + (g_{m} + g_{mb})R_{S}r_{o}}$$

$$= -G_{meff}R_{o} = -G_{meff}\{R_{D} \parallel [R_{S} + r_{o} + (g_{m} + g_{mb})R_{S}r_{o}]\}$$

CS Stage + Source Degeneration (V)

• I_0 = constant, $I(R_S)$ = constant, small-signal voltage drop across R_S = 0

$$A_{v} = -\frac{g_{m}r_{O}}{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{O}} \{R_{S} + [1 + (g_{m} + g_{mb})R_{S}]r_{O}\}$$

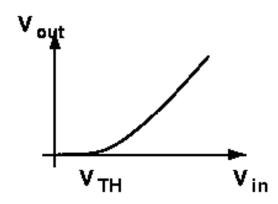

$$= -g_{m}r_{O} = \text{intrinsic gain, independent of } R_{S}$$

Outline

- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CD Stage: Source Follower (I)

- The source follower can operate as a voltage buffer High input impedance, low output impedance.
- Gain \approx 1, but not equal to 1 even with R_s = infinity.

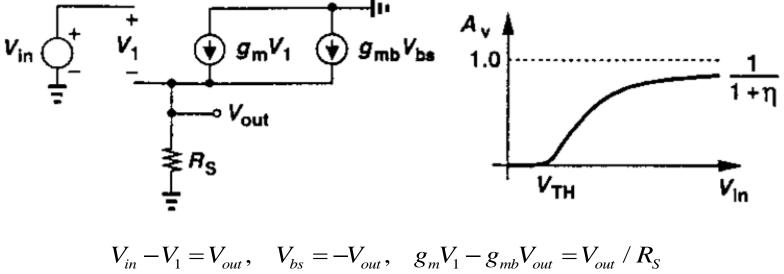


$$\frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})^{2} R_{S} = V_{out}$$

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{TH} - V_{Out}) R_{S}$$

$$\frac{\partial V_{out}}{\partial V_{in}} = \frac{\mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_{S}}{1 + \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out}) R_{S} (1 + \eta)}$$

$$A_{v} = \frac{g_{m} R_{S}}{1 + (g_{m} + g_{mb}) R_{S}}$$

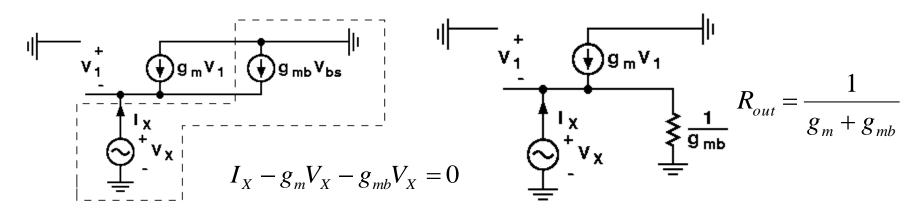


$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{in} - V_{TH} - V_{out})$$

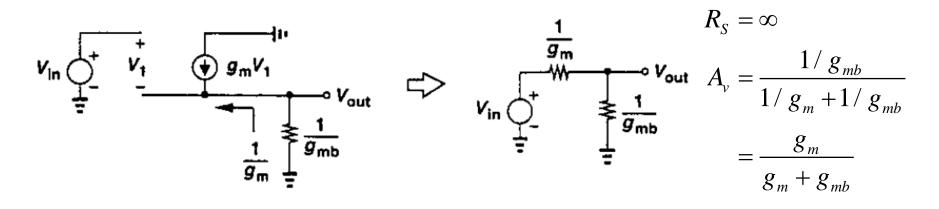
$$A_{v} = \frac{g_{m} R_{S}}{1 + (g_{m} + g_{mb}) R_{S}}$$

CD: Small-signal equivalent circuit

 Calculate the voltage gain by small-signal equivalent circuit of source follower with body effect

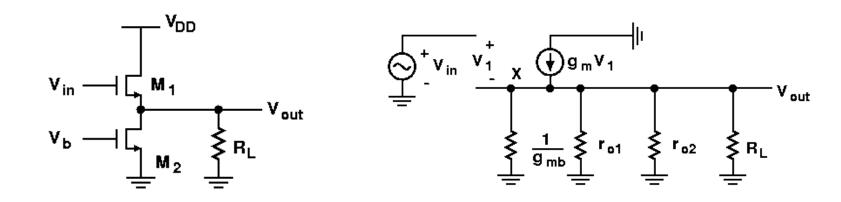


$$A_{v} = \frac{V_{out}}{V_{in}} = \frac{g_{m}R_{S}}{1 + (g_{m} + g_{mb})R_{S}}$$


$$V_{in} \uparrow I_{D} \uparrow g_{m} \uparrow \Longrightarrow A_{v} \approx \frac{g_{m}}{g_{m} + g_{mb}} = \frac{1}{1 + \eta}$$

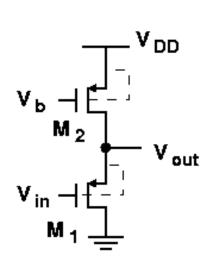
R_{out} of Source Follower

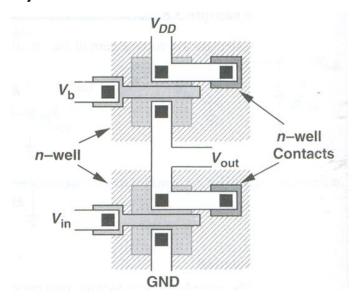
• Body effect decrease R_{out} of source follower



Less-than-unity voltage gain of source follower with body effect

Source Follower with r_o


Source follower with finite channel-length modulation



$$A_{v} = \frac{\frac{1}{g_{mb}} \| r_{O1} \| r_{O2} \| R_{L}}{\frac{1}{g_{mb}} \| r_{O1} \| r_{O2} \| R_{L} + \frac{1}{g_{m}}}$$

Source Follower Drawback

- Voltage headroom consumption due to level shift.
- Nonlinearity
 - Nonlinear dependence of V_{TH} upon the source potential.
 - $-r_O$ of the transistor also changes substantially with V_{DS} .
- PMOS source follower with no body effect

Higher output impedance using PMOS source follower.

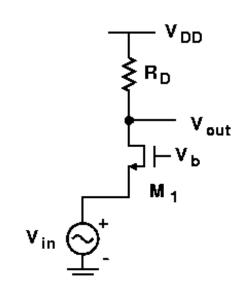
Outline

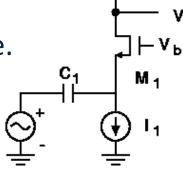
- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CG: Common-Gate Stage

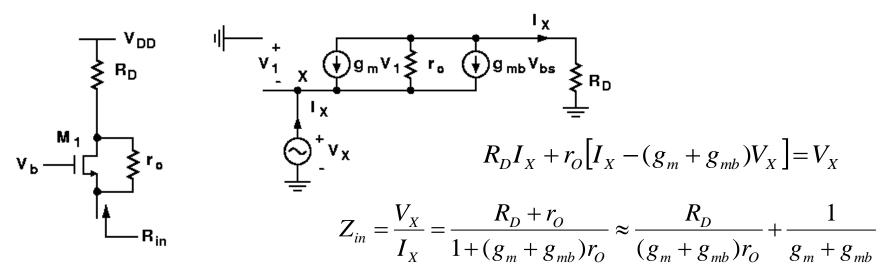
If M₁ is saturated, the V_{out} can be expressed as

$$V_{out} = V_{DD} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH})^2 R_D$$


$$\frac{\partial V_{out}}{\partial V_{in}} = -\mu_n C_{ox} \frac{W}{L} (V_b - V_{in} - V_{TH}) \left(-1 - \frac{\partial V_{TH}}{\partial V_{in}} \right) R_D$$
For
$$\frac{\partial V_{TH}}{\partial V_{in}} = \frac{\partial V_{TH}}{\partial V_{SB}} = \eta$$

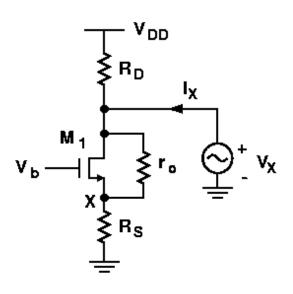

$$\frac{\partial V_{out}}{\partial V_{in}} = \mu_n C_{ox} \frac{W}{L} \left(V_b - V_{in} - V_{TH} \right) \left(1 + \eta \right) R_D = g_m (1 + \eta) R_D$$

Body effect deceases the input impedance of CG.


$$Z_{in} = \frac{1}{g_m + g_{mb}} = \frac{1}{g_m(1+\eta)}$$

CG Stage-Input Impedance

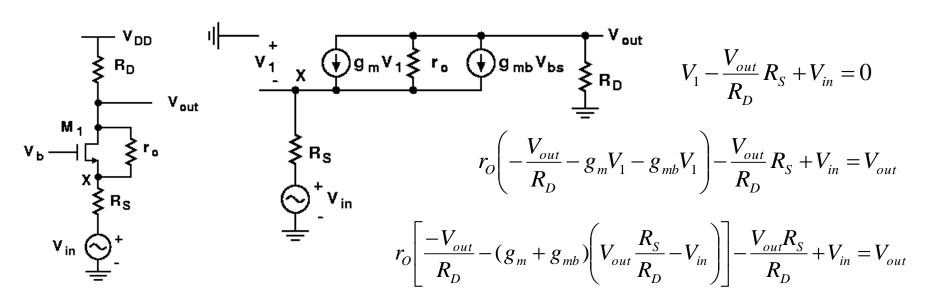
• By taking into account both the output impedance of the transistor r_o , find the input impedance Z_{in} :


• For $R_D = 0$, same as source follower

$$Z_{in} = \frac{V_X}{I_X} = \frac{r_O}{1 + (g_m + g_{mb})r_O} = \frac{1}{g_m + g_{mb} + 1/r_O} = r_O \|\frac{1}{g_m}\|\frac{1}{g_{mb}}$$

• For $R_D = \infty$, $Z_{in} = \infty$

CG Stage- Output Impedance

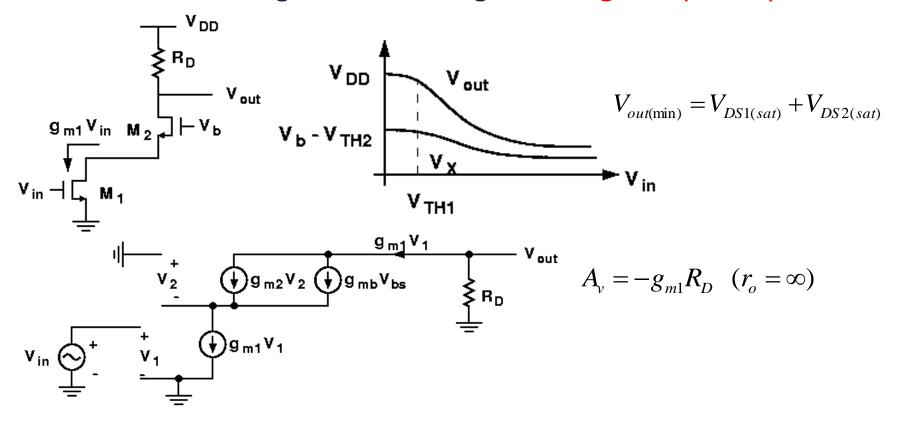

• The output impedance is similar to that of a common source gain stage with source degeneration. R_S is the impedance of signal source.

$$R_{out} = \{ [1 + (g_m + g_{mb})r_O]R_S + r_O \} || R_D$$

CG Stage-Voltage gain

 Voltage gain is similar to CS + Source degeneration, it's slightly higher due to body effect

$$\frac{V_{out}}{V_{in}} = \frac{1 + (g_m + g_{mb})r_O}{r_O + (g_m + g_{mb})r_O R_S + R_S + R_D} R_D = \frac{1 + (g_m + g_{mb})r_O}{r_O + (g_m + g_{mb})r_O R_S + R_S} \frac{[r_O + (g_m + g_{mb})r_O R_S + R_S]R_D}{r_O + (g_m + g_{mb})r_O R_S + R_S} R_D$$


$$= \frac{1 + (g_m + g_{mb})r_O}{r_O + (g_m + g_{mb})r_O R_S + R_S} R_{out} \frac{V_{out}}{V_{in}} \Big|_{CS + SD} = \frac{g_m r_O}{r_O + (g_m + g_{mb})r_O R_S + R_S} \frac{[r_O + (g_m + g_{mb})r_O R_S + R_S]R_D}{r_O + (g_m + g_{mb})r_O R_S + R_S} R_D$$

Outline

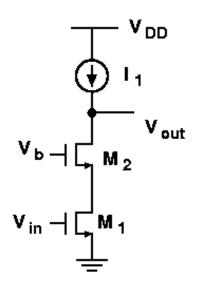
- 1. Common-Source Amplifier
- 2. Common-Source Amp with Source Degeneration
- 3. Common-Drain Amplifier
- 4. Common-Gate Amplifier
- 5. Cascode Amplifier

CAS: Cascode Stage (I)

Cascade of a CS stage and a CG stage a high output impedance.

• Without consideration of r_0 , The voltage gain is independent of the transconductance and body effect of M2.

CAS: Cascode Stage (II)


If both M₁ and M₂ operate in saturation.

$$G_{m} \approx g_{m1}$$

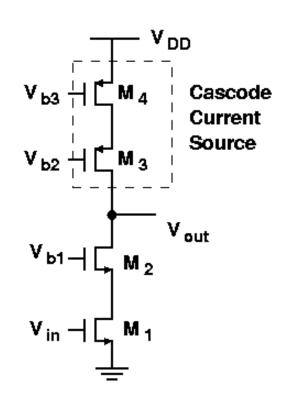
$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2}$$

$$R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$$

$$A_{v} = -(g_{m2} + g_{mb2})r_{O2}g_{m1}r_{O1}$$

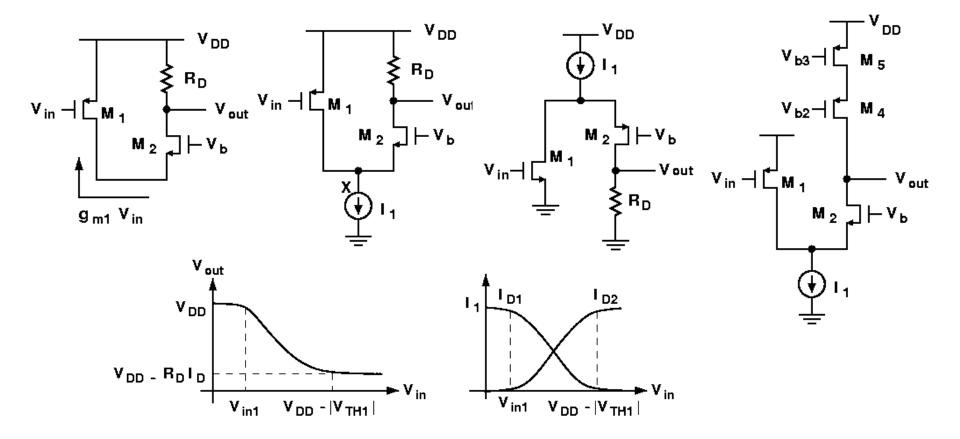
 The maximum voltage gain is roughly equal to the square of the intrinsic gain of the transistors

NMOS CAS Amp + PMOS CAS Load

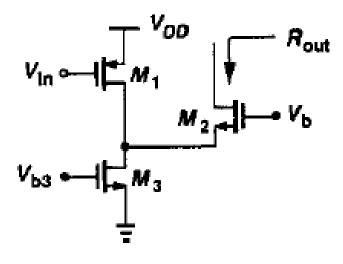

- Cascode as a constant current source with high output impedance
- The maximum output swing is equal to

$$V_{out,swing} = V_{DD} - V_{DS1} - V_{DS2} - V_{SD3} - V_{SD4}$$

$$R_{out} = \{ \left[1 + \left(g_{m2} + g_{mb2} \right) r_{O2} \right] r_{O1} + r_{O2} \}$$


$$\| \{ \left[1 + \left(g_{m3} + g_{mb3} \right) r_{O3} \right] r_{O4} + r_{O3} \}$$

$$A_{v} \approx -g_{m1} [(g_{m2}r_{O2}r_{O1}) || (g_{m3}r_{O3}r_{O4})]$$



Folded Cascode

- A PMOS-NMOS combination.
- The total bias current in this case must be higher to achieve comparable performance.

R_{out} of Folded-Cascode

$$R_{out} = \left[1 + \left(g_{m2} + g_{mb2}\right)r_{O2}\right](r_{O1} || r_{O3}) + r_{O2}$$

Designer's Intuition

- Simulation is essential because the behavior of short-channel MOSFET can't be predicted accurately by hand calculations.
- Don't avoids a simple and intuitive analysis of the circuit and skip the task of gaining inside, you can't interpret the simulate results intelligently.
- Don't let the computer think for you!