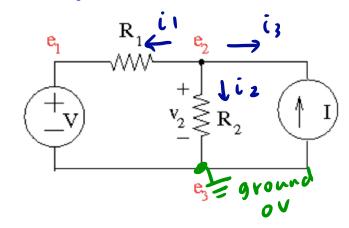


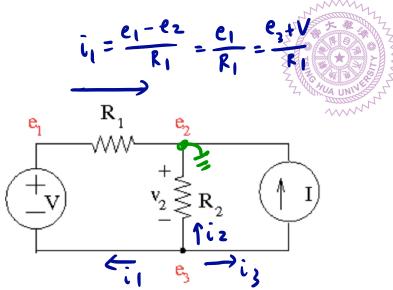
Electric Circuits Lecture 3 Network Theorems

EE2210, Spring 2019 Jenny Yi-Chun Liu jennyliu@gapp.nthu.edu.tw

Lecture Outline

- Review
 - KCL, KVL (method 1)
 - Element combination (method 2)
- Chapter 3 in the textbook
 - Node analysis (method 3)
 - Linearity
 - Superposition (method 4)
 - Thévenin and Norton (method 5 and 6)


Chapter 3 Network Theorems


Node Voltage

- Node voltage: the potential difference between the given node and a reference node, which is usually ground (zero V).
 - Current flows from the node with higher potential to the node with lower potential.
 - It is common to choose the node that has the maximum number of elements connected to it as the reference node.

Example – Reference Node

• Given $V=5^{\vee}$, I=3A, $R_1=3R$, $R_2=5R$ Case 1: Set e_3 as reference node KCL at e_2 . $i_1+i_2+i_3=0$

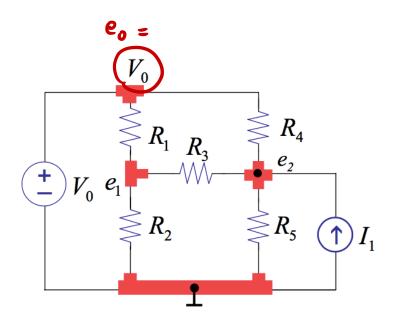
=)
$$\frac{e_2 - e_1}{R_1} + \frac{e_2}{R_2} - I = 0$$

$$= \frac{e_{2}-5}{3} + \frac{e_{2}}{5} - 3 = 0 = \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$$

Case 2: Set e_2 as reference node kcl at e_3 : $i_1 + i_2 + i_3 = 0$

=)
$$\frac{e_3 + V}{R_1} + \frac{e_3}{R_2} + I = 0$$

=) $\frac{e_3 + 5}{3} + \frac{e_3}{5} + 3 = 0$ =) $e_3 = -875V$

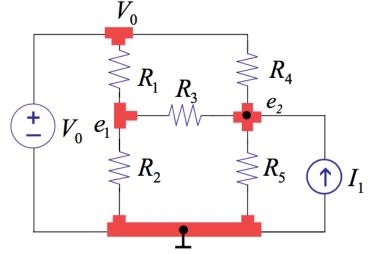

Method 3: Node Analysis

- The most efficient utilization of KCL and circuit elements' laws to solve for the voltages and currents of all elements of a given circuit.
 - 1. Select a node as as reference (ground) node.
 - 2. Label node voltages to the remaining nodes with respect to ground.
 - These are the primary unknowns.
 - Apply KCL to all but the ground node.
 Use device laws to express the branch currents in terms of node voltages.
 - 4. Solve the n 1 equations for node voltages.
 - Calculate all branch voltages and currents based on elements' laws.

- 1. Select a node as as reference (ground) node.
- Label node voltages to the remaining nodes with respect to ground.
 A nodes

 $\leq R_1 R_3$

- 3. Apply KCL to all but the ground node. Use device laws to express the branch currents in terms of node voltages.
 - For convenience, write $G_i = \frac{1}{R_i}$
 - To avoid mistakes use convention:
 e.g., always sum currents leaving a node

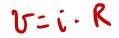

KCL @
$$e_1: \frac{e_1 - V_0}{R_1} + \frac{e_1 - e_2}{R_3} + \frac{e_1}{R_2} = 0$$

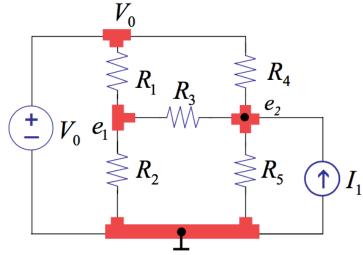
=> $(e_1 - V_0)G_1 + (e_1 - e_2)G_3 + e_1 \cdot G_2 = 0$ (1)
=CL @ $e_2: (e_2 - V_0) \cdot G_4 + (e_2 - e_1) \cdot G_3 + e_2 \cdot G_5 - I_1 = 0$ (2)
= (1) and (2), express e_1 , e_2 as a function of V_0 , I_1 , G_1 , G_2 , G_3 , G_4 , G_5

4. Solve the n - 1 equations for node voltages

KCL at
$$e_1 (e_1 - V_0)G_1 + (e_1 - e_2)G_3 + (e_1 - 0)G_2 = 0$$

KCL at $e_2 (e_2 - e_1)G_3 + (e_2 - V_0)G_4 + (e_2 - 0)G_5 - I_1 = 0$
 $e_1 (G_1 + G_2 + G_3) + e_2 (-G_3) = V_0 \cdot G_1$
 $e_1 (-G_3) + e_2 (G_1 + G_4 + G_5) = V_0 \cdot G_4 + I_1$


- · linear equations with 2 unknowns
- · Check the units



5. Calculate all branch voltages and currents based on elements' laws. V_0

