EE2210 Electric Circuits Homework 5 (Lecture 11-12) Total points: 100

Please write down clearly the calculation/thinking process of each question. Unit is needed when applicable.

Due: Jan. 4th (Wed), 10:00am (in EECS room 518)

- 1. Consider the circuit in Figure 1.
 - (a) Write expressions for $H(j\omega) = V_o/V_i$, its magnitude $|H(j\omega)|$, and its phase angle $\angle H(j\omega)$, as a function of ω . (15%)
 - (b) Plot the frequency response of $H(j\omega)$. (15%)

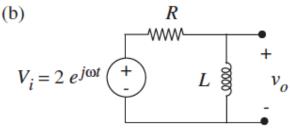


Figure 1.

2. The circuit shown in Figure 2 has an input voltage $V_{in}(t) = V_1 \cos(120\pi t)$. Assume L = 500 mH, C = 80 μ F, and R = 50 Ω . Compute the transfer function $H(s) = V_o(s)/V_{in}(s)$. (15%)

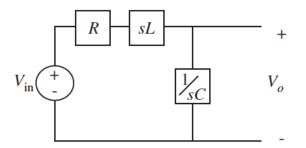
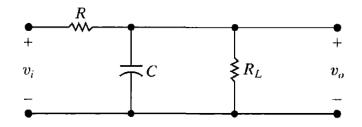



Figure 2.

- 3. Consider the circuit in Figure 3.
 - (a) Assume the input $v_i = 10^*\cos(100t + 45^\circ)$. Derive the complete response of v_o , including the transient and steady-state response. (15%)
 - (b) Derive the expression for the voltage transfer function $H(j\omega) = \frac{V_0}{V_i}$. (10%)
 - (c) At what frequency will the magnitude of $H(j\omega)$ be maximum? (10%)
 - (d) What is the maximum value of the magnitude of $H(j\omega)$? (10%)
 - (e) Plot the frequency response of $H(j\omega)$. (10%)

Figure 3.

4. The impedance $Z(j\omega)$ of the network shown in Figure 4 is found to be 2 k Ω and is purely real for all frequencies. The value of the inductor is 1 mH as shown. What are the values of *R* and *C*? (10%)

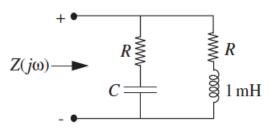


Figure 4.