- **1.** Design a Fully-differential (differential-input, differential output) OP. You can select your structure to meet the specifications but have to include the common-mode feedback (CMFB) circuit.
 - A. The OP has to design in sub-circuit, and the sub-circuit nodes neet to be ".subckt opamp iref vdd vinn vinp vocm von vop vss". The netlist has to be named as "My_op.spi".
 - B. The output has to drive a loading $20k\Omega$ and 100pF.
 - C. The simulation should contain all the corners.
 - D. If the supply voltage is decreased, you will get additional bonus. (1% for 0.1V lower)
 - E. The Demo will use the test-bench offered by TAs, only the current of iref can be adjusted by your design consideration.

		My_	My_	My_	My_	My_
Design Items	Specifications	ор	ор	ор	ор	ор
		(TT)	(SS)	(SF)	(FS)	(FF)
Technology	CIC pseudo technology					
Supply voltage	<1.8V, low as					
	possible					
power	Small as possible					
Loading	100pF / 20KΩ					
DC gain	>85dB,large as					
	possible(8%)					
GBW	>15MHz,large as					
	possible(8%)					
P.M.	>60 [°] (8%)					
C.M.R.R.@10KHz	>100db(3%)					
P.S.R.R.+@10KHz	>100db(3%)					
P.S.R.R@10KHz	>100db(3%)					
	Uni	ty-gain con	figuration			
S.R.+(10% ~ 90%)	>5V/us(2%)					
S.R (10% ~ 90%)	>5V/us(2%)					
Settling+(1Vpp,0.01)	<0.5ms(2%)					
Settling-(1Vpp,0.01)	<0.5ms(2%)					
	Fi	gure of Mer	it (FoM)	· · · ·		
Small signal	GBW(MHz)/					
	Power(mW)(5%)					
Large signal	SR(V/us)/					
	Power(mW)(5%)					

F. Specification(50%). (ps. Please fill the provided Table)

2. Report Must Contain : (50%)

- A. Schematic (including core amplifier circuits, common mode feedback, biasing circuits, etc.).(10%)
- **B.** Simulation results of each specification (AC/DC/transient/...) and contains all corners.(15%) Please explain how to find the spec for your own OP and make the comparison.
- C. Design procedure and consideration (15%)

Briefly express your design consideration and optimization on selected circuit structure, device value, voltage, compensation, and common mode feedback issues.

D. Discussion and conclusion (10%)

Discuss your experience on this project, problem during design, and conclude what you get and suggest for this course

The following should be included in your report (a) schematic (b) HSPICE netlist & simulation file
(c) waveform with cursor values (d) comments.