
Analog IC Design Homework 3

學號: **102061112** 姓名: 謝博楊

1.

Schematic:

(a) To find a proper $\,\,V_{\!b}\,\,$ to let the drain current of $\,\,M_3$ =20uA, I

connect $\,M_3\,$ with a 20uA current source, and $\,V_b \!=\! V_{GS}\,.$

from .lis file:

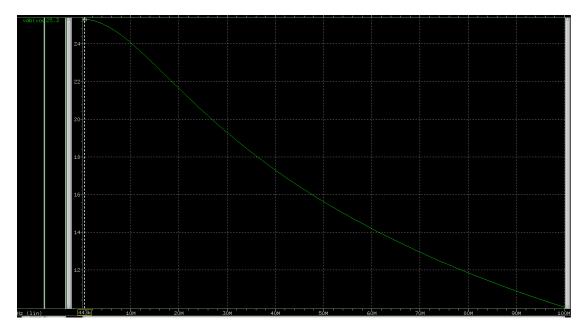
element	0:m3		
model	0:n_18.1		
region	Saturati		
id	20.0000u		
ibs	-3.236e-21		
ibd	-380.8417a		
vgs	489.5179m		
vds	489.5179m	V _b =V _{GS}	is about 489.5mV, I choose 0.49

 $|A_v| = g_m^*(r_o//R_D)$, so if we want to raise the gain, we expect

(1) $g_m\,$ to be larger, which means larger W

(2) r_o to be larger, which means larger L, but $r_o//R_D$, so the

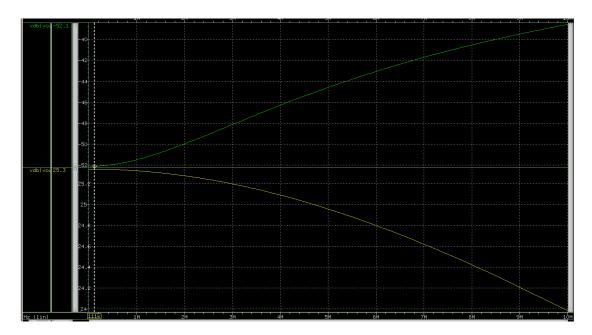
impact of L is narrowed. Thus, W is my trial priority.

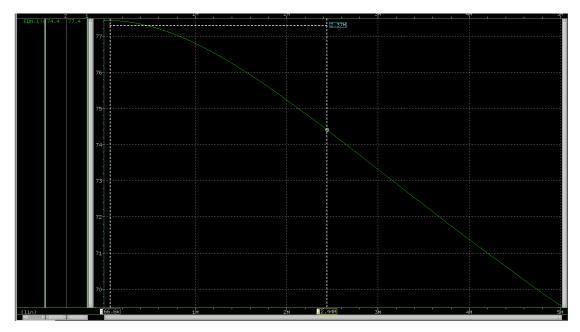

(3) R_D to be larger, which $R_D = 100k$.

And my design is $(W/L)_{M1} = (W/L)_{M2} = 84u / 2.8u$.

from .lis file:

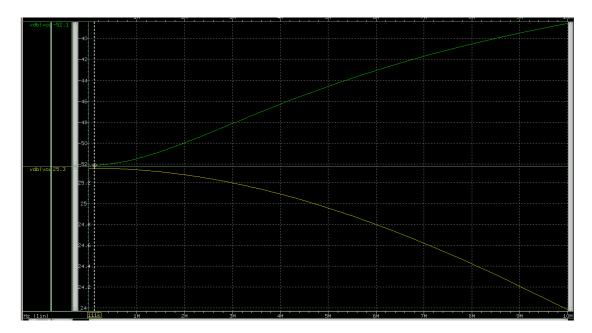
element	0:m3	0:m2	0:m1
model	0:n_18.1	0:n_18.1	0:n_18.1
region	Saturati	Saturati	Saturati
id	20.0557u	10.0278u	10.0278u


The voltage gain= 25.3dB > 20dB:

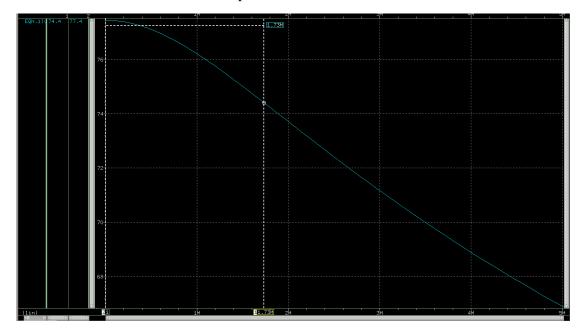

(b) $(W/L)_{M2}$ becomes 92.4u/2u.

(i) Without C_p :

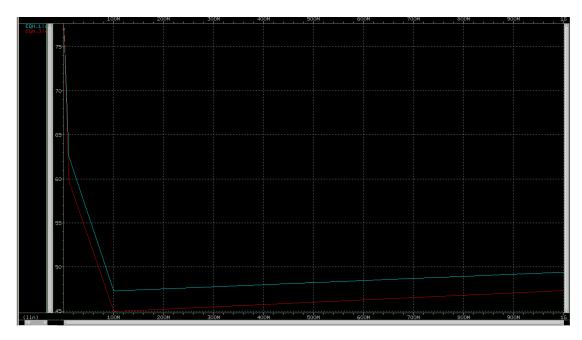
 $|A_v|$ = 25.3dB, $|A_{cm}|$ = 52.1dB


At low freq. CMRR = $|A_v| / |A_{cm}| = 25.3$ dB - (-52.1dB) = 77.4dB

from the figure, -3dB bandwidth without C_p = 2.44M.


(ii) With $\,C_p\,$ from P to ground:

 $|A_v|$ = 25.3dB, $|A_{cm}|$ = 52.1dB



At low freq. CMRR = $|A_v| / |A_{cm}| = 25.3$ dB - (-52.1dB) = 77.4dB

is same as that without $\ C_p.$

from the figure, -3dB bandwidth with $\ C_p\$ = 1.73M.

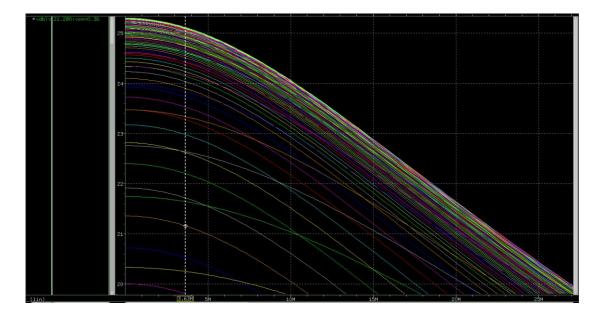
Red curve: CMRR with C_p ; Blue curve: CMRR without C_p

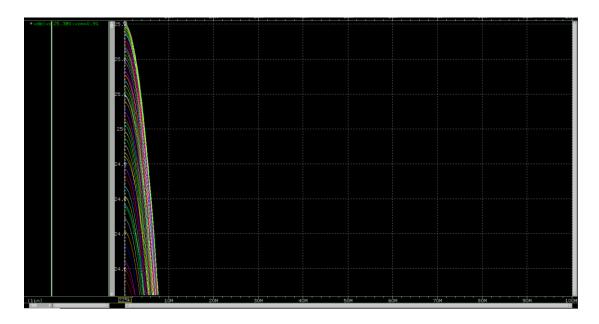
(iii) Comment:

The common-mode to differential conversion becomes significant at high frequencies, since r_{o3} is shunted by C_p . $A_{CM-DM} = -\frac{\Delta g_m R_D}{(g_{m1}+g_{m2})(r_{o3}//C_p)+1}$ and at high frequencies, $Z(C_p) = 1/jwC_p$ becomes smaller, so $r_{o3}//C_p$ becomes smaller, and A_{CM-DM} becomes larger, resulting in smaller CMRR.

I compare the -3dB bandwidth , and the one without C_p is bigger than the one with C_p . It's reasonable since CMRR with C_p decrease faster, resulting in smaller bandwidth. (c)

To calculate $\,V_{in\,,CM}\,\,$ for all MOS saturation:


element		0:m2	0:m1	
model	0:n_18.1	0:n_18.1	0:n_18.1	
region	Saturati	Saturati	Saturati	
id	20.0557u	10.0278u	10.0278u	
ibs	-3.245e-21	-2.8168f	-2.8168f	
ibd	-365.4617a	-4.7805f	-4.7805f	
vgs	490.0000m	430.2507m	430.2507m	
vds	469.7493m	327.4665m	327.4665m	
vbs	Θ.	-469.7493m	-469.7493m	
vth	443.4527m	426.6507m	426.6507m	from .lis file

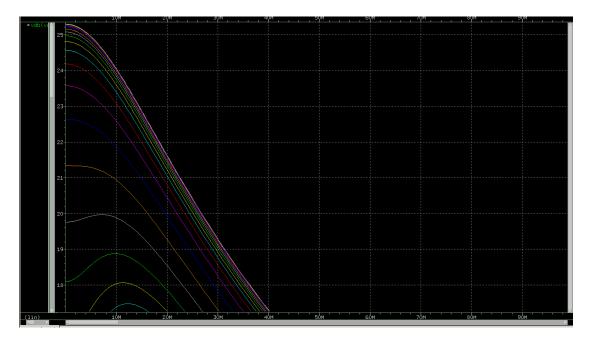

 $V_{GS1} + (V_{GS3} - V_{TH3}) \le V_{in,CM} \le \min[V_{DD} - R_D \frac{I_{SS}}{2} + V_{TH}, V_{DD}]$

-> 0.43025+(0.49-0.44345) \leq V_{in,CM} \leq 1.8-100k* $\frac{20u}{2}$ +0.42665

-> 0.4768 \leq V_{in,CM} \leq 1.22665

And from simulation, 0.36 \leq $V_{in,CM}$ \leq 0.91

So combine above results, our desire IMCR is $0.4768\!\leq\!V_{in,CM}\!\leq$

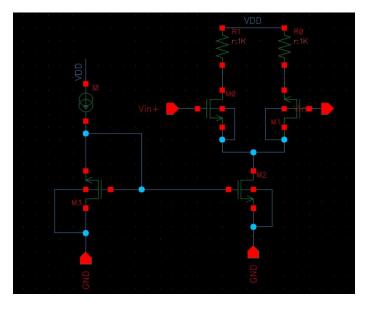

0.91

(d)

The maximum differential input that the circuit can handle:

$$\Delta V_{in} = \sqrt{\frac{2I_{d3}}{\mu_n C_{ox} W/L}} = \sqrt{2} (V_{GS1} - V_{TH}) = \sqrt{2} (0.43-0.426)$$

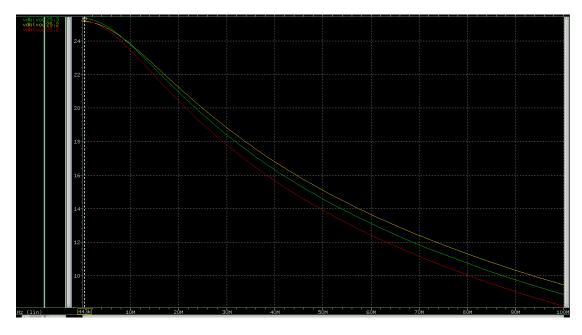
=0.00565V

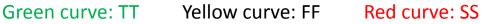

Above figure is the simulation, and find the one with all MOS in

saturation from .lis file(shown below),

***	parameter	d	=	8.965E-01 ***
	subckt element model region id	0:m3 0:n_18.1 Saturati 20.0560u		
***	parameter	d	=	9.035E-01 ***
	subckt element model region id	_	0:m2 0:n_18.1 Saturati 10.6712u	_

So the input differential maximum is 0.9035-0.8965=0.007V and the input differential range ΔV_{in} is from 0 to 0.0035. It's reasonable that it's smaller than calculation, since we want all MOS to be saturation. (e)


Schematic:



The gain of using ideal voltage source to generate V_b :

The gain of using current mirror to generate V_b :

Comment:

(i) For TT corner, both methods generating bias voltage will have all MOS in saturation, and reach a voltage gain of 25.3. (ii) For FF corner, when using current mirror, we can still get a voltage gain of 25.2 and all MOS in saturation at the same time. But when using ideal voltage source, the gain $|A_v|$ can reach

37.5, but not all MOS in saturation.

element 0:m3 0:m2 0:m1 model 0:n 18.1 0:n 18.1 0:n 18.1 region Saturati Linear Linear id 32.1835u 16.0918u 16.0918u from .lis file

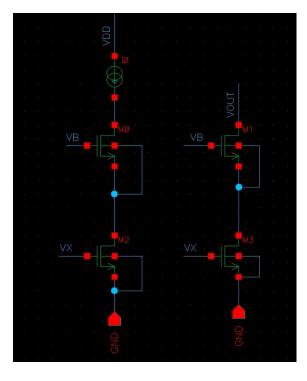
(iii) For SS corner, when using current mirror, we can still get a voltage gain of 25.2 and all MOS in saturation at the same time.But when using ideal voltage source, the gain will drop to 20.5

and not all MOS in saturation.

element	0:m3	0:m2	0:m1	
model	0:n_18.1	0:n_18.1	0:n_18.1	
region	Saturati			
id	9.8075u	4.9037u	4.9037u	from .lis file

(iv) We can observe that using current mirror to generate bias

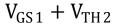
voltage is better in all three TT, FF, SS corners, since when

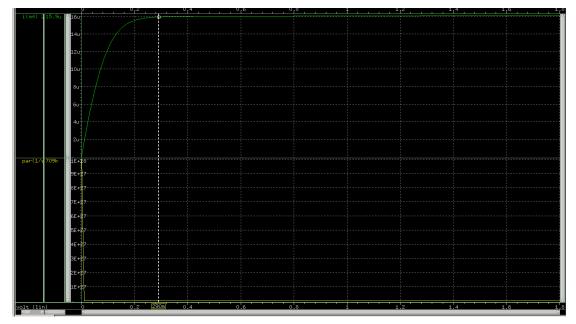

operating in different corners, the parameters changed, so if we

use the same ideal voltage source, it might not operate in

saturation.

2.

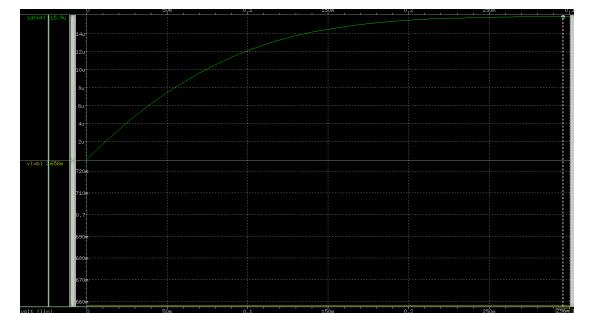

Schematic:



We want $\,I_{out}\,$ to be 16uA and $\,I_{ref}\,$ is 4uA, so we want

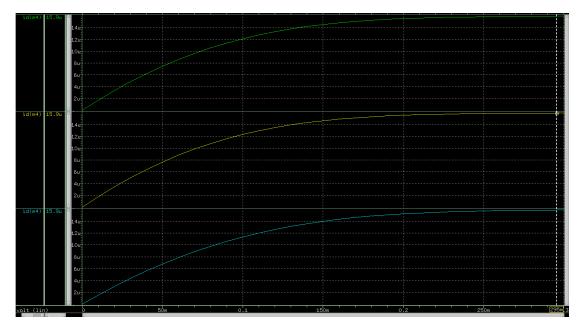
 $4(W/L)_{1,2} = (W/L)_{3,4}$. I use the same length for all of the transistors so as to minimize errors due to the side diffusion of the source and drain areas, and make the multiple finger of 4. For M1, M2 in saturation, $V_{GS2}+(V_{GS1}-V_{TH1}) \leq V_b \leq$

(b)


M6 is guaranteed to be in saturation, since it's gate and drain are connected. But with all transistors in saturation region, M5 can only be in linear region, because $V_{in1} = V_{GS5} = V_{DS5} +$

 $V_{GS\,6}$, $V_{GS\,6}$ > $V_{th}\,and\,thus$ $V_{GS\,5}$ - $V_{DS\,5}$ > $V_{th}\,.$

element	0:m4	0:m3	0:m2	0:m1	0:m5	0:m6
model	0:n_18.1	0:n_18.1	0:n_18.1	0:n_18.1	0:n_18.1	0:n_18.1
region	Saturati	Saturati	Saturati	Saturati	Linear	Saturati
id	15.9293u	15.9293u	4.0000u	4.0000u	5.1174u	5.1174u


So we can calculate the current:

For M6: $I_D = \frac{1}{2}\mu_n C_{ox} (W/L)_6 V_{ov}^2$ For M5: $I_D = \frac{1}{2}\mu_n C_{ox} (W/L)_5 (2(V_{gs} - V_{th}) V_{ov} - V_{ov}^2)$ After calculation, we found that $(W/L)_6$ is equal to $(W/L)_5$ times 3, so I design $(W/L)_5 = 2u/4.5u$ and $(W/L)_6 = 2u/1.5u$. And I_{D4} can reach 16u, same as the result of giving bias voltage. And there is about 40mV difference from the original one, but I reckon that a roughly 5% difference is acceptable.

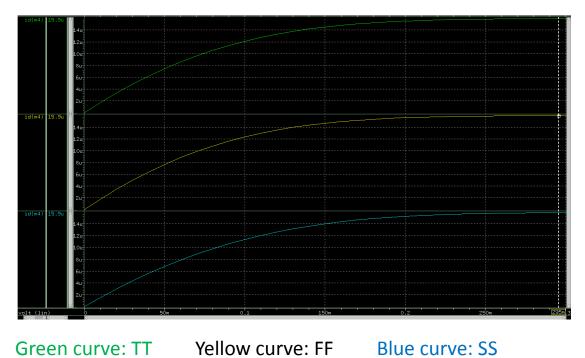

(c)

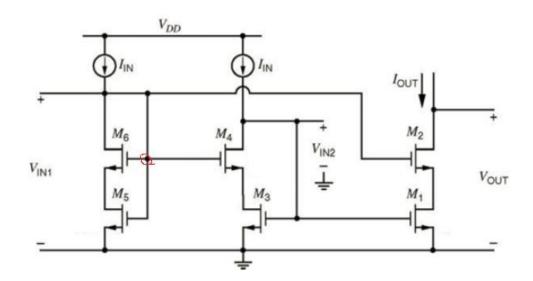
Figure of output current when using bias generation circuit:

Green curve: TT Yellow curve: FF Blue curve: SS

Figure of output current when using ideal voltage source:

Comment:

(i) Using bias generation circuit, we have I_{out} close to 16uA, and from .lis file, we found only M5 in linear region as expected.


(ii) Using ideal voltage source, we have I_{out} close to 16uA as well, we concern that there might be transistor other than M5 not being in saturation. But in this case, from .lis file(shown below), we found it alright.

TT:

model region	0:m4 0:n_18.1 Saturati 15.9195u	0:n_18.1 Saturati	0:n_18.1 Saturati	0:n_18.1 Saturati	0:n_18.1 Linear	0:n_18.1 Saturati
FF:						
model region	0:m4 0:n_18.1 Saturati 15.8676u	0:n_18.1 Saturati	0:n_18.1 Saturati	0:n_18.1 Saturati	0:n_18.1 Linear	0:n_18.1 Saturati
SS:						
region	0:m4 0:n_18.1 Saturati 15.9063u	Saturati	Saturati	Saturati	Linear	Saturati
(d) M6 is guaranteed to be in saturation, since it's gate and						
drain are connected. But with all transistors in saturation region,						

M5 can only be in linear region, because V_{in1} = V_{GS5} = V_{DS5}

+ $V_{GS\,6}$, $V_{GS\,6}$ > $V_{th}\,and$ thus $\,V_{GS\,5}\,$ - $\,V_{DS\,5}\,$ > $\,V_{th}\,.$

 $V_{\rm in\,1}~$ = the voltage with red circle in the figure above = $V_{\rm ov}~({\sf M3}) + (V_{\rm ov}~+~V_{\rm th}~)({\sf M4}) = 2V_{\rm ov} + V_{\rm th}$