

Electric Circuits Lecture 2 Resistive Networks

EE2210, Spring 2019 Jenny Yi-Chun Liu jennyliu@gapp.nthu.edu.tw

Lecture Outline

- **Q** Review
- \Box Chapter 2 in the textbook
	- Kirchoff's laws (KCL, KVL)
	- Voltage and current dividers
	- Series and parallel simplification
	- Dependent sources
	- Circuit analysis examples

Review

- **Q** Lumped circuit element
	- Element described by its v-i relation
	- Power consumed by element is $V \cdot U$ J • L
- □ Lumped matter discipline (LMD)
- \blacksquare ∂ ϕ_B **1** $\frac{\partial \varphi_B}{\partial t} = 0$ outside elements
- § ∂*q* ∂*t* $= 0$ inside elements 21
- Signal speeds of interest should be way lower than speed of light. 3)
- □ Maxwell's equations simplify to algebraic KVL & KCL under LMD. \mathbf{F}
	- \oint Kirchhoff's Voltage Law (KVL): $\begin{array}{ccc} 2 & 0 & \epsilon & \epsilon \\ k & 6 & \epsilon & \epsilon \end{array}$ for loop.
	- **Δ** M Kirchhoff's Current Law (KCL): $\frac{5}{1}$ i_{j =} o for node. 3

$$
\sum_{k=0}^{n} i_{k=0}
$$

Example $1 -$ Terminal Variables and Power into a Resistor

 \Box A resistor (10 Ohms) is connected to an arbitrary circuit at points x and y. Assume the current flowing into the network at node x is 2 A.

Example $2 -$ Power Supplied by a Battery

 \Box The same example but replaced with a 3-V battery.

 $L_1 = -2A$ ✓ =3 ^V

$$
\rho = v \cdot i = -b w
$$

□ What would be the power dissipated by the resistor if the voltage was a constant value of 110 V?

 $V(t) = 10V$ $p(t) = 110 \cdot \frac{110}{t0}$

Chapter 2 Resistive Networks

Terminology

- \Box Element is accessed through its terminals. -
- \Box Node: the junction point where the terminals of two or more elements are connected. -
- \Box Branch: the connection between nodes.
- \Box Loop: a closed path through a circuit along its branches.

$$
\frac{b \text{ nodes}}{10 \text{ branches (to elements)}}
$$

Basic KVL/KCL Method of Circuit Analysis

 \Box Analyzing a circuit means to find out all the element v's and i's.

^t 6 elements 2 unknow

,

- 1. Label all elements' $v's$ and i's.
- 2. Write element v-i relationship.
	- For voltage source
	- For current source
- 3. Write KCL for all nodes.
- 4. Write KVL for all loops.
- **q** Basically lay out all equations...

- □ Goal: find out all element v's and i's (12 unknowns).
- □ Step 2: Write v-i relation for all elements.

Basic KVL/KCL Method of Circuit Analysis

- Goal: find out all element v's and i's (12 unknowns).
- \Box Step 3: Apply KCL at the nodes.
	- Use convention: e.g., sum currents leaving the node.

Basic KVL/KCL Method of Circuit Analysis

- □ Goal: find out all element v's and i's (12 unknowns).
- □ Step 4: Apply KVL for the loops
	- Use convention: e.g., as you go around the loop, assign first encountered sign to each voltage.

 $L_1: U_1 + U_2 - V_0 = 0$

$$
L_2: V_4 - V_3 - V_1 = 0
$$

\n $L_3: V_5 - V_2 + V_3 = 0$
\n3 *independent equations*

- \Box Circuit components are connected to each other on various nodes in the circuit.
- Some Using node voltages, instead of component voltages, as the main $\Big($ \blacksquare Using node voltages, instead of component voltages, as the main variables can reduce the computation complexity. $\overline{a_{13}}$

Voltage Divider

 \Box An isolated loop with >2 resistors and a voltage source in series.

 $V_o = V_o$

 $V_1 = i_1 \cdot R_1$

 $V_2 = \dot{V}_1 \cdot R_2$

 $-\nabla_0 + \nabla_1 + \nabla_2 = 0$

1. Element relationship laws:

2. KCL at nodes.

node a :
$$
i_1 + i_0 = 0
$$

node b : $i_1 - i_2 = 0$

□ Voltage division

The two resistors divide the voltage V in proportion to their resistance. U_1 , K^1

 $V_o = V_o$

Q Power into each resistor

$$
1 = V_1 \cdot V_1 = \frac{V_0 \cdot K_1}{\left(R_1 + R_2\right)^2}
$$

Pi -

$$
\ell_2 = V_2 \cdot \tilde{V}_2 = \frac{V_0^2 \cdot R_2}{(R_1 + R_2)^2}
$$

- \Box Resistors in series
	- **Equivalent resistance**

$$
Re_{\mathbf{q}} = \sum_{i} R_{i}
$$

 R_{1}

 R_2

