2019 EE2210 Electric Circuit

Solution of the practice problems for Lecture1-3

Exercise 1.3 In the circuit in Figure 1.1, R is a linear resistor and $v = V_{DC}$ a constant (DC) voltage. What is the power dissipated in the resistor, in terms of R and V_{DC} ?

Solution:

$$Power = i \cdot v$$

But i = v/R (Ohm's Law), so

$$Power = \frac{v}{R} \cdot v = \frac{V_{DC}^2}{R}$$

ANS:: $\frac{V_{DC}^2}{R}$

Exercise 1.4 In the circuit of the previous exercise (Figure 1.1), $v = V_{AC} \cos \omega t$, a sinusoidal (AC) voltage with peak amplitude V_{AC} and frequency ω , in radians/sec.

- a) What is the average power dissipated in R?
- b) What is the relationship between V_{DC} and V_{AC} in Figure 1.1 when the average power in R is the same for both waveforms?

Solution:

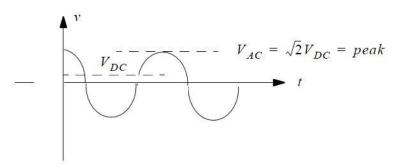


Figure 1.2:

a) If peak voltage is V_{AC} , then

$$V_{AC} = \sqrt{2} V_{DC}$$

where V_{DC} is the average amplitude of the voltage signal.

Average
$$Power = \frac{(V_{average})^2}{R} = \frac{V_{DC}^2}{R} = \frac{(V_{AC}/\sqrt{2})^2}{R} = \frac{V_{AC}^2}{2R}$$

b) If peak voltage is V_{AC} , then

$$V_{AC} = \sqrt{2} V_{DC}$$

where V_{DC} is the average amplitude of the voltage signal.

ANS:: (a) $V_{AC}^2/2R$ (b) $V_{AC} = \sqrt{2} V_{DC}$

Exercise 2.5 Find the equivalent resistance at the indicated terminal pair for each of the networks shown in Figure 2.8.

1

Solution:

a)

$$R_{EQ} = R_1 + R_2 + R_3$$

b)

$$R_{EQ} = R_1 ||R_2 + R_3 = \frac{R_1 R_2 + R_3 (R_1 + R_2)}{R_1 + R_2}$$

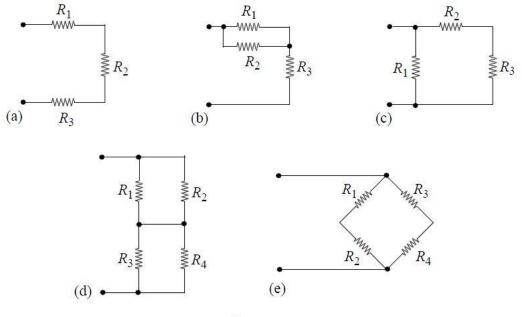


Figure 2.8:

c)

$$R_{EQ} = R_1 ||R_2 + R_3 = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$

d)

$$R_{EQ} = R_1 ||R_2 + R_3||R_4 = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4}$$

e)

$$R_{EQ} = (R_1 + R_2)||(R_3 + R_4) = \frac{(R_1 + R_2)(R_3 + R_4)}{R_1 + R_2 + R_3 + R_4}$$

ANS:: (a) $R_1 + R_2 + R_3$, (b) $\frac{R_1R_2 + R_3(R_1 + R_2)}{R_1 + R_2}$ (c) $\frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$ (d) $\frac{R_1R_2}{R_1 + R_2} + \frac{R_3R_4}{R_3 + R_4}$ (e) $\frac{(R_1 + R_2)(R_3 + R_4)}{R_1 + R_2 + R_3 + R_4}$

Problem 2.4 For the circuit in Figure 2.26, find values of R_1 to satisfy each of the following conditions:

- a) v = 3 V
- b) v = 0 V
- c) i = 3 A
- d) The power dissipated in R_1 is 12 watts.

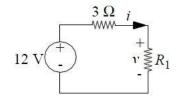


Figure 2.26:

Solution:

- a) Voltage divider. Solve $12V * \frac{R_1}{3+R_1} = 3V$ $R_1 = 1\Omega$
- b) $v = i * R_1$. Since the current is not 0, the resistance must be zero. $R_1 = 0$
- c) Solve $i = 3A = \frac{12V}{R_{eq}} = \frac{12V}{3\Omega + R_1}$ $R_1 = 1\Omega$
- d) Power dissipated in $R_1 = 12W = i * v$ where $v = 12V * \frac{R_1}{3+R_1}$ and $i = \frac{12V}{3+R_1}$. $R_1 = 3\Omega$

ANS:: (a) $R_1 = 1\Omega$ (b) $R_1 = 0$ (c) $R_1 = 1\Omega$ (d) $R_1 = 3\Omega$

Problem 2.9 Calculate the power dissipated in the resistor R in Figure 2.31.

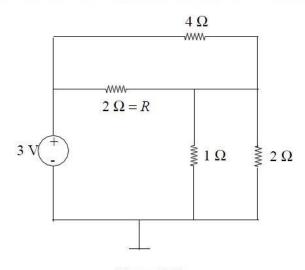


Figure 2.31:

Solution:

The equivalent resistance is 2Ω , so $\frac{3}{2}A$ of current is split between the 2Ω and 4Ω resistors. Therefore, 1A current goes through R.

Power = 2WANS:: Power = 2W

Exercise 3.2 Find the Norton equivalent at the indicated terminals for each network in Figure 3.3.

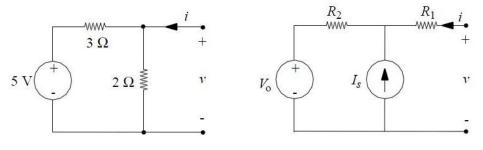


Figure 3.3:

Solution:

Left network:

 $R_T = 3||2 = 1.2 \ \Omega$ when 5 V source is made a short circuit.

I = 5/3 A when the indicated terminals are connected with a wire ("shorted") since then no current flows through the 2 Ω resistor.

Right network:

 $R_T = R_1 + R_2$, when the V_0 source is shorted and the I_S source is made an open circuit.

$$I = \frac{R_2}{R_1 + \underbrace{R_2}_{\text{current}} \cdot I_S} + \underbrace{\frac{V_0}{\underbrace{R_1 + R_2}}_{\text{contribution}} \text{ by superposition}$$

divider from V_0
for when $I_S = 0$
 $V_0 = 0$

ANS:: Left: 1.2 Ω , 5/3A, Right: $R_1 + R_2$, $\frac{R_2}{R_1 + R_2}I_S + \frac{V_0}{R_1 + R_2}$

Exercise 3.3 Find the Thévenin Equivalent for each network in Figure 3.4.

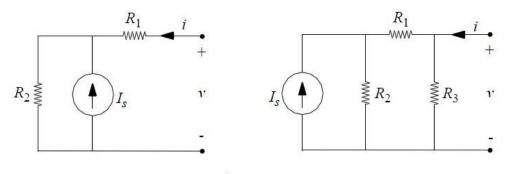


Figure 3.4:

Solution:

Left network:

 $R_T = R_1 + R_2$ when I_S is made an open circuit.

 $V_{OC} = I_S R_2$ since no current flows through R_1 in the open circuit case.

 $R_T = R_3 ||(R_1 + R_2)$ when I_S current source is made an open circuit.

Since $V_{OC} = R_3 \cdot$ (current through R_3) by Ohm's Law,

$$V_{OC} = \frac{I_S \cdot R_2}{\underbrace{R_1 + R_2 + R_3}_{\text{current}} \cdot R_3} \cdot R_3$$
current di-
vider relation
for fraction of
 I_S that will
flow through
 R_1 and R_3

ANS:: Left: $V_{OC} = I_S R_2, R_T = R_1 + R_2$, Right: $V_{OC} = \frac{I_S R_2 R_3}{R_1 + R_2 + R_3}, R_T = R_3 ||(R_1 + R_2)|$

Exercise 3.4 Find v_0 in (a) and (b) by superposition in Figure 3.5.

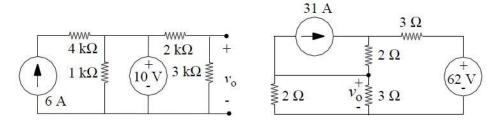


Figure 3.5:

Solution:

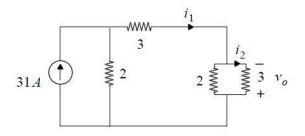


Figure 3.6:

(a):

1. Set voltage source to zero (short circuit):

 $v_0 = 0$

2. Set current source to zero (open circuit):

$$v_0 = 10 \ V \cdot \frac{3000}{\underbrace{3000 + 2000}_{\text{voltage divider}}}$$

$$v_0 = 0 + 6V$$
 [superposition]

 $v_0 = 6 \ Volts$

$$v_0 = 6 \ Volts$$

(b):

1. Set current source to zero (open circuit):

$$v_{0} = \left[\frac{2 || 3}{\underbrace{2 || 3 + 2 + 3}_{\text{voltage divider}}}\right] \cdot 62 \ V = 12 \ Volts \text{ since } 2 || 3 = 1.2$$

2. Set voltage source to zero (short circuit):

$$i_1 = 31 A \left[\frac{2}{\underbrace{3+2 \mid \mid 3+2}_{\text{current divider}}} \right] = 10 A$$

$$v_0 = 3 \cdot (-i_2) = -12 \ Volts \qquad i_2 = \left[\frac{2}{3+2}\right] \cdot i_1 = 4 \ A$$
$$v_0 = 12 + (-12) \quad [\text{superposition}]$$
$$v_0 = 0$$

ANS:: (a) 6V (b) 0V

Exercise 3.9 The resistive network shown in Figure 3.11 is excited by two voltage sources $v_1(t)$ and $v_2(t)$.

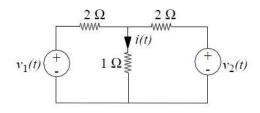


Figure 3.11:

- a) Express the current i(t) through the 1 Ω resistor as a function of $v_1(t)$ and $v_2(t)$.
- b) Determine the total energy dissipated in the 1Ω resistor due to both $v_1(t)$ and $v_2(t)$ from time T_1 to time T_2 .
- c) Derive the constraint between $v_1(t)$ and $v_2(t)$ such that the value for b) can be computed by adding the energies dissipated when each source acts alone (i.e. by superposition).

Solution:

a)

$$i(t) = \left[\frac{1 \mid \mid 2}{1 \mid \mid 2+2}\right] (v_1(t) + v_2(t)) = \frac{1}{4} (v_1(t) + v_2(t))$$

b)

Energy =
$$\frac{1}{16} \int_{T_1}^{T_2} (v_1(t) + v_2(t))^2 dt$$

c)

For superposition to apply,
$$\int_{T_1}^{T_2} v_1 \cdot v_2 \cdot dt \equiv 0$$
 [orthogonal]

ANS:: (a) $i(t) = \frac{1}{4} (v_1(t) + v_2(t))$ (b) Energy $= \frac{1}{16} \int_{T_1}^{T_2} (v_1(t) + v_2(t))^2 dt$ (c) $\int_{T_1}^{T_2} v_1 \cdot v_2 \cdot dt \equiv 0$

Exercise 3.23

a) Find the Norton equivalent of the circuit in Figure 3.36.

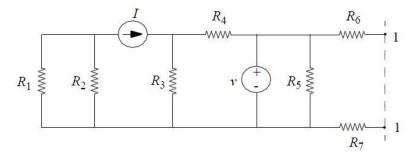


Figure 3.36:

b) Find the Thévenin equivalent of the circuit in Figure 3.37.

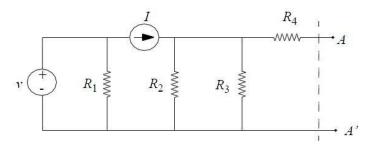


Figure 3.37:

Solution:

-

a)
$$R_T = R_6 + R_7$$

 $I_{sc} = V/(R_6 + R_7)$
b) $R_T = (R_2 || R_3) + R_4$
 $V_{OC} = I (R_2 || R_3)$

ANS:: (a) $R_T = R_6 + R_7$, $I_{sc} = V/(R_6 + R_7)$, (b) $R_T = (R_2 || R_3) + R_4$, $V_{OC} = I (R_2 || R_3)$

Exercise 3.25 Find the node potential *E* in Figure 3.39.

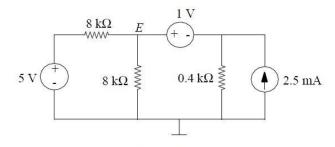


Figure 3.39:

Solution:

E = 0.8V + 0.8V + 0.8V = 2.4V, by superposition. ANS:: 2.4 Volts