Inductor *i*-v Behaviors

Its voltage v depends on the time-varying rate of current i.

 $V = L \cdot \frac{dL}{dt}$

- Steady state characteristics
 - The inductor is a short circuit to DC signal at steady state.

The inductor is an open circuit to high frequency signals at steady state.
Ai
Assume
Jt つゆ, V つゆ
i = Io·sinut, V = L·w· Io· wswt

di It=0, V=0

As $w \rightarrow \omega$, $\sqrt{\sqrt{3}} \omega$ similar to an open circuit

□ The current through an inductor does not change abruptly.

A discontinuous change of the inductor current requires an infinite voltage.

V

V

Summary		(i	
	R	С	L
🏕 v - i	$v_R = i_R \cdot R$	$v_C = v_C(t_0) + \frac{1}{C} \int_{t_0}^t i_C \cdot dt$	$v_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$
4 <i>i</i> - v	$i_R = \frac{v_R}{R}$	$i_C = C \frac{\mathrm{d}v}{\mathrm{d}t}$	$i_L = i_L(t_0) + \frac{1}{L} \int_{t_0}^t v_L \cdot \mathrm{d}t$
Power, Energy	$P_R = i_R^2 \cdot R = \frac{v_R^2}{R}$	$E_C = \frac{1}{2}C \cdot v_C^2$	$E_L = \frac{1}{2}L \cdot i_L^2$
ð Series	$R_{eq} = \sum R_k$	$\rightarrow \frac{1}{C_{eq}} = \sum \frac{1}{C_k}$	$L_{eq} = \sum L_k$
Parallel	$\frac{1}{R_{eq}} = \sum \frac{1}{R_k}$	$C_{eq} = \sum C_k$	$\frac{1}{L_{eq}} = \sum \frac{1}{L_k}$
DC steady state	(same)	open-circuit ملات مترقع من	short-circuit di
High-free HF steady state	(same)	short-circuit	open-circuit من عهد مدين محمد علي م
Continuity	(no restriction)	v _C	i _L 13

Series and Parallel Inductors

 $=) leq = l_1 + l_2$

$$\Rightarrow leq = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2}}$$