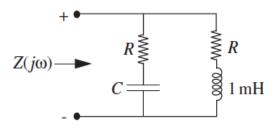
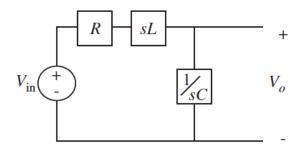
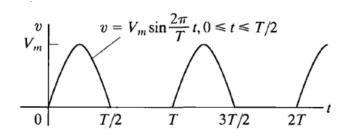

EE2210 Electric Circuits

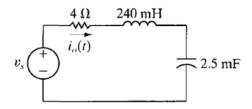
Spring 2019

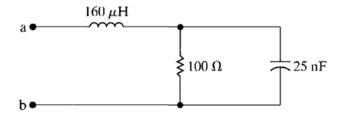

Practice problems for Lecture 11 – Lecture 13

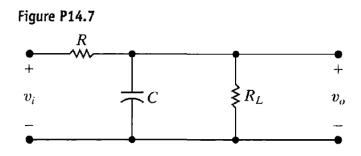
Textbook: Foundations of Analog and Digital Electronic Circuits by Anant Agarwal and Jeffery H. Lang, 1st edition, Elsevier.


1. Write expressions for $H(j\omega) = V_o/V_i$, its magnitude $|H(j\omega)|$, and its phase angle $\angle H(j\omega)$, as a function of ω in the following figure.


2. The impedance of the network shown in the following figure is found to be 2 k Ω and is purely real for all frequencies. The value of the inductor is 1 mH as shown. What are the values of *R* and *C*?


3. The circuit shown in the following figure has an input voltage $v_{inl}(t) = V_1 \cos(120\pi t)$, and L = 500 mH, C = 80 μ F, and R = 50 Ω . Compute the transfer function $H(s) = V_o(s)/V_{inl}(s)$.


4. Find the rms value of the half-wave rectified sinusoidal voltage shown.


5. Find the steady-state expression for $i_0(t)$ in the circuit in the following figure if $v_s = 100\sin 50t \text{ mV}.$

- 6.
- (a) For the circuit shown in the figure below, find the frequency (in radians per second) at which the impedance Z_{ab} is purely resistive.
- (b) Find the value of Z_{ab} at the frequency of (a).

- 7. A resistor denoted as R_L is connected in parallel with the capacitor in the circuit in the following Figure 14.7.
 - a) Derive the expression for the voltage transfer function $\frac{v_o}{v_i}$.
 - b) At what frequency will the magnitude of $H(j\omega)$ be maximum?
 - c) What is the maximum value of the magnitude of $H(j\omega)$?
 - d) At what frequency will the magnitude of $H(j\omega)$ equal its maximum value divided by $\sqrt{2}$?

