EE2210 Lecture 8A: Second-Order Systems

Chapter 12 and Appendix C of textbook

Ping-Hsuan Hsieh (謝秉璇)

Delta Building R908 EXT 42590 phsieh@ee.nthu.edu.tw

EE2210 Electric Circuits

Method of Particular and Homogeneous Solutions

- Four-step procedure
- **1.** Find the particular solution $v_P(t)$
- **2.** Find the homogeneous solution $v_H(t)$

$$LC\frac{\mathrm{d}^2 v}{\mathrm{d}t} + v = v_I$$

- Four-step procedure
- **3.** The total solution is the sum of the particular solution and homogeneous solution
- 4. Use initial condition to solve for the remaining constraints

Summary of Method

- **1.** Write DE for circuit by applying node method
- **2.** Find particular solution v_P by guessing and trial & error
- **3.** Find homogeneous solution v_H
 - A. Assume solution of the form Ae^{st}
 - B. Obtain characteristic equation $LCS^{\frac{1}{2}} = \emptyset$ $\mathbb{P}CS^{\frac{1}{2}} = \emptyset$
 - **C.** Solve characteristic equation for roots s_i
 - **D.** Find v_H by summing $A_i \exp(s_i t)$ terms
- **4.** Total solution is $v_P + v_H$, then solve for remaining constants using initial conditions

EE2210 Electric Circuits

$$\mathbf{v}_{c}(t) = \int_{0}^{1} i_{c}(t) \left(-i_{c}(t) = c \frac{d \mathbf{v}_{c}(\tau)}{d\tau} \right) \\
 \mathbf{v}_{c}(t) = \int_{0}^{1} \frac{d \mathbf{v}_{c}(\tau)}{d\tau}$$