Midterm: 11/7 (Mon) 10:10am-12 Lec1-Lec 5

Electric Circuits Quiz 1 Discussion

EE2210, Fall 2022

Jenny Yi-Chun Liu
jennyliu@gapp.nthu.edu.tw

Score Distribution

• Average: 50

• Standard deviation: 23.1

- A sinusoidal voltage source, $v = 20 \cdot \cos(\omega t) (V)$, is connected across a 100-Ohm resistor. $f = \frac{w}{2\pi} (H_3, 1|s)$
- 1. 2. What is the current flowing through the resistor? (4%)
- **3.** What is the instantaneous power supplied by the source to the resistor? (Hint: instantaneous power is a function of time, which indicates the power at any instant of time.) (10%)

1.
$$i = \frac{V}{R} = \frac{20 \cos \omega t}{100} = \frac{1}{5} \cos \omega t$$
 A

$$2.4 p(t) = V \cdot i = 20 \cdot \cos \omega t \cdot \frac{1}{5} \cos \omega t = 4 \cos \omega t = 4 \cdot \frac{1 + \cos 2\omega t}{2} = 2 \left(1 + \cos 2\omega t\right)$$

$$= 20 \cdot \cos \omega t \cdot \frac{1}{5} \cos \omega t = 4 \cdot \frac{1 + \cos 2\omega t}{2} = 2 \left(1 + \cos 2\omega t\right)$$

$$= 20 \cdot \cos \omega t \cdot \frac{1}{5} \cos \omega t = 4 \cdot \frac{1 + \cos 2\omega t}{2} = 2 \left(1 + \cos 2\omega t\right)$$

3.
$$ext{larg} = \frac{1}{T} \int_0^T \frac{1}{2} \left(1 + \cos 2\omega t \right) dt = 2$$
 W

$$T = \frac{2\pi}{2\mu}$$

$$p(t) = \frac{V}{R} = \frac{100}{100} = 1$$

$$\frac{1}{t_{\lambda}-t_{\parallel}}\int_{t_{\parallel}}^{t_{\lambda}}P(t)\,dt$$

 Find the Thevenin and Norton equivalent circuits of the following circuit with respect to the terminals a, b in the following figure. (16%)

o Mesh analysis

$$i_2 = 3 A$$
 $\begin{cases} kvL: 2v_a - 3i_1 - 6(i_1 - i_2) = 0 \end{cases}$
 $V_a = 6(i_1 - i_2)$
 $v_a = 6(i_1 - i_2)$
 $v_a = 180$

a Vtest

Vtest

2 Vtest - Vtest

3 = - itest

6

$$R = \frac{1}{\frac{1}{10} + \frac{1}{40}} = 30$$

• Find the node voltage potential v(t) in the following figure. (12%)

$$V_2 = -(12+15\cos 6t)\frac{40}{\cot 40} = -9.6-12\cos 8t$$

40 77

• Sketch the i-v characteristics for the networks in the following figures. (10%)

7

- How many nodes, how many branches, and how many meshes are in the following figure? (6%)
- Find the voltage v_0 in the network in the following figure using superposition. (12%)

Vio= 10- Voi = Voi

$$\frac{V_{\Delta}}{10} + 0.4 V_{\Delta} = 5 \Rightarrow V_{\Delta} = 10 V$$

$$0.4 V_{\Delta} = \frac{V_{02}}{20} + \frac{V_{02}}{5} \Rightarrow V_{02} = 16V$$

• Determine the values of the resistors R_1 , R_2 , and R_3 such that $v_1 = 12$ V, $v_2 = 5$ V, $v_3 = -12$ V, and the total power dissipated by the circuit by the 24 V source is 80 W in the following figure. Assume the "Common" node is at 0 V of voltage potential. (10%)

$$P = 30 = 24 \cdot i \qquad i = \frac{80}{24} A$$

$$R_1 = \frac{12 - 5}{i} = 2.1 c$$

$$R_2 = \frac{5 - 0}{i} = 1.5 c$$

$$R_3 = \frac{0 - (-12)}{i} = 3.6 c$$