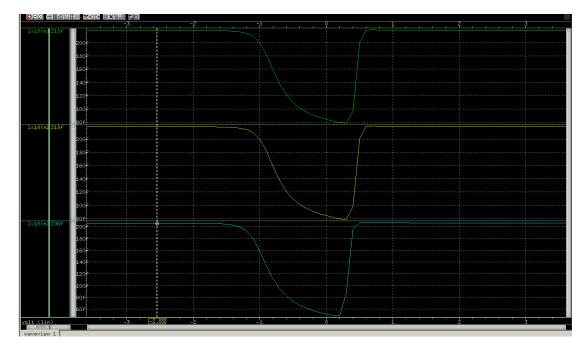

Analog IC Design Homework 1

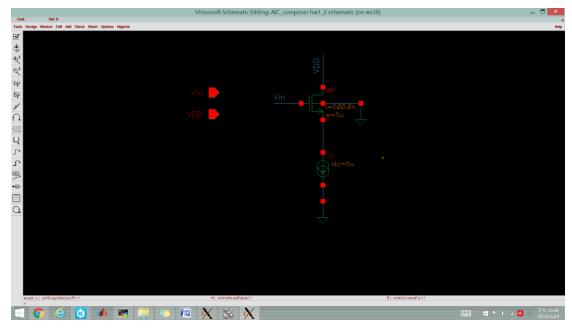

學號: 102061112

姓名: 謝博楊

Schematic:

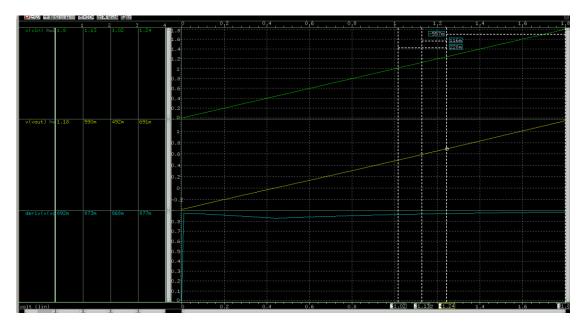
Waveform:

Comments:


(a) The capacitance is 218fF.

(b) The capacitance is same as (a), 218fF. Since Cgs = Cox*W*L proportional to W*L, with W*L=25um². Besides, five capacitors with the same value C parallel with each other is the same as a single capacitor with value 5C.

(c) The capacitance is slightly smaller, 206fF. Though having the same W*L with that of (a) and (b), from the formula $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2$, the current proportional to W/L is smaller in case (c), so the depletion region is a little smaller, result in less electrons in inversion layer, so the capacitance is slightly smaller.


(i) When $V_{GS} < 0$, the device is off, and will attract holes to accumulate under the oxide, and can be seen as a capacitor with value C_{ox} per unit area, so $C_{g,total} = C_{ox}$ WL. When $V_{GS} < V_{th}$, a depletion region begins to form, so $C_{g,total} =$ C_{ox} WL in series with C_{dep} . When $V_{GS} > V_{th}$, the oxide-silicon interface sustains a channel, so $C_{g,total} = C_{gb} + C_{gd} + C_{gs} = 0$ $+ 1/2C_{ox}$ WL $+ 1/2C_{ox}$ WL $= C_{ox}$ WL.

Schematic:

(a)

Waveform:

Comments:

(i) From the figure above:

Vout=1.18V at Vin=1.8V.

The slope is 0.873 at Vout/2=590mV.

The slope within 0.5% variation is about from 0.868 to 0.877.

The linear range: Vin is from 1.02V to 1.24V, with the

corresponding Vout from 492mV to 691mV.

The DC offset is 1.02-0.492=528mV, and 1.24-0.691=549mV.

(b)

Original Humanian
Description
<thDescription</th>

Waveform:

Comments:

(i) From the figure above:

Vout=1.34V at Vin=1.8V.

The slope is 984m at Vout/2=670mV.


The slope within 0.5% variation is about from 979m to 988m.

The linear range: Vin is from 9.96mV to 1.8V, with the corresponding Vout from -422mV to 1.34V.

DC offset is 9.96m+422m=431.96mV, and 1.8-1.34m=460mV.

(ii) The DC offset is smaller than that of (a), because with body connected to source node, the body effect is reduced, V_{TH} becomes a little smaller than that of (a), and with I_1 remain the same, $V_{in} - V_{out}$ needs to be a little smaller. $(I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{TH})^2)$ (c)

Waveform:

Comments:

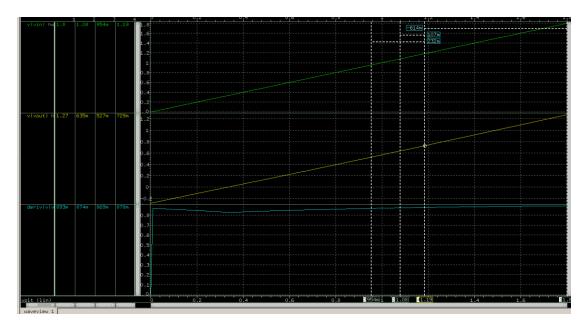
(i) From the figure above:

Vout=630mV at Vin=1.8V.

The slope is 857m at Vout/2=310mV.

The slope within 0.5% variation is about from 853m to 900m.

The linear range: (we consider Vout>0)


Vin is from 1.34V to 1.8V, with the corresponding

Vout from 232mV to 630mV.

DC offset is 1.34-232m=1.108V, and 1.8-0.63=1.17V.

(ii) The DC offset is much bigger than that of (a), because we need to provide a larger $V_{in} - V_{out}$, in order to provide a much larger current I_1 . $(I_1 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{out} - V_{TH})^2)$ (d)

Waveform:

Comments:

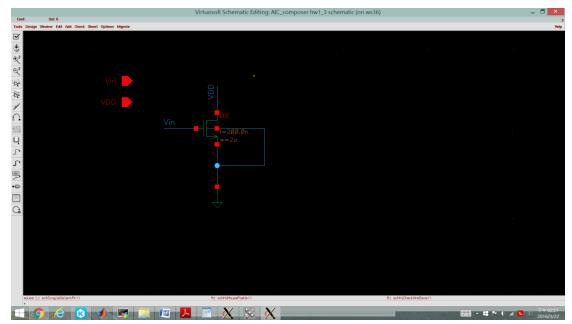
(i) From the figure above:

Vout=1.27V at Vin=1.8V.

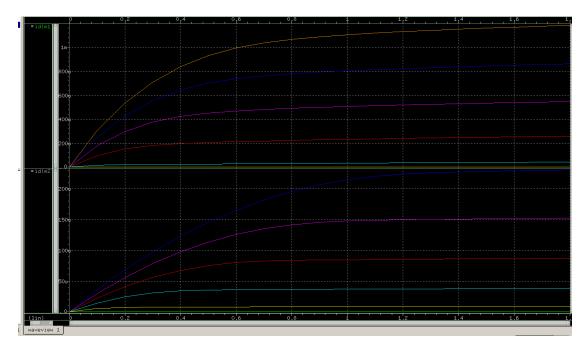
The slope is 874m at Vout/2=635mV.

The slope within 0.5% variation is about from 869m to 878m.

The linear range:


Vin is from 954mV to 1.19V, with the corresponding

Vout from 527mV to 729mV.


DC offset is 954m-527m=427mV, and 1.19-729m=461mV.

(ii) The DC offset is smaller than that of (a), because with I_1 remaining the same, W/L becomes bigger, $V_{in} - V_{out}$ must become smaller.

Schematic:

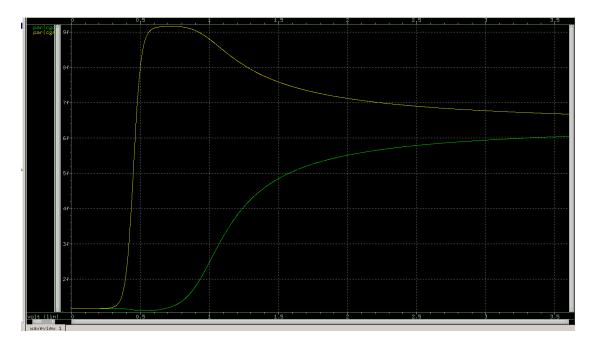
Waveform:

Comments: (Channel Modulation Effect)

(i) The actual length of the inverted channel gradually

decreases as the potential difference between gate and drain

increases. So to the same device, as V_{GS} increases, the slope in the saturation region will have bigger change.

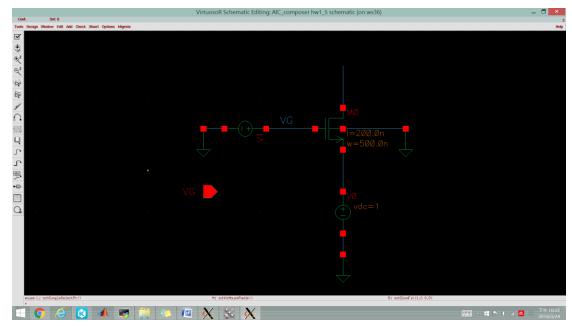

(ii) $I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 (1 + \lambda V_{DS})$, and λ is proportional to $\frac{1}{L}$, so with the same V_{GS} , the device with shorter channel length will have higher drain current. As shown in the figure above, the waveform on the top is the device with W/L = 2um/0.2um, and the one at bottom is the device with W/L = 2um/2um.

(iii) I_D is proportional to $(V_{GS} - V_{TH})^2$, so with the same channel length, larger V_{GS} means larger I_D .

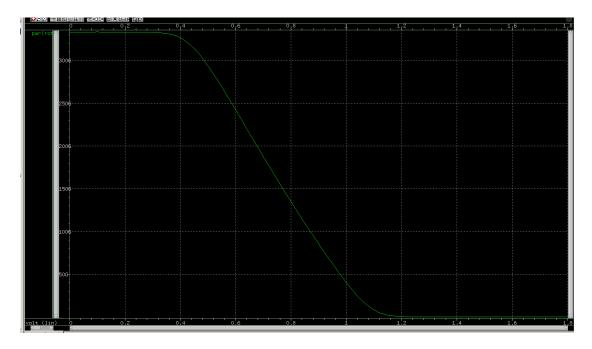
Schematic:

Waveform:

Comments:


(i) When the device is off, $C_{GD} = C_{GS} = C_{ov}W$.

(ii) When the device is in saturation region, $C_{GD} = C_{ov}W$. And the potential difference varies from V_{GS} at the source to $V_{GS} - V_{TH}$ at the pinch-off point, resulting in an inhomogeneous electric field, $C_{GS} = C_{ov}W + \frac{2C_{ox}WL}{3}$.


(iii) When the device is in deep triode region, the source and drain voltage are almost the same, and the capacitance between the gate and the channel C_{ox} WL can be separate evenly by source and drain, so

$$C_{GD} = C_{GS} = C_{ov}W + \frac{C_{ox}WL}{2}$$

Schematic:

Waveform:

Comment:

(i) When $\,V_{GS}\,$ < $\,V_{Th}$, the device is in cutoff region, $\,I_{D}$ = 0, so $\,R_{on}\,$ = $\,\infty\,$

(ii) When $V_{GS} > V_{Th}$, if $V_{DS} \ll 2(V_{GS} - V_{Th})$, $R_{on} =$

 $(\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{TH}))^{-1}$, so when V_{GS} becomes bigger, R_{on} will become smaller, as shown in the figure.