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Preface 
The ninth edition of Electric Circuits represents a planned revision designed 
to incrementally improve this introductory circuits text used by more than 
700,000 students worldwide during the past 28 years. While the book has 
evolved over the years to meet the changing learning styles of students, the 
fundamental goals of the text remain unchanged. These goals are: 

• To build an understanding of concepts and ideas explicitly in terms of 
previous learning. Students are constantly challenged by the need to 
layer new concepts on top of previous concepts they may still be 
struggling to master. This text provides an important focus on helping 
students understand how new concepts are related to and rely upon 
concepts previously presented. 

• To emphasize the relationship between conceptual understanding 
and problem-solving approaches. Developing problem-solving skills 
continues to be the central challenge in a first-year circuits course. In 
this text we include numerous Examples that present problem-
solving techniques followed by Assessment Problems that enable 
students to test their mastery of the material and techniques intro
duced. The problem-solving process we illustrate is based on con
cepts rather than the use of rote procedures. This encourages 
students to think about a problem before attempting to solve it. 

• To provide students with a strong foundation of engineering prac
tices. There are limited opportunities in a first-year circuit analysis 
course to introduce students to realistic engineering experiences. We 
continue to take advantage of the opportunities that do exist by 
including problems and examples that use realistic component values 
and represent realizable circuits. We include many problems related 
to the Practical Perspective problems that begin each chapter. We 
also include problems intended to stimulate the students' interest in 
engineering, where the problems require the type of insight typical of 
a practicing engineer. 

WHY THIS EDITION? 
The ninth edition revision of Electric Circuits began with a thorough 
review of the text by instructors who currently use Electric Circuits and 
those who use other texts. This review provided a clear picture of what mat
ters most to instructors and their students and led to the following changes: 

• Problem solving is fundamental to the study of circuit analysis. 
Having a wealth of new problems to assign and work is a key to suc
cess in any circuits course. Therefore, existing end-of-chapter prob
lems were revised, and new end-of-chapter problems were added. 
The result is a text with approximately 75% new or revised problems 
compared to the previous edition. 

• Both students and instructors want to know how the generalized 
techniques presented in a first-year circuit analysis course relate to 
problems faced by practicing engineers. The Practical Perspective 
problems provide this connection between circuit analysis and the 
real world. We have expanded the use of the Practical Perspectives so 
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that they now appear at the start of every chapter. Each Practical 
Perspective problem is solved, at least in part, at the end of the chap
ter, and additional end-of-chapter problems can be assigned to allow 
students to explore the Practical Perspective topic further. 

• Examples embedded in the text that illustrate the application of con
cepts just presented are an important tool to improve student under
standing. The ninth edition adds new examples and now all chapters 
except Chapter 12 have a minimum of four examples. Chapter 12, 
which presents an introduction to Laplace transform techniques, is 
comprised of a collection of examples, but does not follow the format 
of concept-example employed by the other chapters. 

• Previous editions of Electric Circuits contained many end-of-chapter 
problems with circuits comprised of components with standard val
ues. These circuits could actually be constructed and tested in a labo
ratory. New to the ninth edition is Appendix H, which lists standard 
values for resistors, inductors, and capacitors. Also new are end-of-
chapter problems for most chapters that ask students to use compo
nents from Appendix H to construct circuits that meet particular 
requirements. The use of standard components is another effort to tie 
circuit analysis concepts to real-world circuits. 

• Previous editions of Electric Circuits have been published with an 
optional separate paperback manual presenting an introduction to 
PSpice and its use in simulating circuits a student encounters in their 
study of linear circuits. With the ninth edition, students and instruc
tors can choose from two circuit-simulation manuals—PSpice, or 
Multisim. Each manual presents the simulation material in the same 
order as the material is presented in the text. These manuals continue 
to include examples of circuits to be simulated that are drawn 
directly from the text. The text continues to indicate end-of-chapter 
problems that are good candidates for simulation using either PSpice 
or Multisim. 

• Students who could benefit from additional examples and practice 
problems can use the Student Workbook. This workbook has exam
ples and problems covering the following material: balancing power, 
simple resistive circuits, node voltage method, mesh current method, 
Thevenin and Norton equivalents, op amp circuits, first-order cir
cuits, second-order circuits, AC steady-state analysis, and Laplace 
transform circuit analysis. 

• Instructors and students benefit greatly from thoughtful methods of 
assessing student learning. The ninth edition makes PowerPoint pre
sentations available to instructors that include embedded assessment 
questions. During a lecture, the instructor can present material using 
PowerPoint, pose a question to the students concerning that material, 
and allow students to respond to the question. Using a Classroom 
Response System, results from student responses are immediately 
available to the instructor, providing real-time information about the 
students' comprehension of the material. This immediate feedback 
allows the instructor go back and revisit material the students did not 
comprehend, or to continue presenting new material if comprehen
sion is satisfactory. 

• Every new copy of the book now comes with access to Video 
Solutions and a Pearson etext. Video solutions are complete, step-by-
step solution walkthroughs of representative homework problems. 
The Pearson etext is a complete on-line version of the book that 
includes highlighting, note-taking and search capabilities. 



HALLMARK FEATURES 

Chapter Problems 

Users of Electric Circuits have consistently rated the Chapter Problems 
as one of the book's most attractive features. In the ninth edition, there 
are over 1300 problems with approximately 75% that are new or revised 
from the previous edition. Problems are organized at the end of each 
chapter by section. 

Practical Perspectives 
The ninth edition continues the use of Practical Perspectives introduced 
with the chapter openers. They offer examples of real-world circuits, taken 
from real-world devices. Every chapter begins with a brief description of a 
practical application of the material that follows. Once the chapter mate
rial is presented, the chapter concludes with a quantitative analysis of the 
Practical Perspective application. A group of end-of-chapter problems 
directly relates to the Practical Perspective application. Solving some of 
these problems enables you to understand how to apply the chapter con
tents to the solution of a real-world problem. 

Assessment Problems 
Each chapter begins with a set of chapter objectives. At key points in the 
chapter, you are asked to stop and assess your mastery of a particular 
objective by solving one or more assessment problems. The answers to all 
of the assessment problems are given at the conclusion of each problem, so 
you can check your work. If you are able to solve the assessment problems 
for a given objective, you have mastered that objective. If you need more 
practice, several end-of-chapter problems that relate to the objective are 
suggested at the conclusion of the assessment problems. 

Examples 
Every chapter includes many examples that illustrate the concepts 
presented in the text in the form of a numeric example. There are 
nearly 150 examples in this text. The examples are intended to illus
trate the application of a particular concept, and also to encourage 
good problem-solving skills. 

Fundamental Equations and Concepts 

Throughout the text, you will see fundamental equations and concepts 
set apart from the main text. This is done to help you focus on some of the 
key principles in electric circuits and to help you navigate through the 
important topics. 

Integration of Computer Tools 

Computer tools can assist students in the learning process by providing a 
visual representation of a circuit's behavior, validating a calculated solu
tion, reducing the computational burden of more complex circuits, and 
iterating toward a desired solution using parameter variation. This compu
tational support is often invaluable in the design process. The ninth edition 
includes the support of PSpice® and Multisim®, both popular computer 
tools for circuit simulation and analysis. Chapter problems suited for 
exploration with PSpice and Multisim are marked accordingly. 



Design Emphasis 

The ninth edition continues to support the emphasis on the design of cir
cuits in many ways. First, many of the Practical Perspective discussions 
focus on the design aspects of the circuits. The accompanying Chapter 
Problems continue the discussion of the design issues in these practical 
examples. Second, design-oriented Chapter Problems have been labeled 
explicitly, enabling students and instructors to identify those problems 
with a design focus. Third, the identification of problems suited to explo
ration with PSpice or Multisim suggests design opportunities using these 
software tools. Fourth, new problems have been added to most chapters 
that focus on the use of realistic component values in achieving a desired 
circuit design. Once such a problem has been analyzed, the student can 
proceed to a laboratory to build and test the circuit, comparing the analy
sis with the measured performance of the actual circuit. 

Accuracy 

All text and problems in the ninth edition have undergone our strict hall
mark accuracy checking process, to ensure the most error-free book possible. 

RESOURCES FOR STUDENTS 
Companion Website. The Companion Website, located at www. 
pearsonhighered.com/nilsson, includes opportunities for practice and 
review including: 

• Video Solutions - Complete, step-by-step solution walkthroughs of 
representative homework problems for each chapter. 

• Pearson etext - A complete on-line version of the book that includes 
highlighting, note-taking and search capabilities. 

• On-Line Study Guide - Chapter-by-Chapter notes that highlight key 
concepts of electric circuits 

An access code to the Companion Website is included with the purchase 
of every new copy of Nilsson/Riedel, Electric Circuits 9e and can be 
redeemed at www.pearsonhighered.com/nilsson. Access can also be pur
chased directly from the site. 

Student Study Pack. This resource teaches students techniques for solv
ing problems presented in the text. Organized by concepts, this is a valu
able problem-solving resource for all levels of students. 

Introduction to Multisim and Introduction to PSpice Manuals—Updated 
for the ninth edition, these manuals are excellent resources for those wish
ing to integrate PSpice or Multisim into their classes. 

RESOURCES FOR INSTRUCTORS 
All instructor resources are available for download at www.pearsonhigh-
ered.com. If you are in need of a login and password for this site, please 
contact your local Pearson representative. 

Instructor Solutions Manual—Fully worked-out solutions to end-of-
chapter problems 

PowerPoint lecture images—All figures from the text are available in 
PowerPoint for vour lecture needs. 

http://pearsonhighered.com/nilsson
http://www.pearsonhighered.com/nilsson
http://www.pearsonhigh-
http://ered.com


Custom Solutions—New options for textbook customization are now 
available for Electric Circuits, Ninth Edition. Please contact your local 
Pearson representative for details. 

PREREQUISITES 
In writing the first 12 chapters of the text, we have assumed that the 
reader has taken a course in elementary differential and integral calculus. 
We have also assumed that the reader has had an introductory physics 
course, at either the high school or university level, that introduces the 
concepts of energy, power, electric charge, electric current, electric poten
tial, and electromagnetic fields. In writing the final six chapters, we have 
assumed the student has had, or is enrolled in, an introductory course in 
differential equations. 

COURSE OPTIONS 
The text has been designed for use in a one-semester, two-semester, or a 
three-quarter sequence. 

• Single-semester course: After covering Chapters 1-4 and Chapters 6-10 
(omitting Sections 7.7 and 8.5) the instructor can choose from 
Chapter 5 (operational amplifiers), Chapter 11 (three-phase circuits). 
Chapters 13 and 14 (Laplace methods), and Chapter 18 (Two-Port 
Circuits) to develop the desired emphasis. 

• Two-semester sequence: Assuming three lectures per week, the first 
nine chapters can be covered during the first semester, leaving 
Chapters 10-18 for the second semester. 

• Academic quarter schedule: The book can be subdivided into three 
parts: Chapters 1-6, Chapters 7-12, and Chapters 13-18. 

The introduction to operational amplifier circuits in Chapter 5 can be 
omitted without interfering with the reading of subsequent chapters. For 
example, if Chapter 5 is omitted, the instructor can simply skip Section 7.7, 
Section 8.5, Chapter 15, and those assessment problems and end-of-
chapter problems in the chapters following Chapter 5 that pertain to oper
ational amplifiers. 

There are several appendixes at the end of the book to help readers 
make effective use of their mathematical background. Appendix A reviews 
Cramer's method of solving simultaneous linear equations and 
simple matrix algebra; complex numbers are reviewed in Appendix B; 
Appendix C contains additional material on magnetically coupled coils 
and ideal transformers; Appendix D contains a brief discussion of the deci
bel; Appendix E is dedicated to Bode diagrams; Appendix F is devoted to 
an abbreviated table of trigonometric identities that are useful in circuit 
analysis; and an abbreviated table of useful integrals is given in Appendix G. 
A new Appendix H provides tables of common standard component values 
for resistors, inductors, and capacitors, to be used in solving many new 
end-of-chapter problems. Selected Answers provides answers to selected 
end-of-chapter problems. 
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/ "CHAPTER OBJECTIVES 

1 Understand and be able to use SI units and the 
standard prefixes for powers of 10. 

2 Know and be able to use the definitions of 
voltage and current. 

3 Know and be able to use the definitions of 
power and energy. 

4 Be able to use the passive sign convention to 
calculate the power for an ideal basic circuit 
element given its voltage and current. 

Circuit Variables 
Electrical engineering is an exciting and challenging profession 
for anyone who has a genuine interest in, and aptitude for, 
applied science and mathematics. Over the past century and a 
half, electrical engineers have played a dominant role in the 
development of systems that have changed the way people live 
and work. Satellite communication links, telephones, digital com
puters, televisions, diagnostic and surgical medical equipment, 
assembly-line robots, and electrical power tools are representa
tive components of systems that define a modern technological 
society. As an electrical engineer, you can participate in this ongo
ing technological revolution by improving and refining these 
existing systems and by discovering and developing new systems 
to meet the needs of our ever-changing society. 

As you embark on the study of circuit analysis, you need to 
gain a feel for where this study fits into the hierarchy of topics 
that comprise an introduction to electrical engineering. Hence we 
begin by presenting an overview of electrical engineering, some 
ideas about an engineering point of view as it relates to circuit 
analysis, and a review of the international system of units. 

We then describe generally what circuit analysis entails. Next, 
we introduce the concepts of voltage and current. We follow these 
concepts with discussion of an ideal basic element and the need 
for a polarity reference system. We conclude the chapter by 
describing how current and voltage relate to power and energy. 
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Practical Perspective 
Balancing Power 

One of the most important skills you will develop is the 
ability to check your answers for the circuits you design 
and analyze using the tools developed in this text. A com
mon method used to check for valid answers is to balance 
the power in the circuit. The linear circuits we study have 
no net power, so the sum of the power associated with each 
circuit component must be zero. I f the total power for 
the circuit is zero, we say that the power balances, but i f 
the total power is not zero, we need to find the errors in 
our calculation. 

As an example, we will consider a very simple model for 
the distribution of electricity to a typical home, as shown 

below. (Note that a more realistic model will be investigated 
in the Practical Perspective for Chapter 9.) The components 
labeled a and b represent the electrical source to the home. 
The components labeled c, d, and e represent the wires that 
carry the electrical current from the source to the devices in 
the home requiring electrical power. The components labeled 
f, g, and h represent lamps, televisions, hair dryers, refriger
ators, and other devices that require power. 

Once we have introduced the concepts of voltage, current, 
power, and energy, we will examine this circuit model in detail, 
and use a power balance to determine whether the results of 
analyzing this circuit are correct. 

; 
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Figure 1.1 • A telephone system. 

1.1 Electrical Engineering: An Overview 
Electrical engineering is the profession concerned with systems that 
produce, transmit, and measure electric signals. Electrical engineering 
combines the physicist's models of natural phenomena with the mathe
matician's tools for manipulating those models to produce systems that 
meet practical needs. Electrical systems pervade our lives; they are found 
in homes, schools, workplaces, and transportation vehicles everywhere. 
We begin by presenting a few examples from each of the five major class
ifications of electrical systems: 

• communication systems 

• computer systems 

• control systems 

• power systems 

• signal-processing systems 

Then we describe how electrical engineers analyze and design such systems. 
Communication systems are electrical systems that generate, trans

mit, and distribute information. Well-known examples include television 
equipment, such as cameras, transmitters, receivers, and VCRs; radio tele
scopes, used to explore the universe; satellite systems, which return images 
of other planets and our own; radar systems, used to coordinate plane 
flights; and telephone systems. 

Figure 1.1 depicts the major components of a modern telephone sys
tem. Starting at the left of the figure, inside a telephone, a microphone turns 
sound waves into electric signals. These signals are carried to a switching 
center where they are combined with the signals from tens, hundreds, or 
thousands of other telephones. The combined signals leave the switching 
center; their form depends on the distance they must travel. In our example, 
they are sent through wires in underground coaxial cables to a microwave 
transmission station. Here, the signals are transformed into microwave fre
quencies and broadcast from a transmission antenna through air and space, 
via a communications satellite, to a receiving antenna. The microwave 
receiving station translates the microwave signals into a form suitable for 
further transmission, perhaps as pulses of light to be sent through fiber-optic 
cable. On arrival at the second switching center, the combined signals are 
separated, and each is routed to the appropriate telephone, where an ear
phone acts as a speaker to convert the received electric signals back into 
sound waves. At each stage of the process, electric circuits operate on the 
signals. Imagine the challenge involved in designing, building, and operating 
each circuit in a way that guarantees that all of the hundreds of thousands of 
simultaneous calls have high-quality connections. 

Computer systems use electric signals to process information rang
ing from word processing to mathematical computations. Systems range 
in size and power from pocket calculators to personal computers to 
supercomputers that perform such complex tasks as processing weather 
data and modeling chemical interactions of complex organic molecules. 
These systems include networks of microcircuits, or integrated circuits— 
postage-stampsized assemblies of hundreds, thousands, or millions of 
electrical components that often operate at speeds and power levels close 
to fundamental physical limits, including the speed of light and the thermo
dynamic laws. 

Control systems use electric signals to regulate processes. Examples 
include the control of temperatures, pressures, and flow rates in an oil 
refinery; the fuel-air mixture in a fuel-injected automobile engine; mecha
nisms such as the motors, doors, and lights in elevators; and the locks in the 
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Panama Canal. The autopilot and autolanding systems that help to fly and 
land airplanes are also familiar control systems. 

Power systems generate and distribute electric power. Electric power, 
which is the foundation of our technology-based society, usually is gener
ated in large quantities by nuclear, hydroelectric, and thermal (coal-, oil-, 
or gas-fired) generators. Power is distributed by a grid of conductors that 
crisscross the country. A major challenge in designing and operating such 
a system is to provide sufficient redundancy and control so that failure of 
any piece of equipment does not leave a city, state, or region completely 
without power. 

Signal-processing systems act on electric signals that represent infor
mation. They transform the signals and the information contained in them 
into a more suitable form. There are many different ways to process the 
signals and their information. For example, image-processing systems 
gather massive quantities of data from orbiting weather satellites, reduce 
the amount of data to a manageable level, and transform the remaining 
data into a video image for the evening news broadcast. A computerized 
tomography (CT) scan is another example of an image-processing system. 
It takes signals generated by a special X-ray machine and transforms them 
into an image such as the one in Fig. 1.2. Although the original X-ray sig
nals are of little use to a physician, once they are processed into a recog
nizable image the information they contain can be used in the diagnosis of 
disease and injury. 

Considerable interaction takes place among the engineering disci
plines involved in designing and operating these five classes of systems. 
Thus communications engineers use digital computers to control the flow 
of information. Computers contain control systems, and control systems 
contain computers. Power systems require extensive communications sys
tems to coordinate safely and reliably the operation of components, which 
may be spread across a continent. A signal-processing system may involve 
a communications link, a computer, and a control system. 

A good example of the interaction among systems is a commercial 
airplane, such as the one shown in Fig. 1.3. A sophisticated communica
tions system enables the pilot and the air traffic controller to monitor the 
plane's location, permitting the air traffic controller to design a safe flight 
path for all of the nearby aircraft and enabling the pilot to keep the plane 
on its designated path. On the newest commercial airplanes, an onboard 
computer system is used for managing engine functions, implementing 
the navigation and flight control systems, and generating video informa
tion screens in the cockpit. A complex control system uses cockpit com
mands to adjust the position and speed of the airplane, producing the 
appropriate signals to the engines and the control surfaces (such as the 
wing flaps, ailerons, and rudder) to ensure the plane remains safely air
borne and on the desired flight path. The plane must have its own power 
system to stay aloft and to provide and distribute the electric power 
needed to keep the cabin lights on, make the coffee, and show the movie. 
Signal-processing systems reduce the noise in air traffic communications 
and transform information about the plane's location into the more 
meaningful form of a video display in the cockpit. Engineering challenges 
abound in the design of each of these systems and their integration into a 
coherent whole. For example, these systems must operate in widely vary
ing and unpredictable environmental conditions. Perhaps the most 
important engineering challenge is to guarantee that sufficient redun
dancy is incorporated in the designs to ensure that passengers arrive 
safely and on time at their desired destinations. 

Although electrical engineers may be interested primarily in one 
area, they must also be knowledgeable in other areas that interact with 
this area of interest. This interaction is part of what makes electrical 

Figure 1.2 A A CT scan of an adult head. 

Figure 1.3 A An airplane. 



engineering a challenging and exciting profession. The emphasis in engi
neering is on making things work, so an engineer is free to acquire and 
use any technique, from any field, that helps to get the job done. 

Circuit Theory 

In a field as diverse as electrical engineering, you might well ask whether 
all of its branches have anything in common. The answer is yes—electric 
circuits. An electric circuit is a mathematical model that approximates 
the behavior of an actual electrical system. As such, it provides an impor
tant foundation for learning—in your later courses and as a practicing 
engineer—the details of how to design and operate systems such as those 
just described. The models, the mathematical techniques, and the language 
of circuit theory will form the intellectual framework for your future engi
neering endeavors. 

Note that the term electric circuit is commonly used to refer to an 
actual electrical system as well as to the model that represents it. In this 
text, when we talk about an electric circuit, we always mean a model, 
unless otherwise stated. It is the modeling aspect of circuit theory that has 
broad applications across engineering disciplines. 

Circuit theory is a special case of electromagnetic field theory: the study 
of static and moving electric charges. Although generalized field theory 
might seem to be an appropriate starting point for investigating electric sig
nals, its application is not only cumbersome but also requires the use of 
advanced mathematics. Consequently, a course in electromagnetic field 
theory is not a prerequisite to understanding the material in this book. We 
do, however, assume that you have had an introductory physics course in 
which electrical and magnetic phenomena were discussed. 

Three basic assumptions permit us to use circuit theory, rather than 
electromagnetic field theory, to study a physical system represented by an 
electric circuit. These assumptions are as follows: 

1. Electrical effects happen instantaneously throughout a system. We 
can make this assumption because we know that electric signals 
travel at or near the speed of light. Thus, if the system is physically 
small, electric signals move through it so quickly that we can con
sider them to affect every point in the system simultaneously. A sys
tem that is small enough so that we can make this assumption is 
called a lumped-parameter system. 

2. The net charge on every component in the system is always zero. 
Thus no component can collect a net excess of charge, although 
some components, as you will learn later, can hold equal but oppo
site separated charges. 

3. There is no magnetic coupling between the components in a system. 
As we demonstrate later, magnetic coupling can occur within a 
component. 

That's it; there are no other assumptions. Using circuit theory provides 
simple solutions (of sufficient accuracy) to problems that would become 
hopelessly complicated if we were to use electromagnetic field theory. 
These benefits are so great that engineers sometimes specifically design 
electrical systems to ensure that these assumptions are met. The impor
tance of assumptions 2 and 3 becomes apparent after we introduce the 
basic circuit elements and the rules for analyzing interconnected elements. 

However, we need to take a closer look at assumption l.The question 
is, "How small does a physical system have to be to qualify as a lumped-
parameter system?" We can get a quantitative handle on the question by 
noting that electric signals propagate by wave phenomena. If the wave
length of the signal is large compared to the physical dimensions of the 



system, we have a lumped-parameter system. The wavelength A is the 
velocity divided by the repetition rate, or frequency, of the signal; that is, 
A = c/f. The frequency / i s measured in hertz (Hz). For example, power 
systems in the United States operate at 60 Hz. If we use the speed of light 
(c = 3 X 108 m/s) as the velocity of propagation, the wavelength is 
5 X 106 m. If the power system of interest is physically smaller than this 
wavelength, we can represent it as a lumped-parameter system and use cir
cuit theory to analyze its behavior. How do we define smaller? A good rule 
is the rule of 1/lOth: If the dimension of the system is l/10th (or smaller) 
of the dimension of the wavelength, you have a lumped-parameter system. 
Thus, as long as the physical dimension of the power system is less than 
5 X 105 m, we can treat it as a lumped-parameter system. 

On the other hand, the propagation frequency of radio signals is on the 
order of 109 Hz.Thus the wavelength is 0.3 m. Using the rule of l/10th, the 
relevant dimensions of a communication system that sends or receives radio 
signals must be less than 3 cm to qualify as a lumped-parameter system. 
Whenever any of the pertinent physical dimensions of a system under study 
approaches the wavelength of its signals, we must use electromagnetic field 
theory to analyze that system. Throughout this book we study circuits 
derived from lumped-parameter systems. 

Problem Solving 
As a practicing engineer, you will not be asked to solve problems that 
have already been solved. Whether you are trying to improve the per
formance of an existing system or creating a new system, you will be work
ing on unsolved problems. As a student, however, you will devote much of 
your attention to the discussion of problems already solved. By reading 
about and discussing how these problems were solved in the past, and by 
solving related homework and exam problems on your own, you will 
begin to develop the skills to successfully attack the unsolved problems 
you'll face as a practicing engineer. 

Some general problem-solving procedures are presented here. Many 
of them pertain to thinking about and organizing your solution strategy 
before proceeding with calculations. 

1. Identify what's given and what's to be found. In problem solving, you 
need to know your destination before you can select a route for get
ting there. What is the problem asking you to solve or find? 
Sometimes the goal of the problem is obvious; other times you may 
need to paraphrase or make lists or tables of known and unknown 
information to see your objective. 

The problem statement may contain extraneous information 
that you need to weed out before proceeding. On the other hand, it 
may offer incomplete information or more complexities than can be 
handled given the solution methods at your disposal. In that case, 
you'll need to make assumptions to fill in the missing information or 
simplify the problem context. Be prepared to circle back and recon
sider supposedly extraneous information and/or your assumptions if 
your calculations get bogged down or produce an answer that doesn't 
seem to make sense. 

2. Sketch a circuit diagram or other visual model. Translating a verbal 
problem description into a visual model is often a useful step in the 
solution process. If a circuit diagram is already provided, you may 
need to add information to it, such as labels, values, or reference 
directions. You may also want to redraw the circuit in a simpler, but 
equivalent, form. Later in this text you will learn the methods for 
developing such simplified equivalent circuits. 



3. Think of several solution methods and decide on a way of choosing 
among them. This course will help you build a collection of analyt
ical tools, several of which may work on a given problem. But one 
method may produce fewer equations to be solved than another, 
or it may require only algebra instead of calculus to reach a solu
tion. Such efficiencies, if you can anticipate them, can streamline 
your calculations considerably. Having an alternative method in 
mind also gives you a path to pursue if your first solution attempt 
bogs down. 

4. Calculate a solution. Your planning up to this point should have 
helped you identify a good analytical method and the correct equa
tions for the problem. Now comes the solution of those equations. 
Paper-and-pencil, calculator, and computer methods are all avail
able for performing the actual calculations of circuit analysis. 
Efficiency and your instructor's preferences will dictate which tools 
you should use. 

5. Use your creativity. If you suspect that your answer is off base or if the 
calculations seem to go on and on without moving you toward a solu
tion, you should pause and consider alternatives. You may need to 
revisit your assumptions or select a different solution method. Or, you 
may need to take a less-conventional problem-solving approach, such 
as working backward from a solution. This text provides answers to all 
of the Assessment Problems and many of the Chapter Problems so 
that you may work backward when you get stuck. In the real world, 
you won't be given answers in advance, but you may have a desired 
problem outcome in mind from which you can work backward. Other 
creative approaches include allowing yourself to see parallels with 
other types of problems you've successfully solved, following your 
intuition or hunches about how to proceed, and simply setting the 
problem aside temporarily and coming back to it later. 

6. Test your solution. Ask yourself whether the solution you've 
obtained makes sense. Does the magnitude of the answer seem rea
sonable? Is the solution physically realizable? You may want to go 
further and rework the problem via an alternative method. Doing 
so will not only test the validity of your original answer, but will also 
help you develop your intuition about the most efficient solution 
methods for various kinds of problems. In the real world, safety-
critical designs are always checked by several independent means. 
Getting into the habit of checking your answers will benefit you as 
a student and as a practicing engineer. 

These problem-solving steps cannot be used as a recipe to solve every prob
lem in this or any other course. You may need to skip, change the order of, 
or elaborate on certain steps to solve a particular problem. Use these steps 
as a guideline to develop a problem-solving style that works for you. 

1.2 The International System of Units 
Engineers compare theoretical results to experimental results and com
pare competing engineering designs using quantitative measures. Modern 
engineering is a multidisciplinary profession in which teams of engineers 
work together on projects, and they can communicate their results in a 
meaningful way only if they all use the same units of measure. The 
International System of Units (abbreviated SI) is used by all the major 
engineering societies and most engineers throughout the world; hence we 
use it in this book. 
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TABLE 1.1 The International System of Units (SI) 

Quantity 

Length 

Mass 

Time 

Electric current 

Thermodynamic temperature 

Amount of substance 

Luminous intensity 

Basic Unit 

meter 

kilogram 

second 

ampere 

degree kelvin 

mole 

candela 

Symbol 

m 

kg 

s 

A 

K 

mol 

cd 

The SI units are based on seven defined quantities: 

• length 

• mass 

• time 

• electric current 

• thermodynamic temperature 

• amount of substance 

• luminous intensity 

These quantities, along with the basic unit and symbol for each, are 
listed in Table 1.1. Although not strictly SI units, the familiar time units of 
minute (60 s), hour (3600 s), and so on are often used in engineering cal
culations. In addition, defined quantities are combined to form derived 
units. Some, such as force, energy, power, and electric charge, you already 
know through previous physics courses. Table 1.2 lists the derived units 
used in this book. 

In many cases, the SI unit is either too small or too large to use conve
niently. Standard prefixes corresponding to powers of 10, as listed in 
Table 1.3, are then applied to the basic unit. All of these prefixes are cor
rect, but engineers often use only the ones for powers divisible by 3; thus 
centi, deci, deka, and hecto are used rarely. Also, engineers often select the 
prefix that places the base number in the range between 1 and 1000. 
Suppose that a time calculation yields a result of 10~5 s, that is, 0.00001 s. 
Most engineers would describe this quantity as 10/xs, that is, 
10"5 = 10 X 10"6 s, rather than as 0.01 ms or 10,000,000 ps. 

TABLE 1.2 Derived Units in SI 

Quantity 

Frequency 

Force 

Energy or work 

Power 

Electric charge 

Electric potential 

Electric resistance 

Electric conductance 

Electric capacitance 

Magnetic flux 

Inductance 

Unit Name (Symbol) 

hertz (Hz) 

newton (N) 

joule (J) 

watt (W) 

coulomb (C) 

volt (V) 

ohm (H) 

Siemens (S) 

farad (F) 

weber (Wb) 

henry (H) 

TABLE 1.3 Standardized Prefixes to Signify 
Powers of 10 

Prefix 

Formula 

s-1 

kg • m/s2 

N m 

J/s 

A - s 

J/C 

V/A 

A/V 

C/V 

V - s 

Wb/A 

atto 

femto 

pico 

nano 

micro 

milli 

centi 

deci 

deka 

hecto 

kilo 

mega 

giga 

tera 

Symbol 

a 

f 

P 
n 

M 

m 

c 

d 

da 

h 

k 

M 

G 

T 

Power 

1 0 - 1 8 

io-15 

10"12 

io-9 

10 - 6 

io-3 

io-2 

io -1 

in 

1U2 

in3 

106 

109 

1012 
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Example 1.1 illustrates a method for converting from one set of units 
to another and also uses power-of-ten prefixes. 

Example 1.1 Using SI Units and Prefixes for Powers of 10 

If a signal can travel in a cable at 80% of the speed of 
light, what length of cable, in inches, represents 1 ns? 

Therefore, a signal traveling at 80% of the speed of 
light will cover 9.45 inches of cable in 1 nanosecond. 

Solution 

First, note that 1 ns = 10 - 9 s. Also, recall that the 
speed of Light c = 3 X 108m/s. Then, 80% of the 
speed of light is 0.8c = (0.8)(3 x 108) = 
2.4 x 108m/s. Using a product of ratios, we can 
convert 80% of the speed of light from meters-per-
second to inches-per-nanosecond. The result is the 
distance in inches traveled in 1 ns: 

2.4 X 108 meters 1 second 100 centimeters 1 inch 

1 second 10y nanoseconds 1 meter 2.54 centimeters 

(2.4 X 108)(100) 

(109)(2.54) 
= 9.45 inches/nanosecond 

I/ASSESSMENT PROBLEMS 

Objective 1—Understand and be able to use SI units and the standard prefixes for powers of 10 

1.1 Assume a telephone signal travels through a 
cable at two-thirds the speed of light. How long 
does it take the signal to get from New York 
City to Miami if the distance is approximately 
1100 miles? 

Answer: 8.85 ms. 

NOTE: Also try Chapter Problems 1.2,1.3, and 1.4. 

1.2 How many dollars per millisecond would the 
federal government have to collect to retire a 
deficit of $100 billion in one year? 

Answer: $3.17/ms. 

1.3 Circuit Analysis: An Overview 
Before becoming involved in the details of circuit analysis, we need to 
take a broad look at engineering design, specifically the design of electric 
circuits. The purpose of this overview is to provide you with a perspective 
on where circuit analysis fits within the whole of circuit design. Even 
though this book focuses on circuit analysis, we try to provide opportuni
ties for circuit design where appropriate. 

All engineering designs begin with a need, as shown in Fig. 1.4. This 
need may come from the desire to improve on an existing design, or it may 
be something brand-new. A careful assessment of the need results in 
design specifications, which are measurable characteristics of a proposed 
design. Once a design is proposed, the design specifications allow us to 
assess whether or not the design actually meets the need. 

A concept for the design comes next. The concept derives from a com
plete understanding of the design specifications coupled with an insight into 
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the need, which comes from education and experience. The concept may be 
realized as a sketch, as a written description, or in some other form. Often 
the next step is to translate the concept into a mathematical model. A com
monly used mathematical model for electrical systems is a circuit model. 

The elements that comprise the circuit model are called ideal circuit 
components. An ideal circuit component is a mathematical model of an 
actual electrical component, like a battery or a light bulb. It is important 
for the ideal circuit component used in a circuit model to represent the 
behavior of the actual electrical component to an acceptable degree of 
accuracy. The tools of circuit analysis, the focus of this book, are then 
applied to the circuit. Circuit analysis is based on mathematical techniques 
and is used to predict the behavior of the circuit model and its ideal circuit 
components. A comparison between the desired behavior, from the design 
specifications, and the predicted behavior, from circuit analysis, may lead 
to refinements in the circuit model and its ideal circuit elements. Once the 
desired and predicted behavior are in agreement, a physical prototype can 
be constructed. 

The physical prototype is an actual electrical system, constructed from 
actual electrical components. Measurement techniques are used to deter
mine the actual, quantitative behavior of the physical system. This actual 
behavior is compared with the desired behavior from the design specifica
tions and the predicted behavior from circuit analysis. The comparisons 
may result in refinements to the physical prototype, the circuit model, or 
both. Eventually, this iterative process, in which models, components, and 
systems are continually refined, may produce a design that accurately 
matches the design specifications and thus meets the need. 

From this description, it is clear that circuit analysis plays a very 
important role in the design process. Because circuit analysis is applied to 
circuit models, practicing engineers try to use mature circuit models so 
that the resulting designs will meet the design specifications in the first 
iteration. In this book, we use models that have been tested for between 
20 and 100 years; you can assume that they are mature. The ability to 
model actual electrical systems with ideal circuit elements makes circuit 
theory extremely useful to engineers. 

Saying that the interconnection of ideal circuit elements can be used 
to quantitatively predict the behavior of a system implies that we can 
describe the interconnection with mathematical equations. For the mathe
matical equations to be useful, we must write them in terms of measurable 
quantities. In the case of circuits, these quantities are voltage and current, 
which we discuss in Section 1.4. The study of circuit analysis involves 
understanding the behavior of each ideal circuit element in terms of its 
voltage and current and understanding the constraints imposed on the 
voltage and current as a result of interconnecting the ideal elements. 

1.4 Voltage and Current 
The concept of electric charge is the basis for describing all electrical phe
nomena. Let's review some important characteristics of electric charge. 

• The charge is bipolar, meaning that electrical effects are described in 
terms of positive and negative charges. 

• The electric charge exists in discrete quantities, which are integral 
multiples of the electronic charge, 1.6022 X 10-19 C. 

• Electrical effects are attr ibuted to both the separation of charge and 
charges in motion. 

In circuit theory, the separation of charge creates an electric force (volt
age), and the motion of charge creates an electric fluid (current) . 

jsjeed 

Design 

physic<iikConcePl 

in*?1 

Circi'1.^ 
analp 

rcuit 
;r which 

Figure 1.4 • A conceptual model for electrical engi
neering design. 
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The concepts of voltage and current are useful from an engineering 
point of view because they can be expressed quantitatively. Whenever 
positive and negative charges are separated, energy is expended. Voltage 
is the energy per unit charge created by the separation. We express this 
ratio in differential form as 

Definition of voltage • v = 
dw 
dq ' 

(1.1) 

where 
v = the voltage in volts, 

w = the energy in joules, 

q = the charge in coulombs. 

The electrical effects caused by charges in motion depend on the rate 
of charge flow. The rate of charge flow is known as the electric current, 
which is expressed as 

Definition of current • 
i = 

dq 

~di' 
(1.2) 

where 

i = the current in amperes, 

q = the charge in coulombs, 

t = the time in seconds. 

Equations 1.1 and 1.2 are definitions for the magnitude of voltage and 
current, respectively. The bipolar nature of electric charge requires that we 
assign polarity references to these variables. We will do so in Section 1.5. 

Although current is made up of discrete, moving electrons, we do not 
need to consider them individually because of the enormous number of 
them. Rather, we can think of electrons and their corresponding charge as 
one smoothly flowing entity. Thus, i is treated as a continuous variable. 

One advantage of using circuit models is that we can model a compo
nent strictly in terms of the voltage and current at its terminals. Thus two 
physically different components could have the same relationship 
between the terminal voltage and terminal current. If they do, for pur
poses of circuit analysis, they are identical. Once we know how a compo
nent behaves at its terminals, we can analyze its behavior in a circuit. 
However, when developing circuit models, we are interested in a compo
nent's internal behavior. We might want to know, for example, whether 
charge conduction is taking place because of free electrons moving 
through the crystal lattice structure of a metal or whether it is because of 
electrons moving within the covalent bonds of a semiconductor material. 
However, these concerns are beyond the realm of circuit theory. In this 
book we use circuit models that have already been developed; we do not 
discuss how component models are developed. 

1.5 The Ideal Basic Circuit Element 
An ideal basic circuit element has three attributes: (1) it has only two ter
minals, which are points of connection to other circuit components; (2) it is 
described mathematically in terms of current and/or voltage; and (3) it 
cannot be subdivided into other elements. We use the word ideal to imply 
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thai a basic circuit element does not exist as a realizable physical compo
nent. However, as we discussed in Section 1.3, ideal elements can be con
nected in order to model actual devices and systems. We use the word 
basic to imply that ihe circuit element cannot be further reduced or sub
divided into other elements. Thus the basic circuit elements form the build
ing blocks for constructing circuit models, but they themselves cannot be 
modeled with any other type of element. 

Figure 1.5 is a representation of an ideal basic circuit element. The box 
is blank because we are making no commitment at this time as to the type 
of circuit element it is. In Fig. 1.5, the voltage across the terminals of the 
box is denoted by v, and the current in the circuit element is denoted by /. 
The polarity reference for the voltage is indicated by the plus and minus 
signs, and the reference direction for the current is shown by the arrow 
placed alongside the current. The interpretation of these references given 
positive or negative numerical values of v and i is summarized in 
Table 1.4. Note that algebraically the notion of positive charge flowing in 
one direction is equivalent to the notion of negative charge flowing in the 
opposite direction. 

The assignments of the reference polarity for voltage and the refer
ence direction for current are entirely arbitrary. However, once you have 
assigned the references, you must write all subsequent equations to 
agree with the chosen references. The most widely used sign convention 
applied to these references is called the passive sign convention, which 
we use throughout this book. The passive sign convention can be stated 
as follows: 

Figure 1.5 • An ideal basic circuit element. 

Whenever the reference direction for the current in an element is in 
the direction of the reference voltage drop across the element (as in 
Fig. 1.5), use a positive sign in any expression that relates the voltage 
to the current. Otherwise, use a negative sign. 

< Passive sign convention 

We apply this sign convention in all the analyses that follow. Our pur
pose for introducing it even before we have introduced the different 
types of basic circuit elements is to impress on you the fact that the selec
tion of polarity references along with the adoption of the passive sign 
convention is not a function of the basic elements nor the type of inter
connections made with the basic elements. We present the application 
and interpretation of the passive sign convention in power calculations in 
Section 1.6. 

Example 1.2 illustrates one use of the equation defining current. 

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5 

Positive Value 

v voltage drop from terminal 1 to terminal 2 

or 

voltage rise from terminal 2 to terminal 1 

i positive charge flowing from terminal 1 to terminal 2 

or 

negative charge flowing from terminal 2 to terminal 1 

Negative Value 

voltage rise from terminal 1 to terminal 2 

or 

voltage drop from terminal 2 to terminal 1 

positive charge flowing from terminal 2 to terminal 1 

or 

negative charge flowing from terminal 1 to terminal 2 
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Example 1.2 Relating Current and Charge 

No charge exists at the upper terminal of the ele
ment in Fig. 1.5 for t < 0. At t = 0, a 5 A current 
begins to flow into the upper terminal. 

a) Derive the expression for the charge accumulat
ing at the upper terminal of the element for t > 0. 

b) If the current is stopped after 10 seconds, how 
much charge has accumulated at the upper 
terminal? 

Solution 

a) From the definition of current given in Eq. 1.2, 
the expression for charge accumulation due to 
current flow is 

q(t) = I t(x)dx. 

Therefore, 

q(t) = / 5dx = 5x = 5? - 5(0) = 5t C for t > 0. 

b) The total charge that accumulates at the upper 
terminal in 10 seconds due to a 5 A current is 
¢(10) = 5(10) = 50 C. 

^/ASSESSMENT PROBLEMS 

Objective 2—Know and be able to use the definitions of voltage and current 

1.3 The current at the terminals of the element in 
Fig. 1.5 is 

1.4 The expression for the charge entering the 
upper terminal of Fig. 1.5 is 

i = 0, 

/ = 20e -SOOOf 

t < 0; 

A, t > 0. 
q = — a a 

Calculate the total charge (in microcoulombs) 
entering the element at its upper terminal. 

Find the maximum value of the current enter
ing the terminal if a = 0.03679 s_l. 

Answer: 4000 /xC. 

NOTE: Also try Chapter Problem 1.10. 

Answer: 10 A. 

1.6 Power and Energy 
Power and energy calculations also are important in circuit analysis. One 
reason is that although voltage and current are useful variables in the analy
sis and design of electrically based systems, the useful output of the system 
often is nonelectrical, and this output is conveniently expressed in terms of 
power or energy. Another reason is that all practical devices have limita
tions on the amount of power that they can handle. In the design process, 
therefore, voltage and current calculations by themselves are not sufficient. 

We now relate power and energy to voltage and current and at the 
same time use the power calculation to illustrate the passive sign conven
tion. Recall from basic physics that power is the time rate of expending or 
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absorbing energy. (A water pump rated 75 kW can deliver more liters per 
second than one rated 7.5 kW.) Mathematically, energy per unit time is 
expressed in the form of a derivative, or 

dw 
(1.3) -+X Definition of power 

where 

p - the power in watts, 

w = the energy in joules, 

i = the time in seconds. 

Thus 1 W is equivalent to 1 J/s. 
The power associated with the flow of charge follows directly from 

the definition of voltage and current in Eqs. 1.1 and 1.2, or 

_ dw _ fdw\/dq 
dt \dg )\dt)' 

so 

p = vi (1.4) ^ Power equation 

where 

p = the power in watts, 

v — the voltage in volts, 

i = the current in amperes. 

Equation 1.4 shows that the power associated with a basic circuit element 
is simply the product of the current in the element and the voltage across 
the element. Therefore, power is a quantity associated with a pair of ter
minals, and we have to be able to tell from our calculation whether power 
is being delivered to the pair of terminals or extracted from it. This infor
mation comes from the correct application and interpretation of the pas
sive sign convention. 

If we use the passive sign convention, Eq. 1.4 is correct if the reference 
direction for the current is in the direction of the reference voltage drop 
across the terminals. Otherwise, Eq. 1.4 must be written with a minus sign. 
In other words, if the current reference is in the direction of a reference 
voltage rise across the terminals, the expression for the power is 

p = -vi (1.5) 

The algebraic sign of power is based on charge movement through 
voltage drops and rises. As positive charges move through a drop in volt
age, they lose energy, and as they move through a rise in voltage, they gain 
energy. Figure 1.6 summarizes the relationship between the polarity refer
ences for voltage and current and the expression for power. 

(a)/' (b ) /» 

«<--. . 

m 1 
• Z 

= —vi 

• i 

• z 
(c)p = -vi (<1)P vi 

Figure 1.6 • Polarity references and the expression 
for power. 
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We can now state the rule for interpreting the algebraic sign of power: 

Interpreting algebraic sign of power • 
If the power is positive (that is, if p > 0), power is being delivered to 
the circuit inside the box. If the power is negative (that is, if p < 0), 
power is being extracted from the circuit inside the box. 

For example, suppose that we have selected the polarity references 
shown in Fig. 1.6(b). Assume further that our calculations for the current 
and voltage yield the following numerical results: 

i = 4 A and v = -10 V. 

Then the power associated with the terminal pair 1,2 is 

p = - ( -10) (4) = 40 W. 

Thus the circuit inside the box is absorbing 40 W. 
To take this analysis one step further, assume that a colleague is solv

ing the same problem but has chosen the reference polarities shown in 
Fig. 1.6(c). The resulting numerical values are 

-4 A. 10 V, and P 40 W. 

Note that interpreting these results in terms of this reference system gives 
the same conclusions that we previously obtained—namely, that the cir
cuit inside the box is absorbing 40 W. In fact, any of the reference systems 
in Fig. 1.6 yields this same result. 

Example 1.3 illustrates the relationship between voltage, current, 
power, and energy for an ideal basic circuit element and the use of the pas
sive sign convention. 

Example 1.3 Relating Voltage, Current, Power, and Energy 

Assume that the voltage at the terminals of the ele
ment in Fig. 1.5, whose current was defined in 
Assessment Problem 1.3, is 

v = 0 

v = io t>-S(MM)f k V , 

t < 0; 

t > 0. 

a) Calculate the power supplied to the element 
at 1 ms. 

b) Calculate the total energy (in joules) delivered 
to the circuit element. 

Solution 

a) Since the current is entering the + terminal of the 
voltage drop defined for the element in Fig. 1.5, 
we use a u + " sign in the power equation. 

p = vL = (10,000e"5o,M)')(2Oc^5()OOf) = 200,000<r10-()00'W. 

p(0.001) = 200,000e" 10(,00'(,)(,01) = 200,000e-10 

= 200,000(45.4 X 10~6) = 0.908 W. 

b) From the definition of power given in Eq. 1.3. 
the expression for energy is 

w(t) = I p(x)dx 
Jo 

To find the total energy delivered, integrate the 
expresssion for power from zero to infinity. 
Therefore, 

Wtotal 200.000e"1(WXK)x dx = 
200,000c -10,000* 

10,000 

-20<? - ( - 2 0 O = 0 + 20 = 20 J. 

Thus, the total energy supplied to the circuit ele
ment is 20 J. 
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I / 'ASSESSMENT PROBLEMS 

Objective 3—Know and use the definitions of power and energy; Objective 4—Be able to use the passive sign 
convention 

1.5 Assume that a 20 V voltage drop occurs across 
an element from terminal 2 to terminal 1 and 
that a current of 4 A enters terminal 2. 

a) Specify the values of v and /' for the polarity 
references shown in Fig. 1.6(a)-(d). 

b) State whether the circuit inside the box is 
absorbing or delivering power. 

c) How much power is the circuit absorbing? 

Answer: (a) Circuit 1.6(a): v = - 2 0 V, i = - 4 A; 
circuit 1.6(b): v = - 2 0 V, i = 4 A; 
circuit 1.6(c): v « 20 V, i - - 4 A; 
circuit 1.6(d): v = 20 V, i ~ 4 A; 

(b) absorbing; 

(c) 80 W. 

1.6 The voltage and current at the terminals of the 
circuit element in Fig 1.5 are zero for t < 0. For 
f £ 0 , they are 

v = 80,000f<r500' V, t 2> 0; 

i = 15te-5QQt A, t > 0. 

a) Find the time when the power delivered to 
the circuit element is maximum. 

b) Find the maximum value of power. 

c) Find the total energy delivered to the cir
cuit element. 

Answer: (a) 2 ms; (b) 649.6 mW; (c) 2.4 mJ. 

1.7 A high-voltage direct-current (dc) transmission 
line between Celilo, Oregon and Sylmar, 
California is operating at 800 kV and carrying 
1800 A, as shown. Calculate the power (in 
megawatts) at the Oregon end of the line and 
state the direction of power flow. 

1.8 k A 

Celilo, 
Oregon 800 kV Sylmar, 

California 

Answer: 1440 MW, Celilo to Sylmar. 

NOTE: Also try Chapter Problems 1.14,1.18,1.25, and 1.26. 

Practical Perspective 
Balancing Power 

A model of the circuitry that distributes power to a typical home is shown in 
Fig. 1.7 with voltage polarities and current directions defined for all of the 
circuit components. The results of circuit analysis give the values for all of 
these voltages and currents, which are summarized in Table 1.4. To deter
mine whether or not the values given are correct, calculate the power asso
ciated with each component. Use the passive sign convention in the power 
calculations, as shown below. 

Pa = vja = (120)(-10) = -1200 W 

Pc = vcic = (10)(10) = 100 W 

pe = vje = (-10)(-9) = 90 W 

pg = vgig = (120)(4) = 480 W 

The power calculations show that components a, b, and d are supplying 
power, since the power values are negative, while components c, e, f, g, and 
h are absorbing power. Now check to see if the power balances by finding 
the total power supplied and the total power absorbed. 

Pb = -tfcjft = -(120)(9) = -1080 W 

Pc= - ^ = - ( 1 0 ) ( 1 ) = -10W 

pf = -vfy = -(-100)(5) = 500 W 

Pi, ^ vhih = (-220)(-5) = 1100 W 
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Supplied = Pa + Pb + Pd = -1200 - 1080 - 10 = -2290 W 

Pabsorbed = Pc + Pe + Pf + Pg + Ph 

= 100 + 90 + 500 + 480 + 1100 = 2270 W 

^supplied + ^absorbed = " 2 2 9 0 + 2 2 7 0 = - 2 0 W 

Something is wrong—if the values for voltage and current in this circuit are 
correct, the total power should be zero! There is an error in the data and we 
can find i t from the calculated powers if the error exists in the sign of a sin
gle component. Note that if we divide the total power by 2, we get - 1 0 W, 
which is the power calculated for component d. If the power for component 
d was +10 W, the total power would be 0. Circuit analysis techniques from 
upcoming chapters can be used to show that the current through component 
d shouLd be - 1 A, not + 1 A given in Table 1.4. 

+ A C 
TABLE 1.4 Volatage and current 
values for the circuit in Fig. 1.7. 

Component 

a 

b 

c 

d 

e 

f 

g 
h 

v(Y) 

120 

120 

10 

10 

-10 

-100 

120 

-220 

i(A) 

-10 

9 

10 

1 

-9 

5 

4 

-5 
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Figure 1.7 • Circuit model for power 
distribution in a home, with voltages and 
currents defined. 

Note: Assess your understanding of the Practical Perspective by trying Chapter 
Problems 1.31 and 1.32. 

Summary 

The International System of Units (SI) enables engineers 
to communicate in a meaningful way about quantitative 
results. Table 1.1 summarizes the base SI units; Table 1.2 
presents some useful derived SI units. (See pages 8 and 9.) 

Circuit analysis is based on the variables of voltage and 
current. (See page 11.) 

Voltage is the energy per unit charge created by charge 
separation and has the SI unit of volt (v = dw/dq). 
(See page 12.) 

Current is the rate of charge flow and has the SI unit of 
ampere (i = dq/dt). (See page 12.) 

The ideal basic circuit element is a two-terminal compo
nent that cannot be subdivided; it can be described 
mathematically in terms of its terminal voltage and cur
rent. (See page 12.) 

The passive sign convention uses a positive sign in the 
expression that relates the voltage and current at the 
terminals of an element when the reference direction 
for the current through the element is in the direction of 
the reference voltage drop across the element. (See 
page 13.) 

Power is energy per unit of time and is equal to the 
product of the terminal voltage and current; it has the SI 
unit of watt (p = dw/dt = vi). (See page 15.) 

The algebraic sign of power is interpreted as follows: 

• If p > 0, power is being delivered to the circuit or 
circuit component. 

• If p < 0, power is being extracted from the circuit or 
circuit component. (See page 16.) 
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Problems 

Section 1.2 

1.1 Some species of bamboo can grow 250 mm/day. 
Assume individual cells in the plant are 10 /xm long. 

a) How long, on average, does it take a bamboo 
stalk to grow 1 cell length? 

b) How many cell lengths are added in one week, 
on average? 

1.2 One liter (L) of paint covers approximately 10 m2 

of wall. How thick is the layer before it dries? (Hint. 
1 L = 1 X 106 mm3.) 

1.3 There are approximately 260 million passenger 
vehicles registered in the United States. Assume 
that the battery in the average vehicle stores 
540 watt-hours (Wh) of energy. Estimate (in 
gigawatt-hours) the total energy stored in U.S. pas
senger vehicles. 

1.4 The 16 giga-byte (GB = 23{) bytes) flash memory 
chip for an MP3 player is 11 mm by 15 mm by 1 mm. 
This memory chip holds 20,000 photos. 

a) How many photos fit into a cube whose sides 
are 1 mm? 

b) How many bytes of memory are stored in a cube 
whose sides are 200 /j,m? 

1.5 A hand-held video player displays 480 x 320 picture 
elements (pixels) in each frame of the video. Each 
pixel requires 2 bytes of memory. Videos are dis
played at a rate of 30 frames per second. How many 
hours of video will fit in a 32 gigabyte memory? 

1.6 The line described in Assessment Problem 1.7 is 
845 mi in length. The line contains four conductors, 
each weighing 2526 lb per 1000 ft. How many kilo
grams of conductor are in the line? 

Section 1.4 

1.7 How much energy is imparted to an electron as it 
flows through a 6 V battery from the positive to the 
negative terminal? Express your answer in attojoules. 

1.8 In electronic circuits it is not unusual to encounter 
currents in the microampere range. Assume a 
35 juA current, due to the flow of electrons. What is 
the average number of electrons per second that 
flow past a fixed reference cross section that is per
pendicular to the direction of flow? 

1.9 A current of 1600 A exists in a rectangular (0.4-by-
16 cm) bus bar. The current is due to free electrons 
moving through the wire at an average velocity of 
v meters/second. If the concentration of free elec
trons is 1029 electrons per cubic meter and if they 
are uniformly dispersed throughout the wire, then 
what is the average velocity of an electron? 

1.10 The current entering the upper terminal of Fig. 1.5 is 

i = 20 cos 50()0f A. 

Assume the charge at the upper terminal is zero at 
the instant the current is passing through its maxi
mum value. Find the expression for q(t). 

Sections 1.5-1.6 

1.11 When a car has a dead battery, it can often be started 
by connecting the battery from another car across its 
terminals. The positive terminals are connected 
together as are the negative terminals. The connec
tion is illustrated in Fig. P l . l l . Assume the current i 
in Fig. P l . l l is measured and found to be 30 A. 

a) Which car has the dead battery? 

b) If this connection is maintained for 1 min, how 
much energy is transferred to the dead battery? 

Figure Pl.ll 

A -— /' B 

1.12 One 12 V battery supplies 100 mA to a boom box. 
How much energy does the battery supply in 4 h? 

1.13 The manufacturer of a 1.5 V D flashlight battery 
says that the battery will deliver 9 mA for 40 con
tinuous hours. During that time the voltage will 
drop from 1.5 V to 1.0 V. Assume the drop in volt
age is linear with time. How much energy does the 
battery deliver in this 40 h interval? 

1.14 Two electric circuits, represented by boxes A and B, 
are connected as shown in Fig. PI.14.The reference 
direction for the current i in the interconnection and 
the reference polarity for the voltage v across the 
interconnection are as shown in the figure. For each 
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of the following sets of numerical values, calculate 
the power in the interconnection and state whether 
the power is flowing from A to B or vice versa. 

a) i = 10 A, v = 125 V 

b) / = 5 A, v = -240 V 

c) i = -12 A, v = 480 V 

d) / = -25 A, v = -660 V 

Figure P1.14 

A 

i 

+ 
V B 

1.15 The references for the voltage and current at the 
terminal of a circuit element are as shown in 
Fig. 1.6(d).The numerical values for v and i are 40 V 
a n d - 1 0 A. 

a) Calculate the power at the terminals and state 
whether the power is being absorbed or deliv
ered by the element in the box. 

b) Given that the current is due to electron flow, 
state whether the electrons are entering or leav
ing terminal 2. 

c) Do the electrons gain or lose energy as they pass 
through the element in the box? 

1.16 Repeat Problem 1.15 with a voltage of - 6 0 V. 

1.17 The voltage and current at the terminals of the cir-
PSPICE cuit element in Fig. 1.5 are zero for t < 0. For * > 0 

MULTISIM t h e y a r e 

75<T1000' V, v 75 

/ = 50e -1000/ mA. 

a) Find the maximum value of the power delivered 
to the circuit. 

b) Find the total energy delivered to the element. 

1.18 The voltage and current at the terminals of the cir
cuit element in Fig. 1.5 are zero for t < 0. For t > 0 
they are 

v = 50<r]600' - 50e~400' V, 

i = 5e-i60O/ _ 5e-4oo, m A 

a) Find the power at t = 625 /xs. 

b) How much energy is delivered to the circuit ele
ment between 0 and 625 /xs? 

c) Find the total energy delivered to the element. 

1.19 The voltage and current at the terminals of the cir
cuit element in Fig. 1.5 are shown in Fig. PI. 19. 

a) Sketch the power versus * plot for 0 < * ^ 10 s. 

b) Calculate the energy delivered to the circuit ele
ment at * = 1, 6, and 10 s. 

Figure P1.19 
/(A) 

7 8 9 10 f(s) 

«(V) 

5 

-5 

J I L 
1 2 3 4 5 6 7 8 9 10 / (s) 

(b) 

1.20 The voltage and current at the terminals of the cir-
PSPICE c u i t element in Fig. 1.5 are zero for t < 0. For t > 0 

MULTISIM j i 

they are 

v = 400e"100' sin 200r V, 

i = 5C-1<» s i n 200f A. 

a) Find the power absorbed by the element at 
t - 10 ms. 

b) Find the total energy absorbed by the element. 

1.21 The voltage and current at the terminals of the cir-
PSPICE cuit element in Fig. 1.5 are zero for t < 0. For t ^ 0 

HULns,M theyare 

v = (16,000; + 20)e~8TO V, 

i = (128* + 0.16)e"800' A. 

a) At what instant of time is maximum power 
delivered to the element? 

b) Find the maximum power in watts. 

c) Find the total energy delivered to the element in 
millijoules. 

1.22 The voltage and current at the terminals of the cir-
PSPICE cuit element in Fig. 1.5 are zero for t < 0. For t > 0 

MumsiM theyare 

v = (10,000* + 5)e~4m V, 

i = (40; + 0.05)<T400' A, 

* > 0; 

* > 0. 

a) Find the time (in milliseconds) when the power 
delivered to the circuit element is maximum. 
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b) Find the maximum value of p in milliwatts. 

c) Find the total energy delivered to the circuit ele
ment in millijoules. 

1.23 The voltage and current at the terminals of the ele-
PSPICE ment in Fig. 1.5 are 

MUITISIM 

v = 250 cos 800TT/ V, i = 8 sin 800TT/ A. 

a) Find the maximum value of the power being 
delivered to the element. 

b) Find the maximum value of the power being 
extracted from the element. 

c) Find the average value of p in the interval 
0 < / < 2.5 ms. 

d) Find the average value of p in the interval 
0 < t < 15.625 ms. 

1.24 The voltage and current at the terminals of an auto-
PSPICE mobile battery during a charge cycle are shown in 

MULTISIM F i g p 1 2 4 . 

a) Calculate the total charge transferred to the 
battery. 

b) Calculate the total energy transferred to the 
battery. 

z(ks) 

/(ks) 

1.25 The voltage and current at the terminals of the circuit 
PSPICE element in Fig. 1.5 are zero for t < 0 and t > 40 s. In 

LTISIM the interval between 0 and 40 s the expressions are 

v = /(1 - 0.025r)V, 0 < t < 40 s; 

/ = 4 - 0.2/ A, 0 < / < 40 s. 

a) At what instant of time is the power being deliv
ered to the circuit element maximum? 

b) What is the power at the time found in part (a)? 

c) At what instant of time is the power being 
extracted from the circuit element maximum? 

d) What is the power at the time found in part (c)? 

e) Calculate the net energy delivered to the circuit 
at 0,10,20,30 and 40 s. 

1.26 The numerical values for the currents and voltages 
in the circuit in Fig. P1.26 are given in Table P1.26. 
Find the total power developed in the circuit. 

Figure P1.26 
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TABLE P1.26 

Element 

a 

b 

c 

d 

e 

I' 

Voltage (kV) 

150 

150 

100 

250 

300 

-300 

Current (raA) 

0.6 

-1.4 

-0 .8 

-0 .8 

-2.0 

1.2 

1.27 The numerical values of the voltages and currents 
in the interconnection seen in Fig. PI.27 are given in 
Table PI.27. Does the interconnection satisfy the 
power check? 

Figure PI.27 
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TABLE PI.27 

Element 

a 

b 

c 

d 

e 
f 

g 

h 

Voltage (V) 

990 

600 

300 

105 

-120 

165 

585 

-585 

Current (mA) 

-22.5 

-30 

60 

52.5 

30 

82.5 

52.5 

82.5 

1.28 Assume you are an engineer in charge of a project 
and one of your subordinate engineers reports that 
the interconnection in Fig. PI .28 does not pass the 
power check. The data for the interconnection are 
given in Table PI.28. 

a) Is the subordinate correct? Explain your answer. 

b) If the subordinate is correct, can you find the 
error in the data? 

Figure P1.28 
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TABLE P1.28 

Element 

a 

b 

c 

d 

e 

r 
g 
h 

Voltage (V) 

46.16 

14.16 

-32.0 

22.0 

33.6 

66.0 

2.56 

-0 .4 

Current (A) 

6.0 

4.72 

-6.4 

1.28 

1.68 

-0.4 

1.28 

0.4 

1.29 a) The circuit shown in Fig. PI.29 identifies volt
age polarities and current directions to be used 
in calculating power for each component. 
Using only the voltage polarities and current 
directions, predict which components supply 
power and which components absorb power, 
using the passive sign convention. 

b) The numerical values of the currents and volt
ages for each element are given in Table PI.29. 
How much total power is absorbed and how 
much is delivered in this circuit? 

c) Based on the computations in part (b), identify 
the components that supply power and those 
that absorb power. Why are these answers dif
ferent from the ones in part (a)? 

Figure P1.29 
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TABLE P1.29 

Element 

a 

b 

c 

d 

e 

I' 

g 

h 

+ »h -

Voltage (V) 

5 

1 

7 

- 9 

- 2 0 

20 

- 3 

-12 

Current (mA) 

2 

3 

- 2 

1 

5 

2 

-2 

- 3 

1.30 One method of checking calculations involving 
interconnected circuit elements is to see that the 
total power delivered equals the total power 
absorbed (conservation-of-energy principle). With 
this thought in mind, check the interconnection in 
Fig. PI.30 and state whether it satisfies this power 
check. The current and voltage values for each ele
ment are given in Table PI.30. 
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1.31 Show that the power balances for the circuit shown 
in Fig. 1.7, using the voltage and current values 
given in Table 1.4, with the value of the current for 
component d changed to —1 A. 

1.32 Suppose there is no power lost in the wires used to 
distribute power in a typical home. 

a) Create a new model for the power distribution 
circuit by modifying the circuit shown in Fig 1.7. 
Use the same names, voltage polarities, and cur
rent directions for the components that remain 
in this modified model. 

b) The following voltages and currents are calcu
lated for the components: 

"a = 

vb = 

V( = 

Vo = 

vh = 

120 V 

120 V 

-120 V 

120 V 

-240 V 

i, = - 1 0 A 

/b = 10 A 

/f = 3 A 

k = - 7 A 

If the power in this modified model balances, 
what is the value of the current in component g? 



Circuit Elements 
C H A P T E R C O N T E N T S 

2.1 Voltage and Current Sources p. 26 

2.2 Electrical Resistance (Ohm's Law) p. 30 

2.3 Construction of a Circuit Model p. 34 

2.4 Kirchhoff's Laws p. 37 

2.5 Analysis of a Circuit Containing Dependent 
Sources p. 42 

Understand the symbols for and the behavior of 
the following ideal basic circuit elements: 
independent voltage and current sources, 
dependent voltage and current sources, and 
resistors. 

Be able to state Ohm's law, Kirchhoffs current 
law, and Kirchhoff's voltage law, and be able to 
use these laws to analyze simple circuits. 

Know how to calculate the power for each 
element in a simple circuit and be able to 
determine whether or not the power balances 
for the whole circuit. 

24 

There are five ideal basic circuit elements: voltage sources, 
current sources, resistors, inductors, and capacitors. In this chap
ter we discuss the characteristics of voltage sources, current 
sources, and resistors. Although this may seem like a small num
ber of elements with which to begin analyzing circuits, many prac
tical systems can be modeled with just sources and resistors. They 
are also a useful starting point because of their relative simplicity; 
the mathematical relationships between voltage and current in 
sources and resistors are algebraic. "Thus you will be able to begin 
learning the basic techniques of circuit analysis with only alge
braic manipulations. 

We will postpone introducing inductors and capacitors until 
Chapter 6, because their use requires that you solve integral and 
differential equations. However, the basic analytical techniques 
for solving circuits with inductors and capacitors are the same as 
those introduced in this chapter. So, by the time you need to 
begin manipulating more difficult equations, you should be very 
familiar with the methods of writing them. 



Practical Perspective 
Electrical Safety 
"Danger—High Voltage." This commonly seen warning is mis
leading. All forms of energy, including electrical energy, can 
be hazardous. But it's not only the voltage that harms. The 
static electricity shock you receive when you walk across a 
carpet and touch a doorknob is annoying but does not injure. 
Yet that spark is caused by a voltage hundreds or thousands 
of times larger than the voltages that can cause harm. 

The electrical energy that can actually cause injury is due 
to electrical current and how it flows through the body. Why, 
then, does the sign warn of high voltage? Because of the way 
electrical power is produced and distributed, i t is easier to 
determine voltages than currents. Also, most electrical 
sources produce constant, specified voltages. So the signs 
warn about what is easy to measure. Determining whether 
and under what conditions a source can supply potentially 
dangerous currents is more difficult, as this requires an under
standing of electrical engineering. 

Before we can examine this aspect of electrical safety, we 
have to learn how voltages and currents are produced and the 
relationship between them. The electrical behavior of objects, 

such as the human body, is quite complex and often beyond 
complete comprehension. To allow us to predict and control 
electrical phenomena, we use simplifying models in which sim
ple mathematical relationships between voltage and current 
approximate the actual relationships in real objects. Such mod
els and analytical methods form the core of the electrical engi
neering techniques that will allow us to understand all electrical 
phenomena, including those relating to electrical safety. 

At the end of this chapter, we will use a simple electric 
circuit model to describe how and why people are injured by 
electric currents. Even though we may never develop a com
plete and accurate explanation of the electrical behavior of 
the human body, we can obtain a close approximation using 
simple circuit models to assess and improve the safety of 
electrical systems and devices. Developing models that pro
vide an understanding that is imperfect but adequate for solv
ing practical problems lies at the heart of engineering. Much 
of the art of electrical engineering, which you will learn with 
experience, is in knowing when and how to solve difficult 
problems by using simplifying models. 

25 
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<P <D 

(a) (b) 

Figure 2 .1 • The circuit symbols for (a) an ideal inde

pendent voltage source and (b) an ideal independent 

current source. 

2,1 Voltage and Current Sources 
Before discussing ideal voltage and current sources, we need to consider 
the general nature of electrical sources. An electrical source is a device 
that is capable of converting nonelectric energy to electric energy and 
vice versa. A discharging battery converts chemical energy to electric 
energy, whereas a battery being charged converts electric energy to 
chemical energy. A dynamo is a machine that converts mechanical energy 
to electric energy and vice versa. If operating in the mechanical-to-elec
tric mode, it is called a generator. If transforming from electric to 
mechanical energy, it is referred to as a motor. The important thing to 
remember about these sources is that they can either deliver or absorb 
electric power, generally maintaining either voltage or current. This 
behavior is of particular interest for circuit analysis and led to the cre
ation of the ideal voltage source and the ideal current source as basic cir
cuit elements. The challenge is to model practical sources in terms of the 
ideal basic circuit elements. 

An ideal voltage source is a circuit element that maintains a pre
scribed voltage across its terminals regardless of the current flowing in 
those terminals. Similarly, an ideal current source is a circuit element that 
maintains a prescribed current through its terminals regardless of the 
voltage across those terminals. These circuit elements do not exist as 
practical devices—they are idealized models of actual voltage and cur
rent sources. 

Using an ideal model for current and voltage sources places an 
important restriction on how we may describe them mathematically. 
Because an ideal voltage source provides a steady voltage, even if the 
current in the element changes, it is impossible to specify the current in 
an ideal voltage source as a function of its voltage. Likewise, if the only 
information you have about an ideal current source is the value of cur
rent supplied, it is impossible to determine the voltage across that cur
rent source. We have sacrificed our ability to relate voltage and current 
in a practical source for the simplicity of using ideal sources in circuit 
analysis. 

Ideal voltage and current sources can be further described as either 
independent sources or dependent sources. An independent source estab
lishes a voltage or current in a circuit without relying on voltages or cur
rents elsewhere in the circuit. The value of the voltage or current supplied 
is specified by the value of the independent source alone. In contrast, a 
dependent source establishes a voltage or current whose value depends on 
the value of a voltage or current elsewhere in the circuit. You cannot spec
ify the value of a dependent source unless you know the value of the volt
age or current on which it depends. 

The circuit symbols for the ideal independent sources are shown in 
Fig. 2.1. Note that a circle is used to represent an independent source. To 
completely specify an ideal independent voltage source in a circuit, you 
must include the value of the supplied voltage and the reference polarity, 
as shown in Fig. 2.1(a). Similarly, to completely specify an ideal independ
ent current source, you must include the value of the supplied current and 
its reference direction, as shown in Fig. 2.1(b). 

The circuit symbols for the ideal dependent sources are shown in 
Fig. 2.2. A diamond is used to represent a dependent source. Both the 
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dependent current source and the dependent voltage source may be con
trolled by either a voltage or a current elsewhere in the circuit, so there 
are a total of four variations, as indicated by the symbols in Fig. 2.2. 
Dependent sources are sometimes called controlled sources. 

To completely specify an ideal dependent voltage-controlled voltage 
source, you must identify the controlling voltage, the equation that per
mits you to compute the supplied voltage from the controlling voltage, 
and the reference polarity for the supplied voltage. In Fig. 2.2(a), the con
trolling voltage is named vx, the equation that determines the supplied (a) (c) 
voltage vs is 

vs = fivx, 

and the reference polarity for vs is as indicated. Note that /x is a multiply
ing constant that is dimensionless. 

Similar requirements exist for completely specifying the other ideal 
dependent sources. In Fig. 2.2(b), the controlling current is /v, the equation 
for the supplied voltage vs is 

vs = pix, 

the reference polarity is as shown, and the multiplying constant p has the 
dimension volts per ampere. In Fig. 2.2(c), the controlling voltage is vx, 
the equation for the supplied current is is 

is = avx, 

the reference direction is as shown, and the multiplying constant a has the 
dimension amperes per volt. In Fig. 2.2(d), the controlling current is /v, the 
equation for the supplied current is is 

the reference direction is as shown, and the multiplying constant /3 is 
dimensionless. 

Finally, in our discussion of ideal sources, we note that they are 
examples of active circuit elements. An active element is one that models 
a device capable of generating electric energy. Passive elements model 
physical devices that cannot generate electric energy. Resistors, induc
tors, and capacitors are examples of passive circuit elements. 
Examples 2.1 and 2.2 illustrate how the characteristics of ideal inde
pendent and dependent sources limit the types of permissible intercon
nections of the sources. 

0 >>-4 

Pix 4 = i8/.v(f 

(b) (d) 

Figure 2.2 • The circuit symbols for (a) an ideal 
dependent voltage-controlled voltage source, (b) an 
ideal dependent current-controlled voltage source, (c) an 
ideal dependent voltage-controlled current source, and 
(d) an ideal dependent current-controlled current source. 
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Testing Interconnections of Ideal Sources 

Using the definitions of the ideal independent volt
age and current sources, state which interconnec
tions in Fig. 2.3 are permissible and which violate 
the constraints imposed by the ideal sources. 

Solution 

Connection (a) is valid. Each source supplies volt
age across the same pair of terminals, marked a,b. 
This requires that each source supply the same volt
age with the same polarity, which they do. 

Connection (b) is valid. Each source supplies 
current through the same pair of terminals, marked 
a,b. This requires that each source supply the same 
current in the same direction, which they do. 

Connection (c) is not permissible. Each source 
supplies voltage across the same pair of terminals, 
marked a,b. This requires that each source supply 
the same voltage with the same polarity, which they 
do not. 

Connection (d) is not permissible. Each source 
supplies current through the same pair of terminals, 
marked a,b. This requires that each source supply 
the same current in the same direction, which they 
do not. 

Connection (e) is valid. The voltage source sup
plies voltage across the pair of terminals marked 
a,b. The current source supplies current through the 
same pair of terminals. Because an ideal voltage 
source supplies the same voltage regardless of the 
current, and an ideal current source supplies the 
same current regardless of the voltage, this is a per
missible connection. 

5A e 
iiov (_) iov C t J 5 A 

b 

(a) (b) 

2A 
a S~\ b e 

10 V f H ' )5V ( f )5 A 

b 

(c) (d) 

5A e 
10 V 

Figure 2.3 • The circuits for Example 2.1. 
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Example 2.2 Testing Interconnections of Ideal Independent and Dependent Sources 

Using the definitions of the ideal independent and 
dependent sources, state which interconnections in 
Fig. 2.4 are valid and which violate the constraints 
imposed by the ideal sources. 

Solution 

Connection (a) is invalid. Both the independent 
source and the dependent source supply voltage 
across the same pair of terminals, labeled a,b. This 
requires that each source supply the same voltage 
with the same polarity. The independent source sup
plies 5 V, but the dependent source supplies 15 V. 

Connection (b) is valid. The independent volt
age source supplies voltage across the pair of termi
nals marked a,b. The dependent current source 
supplies current through the same pair of terminals. 
Because an ideal voltage source supplies the same 
voltage regardless of current, and an ideal current 
source supplies the same current regardless of volt
age, this is an allowable connection. 

Connection (c) is valid. The independent cur
rent source supplies current through the pair of ter
minals marked a,b. The dependent voltage source 
supplies voltage across the same pair of terminals. 
Because an ideal current source supplies the same 
current regardless of voltage, and an ideal voltage 
source supplies the same voltage regardless of cur
rent, this is an allowable connection. 

Connection (d) is invalid. Both the independ
ent source and the dependent source supply current 
through the same pair of terminals, labeled a,b.This 
requires that each source supply the same current 
in the same reference direction. The independent 
source supplies 2 A, but the dependent source sup
plies 6 A in the opposite direction. 

vx = SV 
— • 

b 

(b) 

v, = 4 ix /A 

L = 2 A 

b 

(c) 

/v = 3 ix 

ix = 2 A 

b 

(d) 

Figure 2,4 • The circuits for Example 2.2. 
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^/ASSESSMENT PROBLEMS 

Objective 1—Understand ideal basic circuit elements 

2,1 For the circuit shown, 

a) What value of vg is required in order for the 
interconnection to be valid? 

b) For this value of vgH find the power associ
ated with the 8 A source. 

2.2 For the circuit shown, 

a) What value of a is required in order for the 
interconnection to be valid? 

b) For the value of a calculated in part (a), find 
the power associated with the 25 V source. 

Answer: (a) - 2 V; 

(b) -16 W(16 W delivered). 

Answer: (a) 0.6 A/V; 

(b) 375 W (375 W absorbed). 

15 A 25 V 

NOTE: Also try Chapter Problems 2.2 and 2.4. 

R 
-^vw 

Figure 2.5 A The circuit symbol for a resistor having a 
resistance /?. 

S V$R 

v = iR 

vkR 

v = -iR 

Figure 2.6 A Two possible reference choices for the 
current and voltage at the terminals of a resistor, and 
the resulting equations. 

2.2 Electrical Resistance (Ohm's Law) 
Resistance is the capacity of materials to impede the flow of current or, 
more specifically, the flow of electric charge. The circuit element used to 
model this behavior is the resistor. Figure 2.5 shows the circuit symbol for 
the resistor, with R denoting the resistance value of the resistor. 

Conceptually, we can understand resistance if we think about the 
moving electrons that make up electric current interacting with and being 
resisted by the atomic structure of the material through which they are 
moving. In the course of these interactions, some amount of electric 
energy is converted to thermal energy and dissipated in the form of heat. 
This effect may be undesirable. However, many useful electrical devices 
take advantage of resistance heating, including stoves, toasters, irons, and 
space heaters. 

Most materials exhibit measurable resistance to current. The amount 
of resistance depends on the material. Metals such as copper and alu
minum have small values of resistance, making them good choices for 
wiring used to conduct electric current. In fact, when represented in a cir
cuit diagram, copper or aluminum wiring isn't usually modeled as a resis
tor; the resistance of the wire is so small compared to the resistance of 
other elements in the circuit that we can neglect the wiring resistance to 
simplify the diagram. 

For purposes of circuit analysis, we must reference the current in 
the resistor to the terminal voltage. We can do so in two ways: either in 
the direction of the voltage drop across the resistor or in the direction 
of the voltage rise across the resistor, as shown in Fig. 2.6. If we choose 
the former, the relationship between the voltage and current is 

Ohm's law • v = iR, (2.1) 



2.2 Electrical Resistance (Ohm's Law) 31 

where 

v = the voltage in volts, 

i = the current in amperes, 

R - the resistance in ohms. 

If we choose the second method, we must write 

v = -iR, (2.2) 

where v, /, and R are, as before, measured in volts, amperes, and ohms, 
respectively. The algebraic signs used in Eqs. 2.1 and 2.2 are a direct conse
quence of the passive sign convention, which we introduced in Chapter 1. 

Equations 2.1 and 2.2 are known as Ohm's law after Georg Simon 
Ohm, a German physicist who established its validity early in the nine
teenth century. Ohm's law is the algebraic relationship between voltage 
and current for a resistor. In SI units, resistance is measured in ohms. The ^}} 
Greek letter omega (H) is the standard symbol for an ohm. The circuit 
diagram symbol for an 8 a resistor is shown in Fig. 2.7. figure 2.7 • The circuit symbol for an S ft resistor. 

Ohm's law expresses the voltage as a function of the current. However, 
expressing the current as a function of the voltage also is convenient. Thus, 
from Eq. 2.1, 

' = J-

or, from Eq. 2.2, 

v 

The reciprocal of the resistance is referred to as conductance, is sym
bolized by the letter G, and is measured in Siemens (S).Thus, 

G = ^ S. (2.5) 

An 8 O resistor has a conductance value of 0.125 S. In much of the profes
sional literature, the unit used for conductance is the mho (ohm spelled back
ward), which is symbolized by an inverted omega (U). Therefore we may 
also describe an 8 H resistor as having a conductance of 0.125 mho, (U). 

We use ideal resistors in circuit analysis to model the behavior of 
physical devices. Using the qualifier ideal reminds us that the resistor 
model makes several simplifying assumptions about the behavior of 
actual resistive devices. The most important of these simplifying assump
tions is that the resistance of the ideal resistor is constant and its value 
does not vary over time. Most actual resistive devices do not have constant 
resistance, and their resistance does vary over time. The ideal resistor 
model can be used to represent a physical device whose resistance doesn't 
vary much from some constant value over the time period of interest in 
the circuit analysis. In this book we assume that the simplifying assump
tions about resistance devices are valid, and we thus use ideal resistors in 
circuit analysis. 

We may calculate the power at the terminals of a resistor in several 
ways. The first approach is to use the defining equation and simply calculate 
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the product of the terminal voltage and current. For the reference systems 
shown in Fig. 2.6, we write 

p = vi (2.6) 

when v = i R and 

p = —vi (2.7) 

when v = -i R. 
A second method of expressing the power at the terminals of a resis

tor expresses power in terms of the current and the resistance. 
Substituting Eq. 2.1 into Eq. 2.6, we obtain 

p = vi = (i R)i 

so 

Power in a resistor in terms of current • p = i2 R. (2.8) 

Likewise, substituting Eq. 2.2 into Eq. 2.7, we have 

p = -vi = -(-iR)i = i2R. (2.9) 

Equations 2.8 and 2.9 are identical and demonstrate clearly that, regard
less of voltage polarity and current direction, the power at the terminals of 
a resistor is positive. Therefore, a resistor absorbs power from the circuit. 

A third method of expressing the power at the terminals of a resistor 
is in terms of the voltage and resistance. The expression is independent of 
the polarity references, so 

Power in a resistor in terms of voltage • p = —. (2.io) 

Sometimes a resistor's value will be expressed as a conductance rather 
than as a resistance. Using the relationship between resistance and con
ductance given in Eq. 2.5, we may also write Eqs. 2.9 and 2.10 in terms of 
the conductance, or 

i2 

p = V2G. (2.12) 

Equations 2.6-2.12 provide a variety of methods for calculating the power 
absorbed by a resistor. Each yields the same answer. In analyzing a circuit, 
look at the information provided and choose the power equation that uses 
that information directly. 

Example 2.3 illustrates the application of Ohm's law in conjunction 
with an ideal source and a resistor. Power calculations at the terminals of a 
resistor also are illustrated. 
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Calculating Voltage, Current, and Power for a Simple Resistive Circuit 

In each circuit in Fig. 2.8, either the value of v or i is 
not known. 

M l A * 8 0 50 V 
T 

0.2 S 

(a) (b) 

M i A ik 20a 50 V 25 0 
. A 
' i l l 

The current ih in the resistor with a conductance 
of 0.2 S in Fig. 2.8(b) is in the direction of the 
voltage drop across the resistor. Thus 

ih = (50)(0.2) = 10 A. 

The voltage vc in Fig. 2.8(c) is a rise in the direc
tion of the current in the resistor. Hence 

vc = -(1)(20) = - 2 0 V. 

The current id in the 25 ft resistor in Fig. 2.8(d) 
is in the direction of the voltage rise across the 
resistor. Therefore 

(c) (d) 

Figure 2.8 • The circuits for Example 2.3. 

a) Calculate the values of v and i. 

b) Determine the power dissipated in each resistor. 

Solution 

a) The voltage va in Fig. 2.8(a) is a drop in the direc
tion of the current in the resistor. Therefore, 

q . - ( 1 ) ( 8 ) - 8 V. 

id 
-50 
25 

= - 2 A. 

b) The power dissipated in each of the four resistors is 

(8)2 

Pm = 

P0.2S = 

P20O, = 

Pisa = 

(1)^(8) = 8 W, 

(50)2(0.2) = 500 W, 

(-20)" 
20 

(50)2 

25 

= (1)2(20) = 20 W, 

(-2)2(25) = 100 W. 

^ A S S E S S M E N T PROBLEMS 

Objective 2—Be able to state and use Ohm's Law . . . 

2.3 For the circuit shown, 

a) If vg = 1 kV and ig = 5 mA, find the value 
of R and the power absorbed by the resistor. 

b) If ig - 75 mA and the power delivered by 
the voltage source is 3 W, find vg, R, and the 
power absorbed by the resistor. 

c) K JR. — 300 ft and the power absorbed by R 
is 480 mW, find L and vg. 

2.4 For the circuit shown, 

a) If ig = 0.5 A and G = 50 mS, find vg and 
the power delivered by the current source. 

b) If vg - 15 V and the power delivered to the 
conductor is 9 W, find the conductance G 
and the source current L. 

c) If G = 200 /xS and the power delivered to 
the conductance is 8 W, find ig and vg. 

*Q :R 

Answer: ( a ) 2 0 0 k Q , 5 W ; 

(b) 40 V, 533.33 ft, 3 W; 

(c) 40 mA, 12 V 

NOTE: Also try Chapter Problems 2.5 and 2.7. 

Answer: (a)10V,5 W; 

(b)40mS,0.6 A; 

(c) 40 mA, 200 V. 
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Having introduced the general characteristics of ideal sources and resis
tors, we next show how to use these elements to build the circuit model of 
a practical system. 

2.3 Construction of a Circuit Model 
We have already stated that one reason for an interest in the basic circuit 
elements is that they can be used to construct circuit models of practical 
systems. The skill required to develop a circuit model of a device or system 
is as complex as the skill required to solve the derived circuit. Although 
this text emphasizes the skills required to solve circuits, you also will need 
other skills in the practice of electrical engineering, and one of the most 
important is modeling. 

We develop circuit models in the next two examples. In Example 2.4 
we construct a circuit model based on a knowledge of the behavior of the 
system's components and how the components are interconnected. In 
Example 2.5 we create a circuit model by measuring the terminal behavior 
of a device. 

Example 2.4 Constructing a Circuit Model of a Flashlight 

Construct a circuit model of a flashlight. 

Solution 
We chose the flashlight to illustrate a practical system 
because its components are so familiar. Figure 2.9 
shows a photograph of a widely available flashlight. 

When a flashlight is regarded as an electrical 
system, the components of primary interest are the 
batteries, the lamp, the connector, the case, and the 
switch. We now consider the circuit model for each 
component. 

A dry-cell battery maintains a reasonably con
stant terminal voltage if the current demand is not 
excessive. Thus if the dry-cell battery is operating 
within its intended limits, we can model it with an 
ideal voltage source. The prescribed voltage then is 
constant and equal to the sum of two dry-cell values. 

The ultimate output of the lamp is light energy, 
which is achieved by heating the filament in the 
lamp to a temperature high enough to cause radia
tion in the visible range. We can model the lamp 
with an ideal resistor. Note in this case that although 
the resistor accounts for the amount of electric 
energy converted to thermal energy, it does not pre
dict how much of the thermal energy is converted to 
light energy. The resistor used to represent the lamp 
does predict the steady current drain on the batter
ies, a characteristic of the system that also is of inter
est. In this model, R/ symbolizes the lamp resistance. 

The connector used in the flashlight serves a 
dual role. First, it provides an electrical conductive 
path between the dry cells and the case. Second, it is 

Figure 2.9 • A flashlight can be viewed as an electrical system. 

formed into a springy coil so that it also can apply 
mechanical pressure to the contact between the 
batteries and the lamp. The purpose of this mechan
ical pressure is to maintain contact between the two 
dry cells and between the dry cells and the lamp. 
Hence, in choosing the wire for the connector, we 
may find that its mechanical properties are more 
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important than its electrical properties for the 
flashlight design. Electrically, we can model the 
connector with an ideal resistor, labeled R{. 

The case also serves both a mechanical and an 
electrical purpose. Mechanically, it contains all the 
other components and provides a grip for the person 
using it. Electrically, it provides a connection between 
other elements in the flashlight. If the case is metal, it 
conducts current between the batteries and the lamp. 
If it is plastic, a metal strip inside the case connects 
the coiled connector to the switch. Either way, an 
ideal resistor, which we denote Rc, models the electri
cal connection provided by the case. 

The final component is the switch. Electrically, 
the switch is a two-state device. It is either ON or 
OFF. An ideal switch offers no resistance to the cur
rent when it is in the ON state, but it offers infinite 
resistance to current when it is in the OFF state. 
These two states represent the limiting values of a 
resistor; that is, the ON state corresponds to a resis
tor with a numerical value of zero, and the OFF state 
corresponds to a resistor with a numerical value of 
infinity. The two extreme values have the descrip
tive names short circuit (R = 0) and open circuit 
(R = oo). Figure 2.10(a) and (b) show the graphical 
representation of a short circuit and an open circuit, 
respectively. The symbol shown in Fig. 2.10(c) rep
resents the fact that a switch can be either a short 
circuit or an open circuit, depending on the position 
of its contacts. 

We now construct the circuit model of the 
flashlight. Starting with the dry-cell batteries, the 
positive terminal of the first cell is connected to 
the negative terminal of the second cell, as shown in 
Fig. 2.11. The positive terminal of the second cell is 
connected to one terminal of the lamp. The other 
terminal of the lamp makes contact with one side of 
the switch, and the other side of the switch is con
nected to the metal case.The metal case is then con
nected to the negative terminal of the first dry cell 
by means of the metal spring. Note that the ele
ments form a closed path or circuit. You can see the 
closed path formed by the connected elements in 
Fig. 2.11. Figure 2.12 shows a circuit model for the 
flashlight. 

(a) 

(b) 

OFF 

ON 

(c) 

Figure 2.10 • Circuit symbols, (a) Short circuit, (b) Open circuit, 
(c) Switch. 

Lamp 

Filament 
terminal 

Dry cell # 2 

Dry cell # 1 

Sliding switch 

Case 

Figure 2.11 • The arrangement of flashlight components. 

Figure 2.12 • A circuit model for a flashlight. 

We can make some general observations about modeling from our 
flashlight example: First, in developing a circuit model, the electrical behav
ior of each physical component is of primary interest. In the flashlight 
model, three very different physical components—a lamp, a coiled wire, 
and a metal case—are all represented by the same circuit element (a resis
tor), because the electrical phenomenon taking place in each is the same. 
Each is presenting resistance to the current flowing through the circuit. 

Second, circuit models may need to account for undesired as well as 
desired electrical effects. For example, the heat resulting from the resist
ance in the lamp produces the light, a desired effect. However, the heat 
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resulting from the resistance in the case and coil represents an unwanted 
or parasitic effect. It drains the dry cells and produces no useful output. 
Such parasitic effects must be considered or the resulting model may not 
adequately represent the system. 

And finally, modeling requires approximation. Even for the basic sys
tem represented by the flashlight, we made simplifying assumptions in 
developing the circuit model. For example, we assumed an ideal switch, 
but in practical switches, contact resistance may be high enough to inter
fere with proper operation of the system. Our model does not predict this 
behavior. We also assumed that the coiled connector exerts enough pres
sure to eliminate any contact resistance between the dry cells. Our model 
does not predict the effect of inadequate pressure. Our use of an ideal 
voltage source ignores any internal dissipation of energy in the dry cells, 
which might be due to the parasitic heating just mentioned. We could 
account for this by adding an ideal resistor between the source and the 
lamp resistor. Our model assumes the internal loss to be negligible. 

In modeling the flashlight as a circuit, we had a basic understanding of 
and access to the internal components of the system. However, sometimes 
we know only the terminal behavior of a device and must use this infor
mation in constructing the model. Example 2.5 explores such a modeling 
problem. 

Example 2.5 Constructing a Circuit Model Based on Terminal Measurements 

The voltage and current are measured at the termi
nals of the device illustrated in Fig. 2.13(a), and the 
values of v, and it are tabulated in Fig. 2.13(b). 
Construct a circuit model of the device inside the box. 

Device 

«k(V) 

- 4 0 

- 2 0 

0 

20 

40 

it (A) 

- 1 0 

- 5 

0 

5 

10 

(a) (b) 

Solution 

Plotting the voltage as a function of the current 
yields the graph shown in Fig. 2.14(a). The equation 
of the line in this figure illustrates that the terminal 
voltage is directly proportional to the terminal cur
rent, v( - 4/,. In terms of Ohm's law, the device 
inside the box behaves like a 4 Cl resistor. Therefore, 
the circuit model for the device inside the box is a 
4 CI resistor, as seen in Fig. 2.14(b). 

We come back to this technique of using termi
nal characteristics to construct a circuit model after 
introducing Kirchhoff s laws and circuit analysis. 

Figure 2.13 • The (a) device and (b) data for Example 2.5. 

(a) 

:4 n 

(b) 

Figure 2.14 • (a) The values of v, versus i, for the device in Fig. 2.13. (b) The circuit model 
for the device in Fig. 2.13. 

NOTE: Assess your understanding of this example by trying Chapter Problems 2.11 and 2.13. 
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2.4 Kirchhoff's Laws 
A circuit is said to be solved when the voltage across and the current in 
every element have been determined. Ohm's law is an important equation 
for deriving such solutions. However, Ohm's law may not be enough to 
provide a complete solution. As we shall see in trying to solve the flash
light circuit from Example 2.4, we need to use two more important alge
braic relationships, known as Kirchhoff's laws, to solve most circuits. 

We begin by redrawing the circuit as shown in Fig. 2.15, with the 
switch in the ON state. Note that we have also labeled the current and volt
age variables associated with each resistor and the current associated with 
the voltage source. Labeling includes reference polarities, as always. For 
convenience, we attach the same subscript to the voltage and current 
labels as we do to the resistor labels. In Fig. 2.15, we also removed some of 
the terminal dots of Fig. 2.12 and have inserted nodes. Terminal dots are 
the start and end points of an individual circuit element. A node is a point 
where two or more circuit elements meet. It is necessary to identify nodes 
in order to use Kirchhoff's current law, as we will see in a moment. In 
Fig. 2.15, the nodes are labeled a, b, c, and d. Node d connects the battery 
and the lamp and in essence stretches all the way across the top of the dia
gram, though we label a single point for convenience. The dots on either 
side of the switch indicate its terminals, but only one is needed to repre
sent a node, so only one is labeled node c. 

For the circuit shown in Fig. 2.15, we can identify seven unknowns: 
/v, / j , ic, if, V\, vc, and V{. Recall that vs is a known voltage, as it represents 
the sum of the terminal voltages of the two dry cells, a constant voltage 
of 3 V. The problem is to find the seven unknown variables. From alge
bra, you know that to find n unknown quantities you must solve n simul
taneous independent equations. From our discussion of Ohm's law in 
Section 2.2, you know that three of the necessary equations are 

Figure 2.15 • Circuit model of the flashlight with 
assigned voltage and current variables. 

vc = icRc, 

Vi = iiRj. 

(2.13) 

(2.14) 

(2.15) 

What about the other four equations? 
The interconnection of circuit elements imposes constraints on the 

relationship between the terminal voltages and currents. These constraints 
are referred to as Kirchhoff's laws, after Gustav Kirchhoff, who first stated 
them in a paper published in 1848. The two laws that state the constraints 
in mathematical form are known as Kirchhoff's current law and 
Kirchhoff's voltage law. 

We can now state Kirchhoff's current law: 

The algebraic sum of all the currents at any node in a circuit 
equals zero. A Kirchhoff's current law (KCL) 

To use Kirchhoff's current law, an algebraic sign corresponding to a 
reference direction must be assigned to every current at the node. 
Assigning a positive sign to a current leaving a node requires assigning a 
negative sign to a current entering a node. Conversely, giving a negative 
sign to a current leaving a node requires giving a positive sign to a current 
entering a node. 
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Kirchhoffs voltage law (KVL) • 

Applying Kirchhoffs current law to the four nodes in the circuit 
shown in Fig. 2.15, using the convention that currents leaving a node are 
considered positive, yields four equations: 

node a is - i{ = 0, (2.16) 

node b /, + ic = 0, (2.17) 

node c —/c. - // = 0, (2.18) 

node d // - /, = 0. (2.19) 

Note that Eqs. 2.16-2.19 are not an independent set, because any one 
of the four can be derived from the other three. In any circuit with n nodes, 
n — 1 independent current equations can be derived from Kirchhoffs 
current law.1 Let's disregard Eq. 2.19 so that we have six independent 
equations, namely, Eqs. 2.13-2.18. We need one more, which we can derive 
from Kirchhoffs voltage law. 

Before we can state Kirchhoffs voltage law, we must define a closed 
path or loop. Starting at an arbitrarily selected node, we trace a closed 
path in a circuit through selected basic circuit elements and return to the 
original node without passing through any intermediate node more than 
once. The circuit shown in Fig. 2.15 has only one closed path or loop. For 
example, choosing node a as the starting point and tracing the circuit 
clockwise, we form the closed path by moving through nodes d, c, b, and 
back to node a. We can now state Kirchhoffs voltage law: 

The algebraic sum of all the voltages around any closed path in a circuit 
equals zero. 

To use Kirchhoffs voltage law, we must assign an algebraic sign (refer
ence direction) to each voltage in the loop. As we trace a closed path, a volt
age will appear either as a rise or a drop in the tracing direction. Assigning a 
positive sign to a voltage rise requires assigning a negative sign to a voltage 
drop. Conversely, giving a negative sign to a voltage rise requires giving a 
positive sign to a voltage drop. 

We now apply Kirchhoffs voltage law to the circuit shown in Fig. 2.15. 
We elect to trace the closed path clockwise, assigning a positive algebraic 
sign to voltage drops. Starting at node d leads to the expression 

v, - vc + vx - vs = 0, (2.20) 

which represents the seventh independent equation needed to find the 
seven unknown circuit variables mentioned earlier. 

The thought of having to solve seven simultaneous equations to find 
the current delivered by a pair of dry cells to a flashlight lamp is not very 
appealing. Thus in the coming chapters we introduce you to analytical 
techniques that will enable you to solve a simple one-loop circuit by writ
ing a single equation. However, before moving on to a discussion of these 
circuit techniques, we need to make several observations about the 
detailed analysis of the flashlight circuit. In general, these observations are 
true and therefore are important to the discussions in subsequent chap
ters. They also support the contention that the flashlight circuit can be 
solved by defining a single unknown. 

Wc say more about this observation in Chapter 4. 
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First, note that if you know the current in a resistor, you also know the 
voltage across the resistor, because current and voltage are directly 
related through Ohm's law. Thus you can associate one unknown variable 
with each resistor, either the current or the voltage. Choose, say, the cur
rent as the unknown variable. Then, once you solve for the unknown cur
rent in the resistor, you can find the voltage across the resistor. In general, 
if you know the current in a passive element, you can find the voltage 
across it, greatly reducing the number of simultaneous equations to be 
solved. For example, in the flashlight circuit, we eliminate the voltages vc, 
V{, and V\ as unknowns. Thus at the outset we reduce the analytical task to 
solving four simultaneous equations rather than seven. 

The second general observation relates to the consequences of con
necting only two elements to form a node. According to Kirchhoff s cur
rent law, when only two elements connect to a node, if you know the 
current in one of the elements, you also know it in the second element. 
In other words, you need define only one unknown current for the two 
elements. When just two elements connect at a single node, the elements 
are said to be in series. The importance of this second observation is 
obvious when you note that each node in the circuit shown in Fig. 2.15 
involves only two elements. Thus you need to define only one unknown 
current. The reason is that Eqs. 2.16-2.18 lead directly to 

h = h = ~tf = lb (2.21) 

which states that if you know any one of the element currents, you 
know them all. For example, choosing to use is as the unknown elimi
nates rj,ic, and //.The problem is reduced to determining one unknown, 
namely,/.,. 

Examples 2.6 and 2.7 illustrate how to write circuit equations based 
on Kirchhoff s laws. Example 2.8 illustrates how to use Kirchhoff s laws 
and Ohm's law to find an unknown current. Example 2.9 expands on the 
technique presented in Example 2.5 for constructing a circuit model for a 
device whose terminal characteristics are known. 

Example 2.6 Using Kirchhoff's Current Law 

Sum the currents at each node in the circuit shown 
in Fig. 2.16. Note that there is no connection dot (•) 
in the center of the diagram, where the 4 fi branch 
crosses the branch containing the ideal current 
source /a. 

Solution 

In writing the equations, we use a positive sign for a 
current leaving a node. The four equations are 

node a /j + /4 - /2 - i$ = 0, 

node b i2 + /3 - /1 - /b - /a = 0, 

node c /b - /3 - /4 - /c = 0, 

node d /5 + L + ic = 0. 

Figure 2.16 A The circuit for Example 2.6. 
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Using Kirchhoff's Voltage Law 

Sum the voltages around each designated path in 
the circuit shown in Fig. 2.17. 

Solution 
In writing the equations, we use a positive sign for a 
voltage drop. The four equations are 

path a 

path b 

path c 

-̂ 1 + V2 + V4 - Vh - #3 = 0, 

~% + v3 + v5 = 0, 

Vb - VA - Vc - V(y - V>, = 0, 

path d — va - V] + v2 — vc + v7 - v^ = 0. Figure 2.17 • The circuit for Example 2.7. 

Example 2.8 Applying Ohm's Law and Kirchhoff's Laws to Find an Unknown Current 

a) Use Kirchhoff's laws and Ohm's law to find i0 in 
the circuit shown in Fig. 2.18. 

50 n 

Figure 2.18 A The circuit for Example 2.8. 

b) Test the solution for i0 by verifying that the total 
power generated equals the total power dissipated. 

Solution 

a) We begin by redrawing the circuit and assigning 
an unknown current to the 50 12 resistor and 
unknown voltages across the 10 XI and 50 O. 
resistors. Figure 2.19 shows the circuit. The nodes 
are labeled a, b, and c to aid the discussion. 

10 n ><> 

+ v» -

120 V 50 n 

Figure 2.19 • The circuit shown in Fig. 2.18, with the 
unknowns ix, v,„ and V\ defined. 

Because i0 also is the current in the 120 V 
source, we have two unknown currents and 

therefore must derive two simultaneous equa
tions involving i.(, and /x. We obtain one of the 
equations by applying Kirchhoff's current law to 
either node b or c. Summing the currents at node 
b and assigning a positive sign to the currents 
leaving the node gives 

/] — i() — 6 = 0. 

We obtain the second equation from Kirchhoff's 
voltage law in combination with Ohm's law. 
Noting from Ohm's law that v0 is \Qi0 and Vy is 
50/j, we sum the voltages around the closed path 
cabc to obtain 

-120 + 1()/,, + 50/j = 0. 

In writing this equation, we assigned a positive 
sign to voltage drops in the clockwise direc
tion. Solving these two equations for i() and 
ix yields 

= - 3 A and h = 3 A . 

b) The power dissipated in the 50 H resistor is 

A50Q = O)2(50) = 450 W. 

The power dissipated in the 10 Ci resistor is 

Pum = (-3)2(10) = 90 W. 
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The power delivered to the 120 V source is 

p12ov = -120/,, = -120(-3) = 360 W. 

The power delivered to the 6 A source is 

P6A = _ vl(6)^ b u t vi = 50 ' l = 1 5 0 V -

Therefore 

p6A = -150(6) = -900 W. 

The 6 A source is delivering 900 W, and the 
120 V source is absorbing 360 W. The total 
power absorbed is 360 + 450 + 90 = 900 W. 
Therefore, the solution verifies that the power 
delivered equals the power absorbed. 

Example 2.9 Constructing a Circuit Model Based on Terminal Measurements 

The terminal voltage and terminal current were 
measured on the device shown in Fig. 2.20(a), and 
the values of v, and it are tabulated in Fig. 2.20(b). 

t»,(V) 

30 

15 

0 

MA) 
0 

3 

6 

(b) 

Figure 2.20 A (a) Device and (b) data for Example 2.9. 

a) Construct a circuit model of the device inside 
the box. 

b) Using this circuit model, predict the power this 
device will deliver to a 10 0 resistor. 

Solution 

a) Plotting the voltage as a function of the current 
yields the graph shown in Fig. 2.21(a). The equa
tion of the line plotted is 

vt = 30 - 5/,. 

Now we need to identify the components of a cir
cuit model that will produce the same relation
ship between voltage and current. Kirchhoffs 
voltage law tells us that the voltage drops across 
two components in series. From the equation, 
one of those components produces a 30 V drop 
regardless of the current. This component can be 
modeled as an ideal independent voltage source. 
The other component produces a positive volt
age drop in the direction of the current it. 
Because the voltage drop is proportional to the 
current, Ohm's law tells us that this component 
can be modeled as an ideal resistor with a value 
of 5 fl.The resulting circuit model is depicted in 
the dashed box in Fig. 2.21(b). 

10 O 

(b) 

Figure 2.21 • (a) The graph of v, versus i, for the device in 
Fig. 2.20(a). (b) The resulting circuit model for the device in 
Fig. 2.20(a), connected to a 10 XI resistor. 

b) Now we attach a 10 il resistor to the device in 
Fig. 2.21(b) to complete the circuit. Kirchhoffs 
current law tells us that the current in the 10 ft 
resistor is the same as the current in the 5 ft resis
tor. Using Kirchhoffs voltage law and Ohm's law, 
we can write the equation for the voltage drops 
around the circuit, starting at the voltage source 
and proceeding clockwise: 

-30 + Si + 10/ = 0. 

Solving for /, we get 

/ = 2 A. 

Because this is the value of current flowing in 
the 10 O resistor, we can use the power equation 
p = i2R to compute the power delivered to this 
resistor: 

Pmi = (2)2(10) = 40 W. 
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^/ASSESSMENT PROBLEMS 

Objective 2—Be able to state and use Ohm's law and Kirchhoff's current and voltage laws 

2.5 For the circuit shown, calculate (a) z5; (b) Vj; 
(c) v2; (d) v5; and (e) the power delivered by 
the 24 V source. 

Answer: (a) 2 A; 

(b ) -4V; 

(c) 6 V; 

(d)14V; 

(e) 48 W. 

24 V 

3fl 
—-Wv-
+ y-> -

+ w, -
—VA-

2 a 

hi v5<m 

2.7 a) The terminal voltage and terminal current 
were measured on the device shown. The 
values of vt and i, are provided in the table. 
Using these values, create the straight line 
plot of vt versus it. Compute the equation of 
the line and use the equation to construct a 
circuit model for the device using an ideal 
voltage source and a resistor. 

b) Use the model constructed in (a) to predict 
the power that the device will deliver to a 
25 H resistor. 

Answer: (a) A 25 V source in series with a 100 (1 
resistor; 

(b) 1W. 

2.6 Use Ohm's law and Kirchhoff s laws to find the 
value of R in the circuit shown. 

Answer: R = 4 O. 

v, (V) 

25 
15 

5 
0 

i, (A) 

0 
0.1 

0.2 
0.25 

(a) (b) 

2.8 

200 V 

Repeat Assessment Problem 2.7 but use the 
equation of the graphed line to construct a cir
cuit model containing an ideal current source 
and a resistor. 

Answer: (a) A 0.25 A current source connected 
between the terminals of a 100 O resistor; 

(b) 1 W. 

NOTE: Also try Chapter Problems 2.14,2.I7,2.18, and 2.19. 

500 V 

Figure 2.22 • A circuit with a dependent source. 

2.5 Analysis of a Circuit Containing 
Dependent Sources 

We conclude this introduction to elementary circuit analysis with a discus
sion of a circuit that contains a dependent source, as depicted in Fig. 2.22. 

We want to use Kirchhoff's laws and Ohm's law to find v„ in this cir
cuit. Before writing equations, it is good practice to examine the circuit 
diagram closely. This will help us identify the information that is known 
and the information we must calculate. It may also help us devise a strat
egy for solving the circuit using only a few calculations. 
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A look at the circuit in Fig. 2.22 reveals that 

• Once we know ia, we can calculate v0 using Ohm's law. 

• Once we know /A, we also know the current supplied by the dependent 
source 5iA. 

• The current in the 500 V source is /A. 

There are thus two unknown currents, iA and /„. We need to construct and 
solve two independent equations involving these two currents to produce 
a value for v(>. 

From the circuit, notice the closed path containing the voltage source, 
the 5 ft resistor, and the 20 ft resistor. We can apply Kirchhoff s voltage 
law around this closed path. The resulting equation contains the two 
unknown currents: 

500 = 5/A + 2Gi(,. (2.22) 

Now we need to generate a second equation containing these two 
currents. Consider the closed path formed by the 20 ft resistor and the 
dependent current source. If we attempt to apply Kirchhoffs voltage 
law to this loop, we fail to develop a useful equation, because we don't 
know the value of the voltage across the dependent current source. In 
fact, the voltage across the dependent source is vv, which is the voltage 
we are trying to compute. Writing an equation for this loop does not 
advance us toward a solution. For this same reason, we do not use the 
closed path containing the voltage source, the 5 ft resistor, and the 
dependent source. 

There are three nodes in the circuit, so we turn to Kirchhoffs current 
law to generate the second equation. Node a connects the voltage source 
and the 5 ft resistor; as we have already observed, the current in these two 
elements is the same. Either node b or node c can be used to construct the 
second equation from Kirchhoffs current law. We select node b and pro
duce the following equation: 

to = 'A + 5zA = 6 'V (2.23) 

Solving Eqs. 2.22 and 2.23 for the currents, we get 

*A = 4 A, 

4 = 24 A. (2.24) 

Using Eq. 2.24 and Ohm's law for the 20 ft resistor, we can solve for the 
voltage v0: 

v0 = 20i„ = 480 V. 

Think about a circuit analysis strategy before beginning to write equa
tions. As we have demonstrated, not every closed path provides an oppor
tunity to write a useful equation based on Kirchhoffs voltage law. Not 
every node provides for a useful application of Kirchhoffs current law. 
Some preliminary thinking about the problem can help in selecting the 
most fruitful approach and the most useful analysis tools for a particular 
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problem. Choosing a good approach and the appropriate tools will usually 
reduce the number and complexity of equations to be solved. Example 2.10 
illustrates another application of Ohm's law and Kirchhoff s laws to a cir
cuit with a dependent source. Example 2.11 involves a much more compli
cated circuit, but with a careful choice of analysis tools, the analysis is 
relatively uncomplicated. 

Example 2.10 Applying Ohm's Law and Kirchhoffs Laws to Find an Unknown Voltage 

a) Use Kirchhoffs laws and Ohm's law to find the 
voltage va as shown in Fig. 2.23. 

b) Show that your solution is consistent with the 
constraint that the total power developed in the 
circuit equals the total power dissipated. 

2 n 

' 3 / , 3Cliv() 

Figure 2.23 • The circuit for Example 2.10. 

Applying Ohm's law to the 3 ft resistor gives 
the desired voltage: 

v0 = 3/,, = 3 V. 

b) To compute the power delivered to the voltage 
sources, we use the power equation in the form 
p = vi. The power delivered to the independent 
voltage source is 

p = (10)(-1.67) = -16.7 W. 

The power delivered to the dependent voltage 
source is 

Solution 

a) A close look at the circuit in Fig. 2.23 reveals that: 
• There are two closed paths, the one on the 

left with the current /s and the one on the 
right with the current ia. 

• Once i„ is known, we can compute v0. 
We need two equations for the two currents. 
Because there are two closed paths and both have 
voltage sources, we can apply Kirchhoffs voltage 
law to each to give the following equations: 

10 = 6/5, 

3/v = 2ia + 3/,,. 

Solving for the currents yields 

/> = (3/,)(-/,,) = (5)(-1) = - 5 W. 

Both sources are developing power, and the 
total developed power is 21.7 W. 

To compute the power delivered to the resis
tors, we use the power equation in the form 
p - /2/?.The power delivered to the 6 ft resistor is 

p = (1.67)2(6) = 16.7 W. 

The power delivered to the 2 ft resistor is 

p = (1)2(2) = 2 W. 

The power delivered to the 3 ft resistor is 

/> = (1)2(3) = 3W. 

is= 1.67 A, 

L = 1 A. 

The resistors all dissipate power, and the total 
power dissipated is 21.7 W, equal to the total 
power developed in the sources. 
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Example 2.11 Applying Ohm's Law and Kirchhoff's Law in an Amplifier Circuit 

The circuit in Fig. 2.24 represents a common config
uration encountered in the analysis and design of 
transistor amplifiers. Assume that the values of all 
the circuit elements — R\, R2, Rc> RE, Kr^ a r jd VQ— 
are known. 

a) Develop the equations needed to determine the 
current in each element of this circuit. 

b) From these equations, devise a formula for com
puting iB in terms of the circuit element values. 

Figure 2.24 A The circuit for Example 2.11. 

Solution 

A careful examination of the circuit reveals a total 
of six unknown currents, designated i\, i2, iB, /*c ig, 
and icc. In defining these six unknown currents, we 
used the observation that the resistor Rc is in series 
with the dependent current source /3/#. We now 
must derive six independent equations involving 
these six unknowns. 

a) We can derive three equations by applying 
Kirchhoff s current law to any three of the nodes 
a, b, c, and d. Let's use nodes a, b, and c and label 
the currents away from the nodes as positive: 

(1) i] + ic - icc = 0, 

(2) iB + i2 - i\ = 0, 

(3) iE - iB - ic = 0. 

A fourth equation results from imposing the 
constraint presented by the series connection of 
Rc and the dependent source: 

(4) ic = piB, 

We turn to Kirchhoff s voltage law in deriv
ing the remaining two equations. We need to 
select two closed paths in order to use 
Kirchhoff s voltage law. Note that the voltage 
across the dependent current source is unknown, 
and that it cannot be determined from the source 
current (3iB. Therefore, we must select two 
closed paths that do not contain this dependent 
current source. 

We choose the paths bcdb and badb and 
specify voltage drops as positive to yield 

(5) V0 + iERE - i2R2 = 0, 

(6) - i ^ + Vcc - 12R2 = 0. 

b) To get a single equation for iB in terms of 
the known circuit variables, you can follow 
these steps: 

• Solve Eq. (6) for £], and substitute this solu
tion for i1 into Eq. (2). 

• Solve the transformed Eq. (2) for /2, and sub
stitute this solution for i2 into Eq. (5). 

• Solve the transformed Eq. (5) for iE, and sub
stitute this solution for iE into Eq. (3). Use 
Eq. (4) to eliminate ic in Eq. (3). 

• Solve the transformed Eq. (3) for iB, and 
rearrange the terms to yield 

<B 
(VccRMRi + *2) - Vo 

OMaVtfi + Ka) + (1 + P)RE 
. (2.25) 

Problem 2.31 asks you to verify these steps. Note 
that once we know iB, we can easily obtain the 
remaining currents. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 3—Know how to calculate power for each element in a simple circuit 

2.9 For the circuit shown find (a) the current /j in 
microamperes, (b) the voltage v in volts, (c) the 
total power generated, and (d) the total power 
absorbed. 

Answer: (a) 25 /xA; 

(b) -2 V; 

(c) 6150 MW; 

(d)6150/iW. 

c) the power delivered by the independent cur
rent source, 

d) the power delivered by the controlled cur
rent source, 

e) the total power dissipated in the two resistors. 

54kI2 1.8 kn 

Answer: (a) 70 V; 

(b)210W; 

(c) 300 W; 

(d) 40 W; 

(e) 130 W. 

2.10 The current i^ in the circuit shown is 2 A. 
Calculate 

a) vs, 

b) the power absorbed by the independent 
voltage source, 

NOTE: Also try Chapter Problems 2.22 and 2.28. 

Practical Perspective 
Electrical Safety 
At the beginning of this chapter, we said that current through the body can 
cause injury. Let's examine this aspect of electrical safety. 

You might think that electrical injury is due to burns. However, that is 
not the case. The most common electrical injury is to the nervous system. 
Nerves use electrochemical signals, and electric currents can disrupt those 
signals. When the current path includes only skeletal muscles, the effects 
can include temporary paralysis (cessation of nervous signals) or involun
tary muscle contractions, which are generally not life threatening. However, 
when the current path includes nerves and muscles that control the supply 
of oxygen to the brain, the problem is much more serious. Temporary paral
ysis of these muscles can stop a person from breathing, and a sudden mus
cle contraction can disrupt the signals that regulate heartbeat. The result is 
a halt in the flow of oxygenated blood to the brain, causing death in a few 
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minutes unless emergency aid is given immediately. Table 2.1 shows a range 
of physiological reactions to various current levels. The numbers in this 
table are approximate; they are obtained from an analysis of accidents 
because, obviously, i t is not ethical to perform electrical experiments on 
people. Good electrical design will limit current to a few milliamperes or less 
under all possible conditions. 

TABLE 2.1 Physiological Reactions to Current Levels in Humans 

Physiological Reaction Current 

Barely perceptible 
Extreme pain 
Muscle paralysis 
Heart stoppage 

3-5 mA 
35-50 mA 
50-70 mA 
500 mA 

Note: Data taken from W. F. Cooper, Electrical Safety Engineering, 2d ed. (London: Butterworth, 
1986); and C. D. Winburn, Practical Electrical Safety (Monticello, N.Y.: Marcel Dekker, 1988). 

Now we develop a simplified electrical model of the human body. The 
body acts as a conductor of current, so a reasonable starting point is to 
model the body using resistors. Figure 2.25 shows a potentially dangerous 
situation. A voltage difference exists between one arm and one leg of a 
human being. Figure 2.25(b) shows an electrical model of the human body in 
Fig. 2.25(a). The arms, legs, neck, and trunk (chest and abdomen) each have 
a characteristic resistance. Note that the path of the current is through the 
trunk, which contains the heart, a potentially deadly arrangement. 

NOTE: Assess your understanding of the Practical Perspective by solving Chapter 
Problems 2.34-2.38. 

Figure 2.25 • (a) A human body with a voltage 
difference between one arm and one leg. (b) A sim
plified model of the human body with a voltage dif
ference between one arm and one leg. 

Summary 

The circuit elements introduced in this chapter are volt
age sources, current sources, and resistors: 

• An ideal voltage source maintains a prescribed volt
age regardless of the current in the device. An ideal 
current source maintains a prescribed current 
regardless of the voltage across the device. Voltage 
and current sources are either independent, that is, 
not influenced by any other current or voltage in the 
circuit; or dependent, that is, determined by some 
other current or voltage in the circuit. (See pages 26 
and 27.) 

• A resistor constrains its voltage and current to be 
proportional to each other. The value of the propor
tional constant relating voltage and current in a 

resistor is called its resistance and is measured in 
ohms. (See page 30.) 

Ohm's law establishes the proportionality of voltage 
and current in a resistor. Specifically, 

v = iR 

if the current flow in the resistor is in the direction of 
the voltage drop across it, or 

v = -iR 

if the current flow in the resistor is in the direction of 
the voltage rise across it. (See page 31.) 
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By combining the equation for power, p = vi, with 
Ohm's law, we can determine the power absorbed by a 
resistor: 

- ,2 r, _ p = rR = vl/R. 

(See page 32.) 

Circuits are described by nodes and closed paths. A 
node is a point where two or more circuit elements join. 
When just two elements connect to form a node, they 
are said to be in series. A closed path is a loop traced 
through connecting elements, starting and ending at the 
same node and encountering intermediate nodes only 
once each. (See pages 37-39.) 

The voltages and currents of interconnected circuit ele
ments obey Kirchhoffs laws: 

« Kirchhoff's current law states that the algebraic sum 
of all the currents at any node in a circuit equals zero. 
(See page 37.) 

• Kirchhoff's voltage law states that the algebraic sum 
of all the voltages around any closed path in a circuit 
equals zero. (See page 38.) 

A circuit is solved when the voltage across and the cur
rent in every element have been determined. By com
bining an understanding of independent and dependent 
sources, Ohm's law, and Kirchhoffs laws, we can solve 
many simple circuits. 

Problems 

Section 2.1 

2.1 If the interconnection in Fig. P2.1 is valid, find the 
total power developed in the circuit. If the intercon
nection is not valid, explain why. 

Figure P2.1 

50 V 

10 V e 
5 A e 

40 V 

2.2 If the interconnection in Fig. P2.2 is valid, find the 
total power developed by the voltage sources. If the 
interconnection is not valid, explain why. 

Figure P2.2 

40 V 

10 V( j 20V 100 V 

2.3 a) Is the interconnection of ideal sources in the cir
cuit in Fig. P2.3 valid? Explain. 

b) Identify which sources are developing power 
and which sources are absorbing power. 

c) Verify that the total power developed in the cir
cuit equals the total power absorbed. 

d) Repeat (a)-(c), reversing the polarity of the 
20 V source. 

Figure P2.3 

20 V 

15V 

2.4 If the interconnection in Fig. P2.4 is valid, find the 
power developed by the current sources. If the 
interconnection is not valid, explain why. 

Figure P2.4 

5A 

40 V e 
100 V f>A 
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2.5 If the interconnection in Fig. P2.5 is valid, find the 
total power developed in the circuit. If the intercon
nection is not valid, explain why. 

Figure P2.5 

Figure P2.8 

12V 

2.6 The interconnection of ideal sources can lead to an 
indeterminate solution. With this thought in mind, 
explain why the solutions for V\ and v2 in the circuit 
in Fig. P2.6 are not unique. 

Figure P2.6 

20 V e 
5mA(t J , ;i(t J15mA 60 V 

20 mA 

2.7 If the interconnection in Fig. P2.7 is valid, find the 
total power developed in the circuit. If the intercon
nection is not valid, explain why. 

20 V 

2.9 a) Is the interconnection in Fig. P2.9 valid? Explain. 

b) Can you find the total energy developed in the 
circuit? Explain. 

Figure P2.9 

20 V 

8A( f ) 100V 

Sections 2.2-2.3 

2.10 A pair of automotive headlamps is connected to a 
12 V battery via the arrangement shown in 
Fig. P2.10. In the figure, the triangular symbol • is 
used to indicate that the terminal is connected 
directly to the metal frame of the car. 

a) Construct a circuit model using resistors and an 
independent voltage source. 

b) Identify the correspondence between the ideal 
circuit element and the symbol component that 
it represents. 

Figure P2.7 Figure P2.10 

50 V 

6 iA \+/ 8 0 V M 

f J25A 

2.8 Find the total power developed in the circuit in 
Fie. P2.8 if v„ = 5 V. 
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2.11 The terminal voltage and terminal current were 
measured on the device shown in Fig. P2.11(a). The 
values of v and i are given in the table of 
Fig. P2.11(b). Use the values in the table to con
struct a circuit model for the device consisting of a 
single resistor from Appendix H. 

Figure P2.ll 

Figure P2.13 

(a) 

i (mA) 

-4 

-2 

2 

4 

6 

y(V) 

-108 

-54 

54 

108 

162 

(b) 

FT 
© 

»(V) 

-10 

-5 

5 

10 

15 

20 

p(mW) 

17.86 

4.46 

4.46 

17.86 

40.18 

71.43 

(a) (b) 

2.14 The voltage and current were measured at the ter
minals of the device shown in Fig. P2.14(a). The 
results are tabulated in Fig. P2.14(b). 

a) Construct a circuit model for this device using 
an ideal current source and a resistor. 

b) Use the model to predict the amount of power 
the device will deliver to a 20 il resistor. 

2.12 A variety of current source values were applied to 
the device shown in Fig. P2.12(a). The power 
absorbed by the device for each value of current is 
recorded in the table given in Fig. P2.12(b). Use the 
values in the table to construct a circuit model for 
the device consisting of a single resistor from 
Appendix H. 

Figure P2.12 

/ (/xA) 

50 

100 

150 

200 

250 

300 

p(mW) 

5.5 

22.0 

49.5 

88.0 

137.5 

198.0 

Figure P2.14 

^ - + 

(a) 

vt(V) 
100 

120 

140 

160 

180 

;,(A) 

0 

4 

8 

12 

16 

(b) 

(b) 

2.15 The voltage and current were measured at the ter
minals of the device shown in Fig. P2.15(a). The 
results are tabulated in Fig. P2.15(b). 

a) Construct a circuit model for this device using 
an ideal voltage source and a resistor. 

b) Use the model to predict the value of it when v, 

is zero. 

Figure P2.15 

2.13 A variety of voltage source values were applied to 
the device shown in Fig. P2.13(a). The power 
absorbed by the device for each value of voltage is 
recorded in the table given in Fig. P2.13(b). Use the 
values in the table to construct a circuit model for 
the device consisting of a single resistor from 
Appendix H. 

vt(V) 
50 

66 

82 

98 

114 

130 

*<A) 

0 

2 

4 

6 

8 

10 

(a) (b) 

http://P2.ll
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2.16 The table in Fig. P2.16(a) gives the relationship 
between the terminal current and voltage of 
the practical constant current source shown in 
Fig. P2.16(b). 

a) Plot is versus vs. 

b) Construct a circuit model of this current source 
that is valid for 0 < vs s 75 V. based on the 
equation of the line plotted in (a). 

c) Use your circuit model to predict the current 
delivered to a 2.5 kfl resistor. 

d) Use your circuit model to predict the open-circuit 
voltage of the current source. 

e) What is the actual open-circuit voltage? 

f) Explain why the answers to (d) and (e) are not 
the same. 

Figure P2.16 

Figure P2.17 

is (mA) 

20.0 

17.5 

15.0 

12.5 

9.0 

4.0 

0.0 

Vs (V) 

0 

25 

50 

75 

100 

125 

140 

«k(V) 

24 

22 

20 

18 

15 

10 

0 

is (mA) 

0 

8 

16 

24 

32 

40 

48 

CVS 

(a) (b) 

Section 2.4 

2.18 a) Find the currents ir and i2 in the circuit in 
PSPICE Rg.P2.18. 

MUITISIM ° 

b) Find the voltage va. 

c) Verify that the total power developed equals the 
total power dissipated. 

Figure P2.18 

1.5 A 

15011 

(a) (b) 

250 O 

2.17 The table in Fig. P2.17(a) gives the relationship 
between the terminal voltage and current of 
the practical constant voltage source shown in 
Fig. P2.17(b). 

a) Plot vs versus is. 

b) Construct a circuit model of the practical source 
that is valid for 0 < is < 24 mA, based on the 
equation of the line plotted in (a). (Use an ideal 
voltage source in series with an ideal resistor.) 

c) Use your circuit model to predict the current 
delivered to a 1 kO resistor connected to the 
terminals of the practical source. 

d) Use your circuit model to predict the current 
delivered to a short circuit connected to the ter
minals of the practical source. 

e) What is the actual short-circuit current? 

f) Explain why the answers to (d) and (e) are not 
the same. 

PSPICE 

MULTISIM 

2.19 Given the circuit shown in Fig. P2.19, find 

a) the value of (a, 

b) the value of /b, 

c) the value of v(„ 

d) the power dissipated in each resistor, 

e) the power delivered by the 50 V source. 

Figure P2.19 

50 V 8012 

2.20 The current ia in the circuit shown in Fig. P2.20 is 
P5PICE 2 mA. Find (a) i.,; (b) L: and (c) the power delivered 

MULTISIM V *• by the independent current source. 

http://Rg.P2.18
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Figure P2.20 

4kO 

Figure P2.23 

240 v r * j 

ion: 

5 0 
—-VW-

- 4 A 
4H 

— ' V W -

60 
- A W 

ion 

:14fi 

2.21 The current i(} in the circuit in Fig. P2.21 is 1 A. 

MULTISIM a ; r i n u i ] . 

b) Find the power dissipated in each resistor. 

c) Verify that the total power dissipated in the cir
cuit equals the power developed by the 150 V 
source. 

Figure P2.21 

150 V 25 O 

PSPICE 

MULTISIM 

2.22 The voltage across the 16 ft resistor in the circuit in 
Fig. P2.22 is 80 V, positive at the upper terminal. 

a) Find the power dissipated in each resistor. 

b) Find the power supplied by the 125 V ideal volt
age source. 

c) Verify that the power supplied equals the total 
power dissipated. 

Figure P2.22 

15 a 

125 V 6 
30 a i 6 a 

2.24 The variable resistor R in the circuit in Fig. P2.24 is 
'SPICE adjusted until va equals 60 V Find the value of R. 

Figure P2.24 

240 V 12 a 

2.25 The currents i] and i2 in the circuit in Fig. P2.25 are 
21 A and 14 A, respectively. 

a) Find the power supplied by each voltage source. 

b) Show that the total power supplied equals the 
total power dissipated in the resistors. 

Figure P2.25 

147 V 

147 V 

h.tsn 

35 a 

h 1110 a 

2.23 For the circuit shown in Fig. P2.23, find (a) R and 
(b) the power supplied by the 240 V source. PSPICE 

MULTISIM 

2.26 The currents /a and /b in the circuit in Fig. P2.26 are 
4 A and —2 A, respectively. 

a) Find ig, 

b) Find the power dissipated in each resistor. 

PSPICE 

MULTISIM 
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c) Find vg. 

d) Show that the power delivered by the current 
source is equal to the power absorbed by all the 
other elements. 

Figure P2.26 

ion 

Figure P2.29 

60 n 

100 V 

"i i so n ( | )40 n i v(1 J IO n 
r40i2 

2.30 For the circuit shown in Fig. P2.30, calculate (a) iA and 
>sptCE v0 and (b) show that the power developed equals the 

4 0 power absorbed. 

Section 2.5 

2.27 Find (a) /„, (b) ih and (c) i2 in the circuit in Fig. P2.27. 
PSPICE 

MULTISIM 

Figure P2.27 

12 ft 

18V 

Figure P2.30 

50 V 

5ia 

O 
',r 

iA | | 18 ft vAioa 

2.31 

20 V 

Derive Eq. 2.25. Hint: Use Eqs. (3) and (4) from 
Example 2.11 to express iE as a function of iB. Solve 
Eq. (2) for i2 and substitute the result into both 
Eqs. (5) and (6). Solve the "new" Eq. (6) for z'i and 
substitute this result into the "new" Eq. (5). Replace 
iE in the "new" Eq. (5) and solve for iB. Note that 
because iCc appears only in Eq. (1), the solution for 
iB involves the manipulation of only five equations. 

2.28 a) Find the voltage vv in the circuit in Fig. P2.28. 

MULTISIM b) Show that the total power generated in the cir
cuit equals the total power absorbed. 

2.32 
PSPICE 

MULTISIM 

Figure P2.28 

15.2 V 

lOkft 
-VW 

0.8 V 
500 ft 

25 V 

2.29 Find V\ and v* in the circuit shown in Fig. P2.29 
when v0 equals 5 V. (Hint: Start at the right end of 
the circuit and work back toward vr) 

PSPICE 

MULTISIM 

For the circuit shown in Fig. 2.24, R{ = 40 kO, 
R2 = 60 kO, Rc = 750 a , RE = 120 H, Vcc = 10 V, 
V0 = 600 mV, and /3 = 49. Calculate iB, ic, iE, u3d, 
b̂d* h-> l\-> vab' f co and v13. (Note: In the double sub

script notation on voltage variables, the first sub
script is positive with respect to the second 
subscript. See Fig. P2.32.) 

Figure P2.32 
3 

+ 
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Sections 2.1-2.5 

DESIGN 
PROBLEM 

2.33 It is often desirable in designing an electric wiring 
system to be able to control a single appliance from 
two or more locations, for example, to control a 
lighting fixture from both the top and bottom of a 
stairwell. In home wiring systems, this type of con
trol is implemented with three-way and four-way 
switches. A three-way switch is a three-terminal, 
two-position switch, and a four-way switch is a four-
terminal, two-position switch. The switches are shown 
schematically in Fig. P2.33(a), which illustrates a 
three-way switch, and P2.33(b), which illustrates 
a four-way switch. 

a) Show how two three-way switches can be con
nected between a and b in the circuit in 
Fig. P2.33(c) so that the lamp / can be turned ON 
or OFF from two locations. 

b) If the lamp (appliance) is to be controlled from 
more than two locations, four-way switches are 
used in conjunction with two three-way 
switches. One four-way switch is required for 
each location in excess of two. Show how one 
four-way switch plus two three-way switches can 
be connected between a and b in Fig. P2.33(c) to 
control the lamp from three locations. (Hint: 
The four-way switch is placed between the 
three-way switches.) 

Figure P2.33 

Position 1 Position 2 
(a) 

3 4 

Position 1 Position 2 
(b) 

-6 

2.34 a) Suppose the power company installs some 
PERSPECTIVE equipment that could provide a 250 V shock to a 

human being. Is the current that results danger
ous enough to warrant posting a warning sign 
and taking other precautions to prevent such a 
shock? Assume that if the source is 250 V, the 
resistance of the arm is 400 Cl, the resistance of 
the trunk is 50 Cl, and the resistance of the leg is 
200 Cl. Use the model given in Fig. 2.25(b). 

b) Find resistor values from Appendix H that could 
be used to build a circuit whose behavior is the 
closest to the model described in part (a). 

2.35 Based on the model and circuit shown in Fig. 2.25, 
PERSPECWE draw a circuit model of the path of current through 

the human body for a person touching a voltage 
source with both hands who has both feet at the 
same potential as the negative terminal of the volt
age source. 

PRACTICAL 
PERSPECTIVE 

2.36 a) Using the values of resistance for arm, leg, and 
trunk provided in Problem 2.34, calculate the 
power dissipated in the arm, leg, and trunk. 

b) The specific heat of water is 4.18 X 103 J/kg°C, 
so a mass of water M (in kilograms) heated by a 
power P (in watts) undergoes a rise in tempera
ture at a rate given by 

(IT 2.39 X ]0~4P 

dt M 
°C/s. 

Assuming that the mass of an arm is 4 kg, the 
mass of a leg is 10 kg, and the mass of a trunk is 
25 kg, and that the human body is mostly water, 
how many seconds does it take the arm, leg, and 
trunk to rise the 5°C that endangers living tissue? 

c) How do the values you computed in (b) com
pare with the few minutes it takes for oxygen 
starvation to injure the brain? 

2.37 A person accidently grabs conductors connected to 
PERSPECTIVE

 e a c n e n d °f a dc voltage source, one in each hand. 

a) Using the resistance values for the human body 
provided in Problem 2.34, what is the minimum 
source voltage that can produce electrical shock 
sufficient to cause paralysis, preventing the per
son from letting go of the conductors? 

b) Is there a significant risk of this type of accident 
occurring while servicing a personal computer, 
which typically has 5 V and 12 V sources? 

(c) 
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2.38 To understand why the voltage level is not the sole 
RSPECWE determinant of potential injury due to electrical 

shock, consider the case of a static electricity shock 
mentioned in the Practical Perspective at the start of 
this chapter. When you shuffle your feet across a 
carpet, your body becomes charged. The effect of 
this charge is that your entire body represents a volt
age potential. When you touch a metal doorknob, a 

voltage difference is created between you and the 
doorknob, and current flows—but the conduction 
material is air, not your body! 

Suppose the model of the space between your 
hand and the doorknob is a 1 Mfl resistance. What 
voltage potential exists between your hand and 
the doorknob if the current causing the mild shock 
is 3 mA? 
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C H A P T E R C O N T E N 

3.1 Resistors in Series p. 58 

3.2 Resistors in Parallel p. 59 

3.3 The Voltage-Divider and Current-Divider 
Circuits p. 61 

3.4 Voltage Division and Current Division p. 64 

3.5 Measuring Voltage and Current p. 66 

3.6 Measuring Resistance—The Wheatstone 
Bridge p. 69 

3.7 Delta-to-Wye (Pi-to-Tee) Equivalent 
Circuits p. 72 

1 Be able to recognize resistors connected in 
series and in parallel and use the rules for 
combining series-connected resistors and 
parallel-connected resistors to yield equivalent 
resistance. 

2 Know how to design simple voltage-divider and 
current-divider circuits. 

3 Be able to use voltage division and current 
division appropriately to solve simple circuits. 

4 Be able to determine the reading of an ammeter 
when added to a circuit to measure current; be 
able to determine the reading of a voltmeter 
when added to a circuit to measure voltage. 

5 Understand how a Wheatstone bridge is used to 
measure resistance. 

6 Know when and how to use delta-to-wye 
equivalent circuits to solve simple circuits. 

56 

Simple Resistive Circuits 
Our analytical toolbox now contains Ohm's law and Kirchhoffs 

laws. In Chapter 2 we used these tools in solving simple circuits. 

In this chapter we continue applying these tools, but on more-

complex circuits. The greater complexity lies in a greater number 

of elements with more complicated interconnections. This chap

ter focuses on reducing such circuits into simpler, equivalent cir

cuits. We continue to focus on relatively simple circuits for two 

reasons: (1) It gives us a chance to acquaint ourselves thoroughly 

with the laws underlying more sophisticated methods, and (2) it 

allows us to be introduced to some circuits that have important 

engineering applications. 

The sources in the circuits discussed in this chapter are lim

ited to voltage and current sources that generate either constant 

voltages or currents; that is, voltages and currents that are invari

ant with time. Constant sources are often called dc sources. The 

dc stands for direct current, a description that has a historical basis 

but can seem misleading now. Historically, a direct current was 

defined as a current produced by a constant voltage. Therefore, a 

constant voltage became known as a direct current, or dc, voltage. 

The use of dc for constant stuck, and the terms dc current and dc 

voltage are now universally accepted in science and engineering 

to mean constant current and constant voltage. 
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Practical Perspective 
A Rear Window Defroster 

The rear window defroster grid on an automobile is an exam
ple of a resistive circuit that performs a useful function. One 
such grid structure is shown on the left of the figure here. The 
grid conductors can be modeled with resistors, as shown on 
the right of the figure. The number of horizontal conductors 
varies with the make and model of the car but typically ranges 
from 9 to 16. 

How does this grid work to defrost the rear window? How 
are the properties of the grid determined? We will answer 
these questions in the Practical Perspective at the end of this 
chapter. The circuit analysis required to answer these ques
tions arises from the goal of having uniform defrosting in 
both the horizontal and vertical directions. 

57 
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3.1 Resistors in Series 

U | < RA 

Figure 3.1 A Resistors connected in series. 

In Chapter 2, we said that when just two elements connect at a single 
node, they are said to be in series. Series-connected circuit elements carry 
the same current. The resistors in the circuit shown in Fig. 3.1 are con
nected in series. We can show that these resistors carry the same current 
by applying Kirchhoffs current law to each node in the circuit. The series 
interconnection in Fig. 3.1 requires that 

h = '1 -i2 = i3 = £4 = -t5 = -i6 = i7, (3.1) 

Figure 3.2 A Series resistors with a single unknown 
current / v . 

which states that if we know any one of the seven currents, we know them 
all. Thus we can redraw Fig. 3.1 as shown in Fig. 3.2, retaining the identity 
of the single current iy 

To find ix, we apply Kirchhoffs voltage law around the single closed 
loop. Defining the voltage across each resistor as a drop in the direction of 
is gives 

- ¾ + (,/?] + isR2 + isRi + isR4 + isR$ + isR(, + isRi = 0, (3.2) 

or 

vs = i,(R{ + R2 + /?3 + R4 + R5 + R6 + R7). (3.3) 

The significance of Eq. 3.3 for calculating is is that the seven resistors can 
be replaced by a single resistor whose numerical value is the sum of the 
individual resistors, that is, 

Figure 3.3 A A simplified version of the circuit shown 
in Fig. 3.2. 

Rcq = R1 + R2 + R3 + R4 + R5 + R6 + R-

and 

vs = isR cq-

(3.4) 

(3.5) 

Thus we can redraw Fig. 3.2 as shown in Fig. 3.3. 
In general, if k resistors are connected in series, the equivalent single 

resistor has a resistance equal to the sum of the k resistances, or 

Combining resistors in series • 
/=1 

+ Rt. (3.6) 

<^> 
+ 

a 

<Req 

h 

Figure 3.4 A The black box equivalent of the circuit 
shown in Fig. 3.2. 

Note that the resistance of the equivalent resistor is always larger than 
that of the largest resistor in the series connection. 

Another way to think about this concept of an equivalent resistance is 
to visualize the string of resistors as being inside a black box. (An electri
cal engineer uses the term black box to imply an opaque container; that is, 
the contents are hidden from view. The engineer is then challenged to 
model the contents of the box by studying the relationship between the 
voltage and current at its terminals.) Determining whether the box con
tains k resistors or a single equivalent resistor is impossible. Figure 3.4 
illustrates this method of studying the circuit shown in Fig. 3.2. 
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3.2 Resistors in Parallel 
When two elements connect at a single node pair, they are said to be in 
parallel. Parallel-connected circuit elements have the same voltage across 
their terminals. The circuit shown in Fig. 3.5 illustrates resistors connected 
in parallel. Don't make the mistake of assuming that two elements are 
parallel connected merely because they are lined up in parallel in a circuit 
diagram. The defining characteristic of parallel-connected elements is that 
they have the same voltage across their terminals. In Fig. 3.6, you can see 
that R] and R3 are not parallel connected because, between their respec
tive terminals, another resistor dissipates some of the voltage. 

Resistors in parallel can be reduced to a single equivalent resistor 
using Kirchhoffs current law and Ohm's law, as we now demonstrate. In 
the circuit shown in Fig. 3.5, we let the currents / j , i2, h* a n d U be the cur
rents in the resistors R{ through JR4, respectively. We also let the positive 
reference direction for each resistor current be down through the resistor, 
that is, from node a to node b. From Kirchhoffs current law, 

Figure 3.5 A Resistors in parallel. 

Figure 3.6 A Nonparallel resistors. 

h = zi + h + h + 'V (3,7) 

The parallel connection of the resistors means that the voltage across each 
resistor must be the same. Hence, from Ohm's law, 

/i/?i = i2R2 = hR$ = UR4 (3.8) 

Therefore, 

h 

'2 

h 

vs 
Ri 

vs 
= Ri 

Vs 

*V 
l4 = 

RA 

and 

(3.9) 

Substituting Eq. 3.9 into Eq. 3.7 yields 

from which 

h = v* 
1 1 1 

— + — + — + 
R\ R2 A3 

1_ 

RA 

vs R eq * 1 

1 1 
+ h — + 

R2 R3 

(3.10) 

(3.11) 

Equation 3.11 is what we set out to show: that the four resistors in the cir
cuit shown in Fig. 3.5 can be replaced by a single equivalent resistor. The 
circuit shown in Fig. 3.7 illustrates the substitution. For k resistors con
nected in parallel, Eq. 3.11 becomes 

Figure 3.7 A Replacing the four parallel resistors shown 
in Fig. 3.5 with a single equivalent resistor. 

R eq 

V — - — — — 
,=i Ri Ri R2 Rk 

(3.12) < Combining resistors in parallel 

Note that the resistance of the equivalent resistor is always smaller than the 
resistance of the smallest resistor in the parallel connection. Sometimes, 
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Figure 3.8 A Two resistors connected in parallel. 

using conductance when dealing with resistors connected in parallel is more 
convenient. In that case,Eq. 3.12 becomes 

Gcq= 2 Gi = Gl + G2 + --- + Gk. (3.13) 
/ = 1 

Many times only two resistors are connected in parallel. Figure 3.8 
illustrates this special case. We calculate the equivalent resistance from 
Eq.3.12: 

1 
R cq 

J_ 
Rx

 + R2 

L - ^2 + #1 
R,R7 

or 

R 
eq 

R\R2 

Ri + &>' 

(3.14) 

(3.15) 

Thus for just two resistors in parallel the equivalent resistance equals 
the product of the resistances divided by the sum of the resistances. 
Remember that you can only use this result in the special case of just two 
resistors in parallel. Example 3.1 illustrates the usefulness of these results. 

Example 3.1 Applying Series-Parallel Simplification 

Find is, ix, and i2 in the circuit shown in Fig. 3.9. 

Solution 

We begin by noting that the 3 ft resistor is in series 
with the 6 ft resistor. We therefore replace this series 
combination with a 9 ft resistor, reducing the circuit 
to the one shown in Fig. 3.10(a). We now can replace 
the parallel combination of the 9 ft and 18 ft resis
tors with a single resistance of (18 X 9)/(18 + 9), or 
6 ft. Figure 3.10(b) shows this further reduction of 
the circuit. The nodes x and y marked on all diagrams 
facilitate tracing through the reduction of the circuit. 

From Fig. 3.10(b) you can verify that is equals 
120/10, or 12 A. Figure 3.11 shows the result at this 
point in the analysis. We added the voltage V\ to 
help clarify the subsequent discussion. Using Ohm's 
law we compute the value of V\. 

vt = (12)(6) = 72 V. (3.16) 

But V\ is the voltage drop from node x to node y, so 
we can return to the circuit shown in Fig. 3.10(a) 
and again use Ohm's law to calculate i\ and i2. Thus, 

-1 = ™ = 4 A 
18 18 ' 

! - ? - " • 

(3.17) 

(3.18) <2 

We have found the three specified currents by using 
series-parallel reductions in combination with 
Ohm's law. 

120 V 

3 0 

i i i sn /2|^6ft 

Figure 3.9 • The circuit for Example 3.1. 

4 a x 

120 V 

120 V 

Figure 3.10 • A simplification of the circuit shown in Fig. 3.9. 

120V 611 

Figure 3.11 • The circuit of Fig. 3.10(b) showing the numerical 
value of i$. 
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Before leaving Example 3.1, we suggest that you take the time to 
show that the solution satisfies Kirchhoffs current law at every node and 
Kirchhoffs voltage law around every closed path. (Note that there are 
three closed paths that can be tested.) Showing that the power delivered 
by the voltage source equals the total power dissipated in the resistors also 
is informative. (See Problems 3.8 and 3.9.) 

^ A S S E S S M E N T P R O B L E M 

Objective 1—Be able to recognize resistors connected in series and in parallel 

3.1 For the circuit shown, find (a) the voltage u, 
(b) the power delivered to the circuit by the 
current source, and (c) the power dissipated in 
the 10 O. resistor. 

Answer: (a) 60 V; 

(b)300W; 

(c) 57.6 W. 

NOTE: Also try Chapter Problems 3.1-3.4. 

7.2 n 

10X1 

33 The Voltage-Divider 
and Current-Divider Circuits 

At times—especially in electronic circuits—developing more than one 
voltage level from a single voltage supply is necessary. One way of doing 
this is by using a voltage-divider circuit, such as the one in Fig. 3.12. 

We analyze this circuit by directly applying Ohm's law and 
Kirchhoffs laws. To aid the analysis, we introduce the current i as shown in 
Fig. 3.12(b). From Kirchhoffs current law, R] and R2 carry the same cur
rent. Applying Kirchhoffs voltage law around the closed loop yields 

vs = iRi + iR2, (3.19) 

« i « 

b 
R2t 

+ 

IV\ 

+ 
lv2 

— 

M ̂ U 
*. 

1 ^ \ 

/?2« 

+ 

IV\ 

+ 

t V2 
— 

(a) (b) 

Figure 3.12 • (a) A voltage-divider circuit and (b) the 
voltage-divider circuit with current i indicated. 

or 

i = 

Now we can use Ohm's law to calculate vt and v2: 

Vi = iRi = -y, 
R] + R2 

(3.20) 

(3.21) 

v2 = iR2 

R^ 

i?! + R2 

(3.22) 

Equations 3.21 and 3.22 show that v{ and v2 are fractions of vs. Each frac
tion is the ratio of the resistance across which the divided voltage is 
defined to the sum of the two resistances. Because this ratio is always less 
than 1.0, the divided voltages vx and v2 are always less than the source 
voltage vs. 
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Figure 3.13 • A voltage divider connected to a load Rt 

If you desire a particular value of v2, and vs is specified, an infinite 
number of combinations of R^ and R2 yield the proper ratio. For example, 
suppose that vs equals 15 V and v2 is to be 5 V. Then v2/vs = | and, from 
Eq. 3.22, we find that this ratio is satisfied whenever R2 = {-Rp Other fac
tors that may enter into the selection of Rh and hence R2, include the 
power losses that occur in dividing the source voltage and the effects of 
connecting the voltage-divider circuit to other circuit components. 

Consider connecting a resistor RL in parallel with R2, as shown in 
Fig. 3.13. The resistor RL acts as a load on the voltage-divider circuit. A 
load on any circuit consists of one or more circuit elements that draw 
power from the circuit. With the load RL connected, the expression for the 
output voltage becomes 

Kx 
v„ = R, + RC( 

•vst (3.23) 

where 

R-IRI 

q
 R2 + RL 

(3.24) 

Substituting Eq. 3.24 into Eq. 3.23 yields 

R, 
v,, = /?,[! + (R2/RL)] + R2 

(3.25) 

Note that Eq. 3.25 reduces to Eq. 3.22 as RL—»oo, as it should. 
Equation 3.25 shows that, as long as RL :=>> R2, the voltage ratio vn/vs is 
essentially undisturbed by the addition of the load on the divider. 

Another characteristic of the voltage-divider circuit of interest is the 
sensitivity of the divider to the tolerances of the resistors. By tolerance we 
mean a range of possible values. The resistances of commercially avail
able resistors always vary within some percentage of their stated value. 
Example 3.2 illustrates the effect of resistor tolerances in a voltage-
divider circuit. 

Example 3.2 Analyzing the Voltage-Divider Circuit 

The resistors used in the voltage-divider circuit 
shown in Fig. 3.14 have a tolerance of ±10%. Find 
the maximum and minimum value of ?;,.. 

100 V 6 
25 left f R\ 

lOOkftf Ri 

Figure 3.14 A The circuit for Example 3.2. 

Solution 

From Eq. 3.22, the maximum value of v0 occurs when 
R2 is 10% high and R{ is 10% low, and the minimum 
value of va occurs when R2 is 10% low and R\ is 
10% high.Therefore 

z;„(max) = 

v„(min) = 

(100)(110) 

110 + 22.5 

(100)(90) 

90 + 27.5 

83.02 V, 

= 76.60 V. 

Thus, in making the decision to use 10% resistors in 
this voltage divider, we recognize that the no-load 
output voltage will lie between 76.60 and 83.02 V. 
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The Current-Divider Circuit 

The current-divider circuit shown in Fig. 3.15 consists of two resistors con
nected in parallel across a current source. The current divider is designed 
to divide the current is between Ri and R2. We find the relationship 
between the current is and the current in each resistor (that is, i\ and i2) by 
directly applying Ohm's law and Kirchhoffs current law. The voltage 
across the parallel resistors is 

(3.26) 

Figure 3.15 A The current-divider circuit. 

From Eq. 3.26, 

Zl - Rl + R2
h> 

* i . 
ii =--

R1 + R2 

(3.27) 

(3.28) 

Equations 3.27 and 3.28 show that the current divides between two resis
tors in parallel such that the current in one resistor equals the current 
entering the parallel pair multiplied by the other resistance and divided by 
the sum of the resistors. Example 3.3 illustrates the use of the current-
divider equation. 

Example 3.3 Analyzing a Current-Divider Circuit 

Find the power dissipated in the 6 ft resistor shown 
in Fig. 3.16. 

Solution 

First, we must find the current in the resistor by sim
plifying the circuit with series-parallel reductions. 
Thus, the circuit shown in Fig. 3.16 reduces to the 
one shown in Fig. 3.17. We find the current ia by 
usins the formula for current division: 

16 
i„ = 

16 + 4 
(10) = 8 A. 

Note that ia is the current in the 1.6ft resistor in 
Fig. 3.16. We now can further divide i„ between the 
6 ft and 4 ft resistors. The current in the 6 ft resistor is 

«6 = 6 + 4 
(8) = 3.2 A. 

and the power dissipated in the 6 ft resistor is 
p = (3.2)2(6) - 61.44W. 

Figure 3.16 • The circuit for Example 3.3. 

10AM J 16 ft 

Figure 3.17 A A simplification of the circuit shown in Fig, 3.16. 



64 Simple Resistive Circuits 

^ A S S E S S M E N T PROBLEMS 

Objective 2—Know how to design simple voltage-divider and current-divider circuits 

3.2 a) Find the no-load value of v0 in the 
circuit shown. 

b) Find v0 when RL is 150 kft. 

c) How much power is dissipated in the 25 kft 
resistor if the load terminals are accidentally 
short-circuited? 

d) What is the maximum power dissipated in 
the 75 kft resistor? 

3.3 a) Find the value of R that will cause 4 A of 
current to flow through the 80 ft resistor in 
the circuit shown. 

b) How much power will the resistor R from 
part (a) need to dissipate? 

c) How much power will the current source 
generate for the value of R from part (a)? 

200 V 

60 n 

20 A 

Answer: (a) 150 V; 

(b) 133.33 V; 

(c) 1.6 W; 

(d)0.3W. 

NOTE: Also try Chapter Problems 3.15, 3.16, and 3.18. 

Answer: (a) 30ft; 

(b)7680W; 

(c) 33,600 W. 

Figure 3.18 A Circuit used to illustrate voltage division. 

3,4 Voltage Division 
and Current Division 

We can now generalize the results from analyzing the voltage divider cir
cuit in Fig. 3.12 and the current-divider circuit in Fig. 3.15. The generaliza
tions will yield two additional and very useful circuit analysis techniques 
known as voltage division and current division. Consider the circuit shown 
in Fig. 3.18. 

The box on the left can contain a single voltage source or any other 
combination of basic circuit elements that results in the voltage v shown in 
the figure. To the right of the box are n resistors connected in series. We 
are interested in finding the voltage drop Vj across an arbitrary resistor Rj 
in terms of the voltage v. We start by using Ohm's law to calculate /, the 
current through all of the resistors in series, in terms of the current v and 
the n resistors: 

i — 
R, + Ri + + R, 

v (3.29) 

The equivalent resistance, i?eq, is the sum of the n resistor values 
because the resistors are in series, as shown in Eq. 3.6. We apply Ohm's 
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law a second time to calculate the voltage drop vj across the resistor Rp 
using the current i calculated in Eq. 3.29: 

RJ (3.30) ^ Voltage-division equation 

Note that we used Eq. 3.29 to obtain the right-hand side of Eq. 3.30. 
Equation 3.30 is the voltage division equation. It says that the voltage 
drop Vj across a single resistor Rj from a collection of series-connected 
resistors is proportional to the total voltage drop v across the set of series-
connected resistors. The constant of proportionality is the ratio of the sin
gle resistance to the equivalent resistance of the series connected set of 
resistors, or Rj/Rcq. 

Now consider the circuit shown in Fig. 3.19. The box on the left can 
contain a single current source or any other combination of basic circuit 
elements that results in the current i shown in the figure. To the right of 
the box are n resistors connected in parallel. We are interested in finding 
the current L through an arbitrary resistor Rj in terms of the current i. We 
start by using Ohm's law to calculate v, the voltage drop across each of the 
resistors in parallel, in terms of the current i and the n resistors: 

v = / ( j y j y . . . !*„) = iRcq. (3.31) 

The equivalent resistance of n resistors in parallel, Rcq, can be calculated 
using Eq. 3.12. We apply Ohm's law a second time to calculate the current 
ij through the resistor Rj, using the voltage v calculated in Eq. 3.31: 

V Req . 
lj = *T "V" (3.32) 4 Current-division equation 

Note that we used Eq. 3.31 to obtain the right-hand side of Eq. 3.32. 
Equation 3.32 is the current division equation. It says that the current i 
through a single resistor Rj from a collection of parallel-connected resis
tors is proportional to the total current /' supplied to the set of parallel-
connected resistors. The constant of proportionality is the ratio of the 
equivalent resistance of the parallel-connected set of resistors to the single 
resistance, or Req/Rj. Note that the constant of proportionality in the cur
rent division equation is the inverse of the constant of proportionality in 
the voltage division equation! 

Example 3.4 uses voltage division and current division to solve for 
voltages and currents in a circuit. 

Circuit 

t 

R}: : Ri\ 

Figure 3.19 • Circuit used to illustrate current division. 
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Using Voltage Division and Current Division to Solve a Circuit 

Use current division to find the current ia and use 
voltage division to find the voltage v0 for the circuit 
in Fig. 3.20. 

Solution 
We can use Eq. 3.32 if we can find the equivalent 
resistance of the four parallel branches containing 
resistors. Symbolically, 

Req = (36 + 44)| 10||(40 + 10 + 30)||24 

80|10||80|24 = 

Applying Eq. 3.32, 

1 

80 + 10 + 80 + 24 

6 H . 

/, = - ( 8 A) = 2 A. 

We can use Ohm's law to find the voltage drop 
across the 24 ft resistor: 

v = (24)(2) = 48 V. 

• A© 
36 a 

44 ft 

+ 

40 ft i 

10 ft i 24ft< 

30ilkr„ 

Figure 3.20 • The circuit for Example 3.4. 

This is also the voltage drop across the branch con
taining the 40 H, the 10 H, and the 30 ft resistors in 
series. We can then use voltage division to determine 
the voltage drop v0 across the 30 ft resistor given 
that we know the voltage drop across the series-
connected resistors, using Eq. 3.30. To do this, we 
recognize that the equivalent resistance of the 
series-connected resistors is 40 + 10 + 30 = 80 ft: 

30 
80 

(48 V) = 18 V. 

• / A S S E S S M E N T PROBLEM 

Objective 3—Be able to use voltage and current division to solve simple circuits 

3.4 a) Use voltage division to determine the 
voltage v0 across the 40 ft resistor in the 
circuit shown. 

b) Use v0 from part (a) to determine the cur
rent through the 40 ft resistor, and use this 
current and current division to calculate the 
current in the 30 ft resistor. 

c) How much power is absorbed by the 50 ft 
resistor? 

NOTE: Also try Chapter Problems 3.23 and 3.24. 

40 ft 50 ft 
-VA/-

60 V 

Answer: (a) 20 V; 

(b) 166.67 mA; 

(c) 347.22 mW. 

3.5 Measuring Voltage and Current 
When working with actual circuits, you will often need to measure volt
ages and currents. We will spend some time discussing several measuring 
devices here and in the next section, because they are relatively simple to 
analyze and offer practical examples of the current- and voltage-divider 
configurations we have just studied. 

An ammeter is an instrument designed to measure current; it is placed 
in series with the circuit element whose current is being measured. A 
voltmeter is an instrument designed to measure voltage; it is placed in par
allel with the element whose voltage is being measured. An ideal ammeter 
or voltmeter has no effect on the circuit variable it is designed to measure. 
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That is, an ideal ammeter has an equivalent resistance of 0 ft and func
tions as a short circuit in series with the element whose current is being 
measured. An ideal voltmeter has an infinite equivalent resistance and 
thus functions as an open circuit in parallel with the element whose volt
age is being measured. The configurations for an ammeter used to meas
ure the current in R± and for a voltmeter used to measure the voltage in R2 

are depicted in Fig. 3.21. The ideal models for these meters in the same cir
cuit are shown in Fig. 3.22. 

There are two broad categories of meters used to measure continuous 
voltages and currents: digital meters and analog meters. Digital meters meas
ure the continuous voltage or current signal at discrete points in time, called 
the sampling times. The signal is thus converted from an analog signal, which 
is continuous in time, to a digital signal, which exists only at discrete instants 
in time. A more detailed explanation of the workings of digital meters is 
beyond the scope of this text and course. However, you are likely to see and 
use digital meters in lab settings because they offer several advantages over 
analog meters. They introduce less resistance into the circuit to which they 
are connected, they are easier to connect, and the precision of the measure
ment is greater due to the nature of the readout mechanism. 

Analog meters are based on the dAr sonval meter movement which 
implements the readout mechanism. A d'Arsonval meter movement con
sists of a movable coil placed in the field of a permanent magnet. When cur
rent flows in the coil, it creates a torque on the coil, causing it to rotate and 
move a pointer across a calibrated scale. By design, the deflection of the 
pointer is directly proportional to the current in the movable coil. The coil is 
characterized by both a voltage rating and a current rating. For example, 
one commercially available meter movement is rated at 50 mV and 1 mA. 
This means that when the coil is carrying 1 mA, the voltage drop across the 
coil is 50 mV and the pointer is deflected to its full-scale position. A 
schematic illustration of a d'Arsonval meter movement is shown in Fig. 3.23. 

An analog ammeter consists of a d'Arsonval movement in parallel 
with a resistor, as shown in Fig. 3.24. The purpose of the parallel resistor is 
to limit the amount of current in the movement's coil by shunting some of 
it through RA. An analog voltmeter consists of a d'Arsonval movement in 
series with a resistor, as shown in Fig. 3.25. Here, the resistor is used to 
limit the voltage drop across the meter's coil. In both meters, the added 
resistor determines the full-scale reading of the meter movement. 

From these descriptions we see that an actual meter is nonideal; both the 
added resistor and the meter movement introduce resistance in the circuit to 
which the meter is attached. In fact, any instrument used to make physical 
measurements extracts energy from the system while making measurements. 
The more energy extracted by the instruments, the more severely the meas
urement is disturbed. A real ammeter has an equivalent resistance that is not 
zero, and it thus effectively adds resistance to the circuit in series with the ele
ment whose current the ammeter is reading. A real voltmeter has an equiva
lent resistance that is not infinite, so it effectively adds resistance to the 
circuit in parallel with the element whose voltage is being read. 

How much these meters disturb the circuit being measured depends 
on the effective resistance of the meters compared with the resistance in 
the circuit. For example, using the rule of l/10th, the effective resistance of 
an ammeter should be no more than 1/lOth of the value of the smallest 
resistance in the circuit to be sure that the current being measured is 
nearly the same with or without the ammeter. But in an analog meter, the 
value of resistance is determined by the desired full-scale reading we wish 
to make, and it cannot be arbitrarily selected. The following examples 
illustrate the calculations involved in determining the resistance needed in 
an analog ammeter or voltmeter. The examples also consider the resulting 
effective resistance of the meter when it is inserted in a circuit. 

Figure 3.21 • An ammeter connected to measure the 
current in Rlrand a voltmeter connected to measure the 
voltage across R2. 

4-^4-^AT 6 

0 
_? 

Figure 3.22 A A short-circuit model for the ideal amme
ter, and an open-circuit model for the ideal voltmeter. 

Scale 

Restoring spring 

Magnetic steel core 

Figure 3.23 A A schematic diagram of a d'Arsonval 
meter movement. 

Ammeter 
terminals RA 

cTArsonval 
movement 

Figure 3.24 A A dc ammeter circuit. 

Voltmeter f J\ d'Arsonval 
terminals v J movement 

Figure 3.25 A A dc voltmeter circuit. 
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Example 3.5 Using a d'Arsonval Ammeter 

a) A 50 mV, 1 mA d'Arsonval movement is to be 
used in an ammeter with a full-scale reading of 
10 mA. Determine RA. 

b) Repeat (a) for a full-scale reading of 1 A. 

c) How much resistance is added to the circuit 
when the 10 mA ammeter is inserted to measure 
current? 

d) Repeat (c) for the 1 A ammeter. 

Solution 

a) From the statement of the problem, we know 
that when the current at the terminals of the 
ammeter is 10 mA, 1 mA is flowing through the 
meter coil, which means that 9 mA must be 
diverted through RA, We also know that when 
the movement carries 1 mA, the drop across its 
terminals is 50 mV. Ohm's law requires that 

9 X 1 0 - ¾ = 50 X 10~\ 

or 

RA = 50/9 = 5.555 ft. 

b) When the full-scale deflection of the ammeter is 
1 A, RA must carry 999 mA when the movement 
carries 1 mA. In this case, then, 

999 X \(T3RA = 50 X 10"\ 

or 

RA = 50/999 « 50.05 mft. 

c) Let Rm represent the equivalent resistance of the 
ammeter. For the 10 mA ammeter, 

50 mV 
A , „ — ~rz ~ — 5 ft, 10 mA 

or, alternatively, 

(50)(50/9) 
m 50 + (50/9) 

d) For the 1 A ammeter 

50 mV 
R, 

or, alternatively, 

1 A 
= 0.050 ft. 

(50)(50/999) 

* - = 50 + (50/999) = a 0 5 0 a 

Example 3.6 Using a d'Arsonval Voltmeter 

a) A 50 mV, 1 mA d'Arsonval movement is to be 
used in a voltmeter in which the full-scale read
ing is 150 V. Determine Rv. 

b) Repeat (a) for a full-scale reading of 5 V. 

c) How much resistance does the 150 V meter 
insert into the circuit? 

d) Repeat (c) for the 5 V meter. 

Solution 
a) Full-scale deflection requires 50 mV across the 

meter movement, and the movement has a resist
ance of 50 O. Therefore we apply Eq. 3.22 with 
/?i = Rv, R2 = 50, vs = 150, and v2 = 50 mV: 

50 X 10"J 50 

Rp + 50 

Solving for Rv gives 

Rv = 149,950 ft. 

(150). 

b) For a full-scale reading of 5 V, 

50 X 10~3 - - ( 5 ) , 
Rn + 50v ; 

or 

R„ = 4950 a . 

c) If we let Rm represent the equivalent resistance 
of the meter, 

Rm = -^r~ = 150,000 ft, 
10~3A 

or, alternatively, 

Rm = 149,950 + 50 = 150,000 H. 

d) Then, 

5 V 
R,n — = 5000 ft, m 10-3 A 

or, alternatively, 

R,„ = 4950 + 50 = 5000 ft. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 4—Be able to determine the reading of ammeters and voltmeters 

3.5 a) Find the current in the circuit shown. 

b) If the ammeter in Example 3.5(a) is used to 
measure the current, what will it read? 

IV! loo n 

3.6 a) Find the voltage v across the 75 kft resistor 
in the circuit shown. 

b) If the 150 V voltmeter of Example 3.6(a) is 
used to measure the voltage, what will be 
the reading? 

15 kfi 

Answer: (a) 10 mA; 

(b) 9.524 mA. 

NOTE: Also try Chapter Problems 3.31 and 3.35. 

60 V 

Answer: (a) 50 V; 

(b) 46.15 V. 

v$75kCl 

3.6 Measuring Resistance— 
The Wheatstone Bridge 

Many different circuit configurations are used to measure resistance. Here 
we will focus on just one, the Wheatstone bridge. The Wheatstone bridge 
circuit is used to precisely measure resistances of medium values, that is, in 
the range of 1 12 to 1 Mft. In commercial models of the Wheatstone 
bridge, accuracies on the order of ±0.1% are possible. The bridge circuit 
consists of four resistors, a dc voltage source, and a detector. The resistance 
of one of the four resistors can be varied, which is indicated in Fig. 3.26 by 
the arrow through R$. The dc voltage source is usually a battery, which is 
indicated by the battery symbol for the voltage source v in Fig. 3.26. The 
detector is generally a d'Arsonval movement in the microamp range and is 
called a galvanometer. Figure 3.26 shows the circuit arrangement of the 
resistances, battery, and detector where Rh R2, and R3 are known resistors 
and Rx is the unknown resistor. 

To find the value of Rx, we adjust the variable resistor R5 until there is 
no current in the galvanometer. We then calculate the unknown resistor 
from the simple expression 

_ R2 
X i?! " 

(3.33) 

The derivation of Eq. 3.33 follows directly from the application of 
Kirchhoff s laws to the bridge circuit. We redraw the bridge circuit as 
Fig. 3.27 to show the currents appropriate to the derivation of Eq. 3.33. 
When ig is zero, that is, when the bridge is balanced, Kirchhoffs current 
law requires that 

Figure 3.26 • The Wheatstone bridge circuit. 

h = h> (3.34) 

' 2 — '.«• (3.35) Figure 3.27 • A balanced Wheatstone bridge [iR = 0). 
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Now, because is is zero, there is no voltage drop across the detector, and 
therefore points a and b are at the same potential. Thus when the bridge is 
balanced, Kirchhoff s voltage law requires that 

i$R3 = ixRx, (3.36) 

ilR[ = i2R2. (3.37) 

Combining Eqs. 3.34 and 3.35 with Eq. 3.36 gives 

ij/?3 = i2Rx. (3.38) 
We obtain Eq. 3.33 by first dividing Eq. 3.38 by Eq. 3.37 and then solving 
the resulting expression for Rx: 

R?, _ Rx 

R] R2 

from which 

(3.39) 

# 2 
(3.40) 

Now that we have verified the validity of Eq. 3.33, several comments 
about the result are in order. First, note that if the ratio Ri/Rx is unity, the 
unknown resistor Rx equals R$. In this case, the bridge resistor R3 must 
vary over a range that includes the value Rx. For example, if the unknown 
resistance were 1000 ft and 7?3 could be varied from 0 to 100 ft, the bridge 
could never be balanced. Thus to cover a wide range of unknown resistors, 
we must be able to vary the ratio R2(R\. In a commercial Wheatstone 
bridge, R] and R2 consist of decimal values of resistances that can be 
switched into the bridge circuit. Normally, the decimal values are 
1, 10,100, and 1000 ft so that the ratio R2/R^ can be varied from 0.001 to 
1000 in decimal steps. The variable resistor R3 is usually adjustable in inte
gral values of resistance from 1 to 11,000 ft. 

Although Eq. 3.33 implies that Rx can vary from zero to infinity, the 
practical range of Rx is approximately 1 11 to 1 MO. Lower resistances are 
difficult to measure on a standard Wheatstone bridge because of thermo
electric voltages generated at the junctions of dissimilar metals and 
because of thermal heating effects—that is, i2R effects. Higher resistances 
are difficult to measure accurately because of leakage currents. In other 
words, if Rx is large, the current leakage in the electrical insulation may be 
comparable to the current in the branches of the bridge circuit. 

I /ASSESSMENT PROBLEM 

Objective 5—Understand how a Wheatstone bridge is used to measure resistance 

3.7 The bridge circuit shown is balanced when 
#! = 100 ft, R2 = 1000 ft, and R3 = 150 ft. 
The bridge is energized from a 5 V dc source. 

a) What is the value of Rx? 

b) Suppose each bridge resistor is capable of 
dissipating 250 mW. Can the bridge be left 
in the balanced state without exceeding the 
power-dissipating capacity of the resistors, 
thereby damaging the bridge? 

Answer: (a) 1500 ft; 

(b) yes. 

NOTE: Also try Chapter Problem 3.51. 
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3.7 Delta-to-Wye (Pi-to-Tee) Equivalent 
Circuits 

The bridge configuration in Fig. 3.26 introduces an interconnection of 
resistances that warrants further discussion. If we replace the galvano
meter with its equivalent resistance Rm, we can draw the circuit shown in 
Fig. 3.28. We cannot reduce the interconnected resistors of this circuit to a 
single equivalent resistance across the terminals of the battery if restricted 
to the simple series or parallel equivalent circuits introduced earlier in this 
chapter. The interconnected resistors can be reduced to a single equiva
lent resistor by means of a delta-to-wye (A-to-Y) or pi-to-tee (7r-to-T) 
equivalent circuit.1 

The resistors /?j, Ri, and Rm (or jf?3, Rnl and Rx) in the circuit shown 
in Fig. 3.28 are referred to as a delta (A) interconnection because the 
interconnection looks like the Greek letter A. It also is referred to as a 
pi interconnection because the A can be shaped into a TT without dis
turbing the electrical equivalence of the two configurations. The electri
cal equivalence between the A and TT interconnections is apparent in 
Fig. 3.29. 

Tire resistors /?], Rm, and R3 (or R2, Rm and Rx) in the circuit shown in 
Fig. 3.28 are referred to as a wye (Y) interconnection because the inter
connection can be shaped to look like the letter Y. It is easier to see the Y 
shape when the interconnection is drawn as in Fig. 3.30. The Y configuration 
also is referred to as a tee (T) interconnection because the Y structure can 
be shaped into a T structure without disturbing the electrical equivalence of 
the two structures. The electrical equivalence of the Y and the T configura
tions is apparent from Fig. 3.30. 

Figure 3.31 illustrates the A-to-Y (or TT -to-T) equivalent circuit trans
formation. Note that we cannot transform the A interconnection into the 
Y interconnection simply by changing the shape of the interconnections. 
Saying the A-connccted circuit is equivalent to the Y-connected circuit 
means that the A configuration can be replaced with a Y configuration to 
make the terminal behavior of the two configurations identical. Thus if 
each circuit is placed in a black box, we can't tell by external measure
ments whether the box contains a set of A-connected resistors or a set of 
Y-connected resistors. This condition is true only if the resistance between 
corresponding terminal pairs is the same for each box. For example, the 
resistance between terminals a and b must be the same whether we use 
the A-connected set or the Y-connected set. For each pair of terminals in 
the A-connected circuit, the equivalent resistance can be computed using 
series and parallel simplifications to yield 

Rah — 

R he 

Rc(K + gft) 
Rtl + Rh + Rc 

Rg(Rl, + Re) 

R„ + Rh + Rc 

= Ri + R2, 

Ri "̂  R31 

Rh(Rc + Ra) 

(3.41) 

(3.42) 

(3.43) 

Figure 3.28 • A resistive network generated by a 
Wheatstone bridge circuit. 

b a 

Figure 3.29 A A A configuration viewed as a IT 
configuration. 

#i"Nff"' Ri a «-^wv—f--vw—• b 

R* 

c c 

Figure 3.30 A A Y structure viewed as a T structure. 

c c 

Figure 3.31 A The A-to-Y transformation. 

1 A and Y structures are present in a variety of useful circuits, not just resistive networks. 
Hence the A-to-Y transformation is a helpful tool in circuit analysis. 
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Straightforward algebraic manipulation of Eqs. 3.41-3.43 gives values 
for the Y-connected resistors in terms of the A-connected resistors 
required for the A-to-Y equivalent circuit: 

Rh Rc 
Ri = 

R, = 

R* = 

K 

Ra 

+ Rb + Rc' 

RcRa 

+ Rb + Rc: 

Ra Rb 
R„ + Rh + R, 

(3.44) 

(3.45) 

(3.46) 

Reversing the A-to-Y transformation also is possible. That is, we can start 
with the Y structure and replace it with an equivalent A structure. The 
expressions for the three A-connected resistors as functions of the three 
Y-connected resistors are 

R, 

Rh = 

Rc = 

R{R2 + /?2/?3 + R^Ri 

Ri 

RjRl + ^2^3 + foi^l 
R2 

R]R2 + R2R3 ~^~ R3R1 
R* 

(3.47) 

(3.48) 

(3.49) 

Example 3.7 illustrates the use of a A-to-Y transformation to simplify 
the analysis of a circuit. 

Example 3.7 Applying a Delta-to-Wye Transform 

Find the current and power supplied by the 40 V 
source in the circuit shown in Fig. 3.32. 

^vw 

12511 

37.5 0 

Figure 3.32 • The circuit for Example 3.7. 

Solution 
We are interested only in the current and power 
drain on the 40 V source, so the problem has been 
solved once we obtain the equivalent resistance 
across the terminals of the source. We can find this 
equivalent resistance easily after replacing either 
the upper A (100, 125, 25 O) or the lower A (40, 
25, 37.5 Cl) with its equivalent Y We choose to 
replace the upper A. We then compute the three Y 

resistances, defined in Fig. 3.33, from Eqs. 3.44 to 
3.46. Thus, 

100 x 125 en„ 
Ri = — ^ — = 5 0 n > 

/fc 

R, = 

250 

125 x 25 

250 

100 X 25 
250 

12.5 a , 

ion. 

Substituting the Y-resistors into the circuit 
shown in Fig. 3.32 produces the circuit shown in 
Fig. 3.34. From Fig. 3.34, we can easily calculate the 
resistance across the terminals of the 40 V source by 
series-parallel simplifications: 

(50)(50) 
Rci[ = 55 + 

100 son. 
The final step is to note that the circuit reduces to 
an 80 n resistor across a 40 V source, as shown in 
Fig. 3.35, from which it is apparent that the 40 V 
source delivers 0.5 A and 20 W to the circuit. 

ioon 125 0 

25 0 

Figure 3.33 • The equivalent Y resistors. 
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37.5 a 

Figure 3.34 A A transformed version of the circuit shown in 
Fig. 3.32. 

4 0 V _ = _ 4 / 8011 

Figure 3.35 A The final step in the simplification of the circuit 
shown in Fig. 3.32. 

I /ASSESSMENT PROBLEM 

Objective 6—Know when and how to use delta-to-wye equivalent circuits 

3.8 Use a Y-to-A transformation to find the voltage 
v in the circuit shown. 

Answer: 35 V. 

NOTE: Also try Chapter Problems 3.53,3.56, and 3.58. 

105 n 

Practical Perspective 
A Rear Window Defroster 
A model of a defroster grid is shown in Fig. 3.36, where x and y denote the 
horizontal and vertical spacing of the grid elements. Given the dimensions 
of the grid, we need to find expressions for each resistor in the grid such 
that the power dissipated per unit length is the same in each conductor. 
This will ensure uniform heating of the rear window in both the x and y 
directions. Thus we need to find values for the grid resistors that satisfy the 
following relationships: 

•2 R\ 

*• x *TM$ •«T H f 
R, 

R, 

R\ 

R, 
= il 

R, 
is 

R, 

(3.50) 

(3.51) 

R, 

R, £ i L 

R<i 

VA--
— W j 

# 2 
VA— 

'vw— 
' 3 

RA 

- * • l4 

R* 
^ W v -

- * • I 

VA e 

R, 

.Rh 

R, 

(3.52) Figure 3.36 • Model of a defroster grid. 

R, R< 
(3.53) 



74 Simple Resistive Circuits 

Figure 3.37 A A simplified model of the 
defroster grid. 

We begin the analysis of the grid by taking advantage of its structure. 
Note that if we disconnect the lower portion of the circuit (i.e., the resistors 
Rc, Rd, R4, and R5), the currents iy i2, h, and ib are unaffected. Thus, instead 
of analyzing the circuit in Fig. 3.36, we can analyze the simpler circuit in 
Fig. 3.37. Note further that after finding Ru R2, R3, Ra, and Rb in the circuit 
in Fig. 3.37, we have also found the values for the remaining resistors, since 

(3.54) 

^ 4 _ ^2> 

R5 = Rh 

Rc - Rb, 

Ki = Ra-

Begin analysis of the simplified grid circuit in Fig. 3.37 by writing 
expressions for the currents ix, i2, /3, and ib. To find ibt describe the equiva
lent resistance in parallel with /?3: 

R2(Ri+2RJ 
R'~2Rb + Rl + R2 + 2Ra 

(Ri + 2Ra)(R2 + 2Rh) + 2R2Rb 

(Rt + R2 + 2Ra) 

For convenience, define the numerator of Eq. 3.55 as 

D = (Ri + 2Ra)(R2 + 2Rh) + 2R2Rb, 

and therefore 

D 
R,= (/?, +R2 + 2Ra)' 

(3.55) 

(3.56) 

(3.57) 

I t follows directly that 

lb 
Re 

VM + Rl + 2Rg) 
D 

(3.58) 

Expressions for ix and i2 can be found directly from ib using current 
division. Hence 

ibR-i 
R{ + R2 + 2Ra 

VdcR2 

D 

and 

i2 = 
ib(Rl + 2Ra) VM + ZRa) 

(Rx + R2 + 2Ra) 

The expression for /3 is simply 

D 

«3 = 
R, 

(3.59) 

(3.60) 

(3.61) 

Now we use the constraints in Eqs. 3.50-3.52 to derive expressions for 

Ra, Rbl R2, and 2¾ as functions of /?,. From Eq. 3.51, 

Ra _ R\ 
y x 
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or 

Ra = ^ , = <rRh 

where 

o- = y/x. 

Then from Eq. 3.50 we have 

The ratio (ii/i2) is obtained directly from Eqs. 3.59 and 3.60: 

fo R2 

i2 Ri + 2Ra Ri + 2aR{ 

(3.62) 

(3.63) 

(3.64) 

When Eq. 3.64 is substituted into Eq. 3.63, we obtain, after some algebraic 
manipulation (see Problem 3.69), 

R2 = (1 + 2a)2 Rh (3.65) 

The expression for Rh as a function of Rr is derived from the constraint 

imposed by Eq. 3.52, namely that 

The ratio (i\/if,) is derived from Eqs. 3.58 and 3.59. Thus, 

h Ro 

ih {Rx + R2 + 2Ra) 

(3.66) 

(3.67) 

When Eq. 3.67 is substituted into Eq. 3.66, we obtain, after some algebraic 
manipulation (see Problem 3.69), 

R, 
(1 + 2a)2(rR] 

(3.68) 
4(1 + a)2 

Finally, the expression for R3 can be obtained from the constraint given 
in Eq. 3.50, or 

{ i ] (3.69) 

where 

R2R3 

D ' 

Once again, after some algebraic manipulation (see Problem 3.70), the 
expression for R$ can be reduced to 

(1 + 2,.)-

* 3 " (1 + „? *'• 

The results of our analysis are summarized in Table 3.1. 

(3.70) 

NOTE: Assess your understanding of the Practical Perspective by trying Chapter 
Problems 3.72-3.74. 

TABLE 3.1 Summary of Resistance 
Equations for the Defroster Grid 

Resistance 

Ra 

Rt, 

R2 

R3 

where a = y/x 

Expression 

o-Ri 

(1 + 2cr)2aR} 

4(1 + a)2 

(1 + 2a)2R{ 

(1 + 2<r)4 

(1 + 0-) 2~^l 
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Summary 

• Series resistors can be combined to obtain a single 
equivalent resistance according to the equation 

#eq = 2 * * = *1 + R2+ • ' + **' 
/ = 1 

(See page 58.) 

Parallel resistors can be combined to obtain a single 
equivalent resistance according to the equation 

1 k 1 1 1 1 
— = 2 — = — + — + ••• +—• 
^eq (=1 Ri Rl Rl Rk 

When just two resistors are in parallel, the equation for 
equivalent resistance can be simplified to give 

Rp-n — 
R[Rj 

eq /?! + R2 

(See pages 59-60.) 

• When voltage is divided between series resistors, as 
shown in the figure, the voltage across each resistor can 
be found according to the equations 

v2 = 

(See page 61.) 

Ri 

Ri 

Ri + R2
 s' 

< ) 

+ 

+ 
v2: 

Ui 

\Ri 

When current is divided between parallel resistors, as 
shown in the figure, the current through each resistor 
can be found according to the equations 

R-, 

'2 

Ri + R2 
V 

Ri + Ri 

(See page 63.) 

Voltage division is a circuit analysis tool that is used to 
find the voltage drop across a single resistance from a 

collection of series-connected resistances when the volt
age drop across the collection is known: 

Ri 

R eq 

where Vj is the voltage drop across the resistance Rj 
and v is the voltage drop across the series-connected 
resistances whose equivalent resistance is i?eq. (See 
page 65.) 

Current division is a circuit analysis tool that is used to 
find the current through a single resistance from a col
lection of parallel-connected resistances when the cur
rent into the collection is known: 

Rcq 

where /,- is the current through the resistance Rj and i is 
the current into the parallel-connected resistances 
whose equivalent resistance is Rcq. (See page 65.) 

A voltmeter measures voltage and must be placed in par
allel with the voltage being measured. An ideal voltmeter 
has infinite internal resistance and thus does not alter the 
voltage being measured. (See page 66.) 

An ammeter measures current and must be placed in 
series with the current being measured. An ideal amme
ter has zero internal resistance and thus does not alter 
the current being measured. (See page 66.) 

Digital meters and analog meters have internal resist
ance, which influences the value of the circuit variable 
being measured. Meters based on the d'Arsonval meter 
movement deliberately include internal resistance as a 
way to limit the current in the movement's coil. (See 
page 67.) 

The Wheatstone bridge circuit is used to make precise 
measurements of a resistor's value using four resistors, a dc 
voltage source, and a galvanometer. A Wheatstone bridge 
is balanced when the resistors obey Eq. 3.33, resulting in 
a galvanometer reading of 0 A. (See page 69.) 

A circuit with three resistors connected in a A configu
ration (or a IT configuration) can be transformed into an 
equivalent circuit in which the three resistors are Y con
nected (or T connected). The A-to-Y transformation is 
given by Eqs. 3.44-3.46; the Y-to-A transformation is 
given by Eqs. 3.47-3.49. (See page 72.) 
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Problems 

Sections 3.1-3.2 

3.1 For each of the circuits shown, 
a) identify the resistors connected in series, 

b) simplify the circuit by replacing the series-
connected resistors with equivalent resistors. 

3.2 For each of the circuits shown in Fig. P3.2, 

a) identify the resistors connected in parallel, 
b) simplify the circuit by replacing the parallel-

connected resistors with equivalent resistors. 

3.3 Find the equivalent resistance seen by the source in 
each of the circuits of Problem 3.1. 

3.4 Find the equivalent resistance seen by the source in 
each of the circuits of Problem 3.2. 

3.5 Find the equivalent resistance Ra^ for each of the 
PSPICE circuits in Fig. P3.5. 

MULTISIM 

3.6 Find the equivalent resistance #at, for each of the 
PSPICE c i r c u i ts in Fig. P3.6. 

MULTISIM ° 

Figure P3.1 

10V 

6 0 
>vw-

120 
^Wv < 

4 a: 

(a) 

9 0 

7 0 : 3mA( f 

200 mV 
300 O 
WV 

500 O 

Figure P3.2 

10 O 5kO 

60 V 1000¾ 25 0.¾ 22 O 

(a) 

© 
2kO 

50 mA t 10 kO 

6kO 
-^Wv—i 

9kO% 18 kO: 

(b) 

250 O 
/VW—r 

(c) 

Figure P3.5 
10 O 

a«—ww-
20 kO 

:5 O f 2 0 O 

6 0 
b»—"vW-

(a) 

30 kO i 60 kO 1200 kO \ 50 kO 

(b) 

Figure P3.6 

15 0 

25 0 

12 0 

24 0 
->vw-

(a) 

12()0 |60O |20O 

70 
-VW 

50 
b • 'vw 

(b) 

50 0 

40 O 

140 

24 0 

(c) 
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3.7 a) In the circuits in Fig. P3.7(a)-(c), find the equiv
alent resistance /?.,h. 

MULTISIM u 

b) For each circuit find the power delivered by the 
source. 

3.8 a) Find the power dissipated in each resistor in the 
circuit shown in Fie. 3.9. 

MULTISIM ° 

b) Find the power delivered by the 120 V source. 

c) Show that the power delivered equals the power 

dissipated. 

3.9 a) Show that the solution of the circuit in Fig. 3.9 
(see Example 3.1) satisfies Kirchhoffs current 
law at junctions x and y. 

b) Show that the solution of the circuit in Fig. 3.9 
satisfies Kirchhoffs voltage law around every 
closed loop. 

Sections 3.3-3.4 

3.10 Find the power dissipated in the 5 ft resistor in the 
PSPICE circuit in Fig. P3.10. 

MULTISIM ^ 

Figure P3.10 

PSPICE 

MULTISIM 

10A 12 n 

3.11 For the circuit in Fig. P3.11 calculate 
PSPICE . 

MULTISIM a ) V(> a n d l a . 

b) the power dissipated in the 6 ft resistor. 

c) the power developed by the current source. 

Figure P3.ll 

21) ft 10 ft 

3.12 a) Find an expression for the equivalent resistance 
of two resistors of value R in series. 

b) Find an expression for the equivalent resistance 
of n resistors of value R in series. 

c) Using the results of (a), design a resistive net
work with an equivalent resistance of 3 kft using 
two resistors with the same value from Appendix 
H. 

d) Using the results of (b), design a resistive net
work with an equivalent resistance of 4 kft using 
a minimum number of identical resistors from 
Appendix H. 

3.13 a) Find an expression for the equivalent resistance 
of two resistors of value R in parallel. 

b) Find an expression for the equivalent resistance 
of n resistors of value R in parallel. 

c) Using the results of (a), design a resistive net
work with an equivalent resistance of 5 kft 
using two resistors with the same value from 
Appendix H. 

d) Using the results of (b), design a resistive net
work with an equivalent resistance of 4 kft using 
a minimum number of identical resistors from 
Appendix H. 

3.14 In the voltage-divider circuit shown in Fig. P3.14, the 
PSPICE n o- load value of vn is 4 V. When the load resistance 

MULTISIM , , , , . , , , 

RL is attached across the terminals a and b, v() drops 
to 3 V. Find RL. 

Figure P3.14 

20 V 

40 ft 
-M(V-

R2 <V */. 

Figure P3.7 

15 V 

6ft 

b 2ft 

7f t (b) 

i5 A 60 ft 

10 ft 
~«vw 
5.6 ft 

A/W-
12 ft 

(c) 

http://P3.ll
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DESIGN 
PROBLEM 

PSPICE 

HULTISIM 

3.15 a) Calculate the no-load voltage v„ for the voltage-
divider circuit shown in Fig. P3.15. 

b) Calculate the power dissipated in Rx and R2. 
c) Assume that only 0.5 W resistors are available. 

The no-load voltage is to be the same as in (a). 
Specify the smallest ohmic values of R] and R2. 

Figure P3.15 

DE5IGN 
PROBLEM 

PSPICE 

MULTISIM 

/?i |4.7kfi 

160 V © 
/?2<3.3kfl v„ 

3.16 The no-load voltage in the voltage-divider circuit 
shown in Fig. P3.16 is 8 V. The smallest load resistor 
that is ever connected to the divider is 3.6 kfl. When 
the divider is loaded, v() is not to drop below 7.5 V. 

a) Design the divider circuit to meet the specifica
tions just mentioned. Specify the numerical values 
of /?, and R2. 

b) Assume the power ratings of commercially 
available resistors are 1/16,1/8,1/4,1, and 2 W. 
What power rating would you specify? 

Figure P3.16 

40 V 

3.17 Assume the voltage divider in Fig. P3.16 has been 
constructed from 1 W resistors. What is the smallest 
resistor from Appendix H that can be used as RL 

before one of the resistors in the divider is operat
ing at its dissipation limit? 

3.18 Specify the resistors in the circuit in Fig. P3.18 to 
PROBLEM meet the following design criteria: 

iH = 1 mA; vg = 1 V; iY = 2i2; 

i2 = 2i3; and i3 = 2iA. 

Figure P3.18 

3.19 
PSPICE 

a) The voltage divider in Fig. P3.19(a) is loaded 
with the voltage divider shown in Fig. P3.19(b); 
that is, a is connected to a', and b is connected to 
b'. Find vlt. 

b) Now assume the voltage divider in Fig. P3.19(b) 
is connected to the voltage divider in 
Fig. P3.19(a) by means of a current-controlled 
voltage source as shown in Fig. P3.19(c). Find va. 

c) What effect does adding the dependent-voltage 
source have on the operation of the voltage 
divider that is connected to the 380 V source? 

Figure P3.19 
75 kn 

380 V 25 kO 

- •b 

40 kO 
a'o vw f • 

60kft: 

b'< 

(a) 

75 kil 

(b) 

40 kn 
^vw— 

380 V 25 kH > 25,000/ 60 kn: 

3.20 There is often a need to produce more than one 
PROBLEM voltage using a voltage divider. For example, the 

memory components of many personal computers 
require voltages of —12 V, 5 V, and +12 V, all with 
respect to a common reference terminal. Select the 
values of R],R2, and /?3 in the circuit in Fig. P3.20 to 
meet the following design requirements: 

a) The total power supplied to the divider circuit 
by the 24 V source is 80 W when the divider is 
unloaded. 

b) The three voltages, all measured with respect to 
the common reference terminal, are V\ = 12 V, 
v2 = 5 V, and v$ ~ -12 V. 

Figure P3.20 

24 V © 
'ih 

/ ? , ; 

-• Common 

* , : 

3.21 
PSPICE 

MULTISIM 

»3 

a) Show that the current in the kth branch of the 
circuit in Fig. P3.21(a) is equal to the source current 
is times the conductance of the kth branch divided 
by the sum of the conductances, that is, 

h 
ipk 

Gt + G2 + G3 + • • • + Gk + • • • + G> 
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b) Use the result derived in (a) to calculate the cur
rent in the 5 0 resistor in the circuit in 
Fig.P3.21(b). 

Figure P3.21 

0 fRl fR* iR* ldfR 

(a) 

0.5 a ^5 o f 8 a f io ft 2̂0 a ̂  40 a 
L 

(b) 

3.22 A voltage divider like that in Fig. 3.13 is to be 
PROBLEM designed so that v0 = kvs at no load (RL = oo) and 

v0 = avs at full load (RL = Ra). Note that by defini
tion a < k < 1. 

a) Show that 

and 

_ k - a 
R\ - — ; K 

ak 

R, 
k — a 

a{\ - k) 
K 

b) Specify the numerical values of R[ and R2 if 
k = 0.85, a = 0.80, and R0 = 34 kO. 

c) If vs = 60 V, specify the maximum power that 
will be dissipated in R\ and R2. 

d) Assume the load resistor is accidentally short 
circuited. How much power is dissipated in Rx 

and /?2? 

3.24 Look at the circuit in Fig. P3.2(b). 

a) Use current division to find the current flowing 
from top to bottom in the 10 kfi resistor. 

b) Using your result from (a), find the voltage drop 
across the 10 kl l resistor, positive at the top. 

c) Starting with your result from (b), use voltage 
division to find the voltage drop across the 2 kfl 
resistor, positive at the top. 

d) Using your result from part (c), find the current 
through the 2 kH resistor from top to bottom. 

e) Starting with your result from part (d), use cur
rent division to find the current through the 
18 kft resistor from top to bottom. 

3.25 Find vx and v2 in the circuit in Fig. P3.25. 
PSPICE 

MULTISIM 

Figure P3.25 

90 a 6o a 

150 a :75 a 
t'2130 a 

40 a 

3.26 Find va in the circuit in Fig. P3.26. 
PSPICE 

MULTISIM 

Figure P3.26 

18 mA 

12 ka 

3.23 Look at the circuit in Fig. P3.2(a). 

a) Use voltage division to find the voltage drop 
across the 18 II resistor, positive at the left. 

b) Using your result from (a), find the current flow
ing in the 18 il resistor from left to right. 

c) Starting with your result from (b), use current 
division to find the current in the 25 fi resistor 
from top to bottom. 

d) Using your result from part (c), find the voltage 
drop across the 25 Q resistor, positive at the top. 

e) Starting with your result from (d), use voltage 
division to find the voltage drop across the 10 fl 
resistor, positive on the left. 

3.27 a) Find the voltage vx in the circuit in Fig. P3.27. 
PSPICE 

MULTISIM b) Replace the 18 V source with a general voltage 
source equal to Vs. Assume Vs is positive at the 
upper terminal. Find vx as a function of Vy 

Figure P3.27 

18V 
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3.28 Find ia and ig in the circuit in Fig. P3.28. 
'5P1CE _ . „ _ _ 

Fiqure P3.28 

12f t 

i3 n 

3.32 Suppose the d'Arsonval voltmeter described in 
Problem 3.31 is used to measure the voltage across 
the 45 ft resistor in Fig. P3.32. 

a) What will the voltmeter read? 

b) Find the percentage of error in the voltmeter 
reading if 

( measured value . 
% error = - 1 I X 100. 

\ true value 

Figure P3.32 

3.29 For the circuit in Fig. P3.29, calculate (a) ig and 
PSPKE (b) the power dissipated in the 30 ft resistor. 

4ULTISIM 

Figure P3.29 

300 V 20 ft 

3.30 The current in the 12 ft resistor in the circuit in 
PSPICE Fig. P3.30 is 1 A, as shown. 

WLTISIM 

a) Find vg. 
b) Find the power dissipated in the 20 ft resistor. 

Figure P3.30 

Section 3.5 

3.31 A d'Arsonval voltmeter is shown in Fig. P3.31. Find 
the value of Rv for each of the following full-scale 
readings: (a) 50 V, (b) 5 V, (c) 250 mV, and (d) 25 mV. 

50 mA 45 a 

3.33 The ammeter in the circuit in Fig. P3.33 has a resist
ance of 0.1 ft. Using the definition of the percent
age error in a meter reading found in Problem 3.32, 
what is the percentage of error in the reading of 
this ammeter? 

Figure P3.33 

60 ft 
'VW-

3.34 The ammeter described in Problem 3.33 is used to 
measure the current i0 in the circuit in Fig. P3.32. What 
is the percentage of error in the measured value? 

3.35 a) Show for the ammeter circuit in Fig. P3.35 that 
the current in the d'Arsonval movement is 
always 1/25th of the current being measured. 

b) What would the fraction be if the 100 mV, 2 m A 
movement were used in a 5 A ammeter? 

c) Would you expect a uniform scale on a dc 
d'Arsonval ammeter? 

Figure P3.31 Figure P3.35 
100 mV, 2 raA 

-AAA. * 

(25/12) ft 
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PSPICE 

MULTISIM 

3.36 A shunt resistor and a 50 mV, 1 mA d'Arsonval 
movement are used to build a 5 A ammeter. A 
resistance of 20 mO is placed across the terminals 
of the ammeter. What is the new full-scale range of 
the ammeter? 

3.37 The elements in the circuit in Fig. 2.24 have the follow
ing values: flj = 20 kO,, R2 = 80 kft, Rc = 0.82 kfl, 
RE = 0.2 kO, Vcc = 7.5 V, V() = 0.6 V, and j3 = 39. 

a) Calculate the value of iB in microamperes. 

b) Assume that a digital multimeter, when used as a 
dc ammeter, has a resistance of 1 kfl. If the 
meter is inserted between terminals b and 2 to 
measure the current iBr what will the meter read? 

c) Using the calculated value of iR in (a) as the cor
rect value, what is the percentage of error in the 
measurement? 

3.38 
DESIGN 

PROBLEM 

A d'Arsonval ammeter is shown in Fig. P3.38. 
Design a set of d'Arsonval ammeters to read the fol
lowing full-scale current readings: (a) 10 A, (b) 1 A, 
(c) 50 mA, and (d) 2 mA. Specify the shunt resistor 
for each ammeter. 

Figure P3.38 

3.39 A d'Arsonval movement is rated at 1 mA and 
PROBLEM 50 m V - Assume 0.5 W precision resistors are avail

able to use as shunts. What is the largest full-scale-
reading ammeter that can be designed using a 
single resistor? Explain. 

3.40 The voltmeter shown in Fig. P3.40(a) has a full-
scale reading of 750 V. The meter movement is 
rated 75 mV and 1.5 mA. What is the percentage of 
error in the meter reading if it is used to measure 
the voltage v in the circuit of Fig. P3.40(b)? 

Figure P3.40 
750 V 

30 m A M ) 25 kfR 125 kO f v 

Common 

3.41 You have been told that the dc voltage of a power 
supply is about 350 V. When you go to the instrument 
room to get a dc voltmeter to measure the power 
supply voltage, you find that there are only two dc 
voltmeters available. One voltmeter is rated 300 V 
full scale and has a sensitivity of 900 fl/V. The other 
voltmeter is rated 150 V full scale and has a sensitiv
ity of 1200 fl/V. {Hint: you can find the effective 
resistance of a voltmeter by multiplying its rated full-
scale voltage and its sensitivity.) 

a) How can you use the two voltmeters to check 
the power supply voltage? 

b) What is the maximum voltage that can be 
measured? 

c) If the power supply voltage is 320 V, what will 
each voltmeter read? 

3.42 Assume that in addition to the two voltmeters 
described in Problem 3.41, a 50 k(l precision resis
tor is also available. The 50 kft resistor is con
nected in series with the series-connected 
voltmeters. This circuit is then connected across 
the terminals of the power supply. The reading on 
the 300 V meter is 205.2 V and the reading on the 
150 V meter is 136.8 V. What is the voltage of the 
power supply? 

3.43 The voltage-divider circuit shown in Fig. P3.43 is 
designed so that the no-load output voltage is 
7/9ths of the input voltage. A d'Arsonval volt
meter having a sensitivity of 100 fl/V and a full-
scale rating of 200 V is used to check the operation 
of the circuit. 

a) What will the voltmeter read if it is placed across 
the 180 V source? 

b) What will the voltmeter read if it is placed across 
the 70 kO resistor? 

c) What will the voltmeter read if it is placed across 
the 20 kil resistor? 

d) Will the voltmeter readings obtained in parts (b) 
and (c) add to the reading recorded in part (a)? 
Explain why or why not. 

Figure P3.43 

180 V. 

:20 Ml 

:70kfi i\, 

(bj 
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3.44 The circuit model of a dc voltage source is shown in 
Fig. P3.44. The following voltage measurements are 
made at the terminals of the source: (1) With the 
terminals of the source open, the voltage is meas
ured at 50 raV, and (2) with a 15 Mfi resistor con
nected to the terminals, the voltage is measured at 
48.75 mV. All measurements are made with a digital 
voltmeter that has a meter resistance of 10 MH. 

a) What is the internal voltage of the source (vs) in 
millivolts? 

b) What is the internal resistance of the source (Rs) 
in kilo-ohms? 

Figure P3.44 

Terminals of 
' the source 

Figure P3.46 

3.45 Assume in designing the multirange voltmeter 
PROBLEM shown in Fig. P3.45 that you ignore the resistance of 

the meter movement. 

a) Specify the values of RiyR2, and R$. 

b) For each of the three ranges, calculate the percent
age of error that this design strategy produces. 

Figure P3.45 

100 V i • A W -

10 V»-

IV' 

* 2 
-AA/V 

*3 0 50 mV 
2 m A 

DESIGN 

PROBLEM 

Common 

3.46 Design a d'Arsonval voltmeter that will have the 
three voltage ranges shown in Fig. P3.46. 

a) Specify the values of Rh R2, and 7?3. 

b) Assume that a 750 kil resistor is connected 
between the 150 V terminal and the common 
terminal. The voltmeter is then connected to an 
unknown voltage using the common terminal 
and the 300 V terminal. The voltmeter reads 
288 V. What is the unknown voltage? 

c) What is the maximum voltage the voltmeter in (b) 
can measure? 

• 300 V 

- •150 V 

•30 V 

y x 5 0 m V 

/J 1mA 
1 Common 

3.47 A 600 kH resistor is connected from the 200 V ter
minal to the common terminal of a dual-scale volt
meter, as shown in Fig. P3.47(a). This modified 
voltmeter is then used to measure the voltage across 
the 360 kO resistor in the circuit in Fig. P3.47(b). 

a) What is the reading on the 500 V scale of 
the meter? 

b) What is the percentage of error in the measured 
voltage? 

Figure P3.47 
r 500 V 

600 k Q 

40 kO 

• , 

- • 5 0 0 VI 

600 V © 
360 m Modified | 

voltmeter I 
I 

I 
.Common 

—• I 
J 

(b) 
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Sections 3.6-3.7 Figure P3.53 

3.48 Assume the ideal voltage source in Fig. 3.26 is 
replaced by an ideal current source. Show that 
Eq. 3.33 is still valid. 

3.49 Find the power dissipated in the 3 kQ, resistor in the 
PSPICE circuit in Fig. P3.49. 

Figure P3.49 

192 V 

750 n 
A W 

25 kfl 

3.50 Find the detector current id in the unbalanced 
SPICE bridge in Fig. P3.50 if the voltage drop across the 

detector is negligible. 

Figure P3.50 

75 V 

20 kn 

3.51 The bridge circuit shown in Fig. 3.26 is energized 
PSPICE from a 24 V dc source. The bridge is balanced when 

MULT1SIM _ „ 

Rl = 500 H, /?2 = 1000 n , and R3 = 750 IX 
a) What is the value of Rxt 

b) How much current (in milliamperes) does the dc 
source supply? 

c) Which resistor in the circuit absorbs the most 
power? How much power does it absorb? 

d) Which resistor absorbs the least power? How 
much power does it absorb? 

3.52 In the Wheatstone bridge circuit shown in Fig. 3.26, 
PSPICE fa& r a t j Q RJR c a n be s e t to the following values: 

MULT I SIM 

0.001, 0.01,0.1,1,10,100, and 1000. The resistor R3 

can be varied from 1 to 11,110 ft, in increments of 
1 ft. An unknown resistor is known to lie between 
4 and 5 ft. What should be the setting of the R2/R\ 
ratio so that the unknown resistor can be measured 
to four significant figures? 

3.53 Use a A-to-Y transformation to find the voltages V\ 
and v-> in the circuit in Fig. P3.53. 

MUITISIM 

50 n 

3.54 Use a Y-to-A transformation to find (a) i0; (b) i\, 
(c) i< and (d) the power delivered by the ideal cur-

JLTISIM x v . ' . . . ««**!• 

rent source in the circuit in Fig. P3.54. 

Figure P3.54 

320 a 

/„T^60oa 

3.55 Find i?ab in the circuit in Fig. P3.55. 
PSPICE 

MULTISIM 

Figure P3.55 

9kH 9kn 

PSPICE 

MULTISIH 

3.56 a) Find the equivalent resistance Rah in the circuit 
in Fig. P3.56 by using a A-to-Y transformation 
involving the resistors R2, R$, and R4. 

b) Repeat (a) using a Y-to-A transformation 
involving resistors R2, R4, and R5. 

c) Give two additional A-to-Y or Y-to-A transfor
mations that could be used to find R.db. 

Figure P3.56 

a«-
13 n 

^21 i o n 
50 a 

40 n 

R* 

Rsisn 
R, 

4X1 

in 
Ry 
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3.57 a) Find the resistance seen by the ideal voltage 3.61 In the circuit in Fig. P3.61(a) the device labeled D 
PSPICE 

MULTISIM 
source in the circuit in Fig. P3.57. 

b) If vah equals 400 V, how much power is dissi
pated in the 31 Cl resistor? 

Figure P3.57 

a 

PSPICE 

MULTISIM 

Wab © 

1.5 n 
^ v w -

50 n 

7i a 

60 a : 

20 a 

100 a 

so a 
—vw-

40 a 

30a 

3i a 

20 a 

represents a component that has the equivalent cir
cuit shown in Fig. P3.61(b).The labels on the termi
nals of D show how the device is connected to the 
circuit. Find vx and the power absorbed by the device. 

Figure P3.61 

3.58 Find the equivalent resistance Rah in the circuit in 
PSPICE F i g p 3 5 8 i 

MULTISIM ° 

32 a 

20 a 

3.62 Derive Eqs. 3.44-3.49 from Eqs. 3.41-3.43. The fol
lowing two hints should help you get started in the 
right direction: 

1) To find Ri as a function of Ra, Rf}, and Rc, first 
subtract Eq. 3.42 from Eq. 3.43 and then add this 
result to Eq. 3.41. Use similar manipulations to 
find R2 and R3 as functions of R(l, Rb, and Rc. 

2) To find Rb as a function of R^, R2, and R3, take 
advantage of the derivations obtained by hint 
(1), namely, Eqs. 3.44-3.46. Note that these equa
tions can be divided to obtain 

3.59 Find iQ and the power dissipated in the 140 ft resis-
'SPICE t o r j n t ^ e c j r c u i t | n pig P359, 

Figure P3.59 

240 V 

22 a 

10 a 12a 

3.60 For the circuit shown in Fig. P3.60, find (a) ih (b) v, 
(c) i2, and (d) the power supplied by the voltage 

JLTISIM 

source. 
Figure P3.60 

120 a 

or R, 
R, 

Rh, 

and 

R2 = K 

R$ Rb 

Ri R[} R2 

~7T = ~TT, or R,. = —/?»,. 
R2 R; " R, 

Now use these ratios in Eq. 3.43 to eliminate Ra 

and Rc. Use similar manipulations to find Ra and 
Rc as functions of Ri, R2, and i?3, 

3.63 Show that the expressions for A conductances as 
functions of the three Y conductances are 

Ga-

Gh = 

n -

G1 

G, 

G2G3 

+ G2 + G3' 

G1G3 

+ G2 + G3' 

G\G2 

Gi + G2 + G 3 ' 

where 

43 a C - l r - l 
etc. 
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Sections 3.1-3.7 

3.64 
DESIGN 

PROBLEM 

DESIGN 
PROBLEM 

Resistor networks are sometimes used as volume-
control circuits. In this application, they are 
referred to as resistance attenuators or pads. A typi
cal fixed-attenuator pad is shown in Fig. P3.64. In 
designing an attenuation pad, the circuit designer 
will select the values of R] and R2 so that the ratio 
of v0 /v-, and the resistance seen by the input voltage 
source i?ab both have a specified value. 

a) Show that if /?ab = RL, then 

R2
L = 4RX(R1 + R2), 

Ri 

Vj 2R{ + R2 + RL 

that b) Select the values of Rl and R2 so 
^ab = ^ L = 600 a and vajvi = 0.6. 

c) Choose values from Appendix H that are closest 
to i?! and R2 from part (b). Calculate the per
cent error in the resulting values for R,db and 
VQ/V] if these new resistor values are used. 

Figure P3.64 

Attenuator 

3.65 a) The fixed-attenuator pad shown in Fig. P3.65 is 
called a bridged tee. Use a Y-to-A transforma
tion to show that /?ab = RL if R = RL. 

b) Show that when R = RL, the voltage ratio vJVj 
equals 0.50. 

Figure P3.65 

R 

R R 

R RL 

Fixed-attenuator pad 

2RRl 

3R2 -

3R -

-Rl 

- RL 

3.66 The design equations for the bridged-tee attenuator 
PROBLEM circuit in Fig. P3.66 are 

Ro 

V-, 3R + JRL' 

when R2 has the value just given. 

a) Design a fixed attenuator so that v, = 3.5u„ 
when RL = 300 fl. 

b) Assume the voltage applied to the input of the 
pad designed in (a) is 42 V. Which resistor in the 
pad dissipates the most power? 

c) How much power is dissipated in the resistor in 
part (b)? 

d) Which resistor in the pad dissipates the least 
power? 

e) How much power is dissipated in the resistor in 
part (d)? 

Figure P3.66 

R2 

R 
•AW 

R 
-AW-

R K. 

3.67 a) For the circuit shown in Fig. P3.67 the bridge is 
balanced when AR = 0. Show that if AR « R() 

MULTKIM , , - , , • . 

the bridge output voltage is approximately 
-ARR4 

(R<, + RA) 
2^1" 

b) Given R2 = 1 kft, R3 = 500 ft, R4 = 5 kft, and 
V{n - 6 V, what is the approximate bridge out
put voltage if AR is 3% of RJ 

c) Find the actual value of va in part (b). 

Figure P3.67 

R0 + AR 

vinO 
R< R% 
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3.68 a) If percent error is defined as 

approximate value 
% error = 

true value 
X 100 

show that the percent error in the approxima
tion of v0 in Problem 3.67 is 

-(AR)R3 
% error = —*—^TTT X 100. 

(i?2 + R3)R4 

b) Calculate the percent error in v,„ using the values 
in Problem 3.67(b). 

3.69 Assume the error in v() in the bridge circuit in 
PROB'LEM Fig- P3.67 is not to exceed 0.5%. What is the largest 

percent change in R0 that can be tolerated? 

3.70 a) Derive Eq. 3.65. 
PRACTICAL , . __ . „ 

PERSPECTIVE b) Derive Eq. 3.68. 

3.71 Derive Eq. 3.70. 
PRACTICAL 

PERSPECTIVE 

3.72 Suppose the grid structure in Fig. 3.36 is 1 m wide 
and the vertical displacement of the five horizontal 
grid lines is 0.025 m. Specify the numerical values of 
R[ - R5 and R(t - Rd to achieve a uniform power 
dissipation of 120 W/m, using a 12 V power supply. 
{Hint: Calculate a first, then R3, R^, Ra, Rh, and R2 

in that order.) 

3.73 Check the solution to Problem 3.72 by showing that 
PERSPECTIVE

 t n e t o t a l power dissipated equals the power devel-
PSPICE oped by the 12 V source. 

3.74 a) Design a defroster grid in Fig. 3.36 having five 
horizontal conductors to meet the following 
specifications: The grid is to be 1.5 m wide, the 
vertical separation between conductors is to be 
0.03 m, and the power dissipation is to be 
200 W/m when the supply voltage is 12 V. 

b) Check your solution and make sure it meets the 
design specifications. 

PRACTICAL 

PERSPECTIVE 

DESIGN 
PROBLEM 

PSPICE 

MULTISIM 
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^ C H A P T E R OBJECTIVES 

1 Understand and be able to use the node-voltage 
method to solve a circuit. 

2 Understand and be able to use the mesh-current 
method to solve a circuit. 

3 Be able to decide whether the node-voltage 
method or the mesh-current method is the 
preferred approach to solving a particular circuit. 

4 Understand source transformation and be able 
to use i t to solve a circuit. 

5 Understand the concept of the Thevenin and 
Norton equivalent circuits and be able to 
construct a Thevenin or Norton equivalent for a 
circuit. 

6 Know the condition for maximum power transfer 
to a resistive load and be able to calculate the 
value of the load resistor that satisfies this 
condition. 

Techniques of 
Circuit Analysis 
So far, we have analyzed relatively simple resistive circuits 
by applying Kirchhoffs laws in combination with Ohm's law. We 
can use this approach for all circuits, but as they become struc
turally more complicated and involve more and more elements, 
this direct method soon becomes cumbersome. In this chapter we 
introduce two powerful techniques of circuit analysis that aid in 
the analysis of complex circuit structures: the node-voltage 
method and the mesh-current method. These techniques give us 
two systematic methods of describing circuits with the minimum 
number of simultaneous equations. 

In addition to these two general analytical methods, in this 
chapter we also discuss other techniques for simplifying circuits. 
We have already demonstrated how to use series-parallel reduc
tions and A-to-Y transformations to simplify a circuit's structure. 
We now add source transformations and Thevenin and Norton 
equivalent circuits to those techniques. 

We also consider two other topics that play a role in circuit 
analysis. One, maximum power transfer, considers the conditions 
necessary to ensure that the power delivered to a resistive load by 
a source is maximized. Thevenin equivalent circuits are used in 
establishing the maximum power transfer conditions. The final 
topic in this chapter, superposition, looks at the analysis of cir
cuits with more than one independent source. 
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Practical Perspective 
Circuits with Realistic Resistors 
In the last chapter we began to explore the effect of imprecise 
resistor values on the performance of a circuit; specifically, on 
the performance of a voltage divider. Resistors are manufac
tured for only a small number of discrete values, and any given 
resistor from a batch of resistors will vary from its stated value 
within some tolerance. Resistors with tighter tolerance, say 
1%, are more expensive than resistors with greater tolerance, 
say 10%. Therefore, in a circuit that uses many resistors, it 
would be important to understand which resistor's value has 
the greatest impact on the expected performance of the circuit. 

In other words, we would like to predict the effect of varying 
each resistor's value on the output of the circuit. If we know 
that a particular resistor must be very close to its stated value 
for the circuit to function correctly, we can then decide to 
spend the extra money necessary to achieve a tighter tolerance 
on that resistor's value. 

Exploring the effect of a circuit component's value on the 
circuit's output is known as sensitivity analysis. Once we have 
presented additional circuit analysis techniques, the topic of 
sensitivity analysis will be examined. 
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4.1 Terminology 

(a) 

(b) 

Figure 4.1 A (a) A planar circuit, (b) The same circuit 
redrawn to verify that i t is planar. 

Figure 4.2 • A nonplanar circuit. 

To discuss the more involved methods of circuit analysis, we must define 
a few basic terms. So far, all the circuits presented have been planar 
circuits—that is, those circuits that can be drawn on a plane with no 
crossing branches. A circuit that is drawn with crossing branches still is 
considered planar if it can be redrawn with no crossover branches. For 
example, the circuit shown in Fig. 4.1(a) can be redrawn as Fig. 4.1(b); 
the circuits are equivalent because all the node connections have been 
maintained. Therefore, Fig. 4.1(a) is a planar circuit because it can be 
redrawn as one. Figure 4.2 shows a nonplanar circuit—it cannot be 
redrawn in such a way that all the node connections are maintained and 
no branches overlap. The node-voltage method is applicable to both pla
nar and nonplanar circuits, whereas the mesh-current method is limited 
to planar circuits. 

Describing a Circuit—The Vocabulary 

In Section 1.5 we defined an ideal basic circuit element. When basic cir
cuit elements are interconnected to form a circuit, the resulting intercon
nection is described in terms of nodes, paths, branches, loops, and meshes. 
We defined both a node and a closed path, or loop, in Section 2.4. Here 
we restate those definitions and then define the terms path, branch, and 
mesh. For your convenience, all of these definitions are presented in 
Table 4.1. Table 4.1 also includes examples of each definition taken from 
the circuit in Fig. 4.3, which are developed in Example 4.1. 

Example 4.1 Identifying Node, Branch, Mesh and Loop in a Circuit 

For the circuit in Fig. 4.3, identify 

a) all nodes. 

b) all essential nodes. 

c) all branches. 

d) all essential branches. 

e) all meshes. 

f) two paths that are not loops or essential branches. 

g) two loops that are not meshes. 

Solution 

a) The nodes are a, b, c, d, e, f, and g. 

b) The essential nodes are b, c, e, and g. 

c) The branches are v^, v2, i?i, R2, &»» &4* R$ 
R7, and I. 

d) The essential branches are v 
v2 - R4, R5, Rf,, /?7, and I. 

e) The meshes are V\ - R\ 
v2- R2~ R3 ~ Re ~ R4, R5 
R7 - I. 

R* 

- Rh R2 - R3, 

- R5 - R3 - R2, 
- R7 — Rfr and 

Figure 4.3 A A circuit illustrating nodes, branches, meshes, 
paths, and loops. 

f) R{ - R5 - R6 is a path, but it is not a loop 
(because it does not have the same starting and 
ending nodes), nor is it an essential branch 
(because it does not connect two essential nodes). 
v2 - R2 is also a path but is neither a loop nor an 
essential branch, for the same reasons. 

g) vi — R\ — R$ - R(, - R4 - v2 is a loop but is 
not a mesh, because there are two loops within it. 
I - j?5 — R6 is also a loop but not a mesh. 

NOTE: Assess your understanding of this material by trying Chapter Problems 4.1 and 4.3 
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Example From Fig. 4.3 

vx- R,- R5- /?6 

/?i 

«i " /?i 

v, - R{ - Rs - R6 - R4 - v2 

vx - /?i - R5 - R3- R2 

Fig. 4.3 is a planar circuit 
Fig. 4.2 is a nonplanar circuit 

Simultaneous Equations—How Many? 
The number of unknown currents in a circuit equals the number of 
branches, b, where the current is not known. For example, the circuit 
shown in Fig. 4.3 has nine branches in which the current is unknown. 
Recall that we must have b independent equations to solve a circuit with 
b unknown currents. If we let n represent the number of nodes in the circuit, 
we can derive n - 1 independent equations by applying Kirchhoff's cur
rent law to any set of n — 1 nodes. (Application of the current law to the 
rtth node does not generate an independent equation, because this equa
tion can be derived from the previous n — 1 equations. See Problem 4.5.) 
Because we need b equations to describe a given circuit and because we 
can obtain n — 1 of these equations from Kirchhoff's current law, we must 
apply Kirchhoff's voltage law to loops or meshes to obtain the remaining 
b - (n - 1) equations. 

Thus by counting nodes, meshes, and branches where the current 
is unknown, we have established a systematic method for writing the 
necessary number of equations to solve a circuit. Specifically, we apply 
Kirchhoff's current law to n — 1 nodes and Kirchhoff's voltage law to 
b - (n — I) loops (or meshes).These observations also are valid in terms 
of essential nodes and essential branches. Thus if we let ne represent the 
number of essential nodes and be the number of essential branches where 
the current is unknown, we can apply Kirchhoffs current law at ne - 1 
nodes and Kirchhoff's voltage law around bc — (ne — 1) loops or meshes. 
In circuits, the number of essential nodes is less than or equal to the num
ber of nodes, and the number of essential branches is less than or equal to 
the number of branches. Thus it is often convenient to use essential nodes 
and essential branches when analyzing a circuit, because they produce 
fewer independent equations to solve. 

A circuit may consist of disconnected parts. An example of such a cir
cuit is examined in Problem 4.3. The statements pertaining to the number 
of equations that can be derived from Kirchhoffs current law, / 2 - 1 , and 
voltage law, b — (n - 1), apply to connected circuits. If a circuit has 
n nodes and b branches and is made up of $ parts, the current law can be 

TABLE 4.1 Terms for Describing Circuits 

Name Definition 

node A point where two or more circuit elements join 

essential node A node where three or more circuit elements join 

path A trace of adjoining basic elements with no 

elements included more than once 

branch A path that connects two nodes 

essential branch A path which connects two essential nodes without 

passing through an essential node 

loop A path whose last node is the same as the starting node 

mesh A loop that does not enclose any other loops 

planar circuit A circuit that can be drawn on a plane with no 
crossing branches 



applied n - s times, and the voltage law b - n + s times. Any two sepa
rate parts can be connected by a single conductor. This connection always 
causes two nodes to form one node. Moreover, no current exists in the sin
gle conductor, so any circuit made up of s disconnected parts can always 
be reduced to a connected circuit. 

The Systematic Approach—An Illustration 

We now illustrate this systematic approach by using the circuit shown in 
Fig. 4.4. We write the equations on the basis of essential nodes and 
branches. The circuit has four essential nodes and six essential branches, 
denoted i] - /6, for which the current is unknown. 

We derive three of the six simultaneous equations needed by applying 
Kirchhoff s current law to any three of the four essential nodes. We use the 
nodes b, c, and e to get 

-ix + i2 + /6 — / = 0, 

*i _ h " k = 0, 

/3 + i4 - i2 = 0. (4.1) 

We derive the remaining three equations by applying Kirchhoff's voltage 
law around three meshes. Because the circuit has four meshes, we need to 
dismiss one mesh. We choose R7 — /, because we don't know the voltage 
across /.1 

Using the other three meshes gives 

R\h + Rsk + h(R2 + R3) ~ vt-0, 

-h(R2 + R3) + M?6 + ^ 4 ~ v2 = 0, 

- / 2*5 + i6R7 - i4R6 = 0. (4.2) 

Rearranging Eqs. 4.1 and 4.2 to facilitate their solution yields the set 

- i i + i2 + O/3 + O/4 + 0ts + k = / , 

h + 0*2 ~ *3 + 0*4 — '5 + 0*6 = 0, 

Oil ~ h + *3 + *4 + 0*5 + 0¾ = 0, 

Rli-i + R5i2 + (R2 + R3)i3 + 0i4 + 0i5 + 0/6 = vh 

0it + O/2 - (R2 + #3>*3 + ^6*4 + R4s + 0*6 = »2, 

0/, - R5i2 + 0/3 - R6i4 + 0i5 + R7i6 = 0. (4.3) 

Note that summing the current at the nth node (g in this example) gives 

*5 " *4 - / 6 + / = 0. (4.4) 

We say more about this decision in Section 4.7. 
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Equation 4.4 is not independent, because we can derive it by summing 
Eqs. 4.1 and then multiplying the sum by — 1. Thus Eq. 4.4 is a linear com
bination of Eqs. 4.1 and therefore is not independent of them. We now 
carry the procedure one step further. By introducing new variables, we can 
describe a circuit with just n — 1 equations or just h - (n - 1) equations. 
Therefore these new variables allow us to obtain a solution by manipulat
ing fewer equations, a desirable goal even if a computer is to be used to 
obtain a numerical solution. 

The new variables are known as node voltages and mesh currents. The 
node-voltage method enables us to describe a circuit in terms of ne — 1 
equations; the mesh-current method enables us to describe a circuit in 
terms of bc — (ne - 1) equations. We begin in Section 4.2 with the node-
voltage method. 

NOTE: Assess your understanding of this material by trying Chapter 
Problems 4.2 and 4.4 

4.2 Introduction to the 
Node-Voltage Method 

We introduce the node-voltage method by using the essential nodes of the 
circuit. The first step is to make a neat layout of the circuit so that no 
branches cross over and to mark clearly the essential nodes on the circuit 
diagram, as in Fig. 4.5. This circuit has three essential nodes (ne = 3); there
fore, we need two (ne - 1) node-voltage equations to describe the circuit. 
The next step is to select one of the three essential nodes as a reference node. 
Although theoretically the choice is arbitrary, practically the choice for the 
reference node often is obvious. For example, the node with the most 
branches is usually a good choice. The optimum choice of the reference node 
(if one exists) will become apparent after you have gained some experience 
using this method. In the circuit shown in Fig. 4.5, the lower node connects 
the most branches, so we use it as the reference node. We flag the chosen ref
erence node with the symbol T, as in Fig. 4.6. 

After selecting the reference node, we define the node voltages on the 
circuit diagram. A node voltage is defined as the voltage rise from the ref
erence node to a nonreference node. For this circuit, we must define two 
node voltages, which are denoted Vi and v2 in Fig. 4.6. 

We are now ready to generate the node-voltage equations. We do so by 
first writing the current leaving each branch connected to a nonreference 
node as a function of the node voltages and then summing these currents to 
zero in accordance with Kirchhoff s current law. For the circuit in Fig. 4.6, 
the current away from node 1 through the 1 ft resistor is the voltage drop 
across the resistor divided by the resistance (Ohm's law). The voltage drop 
across the resistor, in the direction of the current away from the node, is 
vl - 10. Therefore the current in the 1 ft resistor is (vi - 10)/1. Figure 4.7 
depicts these observations. It shows the 10 V - l ft branch, with the appro
priate voltages and current. 

This same reasoning yields the current in every branch where the cur
rent is unknown. Thus the current away from node 1 through the 5 ft 
resistor is v%/5, and the current away from node 1 through the 2 ft resistor 
is (-y, - v2)/2. The sum of the three currents leaving node 1 must equal 
zero; therefore the node-voltage equation derived at node 1 is 

- 10 V\ V\ - v2 
+ — + — = 0. 

1 5 2 

10 V 10ft ( I J2A 

Figure 4.5 A A circuit used to illustrate the node-voltage 
method of circuit analysis. 

1ft 1 2f t 2 

10 V 

Figure 4.6 A The circuit shown in Fig. 4.5 with a 
reference node and the node voltages. 

(4.5) 

10 V 

Figure 4.7 A Computation of the branch current i. 
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The node-voltage equation derived at node 2 is 

v-> - V] Vi 
(4.6) 

Note that the first term in Eq. 4.6 is the current away from node 2 through 
the 2 ft resistor, the second term is the current away from 
node 2 through the 10 H resistor, and the third term is the current away 
from node 2 through the current source. 

Equations 4.5 and 4.6 are the two simultaneous equations that 
describe the circuit shown in Fig. 4.6 in terms of the node voltages vx and 
v2. Solving for v-\ and v2 yields 

Vl = 
100 
11 

= 9.09 V 

v = 1— = 10.91 V. 
11 

Once the node voltages are known, all the branch currents can be cal
culated. Once these are known, the branch voltages and powers can be 
calculated. Example 4.2 illustrates the use of the node-voltage method. 

Example 4.2 Using the Node-Voltage Method 

a) Use the node-voltage method of circuit analysis 
to find the branch currents /a, /b, and ic in the cir
cuit shown in Fig. 4.8. 

b) Find the power associated with each source, and 
state whether the source is delivering or absorb
ing power. 

Solution 

a) We begin by noting that the circuit has two essen
tial nodes; thus we need to write a single node-
voltage expression. We select the lower node as 
the reference node and define the unknown node 
voltage as V\. Figure 4.9 illustrates these deci
sions. Summing the currents away from node 1 
generates the node-voltage equation 

5 fl 

Solving 

Hence 

V\ 

foi 

5 

*>i 

4 

)0 vx 

10 

gives 

»1 = 

50 -
5 

40 
/b ~ io 

40 
'c " 40 

'*>i 
+ — - 3 

40 

40 V. 

40 

— = 2 A, 

= 4 A, 

= 1 A. 

50 V 

Figure 4.8 A The circuit for Example 4.2. 

5 (1 1 

40ft ( f J3A 50 V 

Figure 4.9 • The circuit shown in Fig. 4.8 with a reference 
node and the unknown node voltage vu 

b) The power associated with the 50 V source is 

Psov = -50/ a = -100 W (delivering). 

The power associated with the 3 A source is 

P3A = ~3i>i = -3(40) = -120 W (delivering). 

We check these calculations by noting that the 
total delivered power is 220 W. The total power 
absorbed by the three resistors is 4(5) + 16(10) 
+ 1(40), or 220 W, as we calculated and as it 
must be. 
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^ASSESSMENT PROBLEMS 

Objective 1—Understand and be able to use the node-voltage method 

4.1 a) For the circuit shown, use the node-voltage 
method to find v\, v2, and /]. 

b) How much power is delivered to the circuit 
by the 15 A source? 

c) Repeat (b) for the 5 A source 

5H 

f ) l 5 A r, |60O iisd fia ihC\ )5 A 

4.2 Use the node-voltage method to find v in the 
circuit shown. 

611 2 0 
A/VV VW-

4 0 
A W 

12 n 30 V 

Answer: 15 V. 

Answer: (a) 60 V, 10 V, 10 A; 

(b)900W; 
(c) -50 W. 

NOTE: Also try Chapter Problems 4.8, 4.9, and 4.13. 

4.3 The Node-Voltage Method 
and Dependent Sources 

If the circuit contains dependent sources, the node-voltage equations must 
be supplemented with the constraint equations imposed by the presence 
of the dependent sources. Example 4.3 illustrates the application of the 
node-voltage method to a circuit containing a dependent source. 

Example 4.3 Using the Node-Voltage Method with Dependent Sources 

Use the node-voltage method to find the power dis
sipated in the 5 O resistor in the circuit shown in 
Fig. 4.10. 

20 V 

Figure 4.10 • The circuit for Example 4.3. 

Solution 

We begin by noting that the circuit has three essen
tial nodes. Hence we need two node-voltage equa
tions to describe the circuit. Four branches terminate 

on the lower node, so we select it as the reference 
node. The two unknown node voltages are defined 
on the circuit shown in Fig. 4.11. Summing the cur
rents away from node 1 generates the equation 

2 20 5 

Summing the currents away from node 2 yields 

-*——- + — + = 0. 
5 10 2 

As written, these two node-voltage equations con
tain three unknowns, namely, 1/j, v2, and i(!}. To elim
inate /'0 we must express this controlling current in 
terms of the node voltages, or 

!<b 
V\ V-, 
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Substituting this relationship into the node 2 equa
tion simplifies the two node-voltage equations to 

0.75vi - 0.2¾ = 

—V\ + 1.6¾¾ = 

Solving for V\ and v2 gives 

t>i = 16 V 

and 
v2 = 10 V. 

Then, 

16 - 10 
i . = = 

10, 

= 0. 

1 9 L 

5 

Psn = (1-44)(5) = 7.2 W. 

A good exercise to build your problem-solving 
intuition is to reconsider this example, using node 2 
as the reference node. Does it make the analysis 
easier or harder? 

20 V 

Figure 4.11 A The circuit shown in Fig. 4.10, with a reference 
node and the node voltages. 

^/ASSESSMENT PROBLEM 

Objective 1—Understand and be able to use the node-voltage method 

4.3 a) Use the node-voltage method to find the 
power associated with each source in the 
circuit shown, 

b) State whether the source is delivering power 
to the circuit or extracting power from the 
circuit. 

Answer: (a) p50v = _ 150 W,/>3/l = -144 W, 
p 5 A = - 8 0 W ; 

(b) all sources are delivering power to the 
circuit. 

NOTE: Also try Chapter Problems 4.17 and 4.19, 

50 V 

100 V 5A 

Figure 4.12 A A circuit with a known node voltage. 

4.4 The Node-Voltage Method: 
Some Special Cases 

When a voltage source is the only element between two essential nodes, 
the node-voltage method is simplified. As an example, look at the circuit 
in Fig. 4.12. There are three essential nodes in this circuit, which means 
that two simultaneous equations are needed. From these three essential 
nodes, a reference node has been chosen and two other nodes have been 
labeled. But the 100 V source constrains the voltage between node 1 and 
the reference node to 100 V. This means that there is only one unknown 
node voltage (v2). Solution of this circuit thus involves only a single node-
voltage equation at node 2: 

v2 - vx , v2 

10 + 50 
0. 

But V\ = 100 V, so Eq. 4.7 can be solved for v2: 

v2 = 125 V. 

(4.7) 

(4.8) 
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Knowing v2, we can calculate the current in every branch. You should ver
ify that the current into node 1 in the branch containing the independent 
voltage source is 1.5 A. 

In general, when you use the node-voltage method to solve circuits 
that have voltage sources connected directly between essential nodes, the 
number of unknown node voltages is reduced. The reason is that, when
ever a voltage source connects two essential nodes, it constrains the differ
ence between the node voltages at these nodes to equal the voltage of the 
source. Taking the time to see if you can reduce the number of unknowns 
in this way will simplify circuit analysis. 

Suppose that the circuit shown in Fig. 4.13 is to be analyzed using the 
node-voltage method. The circuit contains four essential nodes, so we 
anticipate writing three node-voltage equations. However, two essential 
nodes are connected by an independent voltage source, and two other 
essential nodes are connected by a current-controlled dependent voltage 
source. Hence, there actually is only one unknown node voltage. 

Choosing which node to use as the reference node involves several 
possibilities. Either node on each side of the dependent voltage source 
looks attractive because, if chosen, one of the node voltages would be 
known to be either 4-1()/̂  (left node is the reference) or - 1 0 ^ (right node 
is the reference).The lower node looks even better because one node volt
age is immediately known (50 V) and five branches terminate there. We 
therefore opt for the lower node as the reference. 

Figure 4.14 shows the redrawn circuit, with the reference node flagged 
and the node voltages defined. Also, we introduce the current i because we 
cannot express the current in the dependent voltage source branch as a 
function of the node voltages v2 and v$. Thus, at node 2 

Vl 
v\ V2 

(4.9) 

Figure 4.13 • A circuit with a dependent voltage 
source connected between nodes. 

and at node 3 
Figure 4.14 • The circuit shown in Fig. 4.13. with the 
selected node voltages defined. 

v3 

100 
i - 4 = 0. (4.10) 

We eliminate i simply by adding Eqs. 4.9 and 4.10 to get 

V-) — V\ V2 V-x 
— + — + ^ - - 4 = 0. 

5 50 100 
(4.11) 

The Concept of a Supernode 

Equation 4.11 may be written directly, without resorting to the interme
diate step represented by Eqs. 4.9 and 4.10. To do so, we consider nodes 2 
and 3 to be a single node and simply sum the currents away from the 
node in terms of the node voltages v2 and v3. Figure 4.15 illustrates 
this approach. 

When a voltage source is between two essential nodes, we can com
bine those nodes to form a supernode. Obviously, Kirchhoff s current 
law must hold for the supernode. In Fig. 4.15, starting with the 5 il 
branch and moving counterclockwise around the supernode, we gener
ate the equation 

lh » i 
+ — + — - 4 = 0, 

50 100 
(4.12) Figure 4.15 • Considering nodes 2 and 3 to be a 

supernode. 
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which is identical to Eq. 4.11. Creating a supernode at nodes 2 and 3 has 
made the task of analyzing this circuit easier. It is therefore always worth tak
ing the time to look for this type of shortcut before writing any equations. 

After Eq. 4.12 has been derived, the next step is to reduce the expres
sion to a single unknown node voltage. First we eliminate vx from the 
equation because we know that vx = 50 V. Next we express i>3 as a func
tion of vy. 

t>3 = V2 + 10/^. (4.13) 

We now express the current controlling the dependent voltage source as a 
function of the node voltages: 

Vi - 50 
H (4.14) 

Figure 4.16 • The transistor amplifier circuit shown in 
Fig. 2.24. 

Using Eqs. 4.13 and 4.14 and v{ = 50 V reduces Eq. 4.12 to 

1 1 1 10 

«2(0.25) = 15, 

v2 = 60 V. 

From Eqs. 4.13 and 4.14: 

6 0 - 5 0 
i* = z = 2 A, 

v% = 60 + 20 = 80 V. 

Figure 4.17 • The circuit shown in Fig. 4.16, with 
voltages and the supernode identified. 

Node-Voltage Analysis of the Amplifier Circuit 
Let's use the node-voltage method to analyze the circuit first introduced 
in Section 2.5 and shown again in Fig. 4.16. 

When we used the branch-current method of analysis in Section 2.5, 
we faced the task of writing and solving six simultaneous equations. Here 
we will show how nodal analysis can simplify our task. 

The circuit has four essential nodes: Nodes a and d are connected by 
an independent voltage source as are nodes b and c. Therefore the prob
lem reduces to finding a single unknown node voltage, because 
(ne - 1 ) - 2 = 1. Using d as the reference node, combine nodes b and c 
into a supernode, label the voltage drop across R2 as vb, and label the volt
age drop across RE as vc, as shown in Fig. 4.17. Then, 

^b vb - vcc v^ 
R2 R\ RE 

&B = 0. 

We now eliminate both vc and iB from Eq. 4.15 by noting that 

vc = (h + (^B)RE^ 

vc = vh - V{). 

(4.15) 

(4.16) 

(4.17) 
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Substituting Eqs. 4.16 and 4.17 into Eq. 4.15 yields 

vb 
J_ _L i 
R{

 + R2
 + (1 + (3)RE 

V cc Vr 

Ri 0 + P)RE 

Solving Eq. 4.18 for ?;h yields 

VccMI + WE + V0R1R2 
RtR2 + ( 1 + (3)RE(R] + R2) vb = 

(4.18) 

(4.19) 

Using the node-voltage method to analyze this circuit reduces the prob
lem from manipulating six simultaneous equations (see Problem 2.27) to 
manipulating three simultaneous equations. You should verify that, when 
Eq. 4.19 is combined with Eqs. 4.16 and 4.17, the solution for i& is identical 
to Eq. 2.25. (See Problem 4.30.) 

^ A S S E S S M E N T PROBLEMS 

Objective 1—Understand and be able to use the node-voltage method 

4.4 Use the node-voltage method to find va in the 
circuit shown. 

30 0 
-AA/V-

io a 

10V 

Answer: 24 V. 

4.5 Use the node-voltage method to find v in the 
circuit shown. 

Answer: 8 V. 

4.6 Use the node-voltage method to find v\ in the 
circuit shown. 

20 ft 

' ! ,^40ft 20 iA 

Answer: 48 V. 

NOTE: Also try Chapter Problems 4.24, 4.26, and 4.27. 

4.5 Introduction to the 
Mesh-Current Method 

As stated in Section 4.1, the mesh-current method of circuit analysis enables 
us to describe a circuit in terms of be — (ne - 1) equations. Recall that a 
mesh is a loop with no other loops inside it. The circuit in Fig. 4.1 (b) is shown 
again in Fig. 4.18, with current arrows inside each loop to distinguish it. Recall F1gure 4<18 A The d r c u | t shown in Fig 41^t witn the 

also that the mesh-current method is applicable only to planar circuits. The mesh currents defined. 
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Figure 4.19 • A circuit used to illustrate development 
of the mesh-current method of circuit analysis. 

circuit in Fig. 4.18 contains seven essential branches where the current is 
unknown and four essential nodes. Therefore, to solve it via the mesh-current 
method, we must write four [7 - ( 4 - 1)] mesh-current equations. 

A mesh current is the current that exists only in the perimeter of a 
mesh. On a circuit diagram it appears as either a closed solid line or an 
almost-closed solid line that follows the perimeter of the appropriate 
mesh. An arrowhead on the solid line indicates the reference direction for 
the mesh current. Figure 4.18 shows the four mesh currents that describe 
the circuit in Fig. 4.1(b). Note that by definition, mesh currents automati
cally satisfy Kirchhoffs current law. That is, at any node in the circuit, a 
given mesh current both enters and leaves the node. 

Figure 4.18 also shows that identifying a mesh current in terms of a 
branch current is not always possible. For example, the mesh current i2 is 
not equal to any branch current, whereas mesh currents ^, z3, and /4 can be 
identified with branch currents. Thus measuring a mesh current is not 
always possible; note that there is no place where an ammeter can be 
inserted to measure the mesh current i2. The fact that a mesh current can 
be a fictitious quantity doesn't mean that it is a useless concept. On the 
contrary, the mesh-current method of circuit analysis evolves quite natu
rally from the branch-current equations. 

We can use the circuit in Fig. 4.19 to show the evolution of the mesh-
current technique. We begin by using the branch currents (/j, /2, and i3) to 
formulate the set of independent equations. For this circuit, be — 3 and 
ne = 2. We can write only one independent current equation, so we need 
two independent voltage equations. Applying Kirchhoffs current law to 
the upper node and Kirchhoffs voltage law around the two meshes gener
ates the following set of equations: 

fi = h + *3» 

vx --

-v2 
z ilR-2 ~ *3"3* 

(4.20) 

(4.21) 

(4.22) 

We reduce this set of three equations to a set of two equations by solving 
Eq. 4.20 for /3 and then substituting this expression into Eqs. 4.21 and 4.22: 

vx = /'!(/?! + i?3) - *2#3, (4.23) 

•V2 •itR3 + i2(R2 + /½). (4.24) 

'Wv 0 'WV 

'., < ^ 3 <h 

Figure 4.20 A Mesh currents /., and ih. 

We can solve Eqs. 4.23 and 4.24 for /2 and i2 to replace the solution of three 
simultaneous equations with the solution of two simultaneous equations. 
We derived Eqs. 4.23 and 4.24 by substituting the ne — 1 current equations 
into the be - (ne - 1) voltage equations. The value of the mesh-current 
method is that, by defining mesh currents, we automatically eliminate the 
ne - 1 current equations. Thus the mesh-current method is equivalent to a 
systematic substitution of the ne — 1 current equations into the 
be ~ (ne ~ 1) voltage equations. The mesh currents in Fig. 4.19 that are 
equivalent to eliminating the branch current /3 from Eqs. 4.21 and 4.22 are 
shown in Fig. 4.20. We now apply Kirchhoffs voltage law around the two 
meshes, expressing all voltages across resistors in terms of the mesh cur
rents, to get the equations 

vl = /ai?! + (/, - ib)R3, (4.25) 

-V2 = O'b " /'a)^3 + kRl- (4-26) 

Collecting the coefficients of z'a and /b in Eqs. 4.25 and 4.26 gives 

th = k(Ri + Ri) ~ M & (4.27) 

-v2 = -LR3 + UR2 + R3). (4.28) 
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Note that Eqs. 4.27 and 4.28 and Eqs. 4.23 and 4.24 are identical in form, 
with the mesh currents 4 and 4 replacing the branch currents /, and ij. 
Note also that the branch currents shown in Fig. 4.19 can be expressed in 
terms of the mesh currents shown in Fig. 4.20, or 

h — 4 ~ 4 

(4.29) 

(4.30) 

(4.31) 

The ability to write Eqs. 4.29-4.31 by inspection is crucial to the mesh-
current method of circuit analysis. Once you know the mesh currents, you 
also know the branch currents. And once you know the branch currents, 
you can compute any voltages or powers of interest. 

Example 4.4 illustrates how the mesh-current method is used to find 
source powers and a branch voltage. 

Example 4.4 Using the Mesh-Current Method 

a) Use the mesh-current method to determine the 
power associated with each voltage source in the 
circuit shown in Fig. 4.21. 

b) Calculate the voltage va across the 8 (1 resistor. 

Solution 

a) To calculate the power associated with each 
source, we need to know the current in each 
source. The circuit indicates that these source 
currents will be identical to mesh currents. Also, 
note that the circuit has seven branches where 

40V Snkv„ | 6 Q 20V 

Figure 4.21 • The circuit for Example 4.4. 

the current is unknown and five nodes. Therefore 
we need three [b - (n - 1 ) - 7 - (5 - 1)] 
mesh-current equations to describe the circuit. 
Figure 4.22 shows the three mesh currents used 
to describe the circuit in Fig. 4.21. If we assume 
that the voltage drops are positive, the three mesh 
equations are 

- 4 0 + 2*a 4- 8(/a - ih) = 0, 

8(4 - 4) + 6/b + 6(4 - /c) = 0, 

6(4 - 4) + 4/c + 20 = 0. (4.32) 

Your calculator can probably solve these equa
tions, or you can use a computer tool. Cramer's 
method is a useful tool when solving three or 
more simultaneous equations by hand. You can 
review this important tool in Appendix A. 
Reorganizing Eqs. 4.32 in anticipation of using 
your calculator, a computer program, or Cramer's 
method gives 

10/a - 8/b + 0/c = 40; 

- 8 4 + 20/b - 64 = 0; 

04 - 64 + IO4 = -20 . (4.33) 

The three mesh currents are 

4 = 5.6 A, 

4 = 2.0 A, 

L = -0.80 A. 

40 V 20 V 

Figure 4.22 • The three mesh currents used to analyze the 
circuit shown in Fig. 4.21. 

The mesh current 4 is identical with the branch 
current in the 40 V source, so the power associ
ated with this source is 

P40V = - 4 0 4 = -224 W. 
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The minus sign means that this source is deliver
ing power to the network. The current in the 
20 V source is identical to the mesh current /c; 
therefore 

p2W = 20ic = - 1 6 W. 

The 20 V source also is delivering power to the 
network. 

b) The branch current in the 8 il resistor in the 
direction of the voltage drop v0 is /a - /b. 
Therefore 

v(> = 8(4 - 4) = 8(3.6) = 28.8 V. 

^/ASSESSMENT PROBLEM 

Objective 2—Understand and be able to use the mesh-current method 

4.7 Use the mesh-current method to find (a) the 
power delivered by the 80 V source to the cir
cuit shown and (b) the power dissipated in the 
8 O resistor. 

Answer: (a) 400 W; 

(b)50W. 

NOTE: Also try Chapter Problems 4.33 and 4.34. 

80 V sa 

4.6 The Mesh-Current Method 
and Dependent Sources 

If the circuit contains dependent sources, the mesh-current equations must 
be supplemented by the appropriate constraint equations. Example 4.5 
illustrates the application of the mesh-current method when the circuit 
includes a dependent source. 

Example 4.5 Using the Mesh-Current Method with Dependent Sources 

Use the mesh-current method of circuit analysis to 
determine the power dissipated in the 4 fl resistor 
in the circuit shown in Fig. 4.23. 

in 

5ft 4 f t 

50 VI r 
20 ft 15 4 

Figure 4.23 A The circuit for Example 4.5. 

Solution 

This circuit has six branches where the current is 
unknown and four nodes. Therefore we need three 
mesh currents to describe the circuit. They are 

defined on the circuit shown in Fig. 4.24. The three 
mesh-current equations are 

50 = 5(/, - i2) + 20(/, - /3), 

0 = 5(/2 - /,) + l/2 + 4(/2 - /3), 

0 = 20(/3 - h) + 4(/3 - /2) + 15iV (4.34) 

We now express the branch current controlling the 
dependent voltage source in terms of the mesh 
currents as 

l4> ~ h ~ z3' (4.35) 
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which is the supplemental equation imposed by the 
presence of the dependent source. Substituting 
Eq. 4.35 into Eqs. 4.34 and collecting the coeffi
cients of / j , /2, and /3 in each equation generates 

50 = 25i*! - 5/2 - 20i3, 

0 = - 5 / , + 10j2 - 4/3, 

0 = — 5/j - 4/2 + 9/3. 

1 n 
- A W 

51) 4 a 

50 V' 20 a 15/,,, 

Figure 4.24 • The circuit shown in Fig. 4.23 with the three 
mesh currents. 

Because we are calculating the power dissipated in 
the 4 O resistor, we compute the mesh currents i2 

and /3: 

i2 = 26 A, 

/3 = 28 A. 

The current in the 4 H resistor oriented from left 
to right is /3 — i2 , or 2 A. Therefore the power 
dissipated is 

PAH = (¾ - <2)2(4) = (2)2(4) = 16 W. 

What if you had not been told to use the mesh-
current method? Would you have chosen the node-
voltage method? It reduces the problem to finding 
one unknown node voltage because of the presence 
of two voltage sources between essential nodes. We 
present more about making such choices later. 

^ A S S E S S M E N T PROBLEMS 

Objective 2—Understand and be able to use the mesh-current method 

4.8 a) Determine the number of mesh-current 
equations needed to solve the circuit shown. 

b) Use the mesh-current method to find how 
much power is being delivered to the 
dependent voltage source. 

Answer: (a) 3; 

(b) -36 W. 

4.9 Use the mesh-current method to find va in the 
circuit shown. 

Answer: 16 V. 

NOTE: Also try Chapter Problems 4.38 and 4.39. 

4.7 The Mesh-Current Method: 
Some Special Cases 

When a branch includes a current source, the mesh-current method requires 
some additional manipulations. The circuit shown in Fig. 4.25 depicts the 
nature of the problem. 

We have defined the mesh currents i.d, i^ and /c, as well as the voltage 
across the 5 A current source, to aid the discussion. Note that the circuit 
contains five essential branches where the current is unknown and four 
essential nodes. Hence we need to write two [ 5 - ( 4 

100 V 

Figure 4.25 • A circuit illustrating mesh 
1)] mesh-current a branch contains an independent current 

50 V 

analysis when 
source. 
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equations to solve the circuit. The presence of the current source reduces 
the three unknown mesh currents to two such currents, because it con
strains the difference between 4 and 4 to equal 5 A. Hence, if we know /a, 
we know 4, and vice versa. 

However, when we attempt to sum the voltages around either mesh a 
or mesh c, we must introduce into the equations the unknown voltage 
across the 5 A current source. Thus, for mesh a: 

100 = 3(4 - y + v + 6ia, (4.36) 

and for mesh c: 

-50 = 4z'c - v + 2(/c - y . (4.37) 

We now add Eqs. 4.36 and 4.37 to eliminate v and obtain 

50 = 94 - 5/b + 64. (4.38) 

Summing voltages around mesh b gives 

0 - 3(/,, - 4) + 104 + 2(4 " 4)- (4.39) 

We reduce Eqs. 4.38 and 4.39 to two equations and two unknowns by using 
the constraint that 

4 - 4 = 5. (4.40) 

We leave to you the verification that, when Eq. 4.40 is combined with 
Eqs. 4.38 and 4.39, the solutions for the three mesh currents are 

4 = 1.75 A, 4 = 1.25 A, and 4 = 6.75 A. 

The Concept of a Supermesh 

We can derive Eq. 4.38 without introducing the unknown voltage v by 
using the concept of a supermesh. To create a supermesh, we mentally 
remove the current source from the circuit by simply avoiding this branch 
when writing the mesh-current equations. We express the voltages around 
the supermesh in terms of the original mesh currents. Figure 4.26 illus
trates the supermesh concept. When we sum the voltages around the 
supermesh (denoted by the dashed line), we obtain the equation 

-100 + 3(4 - 4) + 2(4 - 4) + 50 4- 44 + 64 = 0, (4.41) 

which reduces to 

50 = 94 - 54 + 64. (4.42) 

Note that Eqs. 4.42 and 4.38 are identical. Thus the supermesh has elimi
nated the need for introducing the unknown voltage across the current 
source. Once again, taking time to look carefully at a circuit to identify a 
shortcut such as this provides a big payoff in simplifying the analysis. 

100 V 

Supermesh 

50 V 

6 0 4f t 

Figure 4.26 • The circuit shown in Fig. 4.25, illustrat
ing the concept of a supermesh. 
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Mesh-Current Analysis of the Amplifier Circuit 
We can use the circuit first introduced in Section 2.5 (Fig. 2.24) to illustrate 
how the mesh-current method works when a branch contains a dependent 
current source. Figure 4.27 shows that circuit, with the three mesh currents 
denoted /a, lb, and ic. This circuit has four essential nodes and five essential 
branches where the current is unknown. Therefore we know that the cir
cuit can be analyzed in terms of two [ 5 - ( 4 - 1 ) ] mesh-current equa
tions. Although we defined three mesh currents in Fig. 4.27, the dependent 
current source forces a constraint between mesh currents /a and ic, so we 
have only two unknown mesh currents. Using the concept of the super-
mesh, we redraw the circuit as shown in Fig. 4.28. 

We now sum the voltages around the supermesh in terms of the mesh 
currents ia, ib, and ic to obtain 

R\h + vCc + REVC ~ k) - V0 = 0. (4.43) 

The mesh b equation is 

R2ib + VQ + RE(ib - ic) = 0. 

The constraint imposed by the dependent current source is 

/¾ — *a — *c-

(4.44) 

(4.45) 

The branch current controlling the dependent current source, expressed 
as a function of the mesh currents, is 

'B (4.46) 

Figure 4.27 A The circuit shown in Fig. 2.24 with the 
mesh currents /a , (h, and i c . 

Vcc 

Figure 4.28 • The circuit shown in Fig. 4.27, depicting 
the supermesh created by the presence of the dependent 
current source. 

From Eqs. 4.45 and 4.46, 

/c = (1 + /3)/a - /3/, (4.47) 

We now use Eq. 4.47 to eliminate /c from Eqs. 4.43 and 4.44: 

[/?! + ( 1 + (3)RE]ia - ( 1 + (3)REib = V0 - Vcc, (4.48) 

-(1 + j3)*£ia + [R2 + (1 + WB% = ~VQ. (4.49) 

You should verify that the solution of Eqs. 4.48 and 4.49 for ia and /b gives 

u = 
VQRI ~ VccRi ~ VcciX + j3)/?£ 

RXR2 + (1 + p)RE(Ri + R2) 
(4.50) 

-VQRX - ( 1 + (B)REVcc 
R{R2 + (1 + (3)RE(R} + R2) 

(4.51) 

We also leave you to verify that, when Eqs. 4.50 and 4.51 are used to find 
/B, the result is the same as that given by Eq. 2.25. 
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I /ASSESSMENT PROBLEMS 

Objective 2—Understand and be able to use the mesh-current method 

4.10 Use the mesh-current method to find the power 
dissipated in the 2 ft resistor in the circuit shown. 

30 V 

Answer: 72 W. 

4.11 Use the mesh-current method to find the mesh 
current /a in the circuit shown. 

75 VI 

Answer: 15 A. 

4.12 Use the mesh-current method to find the 
power dissipated in the 1 ft resistor in the cir
cuit shown. 

16 A 

^vw 4 Wv 4 

10 A e 
2 0 

'a <\t, 1 5 n 

in 
•A^V-

2V* 

2A e 
iovT* j 2 a 

Answer: 36 W. 

NOTE: Also try Chapter Problems 4.42, 4.44, 4.48, and 4.51. 

6V 

4,8 The Node-Voltage Method Versus 
the Mesh-Current Method 

The greatest advantage of both the node-voltage and mesh-current meth
ods is that they reduce the number of simultaneous equations that must be 
manipulated. They also require the analyst to be quite systematic in terms 
of organizing and writing these equations. It is natural to ask, then, "When 
is the node-voltage method preferred to the mesh-current method and 
vice versa?" As you might suspect, there is no clear-cut answer. Asking a 
number of questions, however, may help you identify the more efficient 
method before plunging into the solution process: 

• Does one of the methods result in fewer simultaneous equations 
to solve? 

• Does the circuit contain supernodes? If so, using the node-voltage 
method will permit you to reduce the number of equations to 
be solved. 
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• Does the circuit contain supermeshes? If so, using the mesh-current 
method will permit you to reduce the number of equations to 
be solved. 

• Will solving some portion of the circuit give the requested solution? 
If so, which method is most efficient for solving just the pertinent 
portion of the circuit? 

Perhaps the most important observation is that, for any situation, some 
time spent thinking about the problem in relation to the various analytical 
approaches available is time well spent. Examples 4.6 and 4.7 illustrate the 
process of deciding between the node-voltage and mesh-current methods. 

Example 4.6 Understanding the Node-Voltage Method Versus Mesh-Current Method 

Find the power dissipated in the 300 Ct resistor in 
the circuit shown in Fig. 4.29. 

300 ft J1-
-Wv 

150 ft 100ft 
- A A A ^ 

250 ft 
-AVv t 

50 /A 

500 ft 

256 V £200 ft 400 ft k 128 V 

Figure 4.29 A The circuit for Example 4.6. 

Solution 

To find the power dissipated in the 300 H resistor, 
we need to find either the current in the resistor or 
the voltage across it. The mesh-current method 
yields the current in the resistor; this approach 
requires solving five simultaneous mesh equations, 
as depicted in Fig. 4.30. In writing the five equa
tions, we must include the constraint /A = — ib. 

Before going further, let's also look at the circuit 
in terms of the node-voltage method. Note that, once 
we know the node voltages, we can calculate either 
the current in the 300 il resistor or the voltage across 
it. The circuit has four essential nodes, and therefore 
only three node-voltage equations are required to 
describe the circuit. Because of the dependent volt
age source between two essential nodes, we have to 
sum the currents at only two nodes. Hence the prob
lem is reduced to writing two node-voltage equations 
and a constraint equation. Because the node-voltage 
method requires only three simultaneous equations, 
it is the more attractive approach. 

Once the decision to use the node-voltage 
method has been made, the next step is to select a 
reference node. Two essential nodes in the circuit in 
Fig. 4.29 merit consideration. The first is the refer
ence node in Fig. 4.31. If this node is selected, one of 
the unknown node voltages is the voltage across the 

300 CL resistor, namely, v2 in Fig. 4.31. Once we 
know this voltage, we calculate the power in the 
300 f! resistor by using the expression 

Psaon = «1/300. 

300 ft -*'A 

-AAA. 

150ft 100ft 250 ft 
-AAA-—f—-WV-

500 ft 

: f20uftSO50*A)f 
.+. 

Figure 4.30 A The circuit shown in Fig. 4.29, with the five 
mesh currents. 

300 ft Js 

vvV 

150 ft <̂  500 ft 

400 ft £ 128 V 

Figure 4.31 A The circuit shown in Fig. 4.29, with a 
reference node. 

Note that, in addition to selecting the reference 
node, we defined the three node voltages V\, v2, and 
u3 and indicated that nodes 1 and 3 form a super-
node, because they are connected by a dependent 
voltage source. It is understood that a node voltage is 
a rise from the reference node; therefore, in Fig. 4.31, 
we have not placed the node voltage polarity refer
ences on the circuit diagram. 
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The second node that merits consideration as 
the reference node is the lower node in the circuit, 
as shown in Fig. 4.32. It is attractive because it has 
the most branches connected to it, and the node-
voltage equations are thus easier to write. However, 
to find either the current in the 300 11 resistor or 
the voltage across it requires an additional calcula
tion once we know the node voltages va and vc. For 
example, the current in the 300 H resistor is 
(vc - va)/300, whereas the voltage across the resis
tor is vr - v». 

300 ft 
l* 

128 V 

Figure 4.32 A The circuit shown in Fig. 4.29 with an 
alternative reference node. 

t?3 + 256 
+ — = 0. 

150 

Att?2 , 

v2 v2 - Vi v2 - VT. VI + 128 - v-x 
' + _•_ + + — — = 0. 

300 250 400 500 

From the supernode, the constraint equation is 

v2 v3 = vi - 50/A = v, - — 

Set 2 (Fig 4.32) 
At%, 

va va - 256 v.d - vb va - vc _ 

200 150 

A tv c , 

100 300 

We compare these two possible reference nodes 
by means of the following sets of equations. The first 
set pertains to the circuit shown in Fig. 4.31, and the 
second set is based on the circuit shown in Fig. 4.32. 

Set 1 (Fig 4.31) 
At the supernode, 

V\ V\ — v2 v3 V3 — v2 v3 — (v2 + 128) 

KX)+ 250 + 2 0 0 + 400 500 

vc vc + 128 vc — vb vc - va 

400 500 250 300 

From the supernode, the constraint equation is 

50(vc - va) vc - va 
vb = 50/A 300 

You should verify that the solution of either set 
leads to a power calculation of 16.57 W dissipated in 
the 300 O, resistor. 

Example 4.7 Companng the Node-Voltage and Mesh-Current Methods 

Find the voltage v0 in the circuit shown in Fig. 4.33. 

Solution 

At first glance, the node-voltage method looks 
appealing, because we may define the unknown 
voltage as a node voltage by choosing the lower ter
minal of the dependent current source as the refer
ence node. The circuit has four essential nodes and 
two voltage-controlled dependent sources, so the 
node-voltage method requires manipulation of 
three node-voltage equations and two constraint 
equations. 

Let's now turn to the mesh-current method for 
finding v0. The circuit contains three meshes, and 
we can use the leftmost one to calculate v0. If we 

let /a denote the leftmost mesh current, then 
v0 = 193 — 10/'a. The presence of the two current 
sources reduces the problem to manipulating a sin
gle supermesh equation and two constraint equa
tions. Hence the mesh-current method is the more 
attractive technique here. 

4ft 

0.8¾ 

6 ft 7.5 ft 8ft 

Figure 4.33 • The circuit for Example 4.7. 
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411 2.512 

193 VI 

r ~ 
- "A 

,, WAC)^D^ 
-AMr- -VvV - W r 

6 n 7.5 n 8 a 

Figure 4.34 A The circuit shown in Fig. 4.33 with the three mesh currents. 

4 0 2.5 ft *« 2 ft 
-'vw f -vw-

M l 9 3 V ^ / t > 0 . 4 ^ ( T ) o . 5 A 

60 
V^/v 

and the constraint equations are 

i\j — /a = 0.4i;A = 0.8/c; 

v9 = — 7.5/b; and 

/c — /b = 0.5. 

We use the constraint equations to write the super-
mesh equation in terms of /a: 

160 = 80*'a, or /a = 2 A, 

va = 193 - 20 = 173 V. 

The node-voltage equations are 

0.8 v(l 

7.5 ft "h 

Figure 4.35 A The circuit shown in Fig. 4.33 with node voltages. 

To help you compare the two approaches, we 
summarize both methods.The mesh-current equa
tions are based on the circuit shown in Fig. 4.34, 
and the node-voltage equations are based on 
the circuit shown in Fig. 4.35. The supermesh 
equation is 

193 = 104 + 10 'b + 10/'c + 0.8v0, 

v„ - 193 
10 A 2.5 

0. 

2.5 10 

^b t 0 5 1 % + °'8Ve ~ Va ~ 0 
7.5 " 10 

The constraint equations are 

v9 = -vb, vA = 
"«a - (vb + 0.8¾¾)1 

10 
2. 

We use the constraint equations to reduce the node-
voltage equations to three simultaneous equations 
involving v(), ua, and vb. You should verify that the 
node-voltage approach also gives v0 = 173 V. 

^ASSESSMENT PROBLEMS 

Objective 3—Deciding between the node-voltage and mesh-current methods 

4.13 Find the power delivered by the 2 A current 
source in the circuit shown. 

4.14 Find the power delivered by the 4 A current 
source in the circuit shown. 

4A 

20 V 

128 V 

Answer: 70 W 

NOTE: Also try Chapter Problems 4.52 and 4.53. 

Answer: 40 W. 

4.9 Source Transformations 
Even though the node-voltage and mesh-current methods are powerful tech
niques for solving circuits, we are still interested in methods that can be used 
to simplify circuits. Series-parallel reductions and A-to-Y transformations are 
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-•a 

-•b 
(b) 

Figure 4.36 A Source transformations. 

already on our list of simplifying techniques. We begin expanding this list 
with source transformations. A source transformation, shown in Fig. 4.36, 
allows a voltage source in series with a resistor to be replaced by a current 
source in parallel with the same resistor or vice versa. The double-headed 
arrow emphasizes that a source transformation is bilateral; that is, we can 
start with either configuration and derive the other. 

We need to find the relationship between vs and is that guarantees the 
two configurations in Fig. 4.36 are equivalent with respect to nodes a,b. 
Equivalence is achieved if any resistor RL experiences the same current 
flow, and thus the same voltage drop, whether connected between nodes 
a,b in Fig. 4.36(a) or Fig. 4.36(b). 

Suppose Rf is connected between nodes a,b in Fig. 4.36(a). Using 
Ohm's law, the current in RL is 

tL (4.52) 
R + RL 

Now suppose the same resistor RL is connected between nodes a,b in 
Fig. 4.36(b). Using current division, the current in R, is 

R 
'/. (4.53) 

if the two circuits in Fig. 4.36 are equivalent, these resistor currents must be 
the same. Equating the right-hand sides of Eqs. 4.52 and 4.53 and simplifying. 

(4.54) 

When Eq. 4.54 is satisfied for the circuits in Fig. 4.36, the current in RL is 
the same for both circuits in the figure for all values of RL. If the current 
through RL is the same in both circuits, then the voltage drop across R{ is 
the same in both circuits, and the circuits are equivalent at nodes a,b. 

If the polarity of vs is reversed, the orientation of is must be reversed 
to maintain equivalence. 

Example 4.8 illustrates the usefulness of making source transforma
tions to simplify a circuit-analysis problem. 

Example 4.8 Using Source Transformations to Solve a Circuit 

a) For the circuit shown in Fig. 4.37, find the power 
associated with the 6 V source. 

b) State whether the 6 V source is absorbing or 
delivering the power calculated in (a). 

Solution 
a) If we study the circuit shown in Fig. 4.37, know

ing that the power associated with the 6 V 
source is of interest, several approaches come 
to mind. The circuit has four essential nodes 
and six essential branches where the current is 
unknown. Thus we can find the current in the 
branch containing the 6 V source by solving 
either three [ 6 - ( 4 - 1 ) ] mesh-current equa
tions or three [ 4 - 1 ] node-voltage equations. 
Choosing the mesh-current approach involves 

6 V §30 n ?20£l 40 V 

Figure 4.37 • The circuit for Example 4.8. 

solving for the mesh current that corresponds 
to the branch current in the 6 V source. 
Choosing the node-voltage approach involves 
solving for the voltage across the 30 O resistor, 
from which the branch current in the 6 V 
source can be calculated. But by focusing on 
just one branch current, we can first simplify 
the circuit by using source transformations. 
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We must reduce the circuit in a way that pre
serves the identity of the branch containing the 6 V 
source. We have no reason to preserve the identity of 
the branch containing the 40 V source. Beginning with 

this branch, we can transform the 40 V source in 
series with the 5 ft resistor into an 8 A current 
source in parallel with a 5 f i resistor, as shown 
in Fig. 4.38(a). 

4 n 6 ii 
-f 'WV 

32 V 

(a) First step 

4 11 

(b) Second step 

412 12 O 

19.2 V 

(c) Third step 

Figure 4.38 A Step-by-step simplification of the circuit shown in Fig. 4.37. 

Next, we can replace the parallel combination of 
the 20 ft and 5 ft resistors with a 4 ft resistor. 
This 4 ft resistor is in parallel with the 8 A source 
and therefore can be replaced with a 32 V source 
in series with a 4 ft resistor, as shown in 
Fig. 4.38(b).The 32 V source is in series with 20 ft 
of resistance and, hence, can be replaced by a cur
rent source of 1.6 A in parallel with 20 ft, as shown 
in Fig. 4.38(c). The 20 ft and 30 ft parallel resis
tors can be reduced to a single 12 ft resistor. The 
parallel combination of the 1.6 A current source 

(d) Fourth step 

and the 12 ft resistor transforms into a voltage 
source of 19.2 V in series with 12 ft. Figure 4.38(d) 
shows the result of this last transformation. The 
current in the direction of the voltage drop across 
the 6 V source is (19.2 - 6)/16, or 0.825 A. 
Therefore the power associated with the 6 V 
source is 

p 6 V = (0.825)(6) = 4.95 W. 

b) The voltage source is absorbing power. 

A question that arises from use of the source transformation depicted 
in Fig. 4.38 is, "What happens if there is a resistance Rp in parallel with the 
voltage source or a resistance Rs in series with the current source?" In 
both cases, the resistance has no effect on the equivalent circuit that pre
dicts behavior with respect to terminals a,b. Figure 4.39 summarizes this 
observation. 

The two circuits depicted in Fig. 4.39(a) are equivalent with respect to 
terminals a,b because they produce the same voltage and current in any 
resistor RL inserted between nodes a,b. The same can be said for the cir
cuits in Fig. 4.39(b). Example 4.9 illustrates an application of the equiva
lent circuits depicted in Fig. 4.39. 

R 
-wv—»a 

»« \R, 

-•b 
(a) 

(b) 

Figure 4.39 • Equivalent circuits containing a 
resistance in parallel with a voltage source or in series 
with a current source. 
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Example 4.9 Using Special Source Transformation Techniques 

a) Use source transformations to find the voltage 
v() in the circuit shown in Fig. 4.40. 

b) Find the power developed by the 250 V voltage 
source. 

c) Find the power developed by the 8 A current 
source. 

b) The current supplied by the 250 V source equals the 
current in the 125 ft resistor plus the current in the 
25 ft resistor. Thus 

250 250 - 20 „ „ 

'< = l25+-^-= 1 U A-

25 ft 

250 V 

Figure 4.40 A The circuit for Example 4.9. 

Solution 

Therefore the power developed by the voltage source is 

/>25()v(developed) = (250)(11.2) = 2800 W. 

c) To find the power developed by the 8 A current source, 
we first find the voltage across the source. If we let vs 

represent the voltage across the source, positive at the 
upper terminal of the source, we obtain 

a) We begin by removing the 125 ft and 10 ft resis
tors, because the 125 ft resistor is connected across 
the 250 V voltage source and the 10 ft resistor is 
connected in series with the 8 A current source. We 
also combine the series-connected resistors into a 
single resistance of 20 ft. Figure 4.41 shows the sim
plified circuit. 

vs + 8(10) = v0 = 20, or vs = -60 V, 

and the power developed by the 8 A source is 480 W. 
Note that the 125 ft and 10 ft resistors do not affect 
the value of v0 but do affect the power calculations. 

25 ft 

250 V 

Figure 4.41 • A simplified version of the circuit shown in Fig. 4.40. 
Figure 4.42 • The circuit shown in Fig. 4.41 after a source 
transformation. 

We now use a source transformation to replace 
the 250 V source and 25 ft resistor with a 10 A 
source in parallel with the 25 ft resistor, as shown in 
Fig. 4.42. We can now simplify the circuit shown in 
Fig. 4.42 by using Kirchhoffs current law to com
bine the parallel current sources into a single 
source. The parallel resistors combine into a single 
resistor. Figure 4.43 shows the result. Hence 
v„ = 20 V. 

+ 

D„5 io ft 

Figure 4.43 A The circuit shown in Fig. 4.42 after combining 
sources and resistors. 
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/ "ASSESSMENT PROBLEM 

Objective 4—Understand source transformation 

4.15 a) Use a series of source transformations to 
find the voltage v in the circuit shown. 

b) How much power does the 120 V source 
deliver to the circuit? 

Answer: (a) 48 V; 

(b) 374.4 W. 

NOTE: Also try Chapter Problems 4.59 and 4.60. 

20 a , j 6 0 V 

- r ( t ) 3 6 A 

1120 V L 

1.6 a 

4.10 Thevenin and Norton Equivalents 

At times in circuit analysis, we want to concentrate on what happens at 
a specific pair of terminals. For example, when we plug a toaster into an 
outlet, we are interested primarily in the voltage and current at the ter
minals of the toaster. We have little or no interest in the effect that con
necting the toaster has on voltages or currents elsewhere in the circuit 
supplying the outlet. We can expand this interest in terminal behavior 
to a set of appliances, each requiring a different amount of power. 
We then are interested in how the voltage and current delivered at the 
outlet change as we change appliances. In other words, we want to focus 
on the behavior of the circuit supplying the outlet, but only at the out
let terminals. 

Thevenin and Norton equivalents are circuit simplification techniques 
that focus on terminal behavior and thus are extremely valuable aids in 
analysis. Although here we discuss them as they pertain to resistive cir
cuits, Thevenin and Norton equivalent circuits may be used to represent 
any circuit made up of linear elements. 

We can best describe a Thevenin equivalent circuit by reference to 
Fig. 4.44, which represents any circuit made up of sources (both inde
pendent and dependent) and resistors. The letters a and b denote the 
pair of terminals of interest. Figure 4.44(b) shows the Thevenin equiva
lent. Thus, a Thevenin equivalent circuit is an independent voltage 
source VTh in series with a resistor RTh, which replaces an interconnec
tion of sources and resistors. This series combination of VTh and RTh is 
equivalent to the original circuit in the sense that, if we connect the 
same load across the terminals a,b of each circuit, we get the same volt
age and current at the terminals of the load. This equivalence holds for 
all possible values of load resistance. 

To represent the original circuit by its Thevenin equivalent, we must 
be able to determine the Thevenin voltage VJh and the Thevenin resist
ance Rlh. First, we note that if the load resistance is infinitely large, we 
have an open-circuit condition. The open-circuit voltage at the terminals 
a,b in the circuit shown in Fig. 4.44(b) is Vjh. By hypothesis, this must be 

• a 
A resistive 
network containing 
independent and 
dependent sources 

(a) (b) 

Figure 4.44 A (a) A general circuit, (b) The Thevenin 
equivalent circuit. 
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the same as the open-circuit voltage at the terminals a,b in the original 
circuit. Therefore, to calculate the Thevenin voltage VTh, we simply calcu
late the open-circuit voltage in the original circuit. 

Reducing the load resistance to zero gives us a short-circuit condition. 
If we place a short circuit across the terminals a,b of the Thevenin equiva
lent circuit, the short-circuit current directed from a to b is 

/„- = 
Tli 

Th 
(4.55) 

By hypothesis, this short-circuit current must be identical to the short-circuit 
current that exists in a short circuit placed across the terminals a,b of the 
original network. From Eq. 4.55, 

RTh -
V-, ih 

(4.56) 

Thus the Thevenin resistance is the ratio of the open-circuit voltage to the 
short-circuit current. 

40 
^vw—• a 
+ + 

2syCz) 2°^f 3 A 0 )V] ^ 

Finding a Thevenin Equivalent 

To find the Tlievenin equivalent of the circuit shown in Fig. 4.45, we first 
calculate the open-circuit voltage of v.db. Note that when the terminals a,b 
are open, there is no current in the 4 O resistor. Therefore the open-circuit 
voltage v.db is identical to the voltage across the 3 A current source, labeled 
V\. We find the voltage by solving a single node-voltage equation. 
Choosing the lower node as the reference node, we get 

Figure 4.45 • A circuit used to illustrate a Thevenin 
equivalent. 

Vi - 25 V] 
— + — - 3 = 0. 

5 20 
(4.57) 

Solving for V\ yields 

vx = 32 V. (4.58) 

25 V 

Figure 4.46 • The circuit shown in Fig. 4.45 with 
terminals a and b short-circuited. 

Hence the Thevenin voltage for the circuit is 32 V. 
The next step is to place a short circuit across the terminals and calcu

late the resulting short-circuit current. Figure 4.46 shows the circuit with 
the short in place. Note that the short-circuit current is in the direction of 
the open-circuit voltage drop across the terminals a,b. If the short-circuit 
current is in the direction of the open-circuit voltage rise across the termi
nals, a minus sign must be inserted in Eq. 4.56. 

The short-circuit current (/sc) is found easily once v2 is known. Therefore 
the problem reduces to finding v2 with the short in place. Again, if we use the 
lower node as the reference node, the equation for v2 becomes 

v2 - 25 ih v-y 
(4.59) 
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Solving Eq. 4.59 for v2 gives 

th = 16 V. (4.60) 

Hence, the short-circuit current is 

1 6 A A <ac = "J" = 4 A- (4.61) 

We now find the Thevenin resistance by substituting the numerical results 
from Eqs. 4.58 and 4.61 into Eq. 4.56: 

RTh = 
V Th 32 

4 
8 H . (4.62) 

Figure 4.47 shows the Thevenin equivalent for the circuit shown in Fig. 4.45. 
You should verify that, if a 24 Cl resistor is connected across the ter

minals a,b in Fig. 4.45, the voltage across the resistor will be 24 V and 
the current in the resistor will be 1 A, as would be the case with the 
Thevenin circuit in Fig. 4.47. This same equivalence between the circuit 
in Figs. 4.45 and 4.47 holds for any resistor value connected between 
nodes a.b. 

The Norton Equivalent 

A Norton equivalent circuit consists of an independent current source 
in parallel with the Norton equivalent resistance, We can derive it from 
a Thevenin equivalent circuit simply by making a source transforma
tion. Thus the Norton current equals the short-circuit current at the 
terminals of interest, and the Norton resistance is identical to the 
Thevenin resistance. 

32 V 

SO 
'VW • a 

Figure 4.47 • The Thevenin equivalent of the circuit 
shown in Fig. 4.45. 

4 O 
- w v — • a 

J25V J20I1 ( f J 3 A 

-•b 

Step 1: 
Source transformation t 

Step 2: 
Parallel sources and 

parallel resistors combined • 

4ft 
•—-Wv—e a 

8A 4 0 

-•b 

Step 3: 
Source transformation; series 

resistors combined, producing 
the Thevenin equivalent circuit 

8ft 
-VW-

32 V 

Using Source Transformations 

Sometimes we can make effective use of source transformations to 
derive a Thevenin or Norton equivalent circuit. For example, we can 
derive the Thevenin and Norton equivalents of the circuit shown 
in Fig. 4.45 by making the series of source transformations shown in 
Fig. 4.48. This technique is most useful when the network contains only 
independent sources. The presence of dependent sources requires 
retaining the identity of the controlling voltages and/or currents, and 
this constraint usually prohibits continued reduction of the circuit 
by source transformations. We discuss the problem of finding the 
Thevenin equivalent when a circuit contains dependent sources in 
Example 4.10. 

Step 4: 
Source transformation, producing 

the Norton equivalent circuit 

4A 8 O 

Figure 4.48 • Step-by-step derivation of the Thevenin 
and Norton equivalents of the circuit shown in Fig. 4.45. 
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Example 4.10 Finding the Thevenin Equivalent of a Circuit with a Dependent Source 

Find the Thevenin equivalent for the circuit con
taining dependent sources shown in Fig. 4.49. 

2 k O 

5V 

Figure 4.49 • A circuit used to illustrate a Thevenin equivalent 
when the circuit contains dependent sources. 

Figure 4.50 • The circuit shown in Fig. 4.49 with terminals a 
and b short-circuited. 

Solution 

The first step in analyzing the circuit in Fig. 4.49 is 
to recognize that the current labeled ix must be 
zero. (Note the absence of a return path for ix to 
enter the left-hand portion of the circuit.) The 
open-circuit, or Thevenin, voltage will be the volt
age across the 25 ft resistor. With ix = 0, 

^Th = ^ab = (-200(25) = -500/. 

The current /' is 

3v 3V 
i = 

Th 

2000 2000 

In writing the equation for i, we recognize that the 
Thevenin voltage is identical to the control voltage. 
When we combine these two equations, we obtain 

V Th - 5 V. 

To calculate the short-circuit current, we place 
a short circuit across a,b. When the terminals a,b are 
shorted together, the control voltage v is reduced to 
zero. Therefore, with the short in place, the circuit 
shown in Fig. 4.49 becomes the one shown in 
Fig. 4.50. With the short circuit shunting the 25 ft 
resistor, all the current from the dependent current 
source appears in the short, so 

20/. 

As the voltage controlling the dependent volt
age source has been reduced to zero, the current 
controlling the dependent current source is 

2.5 mA. 
2000 

Combining these two equations yields a short-circuit 
current of 

isc = -20(2.5) = - 5 0 mA. 

From /sc and VTh we get 

RTh -
V l'h - 5 

'Ur - 5 0 
X 10-1 = 100 ft. 

Figure 4.51 illustrates the Thevenin equivalent 
for the circuit shown in Fig. 4.49. Note that the ref
erence polarity marks on the Thevenin voltage 
source in Fig. 4.51 agree with the preceding equa
tion for VTh. 

100 ft 

5V 

Figure 4.51 • The Thevenin equivalent for the circuit shown in 
Fig. 4.49. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 5—Understand Thevenin and Norton equivalents 

4.16 Find the Thevenin equivalent circuit with respect 
to the terminals a,b for the circuit shown. 

Answer: Vah = VTu = 64.8 V ^ T h = 6 a Th 

72 VI 

12 n 

5 0 8fl 

:20il 

4.17 Find the Norton equivalent circuit with respect 
to the terminals a,b for the circuit shown. 

Answer: /N = 6 A (directed toward a), i?N = 7.5 ft. 

4.18 A voltmeter with an internal resistance of 
100 kft is used to measure the voltage vAB in the 
circuit shown. What is the voltmeter reading? 

Answer: 120 V. 

NOTE: Also try Chapter Problems 4.63, 4.64, and 4.71. 

36 V 6 
12 kO 15 kH 

--VW • A 

f J18mA | 60 kft y,\n 

- •B 

4.11 More on Deriving a Thevenin 
Equivalent 

The technique for determining JRTh that we discussed and illustrated in 
Section 4.10 is not always the easiest method available. Two other meth
ods generally are simpler to use. The first is useful if the network contains 
only independent sources. To calculate RTh for such a network, we first 
deactivate all independent sources and then calculate the resistance seen 
looking into the network at the designated terminal pair. A voltage source 
is deactivated by replacing it with a short circuit. A current source is deac
tivated by replacing it with an open circuit. For example, consider the cir
cuit shown in Fig. 4.52. Deactivating the independent sources simplifies 
the circuit to the one shown in Fig. 4.53. The resistance seen looking into 
the terminals a,b is denoted i?al,, which consists of the 4 ft resistor in series 
with the parallel combinations of the 5 and 20 ft resistors.Thus, 

Kab = R Th 4 + 
5 x 20 

25 
8 ft. (4.63) 

Note that the derivation of RTh with Eq. 4.63 is much simpler than the 
same derivation with Eqs. 4.57-4.62. 

25 V 

Figure 4.52 • A circuit used to illustrate a Thevenin 
equivalent. 

5 ^ 

R ab 

Figure 4.53 • The circuit shown in Fig. 4.52 after deac
tivation of the independent sources. 
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If the circuit or network contains dependent sources, an alternative 
procedure for finding the Thevenin resistance RTh is as follows. We first 
deactivate all independent sources, and we then apply either a test voltage 
source or a test current source to the Thevenin terminals a,b.The Thevenin 
resistance equals the ratio of the voltage across the test source to the cur
rent delivered by the test source. Example 4.11 illustrates this alternative 
procedure for finding RTh, using the same circuit as Example 4.10. 

Example 4.11 Finding the Thevenin Equivalent Using a Test Source 

Find the Thevenin resistance RTh for the circuit in 
Fig. 4.49, using the alternative method described. 

Solution 

We first deactivate the independent voltage source 
from the circuit and then excite the circuit from the 
terminals a,b with either a test voltage source or a 
test current source. If we apply a test voltage source, 
we will know the voltage of the dependent voltage 
source and hence the controlling current i. Therefore 
we opt for the test voltage source. Figure 4.54 shows 
the circuit for computing the Thevenin resistance. 

2kH ' / • 

20/ f 25 0 vT 

Figure 4.54 • An alternative method for computing the 
Thevenin resistance. 

The externally applied test voltage source is 
denoted vr, and the current that it delivers to the 
circuit is labeled iT. To find the Thevenin resistance, 
we simply solve the circuit shown in Fig. 4.54 for the 
ratio of the voltage to the current at the test source; 
that is, RTh = Vrjij. From Fig. 4.54, 

(4.64) 

(4.65) 

We then substitute Eq. 4.65 into Eq. 4.64 and solve 
the resulting equation for the ratio vT/ir: 

vr b\)vT 
lT ~ 25 2000' 

/'-/• 1 6 50 

vT 25 200 5000 

From Eqs. 4.66 and 4.67, 

#Th = — = 100 H. 
ir 

1 

100* 

(4.66) 

(4.67) 

(4.68) 

Figure 4.55 A The application of a Thevenin equivalent 
in circuit analysis. 

In general, these computations are easier than those involved in com
puting the short-circuit current. Moreover, in a network containing only 
resistors and dependent sources, you must use the alternative method, 
because the ratio of the Thevenin voltage to the short-circuit current is 
indeterminate. That is, it is the ratio 0/0. 

Using the Thevenin Equivalent in the Amplifier Circuit 
At times we can use a Thevenin equivalent to reduce one portion of a cir
cuit to greatly simplify analysis of the larger network. Let's return to the 
circuit first introduced in Section 2.5 and subsequently analyzed in 
Sections 4.4 and 4.7. To aid our discussion, we redrew the circuit and iden
tified the branch currents of interest, as shown in Fig. 4.55. 

As our previous analysis has shown, iB is the key to finding the other 
branch currents. We redraw the circuit as shown in Fig. 4.56 to prepare to 
replace the subcircuit to the left of V{) with its Thevenin equivalent. You 
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Figure 4.56 • A modified version of the circuit shown 
in Fig. 4.55. 

Figure 4.57 • The circuit shown in Fig. 4.56 modified 
by a Thevenin equivalent. 

should be able to determine that this modification has no effect on the 
branch currents i[, ij, hh a n d /#. 

Now we replace the circuit made up of V c c , i?x, and R2 with a 
Thevenin equivalent, with respect to the terminals b.d.The Thevenin volt
age and resistance are 

V l'h 

R rh 
R^R2 

RY + R2 

(4.69) 

(4.70) 

With the Thevenin equivalent, the circuit in Fig. 4.56 becomes the one 
shown in Fig. 4.57. 

We now derive an equation for /'# simply by summing the voltages 
around the left mesh. In writing this mesh equation, we recognize that 
iE = (1 + p)iB- Thus, 

^TK = R-ntB + VQ + RE(1 + p)iB, (4.71) 

from which 

h = 
v T h - v{ 

RTh + ( 1 + fi)RE 
(4.72) 

When we substitute Eqs. 4.69 and 4.70 into Eq. 4.72, we get the same 
expression obtained in Eq.2.25. Note that when we have incorporated the 
Thevenin equivalent into the original circuit, we can obtain the solution 
for iB by writing a single equation. 

^ A S S E S S M E N T P R O B L E M S 

Objective 5—Understand Thevenin and Norton equivalents 

4.19 Find the Thevenin equivalent circuit with respect 
to the terminals a,b for the circuit shown. 

Answer: VTh = vab = 8 V, RTh = 1 0 . 

4.20 Find the Thevenin equivalent circuit with 
respect to the terminals a,b for the circuit 
shown. (Hint: Define the voltage at the left
most node as v, and write two nodal equations 
with VTh as the right node voltage.) 

24 V 

J lx 

2H 
— W v — 

4 A ( T ) i.'Asn 

- • b 

Answer: FTl l - vah = 30 V, RTh = 10 0,. 

20 n 160/^ 

6 0 a j 4 A ( I so ft f 40 a f i is 

- • b 

NOTE: Also try Chapter Problems 4.74 and 4.77. 
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Resistive network 
containing 
independent and 
dependent sources 

b « — 

RL 

Figure 4.58 • A circuit describing maximum power 
transfer. 

R, 

Figure 4.59 • A circuit used to determine the value of 
RL for maximum power transfer. 

4,12 Maximum Power Transfer 
Circuit analysis plays an important role in the analysis of systems designed 
to transfer power from a source to a load. We discuss power transfer in 
terms of two basic types of systems. The first emphasizes the efficiency of 
the power transfer. Power utility systems are a good example of this type 
because they are concerned with the generation, transmission, and distri
bution of large quantities of electric power. If a power utility system is 
inefficient, a large percentage of the power generated is lost in the trans
mission and distribution processes, and thus wasted. 

The second basic type of system emphasizes the amount of power trans
ferred. Communication and instrumentation systems are good examples 
because in the transmission of information, or data, via electric signals, the 
power available at the transmitter or detector is limited. Thus, transmitting as 
much of this power as possible to the receiver, or load, is desirable. In such 
applications the amount of power being transferred is small, so the efficiency 
of transfer is not a primary concern. We now consider maximum power 
transfer in systems that can be modeled by a purely resistive circuit. 

Maximum power transfer can best be described with the aid of the cir
cuit shown in Fig. 4.58. We assume a resistive network containing independ
ent and dependent sources and a designated pair of terminals, a,b, to which a 
load, RL, is to be connected.The problem is to determine the value of RL that 
permits maximum power delivery to RL. The first step in this process is to 
recognize that a resistive network can always be replaced by its Thevenin 
equivalent. Therefore, we redraw the circuit shown in Fig. 4.58 as the one 
shown in Fig. 4.59. Replacing the original network by its Thevenin equivalent 
greatly simplifies the task of finding RL. Derivation of RL requires express
ing the power dissipated in RL as a function of the three circuit parameters 
VTh, i?Th, and RL. Thus 

p = i2RL 

V Th 

Rjh + ^L 
Ri, (4.73) 

Next, we recognize that for a given circuit, Vj^ and RTh will be fixed. 
Therefore the power dissipated is a function of the single variable RL, To 
find the value of RL that maximizes the power, we use elementary calculus. 
We begin by writing an equation for the derivative of p with respect to RL: 

dp 

~d~R~, 
V2 

Th 
(RTh + RL)2- RL-2(RTh + RL) 

(ftn, + RL)4 

The derivative is zero and p is maximized when 

(RTh + RL)2 = 2RL(Rru + RL)-

(4.74) 

(4.75) 

Solving Eq. 4.75 yields 

Condition for maximum power transfer • R, R Th- (4.76) 

Thus maximum power transfer occurs when the load resistance RL equals 
the Thevenin resistance RTh. To find the maximum power delivered to RL, 
we simply substitute Eq. 4.76 into Eq. 4.73: 

^ f h ^ L V2 
Th (4.77) 

" n d X {2RLf ARL 

The analysis of a circuit when the load resistor is adjusted for maximum 
power transfer is illustrated in Example 4.12. 
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Example 4.12 Calculating the Condition for Maximum Power Transfer 

a) For the circuit shown in Fig. 4.60, find the value 
of Rf that results in maximum power being 
transferred to RL. 

360 V 

300 V 

25 0 

:R, 

Figure 4.61 A Reduction of the circuit shown in Fig. 4.60 by 
means of a Thevenin equivalent. 

Figure 4.60 • The circuit for Example 4.12. b) The maximum power that can be delivered to 
RLh 

b) Calculate the maximum power that can be deliv
ered to RL. 

c) When Rf is adjusted for maximum power trans
fer, what percentage of the power delivered by 
the 360 V source reaches RL*> 

/ 3 0 0 V 
/ W = \j£) (25) = 900 W. 

c) When RL equals 25 O, the voltage vnb is 

Solution 

a) The Thevenin voltage for the circuit to the left of 
the terminals a,b is 

l f f)< • 

From Fig. 4.60, when vnb equals 150 V, the cur
rent in the voltage source in the direction of the 
voltage rise across the source is 

VTU = y~(360) = 300 V. . _ 360 - 150 _ 210 _ 
l j " " 30 " 30 == ? A -

The Thevenin resistance is 

(150)(30) 
J ? ™ - 1 8 0 - 2 5 a 

Therefore, the source is delivering 2520 W to the 
circuit, or 

Ps = -4(360) = -2520 W. 

Replacing the circuit to the left of the termi
nals a,b with its Thevenin equivalent gives 
us the circuit shown in Fig. 4.61, which indi
cates that RL must equal 25 fl for maximum 
power transfer. 

The percentage of the source power delivered to 
the load is 

900 
2520 

X 100 = 35.71%. 
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/ASSESSMENT PROBLEMS 

Objective 6—Know the condition for and calculate maximum power transfer to resistive load 

4.21 a) Find the value of R that enables the circuit 
shown to deliver maximum power to the 
terminals a,b. 

b) Find the maximum power delivered to R. 

100 VC-) 

4.22 Assume that the circuit in Assessment 
Problem 4.21 is delivering maximum power to 
the load resistor R. 

a) How much power is the 100 V source deliv
ering to the network? 

b) Repeat (a) for the dependent voltage 
source. 

c) What percentage of the total power gener
ated by these two sources is delivered to the 
load resistor /?? 

Answer: 
Answer: (a) 3 0 ; 

(b) 1.2 kW. 

NOTE: Also try Chapter Problems 4.83 and 4.87. 

(a) 3000 W; 

(b)800W; 

(c) 31.58%. 

4.13 Superposition 
A linear system obeys the principle of superposition, which states that 
whenever a linear system is excited, or driven, by more than one inde
pendent source of energy, the total response is the sum of the individual 
responses. An individual response is the result of an independent source 
acting alone. Because we are dealing with circuits made up of inter
connected linear-circuit elements, we can apply the principle of superposi
tion directly to the analysis of such circuits when they are driven by more 
than one independent energy source. At present, we restrict the discussion 
to simple resistive networks; however, the principle is applicable to any 
linear system. 

Superposition is applied in both the analysis and the design of circuits. 
In analyzing a complex circuit with multiple independent voltage and cur
rent sources, there are often fewer, simpler equations to solve when the 
effects of the independent sources are considered one at a time. Applying 
superposition can thus simplify circuit analysis. Be aware, though, that 
sometimes applying superposition actually complicates the analysis, produc
ing more equations to solve than with an alternative method. Superposition 
is required only if the independent sources in a circuit are fundamentally 
different. In these early chapters, all independent sources are dc sources, so 
superposition is not required. We introduce superposition here in anticipa
tion of later chapters in which circuits will require it. 

Superposition is applied in design to synthesize a desired circuit 
response that could not be achieved in a circuit with a single source. If the 
desired circuit response can be written as a sum of two or more terms, the 
response can be realized by including one independent source for each 
term of the response. This approach to the design of circuits with complex 
responses allows a designer to consider several simple designs instead of 
one complex design. 
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We demonstrate the superposition principle by using it to find the 
branch currents in the circuit shown in Fig. 4.62. We begin by finding the 
branch currents resulting from the 120 V voltage source. We denote those 
currents with a prime. Replacing the ideal current source with an open cir
cuit deactivates it; Fig. 4.63 shows this. The branch currents in this circuit 
are the result of only the voltage source. 

We can easily find the branch currents in the circuit in Fig. 4.63 once 
we know the node voltage across the 3 ft resistor. Denoting this voltage 
Vi, we write 

from which 

V\ - 120 Vt Vi 
— + — + — — 

6 3 2 + 4 

v] = 30 V. 

= 0, (4.78) 

120 V 12A 

Figure 4.62 • A circuit used to illustrate superposition. 

120 V 

60, 
'VW-

V] 2 0 

:3ft 14 I f 4XI 

(4.79) Figure 4.63 • The circuit shown in Fig. 4.62 with the 
current source deactivated. 

Now we can write the expressions for the branch currents i[ — i'± directly: 

120 - 30 
= 15 A, 

* - ? - 10 A, 

(4.80) 

(4.81) 

«3 6 
(4.82) 

To find the component of the branch currents resulting from the current 
source, we deactivate the ideal voltage source and solve the circuit shown in 
Fig. 4.64. The double-prime notation for the currents indicates they are the 
components of the total current resulting from the ideal current source. 

We determine the branch currents in the circuit shown in Fig. 4.64 by 
first solving for the node voltages across the 3 and 4 ft resistors, respec
tively. Figure 4.65 shows the two node voltages. The two node-voltage 
equations that describe the circuit are 

6ft 
->vw 

12A 

Figure 4.64 • The circuit shown in Fig. 4.62 with the 
voltage source deactivated. 

3 6 2 

VA - V* VA 4
 n

 3 + -Y + 12 = 0. 
2 4 

Solving Eqs. 4.83 and 4.84 for v3 and i>4, we get 

(4.83) 

(4.84) 

6H 
-'WV 

Figure 4.65 A The circuit shown in Fig. 4.64 showing 
the node voltages v3 and v4. 

^3 -12 V, (4.85) 

v4 = -24 V. (4.86) 

Now we can write the branch currents /" through i% directly in terms of the 
node voltages v3 and v4: 

*-?-?-". (4.87) 
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« - ? - ^ ~ 4 A. (4.88) 

.„ v3 ~ v4 -12 + 24 
f3 = —^ = « = 6 A, (4.89) 

'4 
«4 

4 
-24 = - 6 A. (4.90) 

To find the branch currents in the original circuit, that is, the currents 
ij, /2, /3, and i4 in Fig. 4.62, we simply add the currents given by 
Eqs. 4.87-4.90 to the currents given by Eqs. 4.80-4.82: 

h = i'l + % = 15 + 2 = 17 A, 

/2 = /2 + i2' = 10 - 4 = 6 A, 

«3 = '3 + / 3 = 5 + 6 = 11 A, 

/4 = /4 + /4 = 5 - 6 = - 1 A. 

(4.91) 

(4.92) 

(4.93) 

(4.94) 

You should verify that the currents given by Eqs. 4.91-4.94 are the correct 
values for the branch currents in the circuit shown in Fig. 4.62. 

When applying superposition to linear circuits containing both independ
ent and dependent sources, you must recognize that the dependent sources 
are never deactivated. Example 4.13 illustrates the application of superposi
tion when a circuit contains both dependent and independent sources. 

Example 4.13 Using Superposition to Solve a Circuit 

Use the principle of superposition to find v() in the 
circuit shown in Fig. 4.66. 

0.4 vA 

10 V 

^ > 

(-,,̂ 20 n "A^lOft ( f )5 A 
2 ix 

O 
Figure 4.66 A The circuit for Example 4.13. 

Solution 

We begin by finding the component of v0 resulting 
from the 10 V source. Figure 4.67 shows the circuit. 
With the 5 A source deactivated, v'& must equal 

(-0.414)(10). Hence, v'A must be zero, the branch 
containing the two dependent sources is open, and 

20 

10 V 

v'o = 25(10) = 8 V. 

0.4 vA' 

»</£20fi y A ' | l0n 
2/V 

O1 

Figure 4.67 • The circuit shown in Fig. 4.66 with the 5 A 
source deactivated. 



When the 10 V source is deactivated, the circuit 
reduces to the one shown in Fig. 4.68. We have 
added a reference node and the node designations 
a, b, and c to aid the discussion. Summing the cur
rents away from node a yields 

J } + y - OAvl = 0, or 5v» - 8v£ = 0. 

Summing the currents away from node b gives 

0 . 4 ^ . ^ - 5 0, or 

4v% + vb - 2¾ = 50. 

We now use 

vb = 2il + vl 

to find the value for v'i. Thus, 

5vl = 50, or vl = 10 V. 
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From the node a equation, 

5t>g = 80, or z?g = 16 V. 

The value of va is the sum of v't) and v"„ or 24 V. 

0.4 »A» 

<e>rl 
<'j2on vA"|ion ( t ) 5 A 

2 4" 

o 
Figure 4.68 • The circuit shown in Fig. 4.66 with the 10 V 
source deactivated. 

NOTE: Assess your understanding of this material 
by trying Chapter Problems 4.91 and 4.96. 

Practical Perspective 
Circuits with Realistic Resistors 
I t is not possible to fabricate identical electrical components. For example, 
resistors produced from the same manufacturing process can vary in value 
by as much as 20%. Therefore, in creating an electrical system the designer 
must consider the impact that component variation will have on the per
formance of the system. One way to evaluate this impact is by performing 
sensitivity analysis. Sensitivity analysis permits the designer to calculate 
the impact of variations in the component values on the output of the sys
tem. We will see how this information enables a designer to specify an 
acceptable component value tolerance for each of the system's components. 

Consider the circuit shown in Fig. 4.69. To illustrate sensitivity analysis, 
we will investigate the sensitivity of the node voltages V\ and v2 to changes 
in the resistor / ^ . Using nodal analysis we can derive the expressions for V\ 
and v2 as functions of the circuit resistors and source currents. The results 
are given in Eqs. 4.95 and 4.96: 

Vi 

v2 = 

(*! + R2)(R3 + R4) + R3R4 

RsR^Ri + R2)lsi ~ Rilgi] 

(*, + R2)(R3 + R4) + R3R4' 

(4.95) 

(4.96) 

The sensitivity of V\ with respect to Ri is found by differentiating Eq. 4.95 
with respect to Ru and similarly the sensitivity of v2 with respect to R^ is 
found by differentiating Eq. 4.96 with respect to Rl. We get 

dVx [R3R4 + Ri(R3 + R4)}{R,R4Ig2 ~ [R3R4 + fl2(*3 + RA)]I8I} 

dR\ ~ [(/?! + R2)(R3 + R4) + R3R4Y 

(4.97) 
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dv2 = R3R4{RyR,I,2 - [R2(R3 + R4) + R3R4]Igl} 

dR, " [(Rl + R2)(R3 + R4) + R3R4]
2 (4.98) 

Figure 4.69 A Circuit used to introduce sensitivity 
analysis. 

We now consider an example with actual component values to illustrate 
the use of Eqs. 4.97 and 4.98. 

EXAMPLE 

Assume the nominal values of the components in the circuit in Fig. 4.69 are: 
Rl = 25 H; R2 = 5 ft; R3 = 50 ft; R4 = 75 ft; Ig] = 12 A and 
Ig2 = 16 A. Use sensitivity analysis to predict the values of vx and v2 if 
the value of R^ is different by 10% from its nominal value. 

Solution 
From Eqs. 4.95 and 4.96 we find the nominal values of vv and v2. Thus 

25(3750(16) - [5(125) + 3750112} 

and 

30(125) + 3750 

3750[30(16) - 25(12)] 
v2 = . = 90 V 

30(125) + 3750 
(4.100) 

Now from Eqs. 4.97 and 4.98 we can find the sensitivity of V\ and v2 to 
changes in Rt. Hence 

dv{ [3750 + 5(125)] - (3750(16) - [3750 + 5(125)]12} 

dRi [(30)(125) + 3750]' 

12 ' 
(4.101) 

and 

dv2 _ 3750(3750(16) - [5(125) + 3750J12}] 

tf/c7 " (7500)2 

= 0.5 V / a (4.102) 



How do we use the results given by Eqs. 4.101 and 4.102? Assume that 
Ri is 10% less than its nominal value, that is, R\ — 22.5 ft. Then 
Ai?! = -2.5 ft and Eq. 4.101 predicts Avx will be 

A v i = ( ^ V 2 - 5 ) = -1-4583 V. 

Therefore, if R^ is 10% less than its nominal value, our analysis predicts 
that v\ will be 

Vi. = 25 - 1.4583 = 23.5417 V. (4.103) 

Similarly for Eq. 4.102 we have 

Av2 = 0.5(-2.5) = -1.25 V, 

v2 = 90 - 1.25 = 88.75 V. (4.104) 

We attempt to confirm the results in Eqs. 4.103 and 4.104 by substituting 
the value R^ = 22.5 ft into Eqs. 4.95 and 4.96. When we do, the results are 

vx = 23.4780 V, (4.105) 

v2 = 88.6960 V. (4.106) 

Why is there a difference between the values predicted from the sensitivity 
analysis and the exact values computed by substituting for R^ in the equa
tions for V\ and v2l We can see from Eqs. 4.97 and 4.98 that the sensitivity 
of Vi and v2 with respect to R^ is a function of Rlt because R^ appears in 
the denominator of both Eqs. 4.97 and 4.98. This means that as Ri 
changes, the sensitivities change and hence we cannot expect Eqs. 4.97 and 
4.98 to give exact results for large changes in /¾. Note that for a 10% 
change in Ru the percent error between the predicted and exact values of 
vx and v2 is small. Specifically, the percent error in v{ = 0.2713% and the 
percent error in v2 = 0.0676%. 

From this example, we can see that a tremendous amount of work is 
involved if we are to determine the sensitivity of v^ and v2 to changes in 
the remaining component values, namely R2f R3t R4f IgU and Ig2. 
Fortunately, PSpice has a sensitivity function that will perform sensitivity 
analysis for us. The sensitivity function in PSpice calculates two types of 
sensitivity. The first is known as the one-unit sensitivity, and the second 
is known as the 1% sensitivity. In the example circuit, a one-unit change 
in a resistor would change its value by 1 ft and a one-unit change in a 
current source would change its value by 1 A. In contrast, 1% sensitiv
ity analysis determines the effect of changing resistors or sources by 
1% of their nominal values. 

The result of PSpice sensitivity analysis of the circuit in Fig. 4.69 is 
shown in Table 4.2. Because we are analyzing a linear circuit, we can use 
superposition to predict values of v\ and v2 if more than one component's 
value changes. For example, let us assume /?, decreases to 24 ft and R2 

decreases to 4 ft. From Table 4.2 we can combine the unit sensitivity of V\ 
to changes in R{ and R2 to get 

Auj Av\ 

A#[ + 1R~2 
= 0.5833 - 5.417 = -4.8337 V/ft, 
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Similarly, 

At?? Av2 

+ AS, ' AR2 0.5+ 6.5 = 7.0 V/a . 

Thus if both R{ and R2 decreased by 1II we would predict 
Vi = 25 + 4.8227 = 29.8337 V, 

v2 = 90 - 7 = 83 V. 

TABLE 4.2 PSpice Sensitivity Analysis Results 

Element Element 

Name Value 
Element! Sensitivity 

(Volts/Unit) 

(a) DC Sensitivities of Node Voltage VI 

Rl 25 
R2 5 

R3 50 
R4 75 
IG1 12 

IG2 16 

(b) Sensitivities of Output V2 

Rl 25 
R2 5 

R3 50 

R4 75 

IG1 12 

IG2 16 

0.5833 
-5.417 

0.45 
0.2 

-14.58 

12.5 

0.5 
6.5 

0.54 

0.24 
-12.5 

15 

Normalized Sensitivity 

(Volts/Percent) 

0.1458 
-0.2708 

0.225 

0.15 
-1.75 

2 

0.125 

0.325 
0.27 

0.18 
-1.5 

2.4 

I f we substitute R{ = 24 fl and R2 = 4 ft into Eqs. 4.95 and 4.96 we get 

vi = 29.793 V, 

v2 = 82.759 V. 

In both cases our predictions are within a fraction of a volt of the actual node 
voltage values. 

Circuit designers use the results of sensitivity analysis to determine 
which component value variation has the greatest impact on the output of 
the circuit. As we can see from the PSpice sensitivity analysis in Table 4.2, 
the node voltages Dj and v2 are much more sensitive to changes in R2 than 
to changes in Ru Specifically, V\ is (5.417/0.5833) or approximately 
9 times more sensitive to changes in R2 than to changes in Rx and v2 is 
(6.5/0.5) or 13 times more sensitive to changes in R2 than to changes in 
Ri, Hence in the example circuit, the tolerance on R2 must be more strin
gent than the tolerance on R^ if i t is important to keep V\ and v2 close to 
their nominal values. 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 

Problems 4.105-4.107. 
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Summary 

• For the topics in this chapter, mastery of some basic terms, 
and the concepts they represent, is necessary. Those terms 
are node, essential node, path, branch, essential branch, 
mesh, and planar circuit. Table 4.1 provides definitions 
and examples of these terms. (See page 91.) 

• Two new circuit analysis techniques were introduced in 
this chapter: 

• The node-voltage method works with both planar 
and nonplanar circuits. A reference node is chosen 
from among the essential nodes. Voltage variables 
are assigned at the remaining essential nodes, and 
Kirchhoff s current law is used to write one equation 
per voltage variable. The number of equations is 
ne — 1, where ne is the number of essential nodes. 
(See page 93.) 

• The mesh-current method works only with planar 
circuits. Mesh currents are assigned to each mesh, 
and Kirchhoff's voltage law is used to write one 
equation per mesh. The number of equations is 
b — (n — 1), where b is the number of branches in 
which the current is unknown, and n is the number of 
nodes. The mesh currents are used to find the branch 
currents. (See page 99.) 

• Several new circuit simplification techniques were 
introduced in this chapter: 

• Source transformations allow us to exchange a volt
age source (vs) and a series resistor (R) for a current 
source (is) and a parallel resistor (R) and vice versa. 
The combinations must be equivalent in terms of 
their terminal voltage and current. Terminal equiva
lence holds provided that 

s R 

(See page 109.) 

• Thevenin equivalents and Norton equivalents allow 
us to simplify a circuit comprised of sources and resis
tors into an equivalent circuit consisting of a voltage 
source and a series resistor (Thevenin) or a current 
source and a parallel resistor (Norton). The simplified 
circuit and the original circuit must be equivalent in 
terms of their terminal voltage and current. Thus 
keep in mind that (1) the Thevenin voltage (Kiii) is 
the open-circuit voltage across the terminals of the 
original circuit, (2) the Thevenin resistance (i?Th) is 
the ratio of the Thevenin voltage to the short-circuit 
current across the terminals of the original circuit; 
and (3) the Norton equivalent is obtained by per
forming a source transformation on a Thevenin 
equivalent. (See page 113.) 

• Maximum power transfer is a technique for calculating 
the maximum value of p that can be delivered to a load, 
RL. Maximum power transfer occurs when Ri = Rjh, 
the Thevenin resistance as seen from the resistor RL. 
The equation for the maximum power transferred is 

(See page 120.) 

• In a circuit with multiple independent sources, 
superposition allows us to activate one source at a time 
and sum the resulting voltages and currents to deter
mine the voltages and currents that exist when all inde
pendent sources are active. Dependent sources are 
never deactivated when applying superposition. (See 
page 122.) 
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Problems 

Section 4.1 

4.1 For the circuit shown in Fig. P4.1, state the numerical 
value of the number of (a) branches, (b) branches 
where the current is unknown, (c) essential branches, 
(d) essential branches where the current is unknown, 
(e) nodes, (f) essential nodes, and (g) meshes. 

Figure P4.1 

4.4 Assume the current ig in the circuit in Fig. P4.4 is 
known. The resistors R^ - R5 are also known. 

a) How many unknown currents are there? 

b) How many independent equations can be writ
ten using Kirchhoff s current law (KCL)? 

c) Write an independent set of KCL equations. 

d) How many independent equations can be 
derived from Kirchhoff s voltage law (KVL)? 

e) Write a set of independent KVL equations. 

Figure P4.4 

V L 

4.2 a) If only the essential nodes and branches are 
identified in the circuit in Fig. P4.1, how many 
simultaneous equations are needed to describe 
the circuit? 

b) How many of these equations can be derived 
using Kirchhoff s current law? 

c) How many must be derived using Kirchhoffs 
voltage law? 

d) What two meshes should be avoided in applying 
the voltage law? 

4.3 a) How many separate parts does the circuit in 

Fig. P4.3 have? 

b) How many nodes? 

c) How many branches are there? 
d) Assume that the lower node in each part of the 

circuit is joined by a single conductor. Repeat 
the calculations in (a)-(c). 

Figure P4.3 

4.5 A current leaving a node is defined as positive. 

a) Sum the currents at each node in the circuit 
shown in Fig. P4.4. 

b) Show that any one of the equations in (a) can be 
derived from the remaining three equations. 

Section 4.2 

4.6 Use the node-voltage method to find Uj and v2 in 
PSPICE the circuit in Fig. P4.6. 

Figure P4.6 

144 V 

son 

4.7 Use the node-voltage method to find how much 
PSPICE power the 2 A source extracts from the circuit in 

HULTISIM p j g p 4 J 

Figure P4.7 

2AI so a 45 V 
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4.8 Use the node-voltage method to find vx and v2 in 
PSPICE the circuit shown in Fig. P4.8. 

MULTISIM 

Figure P4.8 

8f t 
-VvV-

<>i|40ft kmVL u2f 120ft C\ J1A 

4.9 Use the node-voltage method to find v() in the cir-
PSPICE cuit in Fig. P4.9. 

Figure P4.9 

2011 

24 V 

8012 
- A ^ m 

40 mA 

4.10 a) Find the power developed by the 40 mA current 
PSPKE source in the circuit in Fig. P4.9. 

b) Find the power developed by the 24 V voltage 
source in the circuit in Fig. P4.9. 

c) Verify that the total power developed equals the 
total power dissipated. 

4.11 A 50 O resistor is connected in series with the 
PSPICE 40 mA current source in the circuit in Fig. P4.9. 

MULTISIM N ^ , . . 

a) Find va. 
b) Find the power developed by the 40 mA current 

source. 

c) Find the power developed by the 24 V voltage 
source. 

d) Verify that the total power developed equals the 
total power dissipated. 

e) What effect will any finite resistance connected 
in series with the 40 mA current source have on 
the value of val 

4.12 The circuit shown in Fig. P4.12 is a dc model of a 
PSPICE residential power distribution circuit. 

a) Use the node-voltage method to find the branch 
currents i{ — /6. 

b) Test your solution for the branch currents by 
showing that the total power dissipated equals 
the total power developed. 

Figure P4.12 

125 V 

125 V 

':, 

4.13 a) Use the node-voltage method to find the 
PSPKE branch currents /a - /e in the circuit shown in 

MULTISIM F ig.p4> 1 3 . 

b) Find the total power developed in the circuit. 

Figure P4.13 

128 V 320 V 

4.14 Use the node-voltage method to find the total power 
PSPICE dissipated in the circuit in Fig. P4.14. 

MULTISIM 

Figure P4.14 

40 V 
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4.15 a) Use the node-voltage method to find vh v2, and 
! ™ . v3 in the circuit in Fig. P4.15. 

MULTISIM 

b) How much power does the 40 V voltage source 
deliver to the circuit? 

Figure P4.15 

40 V 

4.16 a) Use the node-voltage method to show that the 
PSPICE output voltage v0 in the circuit in Fig. P4.16 is 

equal to the average value of the source voltages. 

b) Find v0 if v{ = 100 V, v2 = 80 V, and 
v3 = - 60 V. 

Figure P4.16 

4.19 Use the node-voltage method to calculate the 
PSPICE power delivered by the dependent voltage source in 

WLTISIM . , . . . . ^ . „ , -. n 

the circuit in Fig. P4.19. 

Figure P4.19 

160 V 

ion 3011 

('„ I loo a 150 L 

20 a 
^vw-

Section 4.3 

4.17 a) Use the node-voltage method to find the total 
power developed in the circuit in Fig. P4.17. 

MULTISIM 

b) Check your answer by finding the total power 
absorbed in the circuit. 

Figure P4.17 

84/A 

PSPICE 

MULTISIM 

4.18 a) Use the node-voltage method to find v„ in the 
circuit in Fig. P4.18. 

b) Find the power absorbed by the dependent source. 

c) Find the total power developed by the independ
ent sources. 

Figure P4.18 

20 a 

3A 80 V 

4.20 a) Find the node voltages V\, «2, and v$ in the cir-
PSPICE c u i t in Fig. P4.20. 

•IULTISIM 

b) Find the total power dissipated in the circuit. 

Figure P4.20 

5 n 10 a 
m VA f VvV-

f \5/ ( , iv*20ft y2?40O yyk (^/) 96 V 

Section 4.4 

4.21 Use the node-voltage method to find i0 in the cir-
PSPICE cuit in Fig. P4.21. 

MULTISIM 

Figure P4.21 

2kft 5kft 

20 V 6 
30kll lkft 

PSPICE 

MULTISIM 

4.22 a) Use the node-voltage method to find the 
branch currents ij, i2, and /3 in the circuit in 
Fig. P4.22. 

b) Check your solution for ij, i2, and i3 by showing 
that the power dissipated in the circuit equals 
the power developed. 

Figure P4.22 

30 V 80 V 
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4.23 a) Use the node-voltage method to find the power 
dissipated in the 2 (2 resistor in the circuit in 
Fig. P4.23. 

b) Find the power supplied by the 230 V source. 

Figure P4.23 

230 vC-y 

i n 

i n 

i n : 

la

in 

l n 

i n 

sn 

2n 

:5 n 

4.24 Use the node-voltage method to find the value of v0 
KM« in the circuit in Fig. P4.24. 

MUITISIM 

Figure P4.26 
25 V 

55 n 

4.27 Use the node-voltage method to find v0 in the cir-
PSPICE cuit in Fig. P4.27. 

MULTISIM 

Figure P4.27 

15 V 

Figure P4.24 

50 V 

4.25 Use the node-voltage method to find the value of va 

PSPICE in the circuit in Fig. P4.25. 
«!ULTISIM 

Figure P4.25 

4.26 a) Use the node-voltage method to find v0 and 
PSPICE the power delivered by the 2 A current source 

in the circuit in Fig. P4.26. Use node a as the 
reference node. 

b) Repeat part (a), but use node b as the refer
ence node. 

c) Compare the choice of reference node in (a) 
and (b). Which is better, and why? 

4.28 Use the node-voltage method to find the power devel
oped by the 20 V source in the circuit in Fig. P4.28. PSPICE 

MULTISIM 

Figure P4.28 

80n (1)3.125 vA 

4.29 Assume you are a project engineer and one of your 
PSPICE 

MULTISIM 
staff is assigned to analyze the circuit shown in 
Fig. P4.29. The reference node and node numbers 
given on the figure were assigned by the analyst. 
Her solution gives the values of v3 and v4 as 108 V 
and 81.6 V, respectively. 

Test these values by checking the total power 
developed in the circuit against the total power dis
sipated. Do you agree with the solution submitted 
by the analyst? 

Figure P4.29 

20 n 1)1.75¾ 
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4.30 Show that when Eqs. 4.16,4.17, and 4.19 are solved 
for iB, the result is identical to Eq. 2.25. 

Section 4.5 

4.31 Solve Problem 4.12 using the mesh-current method. 

4.32 Solve Problem 4.13 using the mesh-current method. 

4.33 a) Use the mesh-current method to find the branch 
currents L, //„ and L in the circuit in Fig. P4.33. 

MULTISIM b 

b) Repeat (a) if the polarity of the 60 V source is 
reversed. 

Figure P4.33 

60 V to a 20 V 

4.34 a) Use the mesh-current method to find the total 
power developed in the circuit in Fig. P4.34. 

MULTISIM 

b) Check your answer by showing that the total 
power developed equals the total power 
dissipated. 

Figure P4.34 

460 V 

4.35 Solve Problem 4.21 using the mesh-current method. 

4.36 Solve Problem 4.23 using the mesh-current method. 

Section 4.6 

4.37 a) Use the mesh-current method to find v0 in the 
PSPICE circuit in Fig. P4.37. 

MULTISIM 

b) Find the power delivered by the dependent source. 

Figure P4.37 

io a 

7 a 

4.38 Use the mesh-current method to find the power dissi-
PSPICE p a t e ( j in the 20 fl resistor in the circuit in Fig. P4.38. 

MULTISIM 

Figure P4.38 

5 0 

3 a 
•AW 

135 V © 
4 f t 

20 a 10 i. 

2 a l a 
-"VW 

4.39 Use the mesh-current method to find the power 
delivered by the dependent voltage source in the 

JLTISIM . . . . 

circuit seen in Fig. P4.39. 

Figure P4.39 

660 V 

25 a 

20 /,, 

4.40 Use the mesh-current method to find the power 
>SPICE developed in the dependent voltage source in the 
JLTISIM . . _ . _ . . _ 

circuit in Fig. P4.40. 

Figure P4.40 

30 V 

Section 4.7 

4.41 Solve Problem 4.8 using the mesh-current method. 

4.42 a) Use the mesh-currcnt method to find how much 
power the 4 A current source delivers to the cir
cuit in Fig. P4.42. 

b) Find the total power delivered to the circuit. 

c) Check your calculations by showing that the 
total power developed in the circuit equals the 
total power dissipated 
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Figure P4.42 

120 V 

5 0 

80 V 

4.43 Solve Problem 4.20 using the mesh-current method. 

4.44 a) Use the mesh-current method to solve for i± in 
PSPICE the circuit in Fig. P4.44. 

MULTISIM 

b) Find the power delivered by the independent 
current source. 

c) Find the power delivered by the dependent volt
age source. 

4.47 Solve Problem 4.22 using the mesh-current method. 

4.48 Use the mesh-current method to find the total 
PSPICE power dissipated in the circuit in Fig. P4.48. 

MULTISIM 

Figure P4.48 

20 V 90 V 

4.49 a) Assume the 20 V source in the circuit in 
Fig. P4.48 is changed to 60 V. Find the total 
power dissipated in the circuit. 

b) Repeat (a) if the 6 A current source is replaced 
by a short circuit. 

c) Explain why the answers to (a) and (b) are 
the same. 

Figure P4.44 

i k n 

150 k 

4.45 Use the mesh-current method to find the total power 
PSPICE developed in the circuit in Fig. P4.45. 

MULTISIM 

Figure P4.45 

20 A 6.5 /A 

4.46 a) Use the mesh-current method to determine 
PSPICE which sources in the circuit in Fig. P4.46 are gen-

IULTISIM crating power. 

b) Find the total power dissipated in the circuit. 

Figure P4.46 
2f t 

4.50 a) Find the branch currents /a - ic for the circuit 
nna shown in Fig. P4.50. 

MULTISIM 

b) Check your answers by showing that the total 
power generated equals the total power 
dissipated. 

Figure P4.50 

4/d - i c 

19 A 

4.51 a) Use the mesh-current method to find the branch 
PSPICE 

MULTISIM 
currents in ia — ie in the circuit in Fig. P4.51. 

b) Check your solution by showing that the total 
power developed in the circuit equals the total 
power dissipated. 

Figure P4.51 

100ft 
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Section 4.8 

4.52 a) Would you use the node-voltage or mesh-current 
PSPICE method to find the power absorbed by the 

20 V source in the circuit in Fig. P4.52? Explain 
your choice. 

b) Use the method you selected in (a) to find 
the power. 

Figure P4.52 

0.003 % 

20 V 

<8> 
200 mA 0.4 v„ 

r-07T-e>7r<H 
100ft v« k 250 ft ^% 500 ft 200 ft 

4.53 Assume you have been asked to find the power dis-
PSPICE sipated in the 1 kft resistor in the circuit in 

mnsiM Fig.p4.53. 

a) Which method of circuit analysis would you rec
ommend? Explain why. 

b) Use your recommended method of analysis to 
find the power dissipated in the 1 kft resistor. 

c) Would you change your recommendation if the 
problem had been to find the power developed 
by the 10 mA current source? Explain. 

d) Find the power delivered by the 10 mA cur
rent source. 

Figure P4.53 

2.5 kft 2kf t 

10 mA © 
5 kft lkft 

4.54 A 4 kft resistor is placed in parallel with the 10 mA 
PSPICE current source in the circuit in Fig. P4.53. Assume 

MULTISIM yOU j i a v e j D e e n a sk e c i t0 calculate the power devel

oped by the current source. 
a) Which method of circuit analysis would you rec

ommend? Explain why. 
b) Find the power developed by the current source. 

4.55 The circuit in Fig. P4.55 is a direct-current version 
PSPICE of a typical three-wire distribution system. The 

WLTISIM r e s j s t o r s jRa? /?b, and Rc represent the resistances of 
the three conductors that connect the three loads 
Rh R2, and R3 to the 125/250 V voltage supply. The 

resistors /?! and R2 represent loads connected to 
the 125 V circuits, and R3 represents a load con
nected to the 250 V circuit. 

a) What circuit analysis method will you use 
and why? 

b) Calculate vh v2, and t?3. 

c) Calculate the power delivered to Rh R2, and /¾. 

d) What percentage of the total power developed 
by the sources is delivered to the loads? 

e) The Rb branch represents the neutral conductor 
in the distribution circuit. What adverse effect 
occurs if the neutral conductor is opened? (Hint: 
Calculate v-\ and v2 and note that appliances or 
loads designed for use in this circuit would have 
a nominal voltage rating of 125 V.) 

Figure P4.55 

125 V 

125 V 

Ra = 0.3 ft 
A/VV 

w,|/?i = 9.2 ft 

Rh = 0.5 ft 
AW Plf A3<= 11.6ft 

v2iR2= 19.2 ft 

Rc = 0.3 ft 
AW -

4.56 Show that whenever R\ = R2 in the circuit in 
PSPICE Fig. P4.55, the current in the neutral conductor is 

zero. (Hint: Solve for the neutral conductor current 
as a function of R^ and R2.) 

4.57 The variable dc voltage source in the circuit in 
PSPICE Fig. P4.57 is adjusted so that ia is zero. 

MULTISIM 

a) Find the value of V&. 
b) Check your solution by showing the power 

developed equals the power dissipated. 

Figure P4.57 

-AW 
20 ft 

AW-
25 ft 

4.58 The variable dc current source in the circuit in 
Fig. P4.58 is adjusted so that the power developed by 
the 4 A current source is zero. Find the value of /dc. 

PSPICE 

MULTISIM 

http://Fig.p4.53
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Figure P4.58 

4A 

240 V 

Section 4.9 

4.59 a) Use a series of source transformations to find 
PSPICE the current i(> in the circuit in Fig. P4.59. 

MULTISIH 

b) Verify your solution by using the node-voltage 
method to find i0. 

Figure P4.59 

2.3 k f t 
-AAA* f 

2mAM 2.7 kft £lkft C\ J 0.6 mA 

PSPICE 

MULTISIM 

4.60 a) Use a series of source transformations to find i0 

in the circuit in Fig. P4.60. 

b) Verify your solution by using the mesh-current 
method to find i(r 

Figure P4.60 

1 A 

1.5 ft 

4.61 a) Find the current in the 10 kll resistor in the cir-
PSPICE cujt in Fig. P4.61 by making a succession of 

appropriate source transformations. 

b) Using the result obtained in (a), work back 
through the circuit to find the power developed 
by the 100 V source. 

Figure P4.61 
20 kft 3 kft 

io kn 

4.62 a) Use source transformations to find v0 in the cir-
PSPICE c u i t in Fig. P4.62. 

MULTISIM 

b) Find the power developed by the 520 V source. 
c) Find the power developed by the 1 A current 

source. 

d) Verify that the total power developed equals the 
total power dissipated. 

Figure P4.62 

Section 4.10 

4.63 Find the Thevenin equivalent with respect to the 
PSP1CE terminals a,b for the circuit in Fig. P4.63. 

Figure P4.63 

80 V 

ion 
AAA-

:30ft 

2.5 ft 

4.64 Find the Norton equivalent with respect to the ter-
PSPICE minals a,b in the circuit in Fig. P4.64. 

MULTISIM 

Figure P4.64 

15 kft 
-A/s/^r- -• a 

f ) 10 mA J 10 kft ( i j 3 0 V M j 3 m A ^5 kft 

- •b 

4.65 a) Find the Thevenin equivalent with respect to the 
PSPICE terminals a,b for the circuit in Fig. P4.65 by find

ing the open-circuit voltage and the short-circuit 
current. 

b) Solve for the Thevenin resistance by removing the 
independent sources. Compare your result to the 
Thevenin resistance found in (a). 
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Figure P4.65 

9V 

4.66 Find the Thevenin equivalent with respect to the 
PSPICE terminals a,b for the circuit in Fig. P4.66. 

MULTISIM 

Figure P4.66 

10A e 
30 a 

8 a 5.2 a 
-AAA, f VA, * »a 

500 VI 12 a 

-•b 

4.69 An automobile battery, when connected to a car 
radio, provides 12.5 V to the radio. When connected 
to a set of headlights, it provides 11.7 V to the head
lights. Assume the radio can be modeled as a 6.25 O 
resistor and the headlights can be modeled as a 
0.65 a resistor. What are the Thevenin and Norton 
equivalents for the battery? 

4.70 A Tlievenin equivalent can also be determined 
from measurements made at the pair of terminals 
of interest. Assume the following measurements 
were made at the terminals a,b in the circuit in 
Fig. P4.70. 

When a 20 a resistor is connected to the termi
nals a,b, the voltage vab is measured and found to 
be 100 V. 

When a 50 ft resistor is connected to the termi
nals a,b, the voltage is measured and found to be 
200 V. 

Find the Thevenin equivalent of the network 
with respect to the terminals a,b. 

Figure P4.70 

• a 

4.67 Find the Norton equivalent with respect to the ter-
PSPICE minals a,b for the circuit in Fig. P4.67. 

MULTISIM 

Figure P4.67 4.71 
4A e PSPICE 

MULTISIM 

io a 8X1 

60VI 40 O 

4.68 Determine i0 and v0 in the circuit shown in 
PSPICE Fig. P4.68 when R0 is a resistor from Appendix H 

M0LTIS,M whose value is less than 100 a . 

Figure P4.68 

4.72 
PSPICE 

MULTISIM 

A voltmeter with a resistance of 85.5 ki~l is used to 
measure the voltage vab in the circuit in Fig. P4.71. 

a) What is the voltmeter reading? 

b) What is the percentage of error in the voltmeter 
reading if the percentage of error is defined as 
[(measured - actual)/actual] X 100? 

Figure P4.71 

The Wheatstone bridge in the circuit shown in 
Fig. P4.72 is balanced when R3 equals 3000 a . If the 
galvanometer has a resistance of 50 a , how much 
current will the galvanometer detect, when the 
bridge is unbalanced by setting R$ to 3003 a ? 
(Hint: Find the Thevenin equivalent with respect to 
the galvanometer terminals when R3 = 3003 SI. 
Note that once we have found this Thevenin equiv
alent, it is easy to find the amount of unbalanced 
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current in the galvanometer branch for different 
galvanometer movements.) 

Figure P4.76 

Figure P4.72 

18V © 
* f s o o n Galvanometer ^ | 3 0 0 0 n 

/??<200ft /?, 11200 a 

24 V 

Section 4.11 

i 6 n 

4.77 Find the Thevenin equivalent with respect to the 
4.73 Find the Norton equivalent with respect to the ter- terminals a,b in the circuit in Fig. P4.77. 

PSPICE minals a,b for the circuit seen in Fig. P4.73. 
MULTISIH 

Figure P4.77 
Figure P4.73 6 a 

30 ix r— —'VW-

40 V 

4.74 Determine the Thevenin equivalent with respect to 
PSPICE t n e terminals a,b for the circuit shown in Fig. P4.74. 

MULTISIM 

Figure P4.74 

( )500 /IA J 100 a ( _ ) 4 X 10-5¾ (\) 80 ih th i50 kn 

—"1 >b 

4.75 When a voltmeter is used to measure the voltage ve 

PSPICE in fig. P4.75, it reads 5.5 V. 
MULTISIM 

a) What is the resistance of the voltmeter? 
b) What is the percentage of error in the voltage 

measurement? 

Figure P4.75 

30 kfl 
0.7 V 

1.2 kfl 

4.76 When an ammeter is used to measure the current i^ 
PSPICE in the circuit shown in Fig. P4.76, it reads 6 A. 

MULTISIM 

a) What is the resistance of the ammeter? 
b) What is the percentage of error in the current 

measurement? 

ion 12 n 

<J 
2.5 n 

- •b 

4.78 Find the Norton equivalent with respect to the ter
minals a,b for the circuit seen in Fig. P4.78. 

Figure P4.78 

'A 

21iA ( t 

300 iA 

700 n f i o n 

Section 4.12 

4.79 The variable resistor in the circuit in Fig. P4.79 is 
PSPICE adjusted for maximum power transfer to R„. 

MULTISIM 

a) Find the value of Ra. 
b) Find the maximum power that can be delivered 

to R0. 

c) Find a resistor in Appendix H closest to the 
value in part (a). How much power is delivered 
to this resistor? 

Figure P4.79 

8kn 2.5 kn 
10V 
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4.80 What percentage of the total power developed in 
PSPICE the circuit in Fig. P4.79 is delivered to R() when R() is 

set for maximum power transfer? 

4.81 a) Find the value of the variable resistor R0 in the 
circuit in Fig. P4.81 that will result in maximum 
power dissipation in the 6 O resistor. (Hint: 
Hasty conclusions could be hazardous to 
your career.) 

b) What is the maximum power that can be deliv
ered to the 6 H resistor? 

Figure P4.81 

4 

30 V 611 

4.82 a) Calculate the power delivered for each value of 
R() used in Problem 4.68. 

b) Plot the power delivered to R() versus the resist
ance R0. 

c) At what value of Ra is the power delivered to R() 

a maximum? 

4.83 The variable resistor (Ra) in the circuit in Fig. P4.83 is 
PSPICE adjusted until the power dissipated in the resistor is 

250 W. Find the values of R() that satisfy this condition. 

Figure P4.83 

25 n 

200 V 

4.84 
PSPICE 

MULTISIH 

A variable resistor R() is connected across the ter
minals a,b in the circuit in Fig. P4.73. The variable 
resistor is adjusted until maximum power is trans
ferred to Ra. 

a) Find the value of Ra. 

b) Find the maximum power delivered to R(>. 

c) Find the percentage of the total power devel
oped in the circuit that is delivered to R(). 

d) Find the resistor from Appendix H closest in 
value to the R0. from part (a). 

e) Find the percentage of the total power devel
oped in the circuit that is delivered to the resis
tor in part (d). 

4.85 The variable resistor (Ra) in the circuit in Fig. P4.85 
PSPICE is adjusted until it absorbs maximum power from 

mT,SIM the circuit. 

a) Find the value of Ra. 

b) Find the maximum power. 

c) Find the percentage of the total power devel
oped in the circuit that is delivered to R(). 

Figure P4.85 

2 n 

24 V 

4.86 The variable resistor (R()) in the circuit in Fig. P4.86 
PSPICE is adjusted for maximum power transfer to R0. 

HULTISIM y^Yiot percentage of the total power developed in 
the circuit is delivered to Ra'? 

Figure P4.86 

440 V 

4.87 The variable resistor (RL) in the circuit in Fig. P4.87 
PSPICE is adjusted for maximum power transfer to R^. 

•IULTISIM 

a) Find the numerical value of RL. 
b) Find the maximum power transferred to RL. 

Figure P4.87 

240 V 10 i, 
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4.88 The variable resistor in the circuit in Fig. P4.88 is 
PSPICE adjusted for maximum power transfer to R(}. 

MULTISIM 

a) Find the numerical value of Ra. 
b) Find the maximum power delivered to R(). 

c) How much power does the 280 V source deliver 
to the circuit when Rt) is adjusted to the value 
found in (a)? 

Figure P4.88 

400 Q (1,)0.5125 uA 

4.89 The variable resistor (R(>) in the circuit in Fig. P4.89 
PSPICE is adjusted for maximum power transfer to Ra. 

MULTISIM 

a) Find the value of R(). 
b) Find the maximum power that can be delivered 

t o R(>. 

c) If R„ is selected from Appendix H, which resis
tor value will result in the greatest amount of 
power delivered to Ra'? 

Figure P4.89 

100 V 50 V 

4.90 What percentage of the total power developed in 
PSPICE the circuit in Fig. P4.89 is delivered to R„ found in 

MULTISIM p r oblem 4.89(a)? 

Section 4.13 

4.91 a) Use the principle of superposition to find the 
PSPICE voltage v in the circuit of Fig. P4.91. 

MULTISIM 

b) Find the power dissipated in the 10 ft resistor. 

Figure P4.91 

4A 

110 V 12 a 

4.92 Use superposition to solve for ia and vv in the cir
cuit in Fig. P4.92. 

Figure P4.92 

60 n 

45 a 

2A 

O-r4 511 
/WV-

iov v,,-^20a 
+ 

•5 a 10a 

4.93 Use the principle of superposition to find the volt-
PSPICE a g e v<> m the circuit in Fig. P4.93. 

Figure P4.93 

240 V 

4 a 

84 V 

4.94 Use the principle of superposition to find the cur-
PSPICE rent i0 in the circuit shown in Fig. P4.94. 

MULTISIM 

Figure P4.94 

30 a 

4.95 a) In the circuit in Fig. P4.95, before the 5 mA cur-
PSPICE rent source is attached to the terminals a,b, the 

current l0 is calculated and found to be 3.5 mA. 
Use superposition to find the value of i0 after 
the current source is attached. 

b) Verify your solution by finding ia when all three 
sources are acting simultaneously. 

Figure P4.95 

5 mA e 
2 k a +b 

-AW— 

8V :5ka / „ R 6 k a M J 10 mA 
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4.96 Use the principle of superposition to find the volt
age v in the circuit of Fig. P4.96. PSPICE 

MULTISIM 

Figure P4.96 

70 V 

4.97 Use the principle of superposition to find v(, in the 
PSPICE circuit in Fig. P4.97. 

•1ULTISIM 

Figure P4.97 

25 V 

Sections 4.1-4.13 

4.98 Find i in the circuit in Fig. P4.98. 
PSPICE 

MULTISIM 

Figure P4.98 

100 V 

4.99 Find v b v7, and v3 in the circuit in Fig. P4.99. 
PSPICE 

MULTISIM 

Figure P4.99 

125 V 

125 V 

0.15 ft 
AAA— 

0.15 ft 
^Wv— 

18.4 ft Pi k 18.4 ft 

0.25 ft 
A A A — 

0.25 ft 
--VW— 1¾¾ 11.6 ft 

38.4 ft \*2 < 38.4 ft 

0.15 ft 
>V\A— 

0.15 ft 
— A A A — 

4.100 Find the power absorbed by the 5 A current source 
PSPICE in the circuit in Fig. P4.100. 

MULTISIM 

Figure P4.100 

| ) 100 mA 

9f t 

4.101 Assume your supervisor has asked you to determine 
the power developed by the 1 V source in the circuit in 
Fig. P4.101. Before calculating the power developed 
by the 1 V source, the supervisor asks you to submit a 
proposal describing how you plan to attack the prob
lem. Furthermore, he asks you to explain why you 
have chosen your proposed method of solution. 

a) Describe your plan of attack, explaining your 
reasoning. 

b) Use the method you have outlined in (a) to find 
the power developed by the 1 V source. 

Figure P4.101 
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4.102 Two ideal dc voltage sources are connected by elec
trical conductors that have a resistance of r ft/m, as 
shown in Fig. P4.102. A load having a resistance of 
R ft moves between the two voltage sources. Let x 
equal the distance between the load and the source 

PRACTICAL 

V[, and let L equal the distance between the sources, PERSPECTIVE 
PSPICE 

MULTISIM 
a) Show that 

v = 
v^RL + R(v2 — v-[)x 

RL + 2rLx - 2rx2 ' 

4.104 For the circuit in Fig. 4.69 derive the expressions for 
J2SSL the sensitivity of v{ and v-> to changes in the source 
PROBLEM •* *• *** " 

currents / ? 1 and / ^ . 
4.105 Assume the nominal values for the components in 

the circuit in Fig. 4.69 are: R1 = 25 ft; R2 = 5 ft; 
R3 = 50 Q;R4 = 75 ft;Igl = 12 A ; a n d / ^ = 16 A. 
Predict the values of V\ and v2 if Ig\ decreases to 
11 A and all other components stay at their nominal 
values. Check your predictions using a tool like 
PSpice or MATLAB. 

b) Show that the voltage v will be minimum when 

L 
x = 

^2 - vl 
wh - j ^ r t o ~ v2)2 

4.106 
PRACnCAL 

PERSPECTIVE 

c) Find x when L = 16 km, v{ = 1000 V, v2 = 1200 V, 
R = 3.9 ft, and r = 5 X 10"5 ft/m. 

d) What is the minimum value of v for the circuit of 
part (c)? 

Figure P4.102 

r ft/m 

PRACTICAL 
PERSPECTIVE 

PSPICE 

MULTISIM 

/' Ci/m —^ PRACTICAL 

PERSPECTIVE 

r ft/m r ft/m 

Repeat Problem 4.105 if /„2 increases to 17 A, and 
all other components stay at their nominal values. 
Check your predictions using a tool like PSpice or 
MATLAB. 

Repeat Problem 4.105 if Igi decreases to 11 A and 
Iq2 increases to 17 A. Check your predictions using 
a tool like PSpice or MATLAB. 

4.108 Use the results given in Table 4.2 to predict the val
ues of v} and v2 if R] and R3 increase to 10% above 
their nominal values and R2 and R4 decrease to 
10% below their nominal values. Ig] and /(,2 remain 
at their nominal values. Compare your predicted 
values of V\ and v2 with their actual values. 

4.103 Laboratory measurements on a dc voltage source 
PSPICE yield a terminal voltage of 75 V with no load con-

WLTISIM nected to the source and 60 V when loaded with a 
20 ft resistor. 

a) What is the Thevenin equivalent with respect to 
the terminals of the dc voltage source? 

b) Show that the Thevenin resistance of the source is 
given by the expression 

•. ( ^ - I J t f L 

where 

vTh = the Thevenin voltage. 

va = the terminal voltage corresponding 

to the load resistance RL. 
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/ C H A P T E R OBJECTIVES 

Be able to name the five op amp terminals and 
describe and use the voltage and current 
constraints and the resulting simplifications 
they lead to in an ideal op amp. 

Be able to analyze simple circuits containing 
ideal op amps, and recognize the following op 
amp circuits: inverting amplifier, summing 
amplifier, noninverting amplifier, and difference 
amplifier. 

Understand the more realistic model for an op 
amp and be able to use this model to analyze 
simple circuits containing op amps. 
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The Operational Amplifier 
The electronic circuit known as an operational amplifier has 
become increasingly important. However, a detailed analysis of 
this circuit requires an understanding of electronic devices such 
as diodes and transistors. You may wonder, then, why we are 
introducing the circuit before discussing the circuit's electronic 
components. There are several reasons. First, you can develop an 
appreciation for how the operational amplifier can be used as a 
circuit building block by focusing on its terminal behavior. At an 
introductory level, you need not fully understand the operation 
of the electronic components that govern terminal behavior. 
Second, the circuit model of the operational amplifier requires 
the use of a dependent source. Thus you have a chance to use this 
type of source in a practical circuit rather than as an abstract cir
cuit component. Third, you can combine the operational ampli
fier with resistors to perform some very useful functions, such as 
scaling, summing, sign changing, and subtracting. Finally, after 
introducing inductors and capacitors in Chapter 6, we can show 
you how to use the operational amplifier to design integrating 
and differentiating circuits. 

Our focus on the terminal behavior of the operational ampli
fier implies taking a black box approach to its operation; that is, 
we are not interested in the internal structure of the amplifier nor 
in the currents and voltages that exist in this structure. The impor
tant thing to remember is that the internal behavior of the ampli
fier accounts for the voltage and current constraints imposed at 
the terminals. (For now, we ask that you accept these constraints 
on faith.) 
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Practical Perspective 
Strain Gages 
How could you measure the amount of bending in a metal bar 
such as the one shown in the figure without physically con
tacting the bar? One method would be to use a strain gage. A 
strain gage is a type of transducer. A transducer is a device 
that measures a quantity by converting i t into a more con
venient form. The quantity we wish to measure in the metal 
bar is the bending angle, but measuring the angle directly is 
quite difficult and could even be dangerous. Instead, we 
attach a strain gage (shown in the line drawing here) to the 
metal bar. A strain gage is a grid of thin wires whose resist
ance changes when the wires are lengthened or shortened: 

AR = 2R 
M 

where R is the resistance of the gage at rest, A L / L is the 
fractional lengthening of the gage (which is the definition of 
"strain"), the constant 2 is typical of the manufacturer's gage 
factor, and AR is the change in resistance due to the bending 
of the bar. Typically, pairs of strain gages are attached to 
opposite sides of a bar. When the bar is bent, the wires in one 
pair of gages get longer and thinner, increasing the resist
ance, while the wires in the other pair of gages get shorter 
and thicker, decreasing the resistance. 

But how can the change in resistance be measured? One 
way would be to use an ohmmeter. However, the change in 
resistance experienced by the strain gage is typically much 
smaller than could be accurately measured by an ohmmeter. 
Usually the pairs of strain gages are connected to form a 
Wheatstone bridge, and the voltage difference between two 
legs of the bridge is measured. In order to make an accurate 

measurement of the voltage difference, we use an operational 
amplifier circuit to amplify, or increase, the voltage differ
ence. After we introduce the operational amplifier and some 
of the important circuits that employ these devices, we will 
present the circuit used together with the strain gages for 
measuring the amount of bending in a metal bar. 

The operational amplifier circuit first came into existence 
as a basic building block in analog computers. I t was referred 
to as operational because i t was used to implement the math
ematical operations of integration, differentiation, addition, 
sign changing, and scaling. In recent years, the range of 
application has broadened beyond implementing mathemati
cal operations; however, the original name for the circuit per
sists. Engineers and technicians have a penchant for creating 
technical jargon; hence the operational amplifier is widely 
known as the op amp. 

145 
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Figure 5.1 • The eight-lead DIP package (top view). 

Noninverting , - ^ . Positive power supply 
input — « + j \ 

^ — Output 
Inverting — « - U ^ 

i n P u Negative power supply 

Figure 5.2 • The circuit symbol for an operational 
amplifier (op amp). 

NC 5.1 Operational Amplifier Terminals 
Because we are stressing the terminal behavior of the operational ampli
fier (op amp), we begin by discussing the terminals on a commercially 

+ available device. In 1968, Fairchild Semiconductor introduced an op amp 
that has found widespread acceptance: the fxA!A\. (The fiA prefix is used 
by Fairchild to indicate a microcircuit fabrication of the amplifier.) This 
amplifier is available in several different packages. For our discussion, we 

t assume an eight-lead DIP.1 Figure 5.1 shows a top view of the package, 
with the terminal designations given alongside the terminals. The termi
nals of primary interest are 

• inverting input 

• noninverting input 

• output 

• positive power supply (V+) 

• negative power supply (V~) 

The remaining three terminals are of little or no concern.The offset null ter
minals may be used in an auxiliary circuit to compensate for a degradation 
in performance because of aging and imperfections. However, the degrada
tion in most cases is negligible, so the offset terminals often are unused and 
play a secondary role in circuit analysis. Terminal 8 is of no interest simply 
because it is an unused terminal; NC stands for no connection, which means 
that the terminal is not connected to the amplifier circuit. 

Figure 5.2 shows a widely used circuit symbol for an op amp that con
tains the five terminals of primary interest. Using word labels for the ter
minals is inconvenient in circuit diagrams, so we simplify the terminal 
designations in the following way. The noninverting input terminal is 
labeled plus (+) , and the inverting input terminal is labeled minus ( - ) . 
The power supply terminals, which are always drawn outside the triangle, 
are marked V+ and V - . The terminal at the apex of the triangular box is 
always understood to be the output terminal. Figure 5.3 summarizes these 
simplified designations. 

Figure 5.3 • A simplified circuit symbol for an op amp. 

1 

VP 

— 

Figure 

+ 

5.4 • 

Vc 

^ 

_« 

U 

r -
+ 

^>^* + 

— 

Common node 

Term inal \ voltage variables. 

+ 

" Vcc 

5.2 Terminal Voltages and Currents 
We are now ready to introduce the terminal voltages and currents used to 
describe the behavior of the op amp. The voltage variables are measured 
from a common reference node.2 Figure 5.4 shows the voltage variables 
with their reference polarities. 

All voltages are considered as voltage rises from the common node. 
This convention is the same as that used in the node-voltage method of 
analysis. A positive supply voltage (Vcc) is connected between V+ and the 
common node. A negative supply voltage (—Vcc) is connected between V~ 
and the common node. The voltage between the inverting input terminal 
and the common node is denoted vn. The voltage between the noninvert
ing input terminal and the common node is designated as vp. The voltage 
between the output terminal and the common node is denoted v(>. 

1 DIP is an abbreviation lor dual in-line package. This means that the terminals on each side of 
the package are in line, and that the terminals on opposite sides of the package also line up. 

2 The common node is external to the op amp. It is the reference terminal of the circuit in which 
the op amp is embedded. 
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Figure 5.5 shows the current variables with their reference directions. 
Note that all the current reference directions are into the terminals of the 
operational amplifier: in is the current into the inverting input terminal; L 
is the current into the noninverting input terminal; ia is the current into 
the output terminal; ic* is the current into the positive power supply termi
nal; and ic- is the current into the negative power supply terminal. 

The terminal behavior of the op amp as a linear circuit element is 
characterized by constraints on the input voltages and the input currents. 
The voltage constraint is derived from the voltage transfer characteristic 
of the op amp integrated circuit and is pictured in Fig. 5.6. 

The voltage transfer characteristic describes how the output voltage 
varies as a function of the input voltages; that is, how voltage is transferred 
from the input to the output. Note that for the op amp, the output voltage 
is a function of the difference between the input voltages, vp — vn. The 
equation for the voltage transfer characteristic is 

- Vcc A(vp ~ vn) < -Vcc, 
A(vp ~ vn) - Vcc < A(vp - v„) 
+ Vcc A(vp - vn) > +VCC . 

+VCC (5.1) 

We see from Fig. 5.6 and Eq. 5.1 that the op amp has three distinct 
regions of operation. When the magnitude of the input voltage difference 
(\vp - vn\) is small, the op amp behaves as a linear device, as the output 
voltage is a linear function of the input voltages. Outside this linear region, 
the output of the op amp saturates, and the op amp behaves as a nonlinear 
device, because the output voltage is no longer a linear function of the 
input voltages. When it is operating linearly, the op amp's output voltage is 
equal to the difference in its input voltages times the multiplying constant, 
or gain, A. 

When we confine the op amp to its linear operating region, a con
straint is imposed on the input voltages, vp and vn. The constraint is based 
on typical numerical values for Vcc and A in Eq. 5.1. For most op amps, the 
recommended dc power supply voltages seldom exceed 20 V, and the gain, 
A, is rarely less than 10,000, or 104. We see from both Fig. 5.6 and Eq. 5.1 
that in the linear region, the magnitude of the input voltage difference 
(\vp - vn\) must be less than 20/104, or 2 mV. 

Typically, node voltages in the circuits we study are much larger than 
2 m V, so a voltage difference of less than 2 mV means the two voltages are 
essentially equal. Thus, when an op amp is constrained to its linear operat
ing region and the node voltages are much larger than 2 mV, the constraint 
on the input voltages of the op amp is 

— Va 

Figure 5.5 • Terminal current variables. 

Va 

Negative saturation 

(-Vcc/A) 

-Vcc 

Positive saturation 

Linear region 

{Vcc /A) (%-»«) 

Figure 5.6 A The voltage transfer characteristic of an 
op amp. 

(5 2) < Input voltage constraint for ideal op amp 

Note that Eq. 5.2 characterizes the relationship between the input voltages 
for an ideal op amp; that is, an op amp whose value of A is infinite. 

The input voltage constraint in Eq. 5.2 is called the virtual short 
condition at the input of the op amp. It is natural to ask how the virtual 
short is maintained at the input of the op amp when the op amp is 
embedded in a circuit, thus ensuring linear operation. The answer is that 
a signal is fed back from the output terminal to the inverting input ter
minal. This configuration is known as negative feedback because the 



148 The Operational Amplifier 

signal fed back from the output subtracts from the input signal. The 
negative feedback causes the input voltage difference to decrease. 
Because the output voltage is proportional to the input voltage differ
ence, the output voltage is also decreased, and the op amp operates in 
its linear region. 

If a circuit containing an op amp does not provide a negative feedback 
path from the op amp output to the inverting input, then the op amp will 
normally saturate. The difference in the input signals must be extremely 
small to prevent saturation with no negative feedback. But even if the cir
cuit provides a negative feedback path for the op amp, linear operation is 
not ensured. So how do we know whether the op amp is operating in its 
linear region? 

The answer is, we don't! We deal with this dilemma by assuming lin
ear operation, performing the circuit analysis, and then checking our 
results for contradictions. For example, suppose we assume that an op 
amp in a circuit is operating in its linear region, and we compute the 
output voltage of the op amp to be 10 V. On examining the circuit, we 
discover that VCc is 6 V, resulting in a contradiction, because the op 
amp's output voltage can be no larger than Vcc. Thus our assumption 
of linear operation was invalid, and the op amp output must be satu
rated at 6 V. 

We have identified a constraint on the input voltages that is based on 
the voltage transfer characteristic of the op amp integrated circuit, the 
assumption that the op amp is restricted to its linear operating region and 
to typical values for Vcc and A. Equation 5.2 represents the voltage con
straint for an ideal op amp, that is, with a value of A that is infinite. 

We now turn our attention to the constraint on the input currents. 
Analysis of the op amp integrated circuit reveals that the equivalent resist
ance seen by the input terminals of the op amp is very large, typically 1 MO 
or more. Ideally, the equivalent input resistance is infinite, resulting in the 
current constraint 

Input current constraint for ideal op amp • h 7? u- ^*3 ' 

Note that the current constraint is not based on assuming the op amp is 
confined to its linear operating region as was the voltage constraint. 
Together, Eqs. 5.2 and 5.3 form the constraints on terminal behavior that 
define our ideal op amp model. 

From Kirchhoff's current law we know that the sum of the currents 
entering the operational amplifier is zero, or 

ip + in + ia + v + ic = 0. (5.4) 

Substituting the constraint given by Eq. 5.3 into Eq. 5.4 gives 

ia = "(h* + ic-)- (5.5) 

The significance of Eq. 5.5 is that, even though the current at the input 
terminals is negligible, there may still be appreciable current at the out
put terminal. 

Before we start analyzing circuits containing op amps, let's further sim
plify the circuit symbol. When we know that the amplifier is operating within 
its linear region, the dc voltages ±VCC do not enter into the circuit equations. 



5.2 Terminal Voltages and Currents 149 

In this case, we can remove the power supply terminals from the symbol 
and the dc power supplies from the circuit, as shown in Fig. 5.7. A word of 
caution: Because the power supply terminals have been omitted, there is a 
danger of inferring from the symbol that ip + in + i0 = 0. We have already 
noted that such is not the case; that is, ip + i„ + ia + ic+ + ic = 0. In other 
words, the ideal op amp model constraint that ip = in = 0 does not imply 
that i„ = 0. 

Note that the positive and negative power supply voltages do not 
have to be equal in magnitude. In the linear operating region, v() must lie 
between the two supply voltages. For example, if V+ — 15 V and 
V = - 10 V, then - 1 0 V ss v0 s5 15 V. Be aware also that the value of A 
is not constant under all operating conditions. For now, however, we 
assume that it is. A discussion of how and why the value of A can change 
must be delayed until after you have studied the electronic devices and 
components used to fabricate an amplifier. 

Example 5.1 illustrates the judicious application of Eqs. 5.2 and 5.3. 
When we use these equations to predict the behavior of a circuit contain
ing an op amp, in effect we are using an ideal model of the device. 

Figure 5.7 A The op amp symbol with the power supply 
terminals removed. 

Example 5.1 Analyzing an Op Amp Circuit 

The op amp in the circuit shown in Fig. 5.8 is ideal. 

a) Calculate v„ if va = 1 V and ?;b = 0 V. 

b) Repeat (a) for va = l V and vb = 2 V. 

c) If vz = 1.5 V, specify the range of vb that avoids 
amplifier saturation. 

'ioo 100 kn 
-"vW-

Figure 5.8 • The circuit for Example 5.1. 

Solution 

a) Because a negative feedback path exists from the 
op amp's output to its inverting input through the 
100 kH resistor, let's assume the op amp is con
fined to its linear operating region. We can write 
a node-voltage equation at the inverting input 
terminal. Tine voltage at the inverting input termi
nal is 0, as vp — vb = 0 from the connected volt
age source, and vn = vp from the voltage 
constraint Eq. 5.2. The node-voltage equation at 
vn is thus 

*25 = '100 = hr 

From Ohm's law, 

*25 = (¾ - t>»)/25 = — mA, 

fan = (v0 ~ w„)/100 = tfe/100 mA. 

The current constraint requires in = 0. 
Substituting the values for the three currents 
into the node-voltage equation, we obtain 

1 v0 
— + -^ = 0. 
25 100 

Hence, va is —4 V. Note that because va lies 
between ± 10 V, the op amp is in its linear 
region of operation. 

b) Using the same process as in (a), we get 

= — mA, 

mA, 

Therefore, v() = 6 V. Again, v0 lies within ±10 V. 

c) As before, vn = vp = vb,and/25 = -/'inn. Because 

vp 

'25 

100 

'25 

" 

= 

= 

= 

% 

*>a 

» 0 

— 

= vtl 

- vn 

25 

- vn 

100 

100-

— 

= 

= 

2 V, 

1 - 2 
25 

va - 2 
100 

1.5 V, 

1.5 - vb v0 - vh 

25 100 
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Solving for ?;b as a function of v(t gives 

% j ( 6 + va). 

Substituting these limits on va into the expres
sion for vb, we see that vb is limited to 

-0.8 V < vh < 3.2 V. 

Now, if the amplifier is to be within the linear 
region of operation, - 1 0 V < v(> < 10 V. 

^ A S S E S S M E N T PROBLEM 

Objective 1—Use voltage and current constraints in an ideal op amp 

5.1 Assume that the op amp in the circuit shown 
is ideal. 

a) Calculate v0 for the following values of vs: 
0.4,2.0,3.5, -0.6, -1.6, and -2.4 V. 

b) Specify the range of vs required to avoid 
amplifier saturation. 

Answer: (a) - 2 , -10 , - 15 , 3,8, and 10 V; 

(b) - 2 V < vs < 3 V. 

NOTE: Also try Chapter Problems 5.1-5.3. 

80 kO 

16 kfl 
-AW 

<p 

Figure 5.9 A An inverting-amplifier circuit. 

5.3 The Inverting-Amplifier Circuit 
We are now ready to discuss the operation of some important op amp circuits, 
using Eqs. 5.2 and 5.3 to model the behavior of the device itself. Figure 5.9 
shows an inverting-amplifier circuit. We assume that the op amp is operating 
in its linear region. Note that, in addition to the op amp, the circuit consists of 
two resistors (Rf- and Rs), a voltage signal source (vs), and a short circuit con
nected between the noninverting input terminal and the common node. 

We now analyze this circuit, assuming an ideal op amp. The goal is to 
obtain an expression for the output voltage, v<r as a function of the source 
voltage, vs. We employ a single node-voltage equation at the inverting ter
minal of the op amp, given as 

h + h = V (5.6) 

The voltage constraint of Eq. 5.2 sets the voltage at v„ = 0, because the 
voltage at vp = 0. Therefore. 

h 

if 

1L 

R 

(5.7) 

(5.8) 

Now we invoke the constraint stated in Eq. 5.3, namely, 

/„ = 0. (5.9) 

Substituting Eqs. 5.7-5.9 into Eq. 5.6 yields the sought-after result: 

Inverting-amplifier equation • 
-R 

Vn = 
Rs 

(5.10) 
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Note that the output voltage is an inverted, scaled replica of the input. The 
sign reversal from input to output is, of course, the reason for referring to the 
circuit as an inverting amplifier.The scaling factor, or gain, is the ratio Rf/Rs. 

The result given by Eq. 5.10 is valid only if the op amp shown in the 
circuit in Fig. 5.9 is ideal; that is, if A is infinite and the input resistance is 
infinite. For a practical op amp, Eq. 5.10 is an approximation, usually a 
good one. (We say more about this later.) Equation 5.10 is important 
because it tells us that if the op amp gain A is large, we can specify the gain 
of the inverting amplifier with the external resistors Rf and Rs. The upper 
limit on the gain, Rf/Rs, is determined by the power supply voltages and 
the value of the signal voltage vs. If we assume equal power supply voltages, 
that is, V+ = -V = Vcc? w e g e t 

Vcc vs 

Rf Vcc 
(5.11) 

For example, if Vcc = 15 V and vs = 10 mV, the ratio Rf/Rs must be less 
than 1500. 

In the inverting amplifier circuit shown in Fig. 5.9, the resistor Rf pro
vides the negative feedback connection.That is, it connects the output ter
minal to the inverting input terminal. If Rf is removed, the feedback path 
is opened and the amplifier is said to be operating open loop. Figure 5.10 
shows the open-loop operation. 

Opening the feedback path drastically changes the behavior of the 
circuit. First, the output voltage is now 

v„ = -Avr (5.12) 

assuming as before that V+ = —V~ = V^c; then \v»\ < Vcc IA t o r linear 
operation. Because the inverting input current is almost zero, the voltage 
drop across Rs is almost zero, and the inverting input voltage nearly equals 
the signal voltage, v/, that is, vn Rs VS . Hence, the op amp can operate open 
loop in the linear mode only if \vs\ < Vcc/A. If \vs\ > Vcc/A, the op amp 
simply saturates. In particular, if vs < —Vcc/A, the op amp saturates at 
+Vcc, and if vs > Vcc/A, the op amp saturates at ~VCc- Because the 
relationship shown in Eq. 5.12 occurs when there is no feedback path, the 
value of A is often called the open-loop gain of the op amp. 

Example 5.2 uses the inverting-amplifier equation to design an invert
ing amplifier using realistic resistor values. 

Figure 5.10 • An inverting amplifier operating 
open loop. 

| Designing an Inverting Amplifier 

a) Design an inverting amplifier (see Fig. 5.9) with 
a gain of 12. Use ±15 V power supplies and an 
ideal op amp. 

b) What range of input voltages, vs, allows the op 
amp in this design to remain in its linear operat
ing region? 

Solution 

a) We need to find two resistors whose ratio is 
12 from the realistic resistor values listed in 

Appendix H. There are lots of different possibili
ties, but let's choose Rs = 1 kH and Rf = 12 kO. 
Use the inverting-amplifier equation (Eq. 5.10) 
to verify the design: 

f 12,000 

1000 
- l2Vy 

Thus, we have an inverting-amplifier with a gain 
of 12, as shown in Fig. 5.11. 
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12 kO 
"Wv-

Figure 5.11 A Inverting amplifier for Example 5.2. 

b) Solve two different versions of the inverting-
amplifier equation for vs—first using 
va = +15 V and then using v() = -15 V: 

15 = -\2vs so vs = -1.25V; 

-15 = -12-ov so vs = 1.25 V. 

Tlius, if the input voltage is greater than or equal 
to -1.25 V and less than or equal to +1.25 V, the 
op amp in the inverting-amplifier will remain in 
its linear operating region. 

/ "ASSESSMENT PROBLEM 

Objective 2—Be able to analyze simple circuits containing ideal op amps 

5.2 The source voltage vs in the circuit in 
Assessment Problem 5.1 is -640 mV. The 
80 kil feedback resistor is replaced by a vari
able resistor Rx. What range of Rx allows the 

NOTE: Also try Chapter Problems 5.8 and 5.9. 

inverting amplifier to operate in its linear 
region? 

Answer: 0 < Rx < 250 kO. 

T T T 

Figure 5.12 • A summing amplifier. 

5.4 The Summing-Amplifier Circuit 
The output voltage of a summing amplifier is an inverted, scaled sum of 
the voltages applied to the input of the amplifier. Figure 5.12 shows a sum
ming amplifier with three input voltages. 

We obtain the relationship between the output voltage v0 and the 
three input voltages, va, vh, and vc, by summing the currents away from the 
inverting input terminal: 

Ra 

+ r + r + 
Rv Rr R> 

+ i, (5.13) 

Assuming an ideal op amp, we can use the voltage and current constraints 
together with the ground imposed at vp by the circuit to see that 
vn = vp = 0 a r ,d '„ = 0. This reduces Eq. 5.13 to 

Inverting-summing amplifier equation • 
R Ri Ri 

R7» + ^+Vcr (5.14) 

Equation 5.14 states that the output voltage is an inverted, scaled sum of 
the three input voltages. 

If Ra = Rh = Rc = Rs, then Eq. 5.14 reduces to 

Rf 
V„ = —jj-(w« + yb + Vc). 

(5.15) 
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Finally, if we make Rf — Rs,
 t n e output voltage is just the inverted sum of 

the input voltages. That is, 

-(v.a + vh + vc). (5.16) 

Although we illustrated the summing amplifier with just three input 
signals, the number of input voltages can be increased as needed. For exam
ple, you might wish to sum 16 individually recorded audio signals to form a 
single audio signal. The summing amplifier configuration in Fig. 5.12 could 
include 16 different input resistor values so that each of the input audio 
tracks appears in the output signal with a different amplification factor. 
The summing amplifier thus plays the role of an audio mixer. As with 
inverting-amplifier circuits, the scaling factors in summing-amplifier cir
cuits are determined by the external resistors Rf, Ra, Rb, Rc,..., Rn. 

^ASSESSMENT PROBLE 

Objective 2—Be able to analyze simple circuits containing ideal op amps 

5.3 a) Find v0 in the circuit shown if va = 0.1 V 
and vb = 0.25 V. 

b) If vb = 0.25 V, how large can va be before 
the op amp saturates? 

c) If va = 0.10 V, how large can vb be before 
the op amp saturates? 

d) Repeat (a), (b), and (c) with the polarity of 
vb reversed. 

Answer: (a) -7.5 V; 

(b) 0.15 V; 

NOTE: Also try Chapter Problems 5.11,5.12, and 5.14. 

(c)0.5V; 

(d ) -2 .5 , 0.25, and 2 V. 

250 kn 

5.5 The Noninverting-Amplifier Circuit 
Figure 5.13 depicts a noninverting-amplifier circuit. The signal source is 
represented by vg in series with the resistor Rg. In deriving the expression 
for the output voltage as a function of the source voltage, we assume an 
ideal op amp operating within its linear region. Thus, as before, we use 
Eqs. 5.2 and 5.3 as the basis for the derivation. Because the op amp input 
current is zero, we can write vp = vs and, from Eq. 5.2, vn = vg as well. 
Now, because the input current is zero (i„ — lp = 0), the resistors Rf and 
Rs form an unloaded voltage divider across va. Therefore, 

Vo = 
V0Rs 

R< + R f 
(5.17) 

Solving Eq. 5.17 for va gives us the sought-after expression: 

Figure 5.13 A A nom'nverting amplifier. 

R< + Ri 
vn - R. 

(5.18) A Noninverting-amplifier equation 
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Operation in the linear region requires that 

Rs + Rf 

R< 
< 

V, cc 

Note again that, because of the ideal op amp assumption, we can 
express the output voltage as a function of the input voltage and the exter
nal resistors—in this case, Rs and Rf. 

Example 5.3 illustrates the design of a noninverting amplifier using 
realistic resistor values. 

Example 5.3 Designing a Noninverting Amplifier 

a) Design a noninverting amplifier (see Fig. 5.13) 
with a gain of 6. Assume the op amp is ideal. 

b) Suppose we wish to amplify a voltage vg, such 
that - 1 . 5 V < vs ^ + 1.5V. What are the 
smallest power supply voltages that could be 
used with the resistors selected in part (a) and 
still have the op amp in this design remain in its 
linear operating region? 

Solution 

a) Using the noninverting amplifier equation 
(Eq.5.18), 

Rs + Rf 
va = — Vg = 6vs so 

Therefore, 

R, 
= 6 

Rs + Rf = 6RS, so Rf = 5RS. 

We want two resistors whose ratio is 5. Look at 
the realistic resistor values listed in Appendix H. 
Let's choose Rf =• lOkfi, so Rs = 2kf l . But 
there is not a 2 kfl resistor in Appendix H. We can 
create an equivalent 2 kfl resistor by combining 
two 1 kfl resistors in series. We can use a third 
1 kfl resistor as the value of the resistor Rg. 

b) Solve two different versions of the noninvert
ing amplifier equation for v()—first using 
vg = +1.5 V and then using vg = -1.5 V: 

v0 = 6(1.5)= 9 V; 

va = 6(-1.5) = - 9 V . 

Thus, if we use ±9 V power supplies for the non-
inverting amplifier designed in part (a) and 
-1.5 V :s vg < +1.5 V, the op amp will remain 
in its linear operating region. The circuit result
ing from the analysis in parts (a) and (b) is 
shown in Fig. 5.14. 

10 kn 
"Wv-

Figure 5.14 • The noninverting amplifier design of Example 5.3. 

t /ASSESSMENT PROBLEM 

Objective 2—Be able to analyze simple circuits containing ideal op amps 

5.4 Assume that the op amp in the circuit shown 
is ideal. 

a) Find the output voltage when the variable 
resistor is set to 60 kfl. 

b) How large can Rx be before the amplifier 
saturates? 

Answer: (a) 4.8 V; 

(b) 75 kO. 

4.5 kfl 
—vw 

400 mV 

63 k f l 
A/W-

NOTE: Also try Chapter Problems 5.17 and 5.18. 
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5.6 The Difference-Amplifier Circuit 
The output voltage of a difference amplifier is proportional to the difference 
between the two input voltages. To demonstrate, we analyze the difference-
amplifier circuit shown in Fig. 5.15, assuming an ideal op amp operating in its 
linear region. We derive the relationship between v0 and the two input volt
ages va and vb by summing the currents away from the inverting input node: 

R. Rv 
- + i„ = 0. (5.19) 

Because the op amp is ideal, we use the voltage and current constraints to 
see that Figure 5.15 • A difference amplifier. 

iP = 0, (5.20) 

R, 
vh. 

" ,J Re + *d 

Combining Eqs. 5.19,5.20, and 5.21 gives the desired relationship: 

(5.21) 

R.d(Rc + Rd) 
vh 

(5.22) 

Equation 5.22 shows that the output voltage is proportional to the dif
ference between a scaled replica of vb and a scaled replica of va. In general 
the scaling factor applied to v^ is not the same as that applied to va. 
However, the scaling factor applied to each input voltage can be made 
equal by setting 

* a 

Rb 

Re 

Rd 
(5.23) 

When Eq. 5.23 is satisfied, the expression for the output voltage reduces to 

(5.24) ^ Simplified difference-amplifier equation 

Equation 5,24 indicates that the output voltage can be made a scaled 
replica of the difference between the input voltages vh and ya. As in the 
previous ideal amplifier circuits, the scaling is controlled by the external 
resistors. Furthermore, the relationship between the output voltage and 
the input voltages is not affected by connecting a nonzero load resistance 
across the output of the amplifier. 

Example 5.4 describes the design of a difference amplifier using real
istic resistor values. 

Example 5.4 Designing a Difference Amplifier 

a) Design a difference amplifier (see Fig. 5.15) that 
amplifies the difference between two input volt
ages by a gain of 8, using an ideal op amp and 
±8 V power supplies. 

b) Suppose va = I V in the difference amplifier 
designed in part (a). What range of input volt
ages for i>b will allow the op amp to remain in its 
linear operating region? 
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Solution 

a) Using the simplified difference-amplifier equa
tion (Eq. 5.24), 

Kb, 
»a) = 8 ( ' y b ~ *>a) SO 

R, 
8. 

We want two resistors whose ratio is 8. Look at 
the realistic resistor values listed in Appendix H. 
Let's choose Rb = 12 kft, so Ra = 1.5 kft, 
although there are many other possibilities. 
Note that the simplified difference-amplifier 
equation requires that 

Rr 

R< 

A simple choice for Rc and Rd is 
Rc = Ra = 1.5 k l l and Rd = Rb = 12 kO. The 
resulting circuit is shown in Fig. 5.16. 

1.5 kn 
12 kO 

Figure 5.16 A The difference amplifier designed in Example 5.4. 

b) Solve two different versions of the simplified 
difference-amplifier equation for v0 in terms of 
vb—first using va = +8 V and then using 
va=-HY: 

Vo = 8(vh - 1) = 8 V so vb = 2 V; 

va = 8(vb - 1) = - 8 V so vb = 0 V. 

Thus, if va = 1 V in the difference amplifier 
from part (a), the op amp will remain in its lin
ear region of operation if 0 V ^ vb ^ +2 V. 

^/ASSESSMENT PROBLEM 

Objective 2—Be able to analyze simple circuits containing ideal op amps 

5.5 a) In the difference amplifier shown, 
vb = 4.0 V. What range of values for vu will 
result in linear operation? 

b) Repeat (a) with the 20 kO resistor 
decreased to 8 kCt. 

Answer: (a) 2 V < va < 6 V; 

(b) 1.2 V < va < 5.2 V. 

NOTE: Also try Chapter Problems 5.25,5.26, and 5.28. 

10 kll 
50 kll 
AAA-

The Difference Amplifier—Another Perspective 

We can examine the behavior of a difference amplifier more closely if we 
redefine its inputs in terms of two other voltages. The first is the 
differential mode input, which is the difference between the two input 
voltages in Fig. 5.15: 

^dm = Vb~ VB (5.25) 

The second is the common mode input, which is the average of the two 
input voltages in Fig. 5.15: 

vcm = (^a + vh)/2. (5.26) 
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Using Eqs. 5.25 and 5.26, we can now represent the original input voltages, 
vtl and vb, in terms of the differential mode and common mode voltages, 
vdm and vcm: 

1 

% = »cm + 2^dm-

(5.27) 

(5.28) 

Substituting Eqs. 5.27 and 5.28 into Eq. 5.22 gives the output of the differ
ence amplifier in terms of the differential mode and common mode voltages: 

v„ = R,d(Rc + Rd) 
vri 

MK + gb) + flb(X + R*) 
2R.d(Rc + /?d) 

* W (5.29) 

(5.30) 

where Acm is the common mode gain and Adm is the differential mode 
gain. Now, substitute Rc = Ra and Rd = Rb, which are possible values for 
Rc and Rd that satisfy Eq. 5.23, into Eq. 5.29: 

( ^ 1' (5.31) 

Thus, an ideal difference amplifier has Acm = 0, amplifies only the differ
ential mode portion of the input voltage, and eliminates the common 
mode portion of the input voltage. Figure 5.17 shows a difference-
amplifier circuit with differential mode and common mode input voltages 
in place of v.x and vb. 

Equation 5.30 provides an important perspective on the function of the 
difference amplifier, since in many applications it is the differential mode 
signal that contains the information of interest, whereas the common mode 
signal is the noise found in all electric signals. For example, an electrocardio
graph electrode measures the voltages produced by your body to regulate 
your heartbeat. These voltages have very small magnitudes compared with 
the electrical noise that the electrode picks up from sources such as lights 
and electrical equipment. The noise appears as the common mode portion 
of the measured voltage, whereas the heart rate voltages comprise the dif
ferential mode portion. Thus an ideal difference amplifier would amplify 
only the voltage of interest and would suppress the noise. 

Figure 5.17 A A difference amplifier with common 
mode and differential mode input voltages. 

Measuring Difference-Amplifier Performance— 
The Common Mode Rejection Ratio 

An ideal difference amplifier has zero common mode gain and nonzero 
(and usually large) differential mode gain. Two factors have an influence 
on the ideal common mode gain—resistance mismatches (that is, Eq. [5.23] 
is not satisfied) or a nonideal op amp (that is, Eq. [5.20] is not satisfied). We 
focus here on the effect of resistance mismatches on the performance of a 
difference amplifier. 



Suppose that resistor values are chosen that do not precisely satisfy 
Eq. 5.23. Instead, the relationship among the resistors RiV Rh, Rc, and Rd is 

(1" *t-
so 

R, (1 - e)Rc and Rv Rtu (5.32) 

or 

Rd = (1 - e)Rb and Ra = R„ (5.33) 

where e is a very small number. We can see the effect of this resistance 
mismatch on the common mode gain of the difference amplifier by substi
tuting Eq. 5.33 into Eq. 5.29 and simplifying the expression for Acm: 

_ /?a(l - e)Rh - RtRb 
cm R,[R, + ( 1 - e)Rb] 

(5.34) 

eRv 

R, + (1 - e)Rb 
(5.35) 

•eRv 

R, + Ry 
(5.36) 

We can make the approximation to give Eq. 5.36 because e is very small, 
and therefore (1 - e) is approximately 1 in the denominator of Eq. 5.35. 
Note that, when the resistors in the difference amplifier satisfy Eq. 5.23, 
e = 0 and Eq. 5.36 gives Acm = 0. 

Now calculate the effect of the resistance mismatch on the differential 
mode gain by substituting Eq. 5.33 into Eq. 5.29 and simplifying the 
expression for / ld m : 

ldm 
(1 - e)Rh(R, + Rb) + Rb[Ra + ( 1 - e)Rb] 

2RJ[Ra + ( 1 - €)/?„] 
;5.37) 

R, 
1 -

(e/2)*a 
R, + ( 1 - e)R, 

(5.38) 

^ b 

R, 

(e/2)Ra' 

R.d + Rb 
(5.39) 

We use the same rationale for the approximation in Eq. 5.39 as in the com
putation of v4cm. When the resistors in the difference amplifier satisfy 
Eq.5.23, e = 0 and Eq. 5.39 gives ^ d m = Rb/Rlv 

The common mode rejection ratio (CMRR) can be used to measure 
how nearly ideal a difference amplifier is. It is defined as the ratio of the 
differential mode gain to the common mode gain: 

CMRR 
ldm 

A. 
(5.40) 



5.7 A More Realistic Model for the Operational Amplifier 159 

The higher the CMRR, the more nearly ideal the difference amplifier. We 
can see the effect of resistance mismatch on the CMRR by substituting 
Eqs. 5.36 and 5.39 into Eq. 5.40: 

CMRR 

[1 - (Rae/2)/(Ra + Rb)] 

-eRh/(R, + Rb) 
(5.41) 

/?a(l - e/2) + Rb 

-eR.A 

(5.42) 

1 + Rb/RiX 

-e 
(5.43) 

From Eq. 5.43, if the resistors in the difference amplifier are matched, 
e = 0 and CMRR = oo. Even if the resistors are mismatched, we can 
minimize the impact of the mismatch by making the differential mode 
gain (Rh/Ra) very large, thereby making the CMRR large. 

We said at the outset that another reason for nonzero common mode 
gain is a nonideal op amp. Note that the op amp is itself a difference 
amplifier, because in the linear operating region, its output is proportional 
to the difference of its inputs; that is, v„ = A(vp — vn). The output of a 
nonideal op amp is not strictly proportional to the difference between the 
inputs (the differential mode input) but also is comprised of a common 
mode signal. Internal mismatches in the components of the integrated cir
cuit make the behavior of the op amp nonideal, in the same way that the 
resistor mismatches in the difference-amplifier circuit make its behavior 
nonideal. Even though a discussion of nonideal op amps is beyond the 
scope of this text, you may note that the CMRR is often used in assessing 
how nearly ideal an op amp's behavior is. In fact, it is one of the main ways 
of rating op amps in practice. 

NOTE: Assess your understanding of this material by trying Chapter 
Problems 5.33 and 5.34. 

5.7 A More Realistic Model for the 
Operational Amplifier 

We now consider a more realistic model that predicts the performance of 
an op amp in its linear region of operation. Such a model includes three 
modifications to the ideal op amp: (1) a finite input resistance, /?,; (2) a 
finite open-loop gain, A; and (3) a nonzero output resistance, Ra. The cir
cuit shown in Fig. 5.18 illustrates the more realistic model. 

Whenever we use the equivalent circuit shown in Fig. 5.18, we disre
gard the assumptions that v„ = vp (Eq. 5.2) and i„ = ip = 0 (Eq. 5.3). 
Furthermore, Eq. 5.1 is no longer valid because of the presence of the 
nonzero output resistance, R0. Another way to understand the circuit 
shown in Fig. 5.18 is to reverse our thought process.That is, we can see that 
the circuit reduces to the ideal model when Rt<—* oo, A —* oo, and R(! —* 0. 
For the juA741 op amp, the typical values of Rh A, and R(> are 2 Mfl, 105, 
and 75 O, respectively. 

Although the presence of R, and Ra makes the analysis of circuits con
taining op amps more cumbersome, such analysis remains straightforward. 

'/> 
+-

+ 

Vp in 
+-

+ 

+ 

Ri 
'A (v., - v„) 

Figure 5.18 • An equivalent circuit for an operational 
amplifier. 
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To illustrate, we analyze both an inverting and a noninverting amplifier, 
using the equivalent circuit shown in Fig. 5.18. We begin with the invert
ing amplifier. 

Figure 5.19 • An inverting-amplifier circuit. 

Analysis of an Inverting-Amplifier Circuit Using 
the More Realistic Op Amp Model 

If we use the op amp circuit shown in Fig. 5.18, the circuit for the inverting 
amplifier is the one depicted in Fig. 5.19. As before, our goal is to express 
the output voltage, va, as a function of the source voltage, vs. We obtain 
the desired expression by writing the two node-voltage equations that 
describe the circuit and then solving the resulting set of equations for va. 
In Fig. 5.19, the two nodes are labeled a and b. Also note that vp = 0 by 
virtue of the external short-circuit connection at the noninverting input 
terminal. The two node-voltage equations are as follows: 

node a: 

node b: 

vtt 

v<, 

— 
R, 

-

Vs 

% 

Ri ' Rf 
o. 

R, 

+ v0 - A(-v„) = 

(5.44) 

(5.45) 

We rearrange Eqs. 5.44 and 5.45 so that the solution for v(, by Cramer's 
method becomes apparent: 

1 1 1 

R, R, R 
Vs, (5.46) 

Rn Ri 

A 1 \ ( 1 1 
— - — \v„ + — + — u Rf R. 

o. (5.47) 

Solving for va yields 

v„ = 
Rs 

R, 

-A + (Ra/Rf) 

1 + A + 
Ro 

R, 

Rs 

Rt "-S 
(5.48) 

Figure 5.20 • A noninverting-amplifier circuit. 

Note that Eq. 5.48 reduces to Eq. 5.10 as Ra —• 0, /?/ —• oo, and A - * oo. 
If the inverting amplifier shown in Fig. 5.19 were loaded at its output 

terminals with a load resistance of RL ohms, the relationship between va 

and vs would become 

-A + (RJRf) 

R, 

Ri 
1 + A + 

R, R, 

R; R, 
R(> 

1 + — 
RL 

1 + 
Rs 

Rt 
+ 

Ri 

Vg. (5.49) 

Analysis of a Noninverting-Amplifier Circuit Using 
the More Realistic Op Amp Model 
When we use the equivalent circuit shown in Fig. 5.18 to analyze a nonin
verting amplifier, we obtain the circuit depicted in Fig. 5.20. Here, the volt
age source vg, in series with the resistance Rg, represents the signal 
source. The resistor RL denotes the load on the amplifier. Our analysis 
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consists of deriving an expression for v„ as a function of vg. We do so by 
writing the node-voltage equations at nodes a and b. At node a, 

Vn s v 
Rs Rg + Ri Rf 

= 0, 

and at node b. 

v0 ~ vn , va 

R + 
f RL Rn 

= 0. 

Because the current in R„ is the same as in i?,, we have 

Rs Ri + Rg 

(5.50) 

(5.51) 

(5.52) 

We use Eq. 5.52 to eliminate vp from Eq. 5.51, giving a pair of equations 
involving the unknown voltages vn and va. This algebraic manipulation 
leads to 

1 1 -— )-vl—\ n\Rs Rs + Ri Rf)
 (\RfJ

 g\Rs + Rj 
, (5.53) 

ARt 

= vt 

nlR0(Ri + Rg) Rf 

ARj 

R0(Ri + Rg) 

l l l 

AV J 

(5.54) 

Solving for v,7 yields 

v„ = 
[(Rf + Rs) + (RsR0/ARd]vH 

R RfRs + (Rf + Rs)(Ri+RJ 

^ + i ( 1 +^ ) + -AR — 

, (5.55) 

where 

R. + R,, Rf + R, Rf Rs + Rf R„ + R„RS 
Kr = zr-1 + - ^ + 

Ri RL RIRL 

Note that Eq. 5.55 reduces to Eq. 5.18 when R0—>0, A—» oo, and 
/?,—>-oo. For the unloaded (RL = oo) noninverting amplifier, Eq. 5.55 
simplifies to 

= [(Rf + Rs) + RsRo/AR^Vg 
V° ~ R ( Ri + R,\ l 

Rs + ~AV+ ~R~ J + lRt
[RfRs + {Rf + Rs)(Ri + R«)] 

(5.56) 

Note that, in the derivation of Eq. 5.56 from Eq. 5.55, Kr reduces to 
(Rs + Rg)/Rh 
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^ A S S E S S M E N T P R O B L E M 

Objective 3—Understand the more realistic model for an op amp 

5.6 The inverting amplifier in the circuit shown has Answer: 
an input resistance of 500 kH, an output resist
ance of 5 kfl, and an open-loop gain of 300,000. 
Assume that the amplifier is operating in its 
linear region. 

a) Calculate the voltage gain (v0/vg) of the 
amplifier. 

b) Calculate the value of v„ in microvolts when 
vs= IV. 

c) Calculate the resistance seen by the signal 
source (vg). 

d) Repeat (a)-(c) using the ideal model for the 
op amp. 

NOTE: Also try Chapter Problems 5.43 and 5.45. 

(a) -19.9985; 
(b) 69.995 fiV; 
(c) 5000.35 ft; 

(d) -20,0 /*V, 5 ka. 

loo kn 

Practical Perspective 
Strain Gages 

Changes in the shape of elastic solids are of great importance to engineers 
who design structures that twist, stretch, or bend when subjected to exter
nal forces. An aircraft frame is a prime example of a structure in which engi
neers must take into consideration elastic strain. The intelligent application 
of strain gages requires information about the physical structure of the 
gage, methods of bonding the gage to the surface of the structure, and the 
orientation of the gage relative to the forces exerted on the structure. Our 
purpose here is to point out that strain gage measurements are important in 
engineering applications, and a knowledge of electric circuits is germane to 
their proper use. 

The circuit shown in Fig. 5.21 provides one way to measure the change 
in resistance experienced by strain gages in applications like the one 

Figure 5.21 A An op amp circuit used for measuring the change in strain gage 
resistance. 

described in the beginning of this chapter. As we will see, this circuit is the 
familiar difference amplifier, with the strain gage bridge providing the two 
voltages whose difference is amplified. The pair of strain gages that are 
lengthened once the bar is bent have the values R + AR in the bridge 



feeding the difference amplifier, whereas the pair of strain gages that are 
shortened have the values R - AR. We will analyze this circuit to discover 
the relationship between the output voltage, v0 and the change in resist
ance, AR experienced by the strain gages. 

To begin, assume that the op amp is ideal. Writing the KCL equations at 
the inverting and noninverting input terminals of the op amp we see 

(5.57) 
^ref - Vn 

R + AR 

*>ref - Vp 

= 
Vn Vn ~ VQ 

R - AR Rf 

vp vp 
— + — . 

R - AR R + AR Rf 

(5.58) 

Now rearrange Eq. 5.58 to get an expression for the voltage at the nonin
verting terminal of the op amp: 

Vrpf 

Vp = 7 ~ • (5.59) 
(R - ARM — + —- + — 
v \R + AR R - AR Rf 

As usual, we will assume that the op amp is operating in its linear region, so 
vp = vn and the expression for vp in Eq. 5.59 must also be the expression 
for vn. We can thus substitute the right-hand side of Eq. 5.59 in place of vn 

in Eq. 5.57 and solve for v„. After some algebraic manipulation, 

Rf(2AR) 
V0 ~ ~ 1 ; ^ r e f - (5-60) 

R2 - (AR)2 

Because the change in resistance experienced by strain gages is very small, 
(AR)2 « R2, so R2 - (AR)2 « R2 and Eq. 5.60 becomes 

Vo * Y2SVrch (5-61) 

where S = AR/R. 

NOTE: Assess your understanding of this Practical Perspective by 
trying Chapter Problem 5.49. 
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Summary 

The equation that defines the voltage transfer charac
teristic of an ideal op amp is 

vn = 
-Vca 
A{vp - vn), 

+ Vcc. 

A(yP - vn) < -Vcc 

-Vcc * A(vp - vn) < + Vcc, 

Mvp - v„) > + vcc, 

where A is a proportionality constant known as the 
open-loop gain, and VCc represents the power supply 
voltages. (See page 147.) 

A feedback path between an op amp's output and 
its inverting input can constrain the op amp to its 
linear operating region where v() = A(vp — va). (See 
page 147.) 

A voltage constraint exists when the op amp is con
fined to its linear operating region due to typical val
ues of Vcc and A. If the ideal modeling assumptions 
are made—meaning A is assumed to be infinite—the 
ideal op amp model is characterized by the volt
age constraint 

(See page 147.) 

A current constraint further characterizes the ideal op 
amp model, because the ideal input resistance of the op 
amp integrated circuit is infinite. This current constraint 
is given by 

ip = h, = 0. 

(See page 148.) 

We considered both a simple, ideal op amp model and a 
more realistic model in this chapter. The differences 
between the two models are as follows: 

Simplified Model 

Infinite input resistance 

Infinite open-loop gain 

Zero output resistance 

More Realistic Model 

Finite input resistance 

Finite open-loop gain 

Nonzero output resistance 

An inverting amplifier is an op amp circuit producing 
an output voltage that is an inverted, scaled replica of 
the input. (See page 150.) 

A summing amplifier is an op amp circuit producing an 
output voltage that is a scaled sum of the input voltages. 
(See page 152.) 

A noninverting amplifier is an op amp circuit producing 
an output voltage that is a scaled replica of the input 
voltage. (See page 153.) 

A difference amplifier is an op amp circuit producing an 
output voltage that is a scaled replica of the input volt
age difference. (See page 155.) 

The two voltage inputs to a difference amplifier can be 
used to calculate the common mode and difference 
mode voltage inputs, vcm and vdm. The output from the 
difference amplifier can be written in the form 

vo ~ ^cm^cra + ^dm^dr 

where Acm is the common mode gain, and Adm is the 
differential mode gain. (See page 157.) 

In an ideal difference amplifier, Acm = 0. To measure 
how nearly ideal a difference amplifier is, we use the 
common mode rejection ratio: 

l dm CMRR = 

An ideal difference amplifier has an infinite CMRR. 
(See page 159.) 

(Seepage 159.) 



Problems 

Problems 165 

Sections 5.1-5.2 

5.1 The op amp in the circuit in Fig. P5.1 is ideal 

a) Label the five op amp terminals with their names. 
MULTISIM ' r r 

b) What ideal op amp constraint determines the 
value of /„? What is this value? 

c) What ideal op amp constraint determines the 
value of {vp - vn)l What is this value? 

d) Calculate va. 

Figure P5.1 

15 kO 
AW 

??„$8k£l 

5.2 Find i() in the circuit in Fig. P5.2 if the op amp is ideal. 

MULTISIM Figure P5.2 

io kn 
-AW-

0.5 mA 5k f i 

PSPICE 

MULTISIM 

5.3 The op amp in the circuit in Fig. P5.3 is ideal. 

a) Calculate va if v.A = 4 V and vh = 0 V. 

b) Calculate va if va = 2 V and vh = 0 V, 

c) Calculate vt) if va = 2V and v^ - 1 V. 

d) Calculate v0 if vn — 1 V and vh = 2 V. 

e) Calculate v0if va = 1.5 V and »b = 4V, 

f) If vb = 1.6 V, specify the range of v.A such that 
the amplifier does not saturate. 

Figure P5.3 

100 kll 
AW-

' ' ( ,$50ka 

5.4 Find iL (in microamperes) in the circuit in Fig. P5.4. 
PSPICE 

MULTISIM Figure P5.4 

5k f t 
<Wv 

10 kH 

5 V 

/ L R 4 k n 

5.5 A voltmeter with a full-scale reading of 10 V is used 
PSPICE to measure the output voltage in the circuit in 

MULTISIM p i g p 5 5 W h a t i s t h e r e a d i n g o f t h e voltmeter? 
Assume the op amp is ideal. 

Figure P5.5 
2.2 Ma 

-WW 

3.5 /LtA 

5.6 The op amp in the circuit in Fig. P5.6 is ideal. 
PSPICE Calculate the following: 

MULTISIM 

a) y, 

b) v0 

c) i2 

d) i0 

Figure P5.6 

40ka 50 ka 

vt,Z25ka 

5.7 A circuit designer claims the circuit in Fig. P5.7 will 
PRACTICAL produce an output voltage that will vary between 

PSPICE ±5 as Vfr varies between 0 and 5 V. Assume the op 
MULTISIM a m p i s ideal. 

a) Draw a graph of the output voltage v0 as a func
tion of the input voltage v„ for 0 :£ Vq ^ 5 V. 

b) Do you agree with the designer's claim' 
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Figure P5.7 Figure P5.10 

10 kfl 
AAV 

Section 5.3 

DESIGN 

PROBLEM 

5.8 a) Design an inverting amplifier using an ideal op 
amp that has a gain of 3. Use a set of identical 
resistors from Appendix H. 

b) If you wish to amplify a 5 V input signal using 
the circuit you designed in part (a), what are the 
smallest power supply signals you can use? 

5.9 The op amp in the circuit in Fig. P5.9 is ideal. 

MULTISIM a ) ^ind the range of values for a in which the op 
amp does not saturate. 

b) Find i() (in microamperes) when a = 0.272. 

Figure P5.9 

12 kfl 

a50 kfl 

1.6 kfl 

-AAWW-
50 k n 

6 250 rnV 6.4 kfl 

t t 

l?n i io kn 

5.10 a) The op amp in the circuit shown in Fig. P5.10 is 
PSPICE ideal. The adjustable resistor R± has a maxi

mum value of 100 kf l , and a is restr icted to the 
range of 0.2 < a < 1. Calculate the range of 
vn if vs = 40 mV. 

b) If a is not restricted, at what value of a will the 
op amp saturate? 

10 kfl 

Section 5.4 

5.11 Refer to the circuit in Fig. 5.12, where the op amp 
PSPICE is assumed to be ideal. Given that Ra = 4 kf l , 

.ULTISIM R h = 5 k l l i ^ = 2 Q k a ^ VA S 200 mV, 

vb = 150 mV, vc = 400 mV, and Vcc = ±6 V, spec
ify the range of Rf for which the op amp operates 
within its linear region. 

5.12 The op amp in Fig. P5.12 is ideal. 

PSPICE a ) w h a t circuit configuration is shown in this figure? 

b) Find vQ if 
4 V. 

= I V , vh = 1.5 V, and 

c) The voltages va and vc remain at 1 V and - 4 V, 
respectively. What are the limits on vb if the op 
amp operates within its linear region? 

Figure P5.12 

44 kf l 
• VA, 
+ 27.5 k f l 

220 kfl 
AAA-

0a 

• W ^ 
+ 80 kfl 

vh v„ 53.3 kfl 

5.13 Design an inverting-summing amplifier so that 

va = - ( 3 ¾ + 5vh + 4¾ + 2vd). 
DE5IGN 

PROBLEM 

MULTISIM Start by choosing a feedback resistor (Rf) from 
Appendix H. Then choose single resistors from 
Appendix H or construct resistor neworks from resis
tors in Appendix H to satisfy the design values for /?a , 
/?b, Rc, and i?d. Draw your final circuit diagram. 
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5.14 a) The op amp in Fig. P5.14 is ideal. Find va if 
PSPICE ?;a = 4 V, vb = 9 V, vc= \3 V, and vd = 8 V. 

4ULTISIM 

b) Assume v.A vc, and vL\ retain their values as given 
in (a). Specify the range of v.x such that the op 
amp operates within its linear region. 

Figure P5.17 

Figure P5.14 

40 kil 
• VvV 
+ 22kft 

• VW 

220 kil 
'VW 

ii, 

T T 

Okil 

PSPICE 

MULTISIM 

5.15 Tlie 220 k i l feedback resistor in the circuit in 
Fig. P5.14 is replaced by a variable resistor Rf. The 
voltages v.d- vd have the same values as given in 
Problem 5.14(a). 

a) What value of Rf will cause the op amp to satu
rate? Note that 0 < Rf < oo. 

b) When Rf has the value found in (a), what is the 
current (in microamperes) into the output ter
minal of the op amp? 

Section 5.5 

5.16 The op amp in the circuit of Fig. P5.16 is ideal. 

PSPICE a \ -yvhat 0 p a m p circuit configuration is this? 
MULTISIM 

b) Calculate vu. 

Figure P5.16 

40 kH 
—A/VV 

80 kil 
-A<W 

5.17 The op amp in the circuit of Fig. P5.17 is ideal. 

a) What op amp circuit configuration is this? 

b) Find va in terms of vs. 

c) Find the range of values for vs such that vn does 
not saturate and the op amp remains in its linear 
region of operation. 

28 kO 

5.18 The op amp in the circuit shown in Fig. P5.18 is ideal. 
PSPI" a) Calculate va when v., equals 4 V. 

MULTISIM ' " ." n 

b) Specify the range of values of vs so that the op 
amp operates in a linear mode. 

c) Assume that v„ equals 2 V and that the 63 kil 
resistor is replaced with a variable resistor. What 
value of the variable resistor will cause the op 
amp to saturate? 

Figure P5.18 

63 kil 
AAA-

i. '„527kn 

5.19 a) Design a non-invert ing amplifier with a gain of 
4. Use resistors from Append ix H. You might 
need to combine resistors in series and in par
allel to get the desired resistance. Draw your 
final circuit, 

b) If you use ± 12 V power supplies for the op amp, 
what range of input values will allow the op amp 
to stay in its linear operating region? 

5.20 The op amp in the circuit of Fig. P5.20 is ideal. 
PSPICE 

MULTISIM 
a) What op amp circuit configuration is this? 

b) Find v<y in terms of vs. 

c) Find the range of values for vs such that va does 
not saturate and the op amp remains in its linear 
region of operation. 

Figure P5.20 

60 kil 
AA/V-
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5.21 The op amp in the circuit shown in Fig. P5.21 is 
PSPICE ideal. The signal voltages v.. and vb are 800 mV and 

MULTISIM . „ . , . . . , 

400 mv, respectively. 

a) What circuit configuration is shown in the figure? 

b) Calculate va in volts. 

c) Find /a and /b in microamperes. 
d) What are the weighting factors associated with 

va and vb? 

Figure P5.21 

110 kO 
'VW 

»„£47kft 

T T 

5.22 The circuit in Fig. P5.22 is a noninverting summing 
PROBLEM amplifier. Assume the op amp is ideal. Design the 
PSPICE circuit so that 

MULTISIM 
v<> = ya + 2«^ + 3vc. 

a) Specify the numerical values of Ra and Rc. 

b) Calculate /a, /b, and /c (in microamperes) when 
va = 0.7 V, vb = 0.4 V, and uc = 1.1 V. 

Figure P5.22 

loo kn 

5.23 The op amp in the noninverting summing amplifier 
of Fig. P5.23 is ideal. 

a) Specify the values of Rf, Rb, and Rc so that 

v0 = 6v.A + 3vh + 4vc. 

PSPICE 

MULTISIM 

b) Using the values found in part (a) for R(, Rh, and 
JRC, find (in microamperes) ia, /b, ic, L, and /s 

when v.a = 0.5 V, % = 2.5 V, and vc = 1 V. 

Figure P5.23 

« 3 . 3 kO 

Section 5.6 

5.24 a) Use the principle of superposition to derive 
Eq. 5.22. 

b) Derive Eqs. 5.23 and 5.24. 

5.25 The resistors in the difference amplifier shown 
PSPICE in Fig. 5.15 are Ka = 24kO, Rb = 75 kll , 

MULTISIM Rc = 1 3 0 k a a n d ^ - 120 kH. The signal volt
ages v.d and vb are 8 and 5 V, respectively, and 
Vcc = ±20 V. 
a) Find v(>. 

b) What is the resistance seen by the signal 
source ya? 

c) What is the resistance seen by the signal 
source vb? 

5.26 The op amp in the circuit of Fig. P5.26 is ideal. What 
value of R{ will give the equation 

v() = 5 - 4vu, 

for this circuit? 

Figure P5.26 
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DESIGN 
PROBLEM 

PSPICE 

MULTISIM 

5.27 Design the difference-amplifier circuit in Fig. P5.27 
so that v(l = 10(¾¾ - va), and the voltage source vb 

sees an input resistance of 220 kfi. Specify the val
ues of Ra ,Rb» and Rt using single resistors or com
binations of resistors from Appendix H. Use the 
ideal model for the op amp. 

Figure P5.27 

4.7 kft 

DESIGN 
PROBLEM 

PSPrCE 

MULTISIM 

5.30 Design a difference amplifier (Fig. 5.15) to meet 
the following criteria: v() = 3t>b — 4i>a. The resist
ance seen by the signal source vb is 470 kft, and 
the resistance seen by the signal source v.d is 
22 kft when the output voltage v() is zero. Specify 
the values of Ra, Rb, Rc, and Rd using single 
resistors or combinations of resistors from 
Appendix H. 

5.31 

»'„$22 kft 

5.28 The op amp in the adder-subtracter circuit shown in 
PSPICE pig. P5.28 is ideal. 

MULTISIM 

a) Find v0 when va = 1 V, vb = 2 V, vc = 3 V, and 
Vd = 4 V. 

b) If va, vb, and vd are held constant, what values of 
vc will not saturate the op amp? 

The resistor R£ in the circuit in Fig. P5.31 is 
adjusted until the ideal op amp saturates. Specify 
Rt in kilohms. 

Figure P5.31 

1.6 kO 

18 V 
5.6 kH 

Figure P5.28 

20 kft 
V..W W/ 

180 kH 
^vw-

<v 
18 kft 

- A W 

30 kO 
vB 147 kfi 

20 kH 

5.29 Select the values of Ra and R{ in the circuit in 
DESIGN Fig. P5.29 so that 

PROBLEM ° 

PSPICE 

MULTISIM 

5.32 The op amp in the circuit of Fig. P5.32 is ideal. 

a) Plot v„ versus a when Rf = 4R-[ and vg =* 2 V. 
Use increments of 0.1 and note by hypothesis 
thatO < a < 1.0. 

b) Write an equation for the straight line you plot
ted in (a). How are the slope and inter
cept of the line related to vg and the ratio Rf/Ri? 

c) Using the results from (b), choose values for vg 

and the ratio Rf/R\ such that va = - 6 a + 4. 

Figure P5.32 

va = 5000(;b - Q. 

Use single resistors or combinations of resistors 
from Appendix H.The op amp is ideal. 

Figure P5.29 

»«t*L 

t ) %** 
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5.33 In the difference amplifier shown in Fig. P5.33, what 
range of values of Rx yields a CMRR > 1000? 

Figure P5.33 

50ki l 
'WW 

5.34 In the difference amplifier shown in Fig. P5.34, 
compute (a) the differential mode gain, (b) the 
common mode gain, and (c) the CMRR. 

Figure P5.34 

1 kO 

^ L 

<b x 
i 

vJ [ Y i 

i k n 

) < 

i 

25kfl 

r ^ f 10V 

^"S-iov 
124 kO 

1 

+ 

»„ 

r 

Sections 5.1-5.6 

5.35 Assume that the ideal op amp in the circuit seen in 
Fig. P5.35 is operating in its linear region. 

a) Show that v0 = [(/?, + R2)/Rx\vs. 

b) What happens if R1 —• oo and R2 -» 0? 

c) Explain why this circuit is referred to as a volt
age follower when Z?j = oo and R2 = 0. 

Figure P5.35 

5.36 The voltage vg shown in Fig. P5.36(a) is applied to 
PSPICE t n e inverting amplifier shown in Fig. P5.36(b). 

1ULTISIM < - , , , , , , - - 1 1 

Sketch v„ versus f, assuming the op amp is ideal. 

Figure P5.36 

v 
0.5 V 

-0.5 V 

(a) 

120 kO 

7.5 kO 
—AMs 

•o "»%6.8ka 

(b) 

5.37 Tlie signal voltage vg in the circuit shown in Fig. P5.37 
PSPICE j s described by the following equations: 

MULTISIM *• 

ve = 0, 0, 

vg = 10 sin(ir/3)/ V, 0 < / < oo. 

Sketch va versus r, assuming the op amp is ideal. 

Figure P5.37 

15 kO 75 kH 

»,, f 6.8 kfi 

5.38 a) Show that when the ideal op amp in Fig. P5.38 is 
operating in its linear region, 

. 3V8 

*• = -R-

b) Show that the ideal op amp will saturate when 

R(±VCC ~ 2vg) 
R* = 3vg 
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Figure P5.38 

5.39 Assume that the ideal op amp in the circuit in 
PSPICE Fig. P5.39 is operating in its linear region. 

MULTISIM 

a) Calculate the power delivered to the 16 k O 
resistor. 

b) Repeat (a) with the op amp removed from the 
circuit, that is, with the 16 kfit resistor connected 
in the series with the voltage source and the 
48 kft resistor. 

c) Find the ratio of the power found in (a) to that 
found in (b). 

d) Does the insertion of the op amp between the 
source and the load serve a useful purpose? 
Explain. 

Figure P5.39 

320 mV 

5.40 The circuit inside the shaded area in Fig. P5.40 is a con-
PSPICE s tant current source for a limited range of values of Rf. 

MULTISIM 

a) Find the value of iL for RL = 4 kf t . 

b) Find the maximum value for RL for which iL will 
have the value in (a). 

c) Assume that RL = 16 kf t . Explain the operation 
of the circuit. You can assume that in = ip ~ 0 
under all operating conditions. 

d) Sketch iL versus RL for 0 < RL < 16 kft . 

Figure P5.40 

50 kfl 

'v© ,. -20V [IARL ( t Jh lt-\: 

:4 left 

5.41 The two op amps in the circuit in Fig. P5.41 are 
PSPICE ideal. Calculate v„\ and vo2. 

MULTISIM 

Figure P5.41 

15 V 
15 V 

10 V 
«4,2 f 5 k f t 

5.42 The op amps in the circuit in Fig. P5.42 are ideal. 
PSPICE a) Find/ a . 
ULTISIM 

b) Find the value of the left source voltage for 
which /n = 0. 

Figure P5.42 

10 kn 
i—vvv—4 

47 kD 
- v w 

220 kH 
AAA-

I V © 

33 kH 
AA/v—i 

6 150 mV 
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Section 5.7 

5.43 Repeat Assessment Problem 5.6, given that the 
PSPICE inverting amplifier is loaded with a 500 ft resistor. 

MULTISIM 

5.44 Assume the input resistance of the op amp in 
PSPKE Fig. P5.44 is infinite and its output resistance is zero. 

MULTISIM 

a) Find v0 as a function of vg and the open-loop 
gain A. 

b) What is the value of v0 if vg - 1 V and A = 150? 

c) What is the value of v0 if vg = 1 V and A - oo? 

d) How large does A have to be so that v{) is 99% of 
its value in (c)? 

Figure P5.44 
10 kfl 
'VW-

5.46 
PSPICE 

MULTISIM 

a) Find the Thevenin equivalent circuit with 
respect to the output terminals a,b for the 
inverting amplifier of Fig. P5.46. The dc signal 
source has a value of 880 mV. The op amp has 
an input resistance of 500 kft, an output 
resistance of 2 kft and an open-loop gain 
of 100,000. 

b) What is the output resistance of the inverting 
amplifier? 

c) What is the resistance (in ohms) seen by the sig
nal source vs when the load at the terminals a,b 
is 330 ft? 

Figure P5.46 
24 kO 
A W -

5.45 The op amp in the noninverting amplifier circuit of 
PSPICE Fig. P5.45 has an input resistance of 560 kft, an out-

WLTISIM p U t r e s { s t a n c e 0f § kO, and an open-loop gain of 
50,000. Assume that the op amp is operating in its 
linear region. 

a) Calculate the voltage gain (v()/vg). 

b) Find the inverting and noninverting input volt
ages vn and vp (in millivolts) if vg — 1 V. 

c) Calculate the difference (vp - vn) in microvolts 
when Vg ~ 1 V. 

d) Find the current drain in picoamperes on the 
signal source vR when vg = 1 V. 

e) Repeat (a)-(d) assuming an ideal op amp. 

5.47 Repeat Problem 5.46 assuming an ideal op amp. 

Figure P5.45 
200 kft 

20 kCL 

PSPICE 

MULTISIM 

5.48 Derive Eq. 5.60. 

Sections 5.1-5.7 

5.49 Suppose the strain gages in the bridge in Fig. 5.21 
PRACTICAL have the value 120 ft ± 1%. The power supplies 

PERSPECTIVE r r r 

to the op amp are ±15V, and the refer
ence voltage, vrc{, is taken from the positive 
power supply. 
a) Calculate the value of Rf so that when the strain 

gage that is lengthening reaches its maximum 
length, the output voltage is 5 V. 

b) Suppose that we can accurately measure 
50 mV changes in the output voltage. What 
change in strain gage resistance can be 
detected in milliohms? 
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5.50 
PRACTICAL 

PERSPECTIVE 

a) For the circuit shown in Fig. P5.50, show that if 
AR « R, the output voltage of the op amp is 
approximately 

show that the percent error in the approxima
tion of v„ in Problem 5.50 is 

R2 (R + 2Rt) 
(~AR)vh 

AR (R + Re) 
% error = — 7½ TTTT X 100. 

R (R + 2R{) 

b) Find v() if Rf = 470 kfl, R = 10 kf>, AR = 95 ft, 
and vin = 15 V. 

c) Find the actual value of va in (b). 

Figure P5.50 

5.51 a) If percent error is defined as 
PRAOICAL 

PERSPECTIVE 

PSPICE 

MULTISIM 

% error = 
approximate value 

true value 
- 1 x 100, 

b) Calculate the percent error in va for Problem 5.50. 

5.52 Assume the percent error in the approximation of 
PRACTICAL vt) in the circuit in Fig. P5.50 is not to exceed 1%. 

PERSPECTIVE " ° 

PSPICE What is the largest percent change in R that can be 
MULTisiM tolerated? 

5.53 Assume the resistor in the variable branch of the 
PRACTICAL bridge circuit in Fig. P5.50 is R 

PERSPECTIVE n ° L ° 

R + AR. 

AR instead of 
PSPICE 

MULTISIM a) What is the expression for v() if AR « R? 

b) What is the expression for the percent error in 
va as a function of R, i?f, and AR1 

c) Assume the resistance in the variable arm of 
the bridge circuit in Fig. P5.50 is 9810 fi and the 
values of R, R(, and vm are the same as in 
Problem 5.50(b). What is the approximate value 
of va'? 

d) What is the percent error in the approximation 
of v(} when the variable arm resistance is 
9810 a ? 



• t _•< a B n i r i r 

6.1 The Inductor p. 176 

6.2 The Capacitor p. 182 

6.3 Series-Parallel Combinations of Inductance 
and Capacitance p. 187 

6.4 Mutual Inductance p. 189 

6.5 A Closer Look at Mutual Inductance p. 193 

1 Know and be able to use the equations for 
voltage, current, power, and energy in an 
inductor; understand how an inductor behaves 
in the presence of constant current, and the 
requirement that the current be continuous in 
an inductor. 

2 Know and be able to use the equations for 
voltage, current, power, and energy in a 
capacitor; understand how a capacitor behaves 
in the presence of constant voltage, and the 
requirement that the voltage be continuous in a 
capacitor. 

3 Be able to combine inductors with initial 
conditions in series and in parallel to form a 
single equivalent inductor with an initial 
condition; be able to combine capacitors with 
initial conditions in series and in parallel to 
form a single equivalent capacitor with an 
initial condition. 

4 Understand the basic concept of mutual 
inductance and be able to write mesh-current 
equations for a circuit containing magnetically 
coupled coils using the dot convention 
correctly. 

174 

Inductance, Capacitance, 
and Mutual Inductance 
We begin this chapter by introducing the last two ideal circuit 
elements mentioned in Chapter 2, namely, inductors and capaci
tors. Be assured that the circuit analysis techniques introduced in 
Chapters 3 and 4 apply to circuits containing inductors and capac
itors. Therefore, once you understand the terminal behavior of 
these elements in terms of current and voltage, you can use 
Kirchhoff s laws to describe any interconnections with the other 
basic elements. Like other components, inductors and capacitors 
are easier to describe in terms of circuit variables rather than 
electromagnetic field variables. However, before we focus on the 
circuit descriptions, a brief review of the field concepts under
lying these basic elements is in order. 

An inductor is an electrical component that opposes any 
change in electrical current. It is composed of a coil of wire 
wound around a supporting core whose material may be mag
netic or nonmagnetic. The behavior of inductors is based on phe
nomena associated with magnetic fields. The source of the 
magnetic field is charge in motion, or current. If the current is 
varying with time, the magnetic field is varying with time. A time-
varying magnetic field induces a voltage in any conductor linked 
by the field. The circuit parameter of inductance relates the 
induced voltage to the current. We discuss this quantitative rela
tionship in Section 6.1. 

A capacitor is an electrical component that consists of two 
conductors separated by an insulator or dielectric material. The 
capacitor is the only device other than a battery that can store 
electrical charge. The behavior of capacitors is based on phenom
ena associated with electric fields. The source of the electric field 
is separation of charge, or voltage. If the voltage is varying with 
time, the electric field is varying with time. A time-varying electric 
field produces a displacement current in the space occupied by 
the field. The circuit parameter of capacitance relates the dis
placement current to the voltage, where the displacement current 
is equal to the conduction current at the terminals of the capaci
tor. We discuss this quantitative relationship in Section 6.2. 



Practical Perspective 
Proximity Switches 
The electrical devices we use in our daily lives contain many 
switches. Most switches are mechanical, such as the one used 
in the flashlight introduced in Chapter 2. Mechanical switches 
use an actuator that is pushed, pulled, slid, or rotated, caus
ing two pieces of conducting metal to touch and create a 
short circuit. Sometimes designers prefer to use switches 
without moving parts, to increase the safety, reliability, con
venience, or novelty of their products. Such switches are 
called proximity switches. Proximity switches can employ a 
variety of sensor technologies. For example, some elevator 
doors stay open whenever a light beam is obstructed. 

Another sensor technology used in proximity switches 
detects people by responding to the disruption they cause in 
electric fields. This type of proximity switch is used in some 
desk lamps that turn on and off when touched and in elevator 
buttons with no moving parts (as shown in the figure). The 
switch is based on a capacitor. As you are about to discover in 
this chapter, a capacitor is a circuit element whose terminal 
characteristics are determined by electric fields. When you 
touch a capacitive proximity switch, you produce a change in 

the value of a capacitor, causing a voltage change, which acti
vates the switch. The design of a capacitive touch-sensitive 
switch is the topic of the Practical Perspective example at the 
end of this chapter. 

175 
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Section 6.3 describes techniques used to simplify circuits with series or 
parallel combinations of capacitors or inductors. 

Energy can be stored in both magnetic and electric fields. Hence you 
should not be too surprised to learn that inductors and capacitors are 
capable of storing energy. For example, energy can be stored in an induc
tor and then released to fire a spark plug. Energy can be stored in a capac
itor and then released to fire a flashbulb. In ideal inductors and capacitors, 
only as much energy can be extracted as has been stored. Because induc
tors and capacitors cannot generate energy, they are classified as passive 
elements. 

In Sections 6.4 and 6.5 we consider the situation in which two circuits 
are linked by a magnetic field and thus are said to be magnetically cou
pled. In this case, the voltage induced in the second circuit can be related 
to the time-varying current in the first circuit by a parameter known as 
mutual inductance. The practical significance of magnetic coupling 
unfolds as we study the relationships between current, voltage, power, and 
several new parameters specific to mutual inductance. We introduce these 
relationships here and then describe their utility in a device called a trans
former in Chapters 9 and 10. 

6.1 The Inductor 
Inductance is the circuit parameter used to describe an inductor. Inductance 
is symbolized by the letter L, is measured in henrys (H), and is represented 
graphically as a coiled wire—a reminder that inductance is a consequence 
of a conductor linking a magnetic field. Figure 6.1(a) shows an inductor. 
Assigning the reference direction of the current in the direction of the volt
age drop across the terminals of the inductor, as shown in Fig. 6.1(b), yields 

The inductor v - i equation • v = L—, (6.1) 
dt 

where v is measured in volts, L in henrys, i in amperes, and t in seconds. 
Equation 6.1 reflects the passive sign convention shown in Fig. 6.1(b); that 
is, the current reference is in the direction of the voltage drop across the 
inductor. If the current reference is in the direction of the voltage rise, 
Eq. 6.1 is written with a minus sign. 

Note from Eq. 6.1 that the voltage across the terminals of an inductor 
is proportional to the time rate of change of the current in the inductor. 
We can make two important observations here. First, if the current is con
stant, the voltage across the ideal inductor is zero. Thus the inductor 
behaves as a short circuit in the presence of a constant, or dc, current. 
Second, current cannot change instantaneously in an inductor; that is, the 
current cannot change by a finite amount in zero time. Equation 6.1 tells 
us that this change would require an infinite voltage, and infinite voltages 
are not possible. For example, when someone opens the switch on an 
inductive circuit in an actual system, the current initially continues to flow 
in the air across the switch, a phenomenon called arcing. The arc across 
the switch prevents the current from dropping to zero instantaneously. 
Switching inductive circuits is an important engineering problem, because 
arcing and voltage surges must be controlled to prevent equipment dam
age. The first step to understanding the nature of this problem is to master 
the introductory material presented in this and the following two chapters. 
Example 6.1 illustrates the application of Eq. 6.1 to a simple circuit. 

L 

(a) 

(b) 

Figure 6.1 • (a) The graphic symbol for an inductor 
with an inductance of L henrys. (b) Assigning reference 
voltage and current to the inductor, following the pas
sive sign convention. 
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Example 6.1 Determining the Voltage, Given the Current, at the Terminals of an Inductor 

The independent current source in the circuit 
shown in Fig. 6.2 generates zero current for t < 0 
and a pulse 10/e~5'A, for t > 0. 

/ < 0 / = 0, 

100 mH 

i = 10/<T5'A, t > 0 

Figure 6.2 • The circuit for Example 6.1. 

a) Sketch the current waveform. 

b) At what instant of time is the current maximum? 

c) Express the voltage across the terminals of the 
100 mH inductor as a function of time. 

d) Sketch the voltage waveform. 

e) Are the voltage and the current at a maximum at 
the same time? 

f) At what instant of time does the voltage change 
polarity? 

g) Is there ever an instantaneous change in voltage 
across the inductor? If so, at what time? 

Solution 

a) Figure 6.3 shows the current waveform. 

b) di/dt = 10(-5te~5 ' + e~5c) = 10e -5 ' 
( 1 - 5/) A/s; di/dt = 0 when t = 1 s. (See Fig. 6.3.) 

c) t; = Ldi/dt = (0.1)10e_5'(l - 5/) = e~St 

(1-5/) V,/ > 0;v = 0 , / < 0. 

d) Figure 6.4 shows the voltage waveform. 

e) No; the voltage is proportional to di/dt, not i. 

f) At 0.2 s, which corresponds to the moment when 
di/dt is passing through zero and changing sign. 

g) Yes, at t - 0. Note that the voltage can change 
instantaneously across the terminals of an 
inductor. 

Figure 6.3 A The current waveform for Example 6.1. 

Figure 6.4 A The voltage waveform for Example 6.1. 

Current in an Inductor in Terms of the Voltage 
Across the Inductor 
Equation 6.1 expresses the voltage across the terminals of an inductor as a 
function of the current in the inductor. Also desirable is the ability to 
express the current as a function of the voltage. To find i as a function of v, 
we start by multiplying both sides of Eq. 6.1 by a differential time dt: 

v dt = L dr. (6.2) 

Multiplying the rate at which i varies with /by a differential change in time 
generates a differential change in /, so we write Eq. 6.2 as 

v dt = L di. (6.3) 
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We next integrate both sides of Eq. 6.3. For convenience, we interchange 
the two sides of the equation and write 

L dx 
Jt(tn) 

v dr. (6.4) 

Note that we use x and r as the variables of integration, whereas i and / 
become limits on the integrals. Then, from Eq. 6.4, 

The inductor i - v equation • »to U,v dr 4- /(/0), (6.5) 

where /(/) is the current corresponding to /, and /(/0) is the value of the 
inductor current when we initiate the integration, namely, /0. In many 
practical applications, /0 is zero and Eq. 6.5 becomes 

if 
wo 

/(/) = — / v dr + /(0). (6.6) 

Equations 6.1 and 6.5 both give the relationship between the voltage 
and current at the terminals of an inductor. Equation 6.1 expresses the 
voltage as a function of current, whereas Eq. 6.5 expresses the current as a 
function of voltage. In both equations the reference direction for the cur
rent is in the direction of the voltage drop across the terminals. Note that 
/(/()) carries its own algebraic sign. If the initial current is in the same direc
tion as the reference direction for /, it is a positive quantity. If the initial 
current is in the opposite direction, it is a negative quantity. Example 6.2 
illustrates the application of Eq. 6.5. 

Example 6.2 Determining the Current, Given the Voltage, at the Terminals of an Inductor 

The voltage pulse applied to the 100 mH inductor 
shown in Fig. 6.5 is 0 for t < 0 and is given by the 
expression 

v{t) = 20/e"10' V 

for / > 0. Also assume i = 0 for / < 0. 

a) Sketch the voltage as a function of time. 

b) Find the inductor current as a function of time. 

c) Sketch the current as a function of time. 

b) The current in the inductor is 0 at / = 0. 
Therefore, the current for / > 0 is 

hil: I 20T<T107/T + 0 

200 
-10r 

100 
-(10T + 1) 

= 2(1 - \0te~U)t - e~mt) A, / > 0. 
c) Figure 6.7 shows the current as a function of time. 

Solution 

a) The voltage as a function of time is shown in 
Fig. 6.6. 

y = 0, t<0 

i i < 100 mH 

v = 20te-mV, r > 0 

Figure 6.5 A The circuit for Example 6.2. 
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Figure 6.6 A The voltage waveform for Example 6.2. 
0 0.1 0.2 0.3 

Figure 6.7 • The current waveform for Example 6.2. 

Note in Example 6.2 that i approaches a constant value of 2 A as t 
increases. We say more about this result after discussing the energy stored 
in an inductor. 

Power and Energy in the Inductor 

The power and energy relationships for an inductor can be derived 
directly from the current and voltage relationships. If the current refer
ence is in the direction of the voltage drop across the terminals of the 
inductor, the power is 

VI. (6.7) 

Remember that power is in watts, voltage is in volts, and current is in 
amperes. If we express the inductor voltage as a function of the inductor 
current, Eq. 6.7 becomes 

r di 
(6.8) A Power in an inductor 

We can also express the current in terms of the voltage: 

1 
/; = v 

l^k 
v (IT + /(/•()) (6.9) 

Equation 6.8 is useful in expressing the energy stored in the inductor. 
Power is the time rate of expending energy, so 

dw di 
p = —^ = Li —. dt dt 

(6.10) 

Multiplying both sides of Eq. 6.10 by a differential time gives the differen
tial relationship 

dw — Li di. (6.11) 

Both sides of Eq. 6.11 are integrated with the understanding that the ref
erence for zero energy corresponds to zero current in the inductor. Thus 

dx = L I y dy, 
Jo 

w = -Lr. 
2 

(6.12) «4 Energy in an inductor 
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As before, we use different symbols of integration to avoid confusion 
with the limits placed on the integrals. In Eq. 6.12, the energy is in joules, 
inductance is in henrys, and current is in amperes. To illustrate the appli
cation of Eqs. 6.7 and 6.12, we return to Examples 6.1 and 6.2 by means of 
Example 6.3. 

Example 6.3 Determining the Current, Voltage, Power, and Energy for an Inductor 

a) For Example 6.1, plot i, v.p, and w versus time. 
Line up the plots vertically to allow easy assess
ment of each variable's behavior. 

b) In what time interval is energy being stored in 
the inductor? 

c) In what time interval is energy being extracted 
from the inductor? 

d) What is the maximum energy stored in the 
inductor? 

e) Evaluate the integrals 

0.2 

p dt and p dt, 
0.2 

and comment on their significance. 

f) Repeat (a)-(c) for Example 6.2. 

g) In Example 6.2, why is there a sustained current 
in the inductor as the voltage approaches zero? 

Solution 

a) The plots of /, v,p, and w follow directly from the 
expressions for i and v obtained in Example 6.1 
and are shown in Fig. 6.8. In particular, p - vi, 
and w = (f)Ii2. 

b) An increasing energy curve indicates that energy 
is being stored. Thus energy is being stored in the 
time interval 0 to 0.2 s. Note that this corre
sponds to the interval when p > 0. 

c) A decreasing energy curve indicates that energy 
is being extracted. Thus energy is being extracted 
in the time interval 0.2 s to oo. Note that this cor
responds to the interval when p < 0. 

d) From Eq. 6.12 we see that energy is at a maximum 
when current is at a maximum; glancing at the 
graphs confirms this. From Example 6.1, maximum 
current = 0.736 A. Therefore, wmax = 27.07 mJ. 

e) From Example 6.1, 

/ = 10fe"5'A and v = e_5t(l - 50 V. 

Therefore, 

p = vi = lOte'101 - 50t2e~m W. 

0.2 0.4 0.6 0.8 1.0 

Figure 6.8 A The variables /', v, p, and w versus / for 
Example 6.1. 



6.1 The Inductor 181 

Thus 

0.2 

p dt = 10 
. , - 1 Of 

ion 
(-10? - 1) 

t2e~m 2 

0.2 

0 

-K)r 

100 
(-10/ - 1) 

g) The application of the voltage pulse stores 
energy in the inductor. Because the inductor is 
ideal, this energy cannot dissipate after the volt
age subsides to zero. Therefore, a sustained cur
rent circulates in the circuit. A lossless inductor 
obviously is an ideal circuit element Practical 
inductors require a resistor in the circuit model. 
(More about this later.) 

-2 _ Q2e~z = 27.07 mJ, 

p dt = 10 
0.2 

- l ()f 

100 
(-10* - 1) 

, t2e~m 2 

0,2 

-10/ 

100 
(-10/ - 1) 

0.2 

= -0.2e - 2 = -27.07 mJ. 

Based on the definition of p, the area under 
the plot of p versus t represents the energy 
expended over the interval of integration. 
Hence the integration of the power between 
0 and 0.2 s represents the energy stored in the 
inductor during this time interval. The integral 
of p over the interval 0.2 s - oo is the energy 
extracted. Note that in this time interval, all 
the energy originally stored is removed; that is, 
after the current peak has passed, no energy is 
stored in the inductor. 

f) The plots of v, i, p, and w follow directly from 
the expressions for v and i given in Example 
6.2 and are shown in Fig. 6.9. Note that in this 
case the power is always positive, and hence 
energy is always being stored during the volt
age pulse. 

0 0.1 0.2 0.3 0.4 0.5 0.( 

/(A) 

2.0 

(s) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

p(mW) 

600 

(s) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

•w (mJ) 

f(s) 

200 

100 

0 

-

-

0.1 
I 

0.2 
1 

0.3 
1 

0.4 
1 

0.5 
1 

0.6 
r(s) 

Figure 6.9 • The variables v, i, p, and w versus t for 
Example 6.2. 
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I /ASSESSMENT PROBLEM 

Objective 1—Know and be able to use the equations for voltage, current, power, and energy in an inductor 

6.1 The current source in the circuit shown gener
ates the current pulse 

WO = °< f < 0, 

ig(t) = 8e-™' - 8e~im* A, t > 0. 

Find (a) v(0); (b) the instant of time, greater 
than zero, when the voltage v passes through 
zero; (c) the expression for the power delivered 
to the inductor; (d) the instant when the power 
delivered to the inductor is maximum; (e) the 
maximum power; (f) the instant of time when 
the stored energy is maximum; and (g) the max
imum energy stored in the inductor. 

NOTE: Also try Chapter Problems 6.1 and 6.4. 

Answer: 

M4m 

(a) 28.8 V; 

(b) 1.54 ms; 

(c) -76.8<T600' + 384e-1500' 
-307.2<T2400fW, t > 0; 

(d) 411.05 jus; 

(e) 32.72 W; 

(f) 1.54 ms; 

(g) 28.57 mJ. 

6.2 The Capacitor 

(a) 

C 

+ v 
/ 

(b) 

Figure 6.10 • (a) The circuit symbol for a capacitor, 
(b) Assigning reference voltage and current to the 
capacitor, following the passive sign convention. 

The circuit parameter of capacitance is represented by the letter C is 
measured in farads (F), and is symbolized graphically by two short paral
lel conductive plates, as shown in Fig. 6.10(a). Because the farad is an 
extremely large quantity of capacitance, practical capacitor values usually 
lie in the picofarad (pF) to microfarad (/xF) range. 

The graphic symbol for a capacitor is a reminder that capacitance 
occurs whenever electrical conductors are separated by a dielectric, or 
insulating, material. This condition implies that electric charge is not 
transported through the capacitor. Although applying a voltage to the 
terminals of the capacitor cannot move a charge through the dielectric, it 
can displace a charge within the dielectric. As the voltage varies with 
time, the displacement of charge also varies with time, causing what is 
known as the displacement current. 

At the terminals, the displacement current is indistinguishable from a 
conduction current. The current is proportional to the rate at which the 
voltage across the capacitor varies with time, or, mathematically. 

Capacitor I - v equation • 
. ndv 

(6.13) 

where /' is measured in amperes, C in farads, v in volts, and t in seconds. 
Equation 6.13 reflects the passive sign convention shown in Fig. 6.10(b); 

that is, the current reference is in the direction of the voltage drop across the 
capacitor. If the current reference is in the direction of the voltage rise, 
Eq. 6.13 is written with a minus sign. 
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Two important observations follow from Eq. 6.13. First, voltage cannot 
change instantaneously across the terminals of a capacitor. Equation 6.13 
indicates that such a change would produce infinite current, a physical 
impossibility. Second, if the voltage across the terminals is constant, the 
capacitor current is zero. The reason is that a conduction current cannot be 
established in the dielectric material of the capacitor. Only a time-varying 
voltage can produce a displacement current.Thus a capacitor behaves as an 
open circuit in the presence of a constant voltage. 

Equation 6.13 gives the capacitor current as a function of the capaci
tor voltage. Expressing the voltage as a function of the current is also use
ful. To do so, we multiply both sides of Eq. 6.13 by a differential time dt 
and then integrate the resulting differentials: 

•'•(') i ft 

i dt = C dv or I dx = — I i dr. 
h(t(>) c Jh 

Carrying out the integration of the left-hand side of the second equa
tion gives 

v(t) = - / idr + v(t0). (6.14) < Capacitor v - i equation 

In many practical applications of Eq. 6.14, the initial time is zero; that is, 
t{) = 0. Thus Eq. 6.14 becomes 

i*0 =^fidr + v(0). (6.15) 

We can easily derive the power and energy relationships for the capacitor. 
From the definition of power, 

p = vi = O 
dv 

It* (6.16) -4 Capacitor power equation 

or 

P = l 

LC,, ( 1 

i dr + v(t()) (6.17) 
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Combining the definition of energy with Eq. 6.16 yields 

dw = Cv dv, 

from which 

f>W A » 

/ dx = C I y dy, 
Jo J[) 

or 

Capacitor energy equation • w = —Or. 
2 

(6.18) 

In the derivation of Eq. 6.18, the reference for zero energy corresponds to 
zero voltage. 

Examples 6.4 and 6.5 illustrate the application of the current, voltage, 
power, and energy relationships for a capacitor. 

Example 6.4 Determining Current, Voltage, Power, and Energy for a Capacitor 

The voltage pulse described by the following equa
tions is impressed across the terminals of a 0.5 /xF 
capacitor: 

Solution 

a) From Eq. 6.13, 

0, / < 0 s; 
{ At V, 0 s < t < 1 s; 

4 ^ ^ V, / > l s . 

(0.5 X Kr6)(0) = 0, t < 0s; 

(0.5 X 10"6)(4) = 2 yuA, 0 s < / < 1 s; 

(0.5 x 10_6)(-4e"<'~1)) = -2<r ( , _ 1 VA, t > 1 s. 

a) Derive the expressions for the capacitor current, 
power, and energy. 

b) Sketch the voltage, current, power, and energy as 
functions of time. Line up the plots vertically. 

c) Specify the interval of time when energy is being 
stored in the capacitor. 

d) Specify the interval of time when energy is being 
delivered by the capacitor. 

e) Evaluate the integrals 

p dt and / p dt 

and comment on their significance. 

P = 

w 

The expression for the power is derived from 
Eq.6.16: 

0, 
(4/)(2) = 8/ /iW, 
( 4<,-( / - i ) ) (_ 2 £>-( ' - i ) ) = 

t < 0 s; 

0 s < t < 1 s; 

-8e_ 2 ( '_ 1Vw, t > 1 s. 

The energy expression follows directly from 
Eq.6.18: 

0 t < 0 s; 
1(0.5)16/2 = 4f2/xJ, 0 s < t < 1 s; 
±(0.5) 16e-2('_1) = Ae-^-VfiJ, t > 1 s. 
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b) Figure 6.11 shows the voltage, current, power, 
and energy as functions of time. 

c) Energy is being stored in the capacitor whenever 
the power is positive. Hence energy is being 
stored in the interval 0 - 1 s. 

d) Energy is being delivered by the capacitor when
ever the power is negative. Thus energy is being 
delivered for all / greater than 1 s. 

e) The integral of p dt is the energy associated with 
the time interval corresponding to the limits on 
the integral. Thus the first integral represents the 
energy stored in the capacitor between 0 and 1 s, 
whereas the second integral represents the 
energy returned, or delivered, by the capacitor in 
the interval 1 s to oo: 

l , i 

p dt = / 8t dt = At2 
4/AJ, 

f00 I T 2 * ' " 1 ) 
pdt= I ( - 8 ^ - ^ = (-8) — 

J\ _ 2 
- 4 / A J . 

The voltage applied to the capacitor returns to 
zero as time increases without limit, so the energy 
returned by this ideal capacitor must equal the 
energy stored. 

P 0*w) 

4 

2 

0 

-

1 
1 2 

- 1 
3 

1 
4 

l 

5 
1 
6 

Us) 

Figure 6.11 A The variables v, i, p, and w versus t for 
Example 6.4. 

Example 6.5 Finding v, p, and w Induced by a Triangular Current Pulse for a Capacitor 

An uncharged 0.2 /AF capacitor is driven by a trian
gular current pulse. The current pulse is described by 

m = < 
0, f s O ; 
5000* A, 0 < t < 20 /AS; 
0.2 - 5000* A, 20 < t < 40 jus; 

{0, t > 40 /AS. 

a) Derive the expressions for the capacitor voltage, 
power, and energy for each of the four time inter
vals needed to describe the current. 

b) Plot i, v, p, and w versus t. Align the plots as spec
ified in the previous examples. 

c) Why does a voltage remain on the capacitor after 
the current returns to zero? 

Solution 

a) For t < 0, v, p, and w all are zero. 
ForO < t •& 20/is, 

v ---- 5 : : 10h I (5000r) dr + 0 = 12.5 X 10V V, 
/o 

vi = 62.5 X lO 'VW, 

w = -Cv2 = 15.625 X l O ' V j . 
2 

For 20 /AS < r < 40 /AS, 

v = 5 X 106 / (0.2 - 5 0 0 0 T ) ^ T + 5. 
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(Note that 5 V is the voltage on the capacitor at 
the end of the preceding interval.) Then, 

v = (10*7 - 12.5 X 1 0 ¥ - 10) V, 

p = t», 

= (62.5 X 1012/3 - 7.5 x 10V + 2.5 X 105/ - 2) W, 

w = —Cv~, 
2 

0 

V (V) 

t(fis) 

12 A 9*3 ^),2 = (15.625 X 10ur - 2.5 X l ( ) r + 0.125 X 10(V 

For/ > 40^ts, 

- 2/ + 10~3) J. 

v = 10 V, 

p = vi = 0, 

w = —Cv2 = 10/xJ. 

b) The excitation current and the resulting voltage, 
power, and energy are plotted in Fig. 6.12. 

c) Note that the power is always positive for the 
duration of the current pulse, which means that 
energy is continuously being stored in the capac
itor. When the current returns to zero, the stored 
energy is trapped because the ideal capacitor 
offers no means for dissipating energy. Thus a 
voltage remains on the capacitor after i returns 
to zero. 
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Figure 6.12 • The variables /', v, p, and to versus 
Example 6.5. 

t(fJ!S) 

t for 

^/ASSESSMENT PROBLEMS 

Objective 2—Know and be able to use the equations for voltage, current, power, and energy in a capacitor 

6.2 The voltage at the terminals of the 0.6 /xF 
capacitor shown in the figure is 0 for t < 0 and 
4Qe-ism)t s i n 30,000/ V for t > 0. Find (a) /'(0); 
(b) the power delivered to the capacitor at 
/ = 77-/8O ms; and (c) the energy stored in the 
capacitor at t = TT/80 ms. 

0.6 ^F 

NOTE: Also try Chapter Problems 6.16 and 6.17. 

Answer: (a) 0.72 A; 

(b) -649.2 mW; 

(c) 126.13 AtJ. 

6.3 The current in the capacitor of Assessment 
Problem 6.2 is 0 for t < 0 and 3 cos 50,000/ A 
for t a 0. Find (a) v{t)\ (b) the maximum power 
delivered to the capacitor at any one instant of 
time; and (c) the maximum energy stored in the 
capacitor at any one instant of time. 

Answer: (a) 100 sin 50,000/ V, / > 0; 

(b)150W;(c)3mJ. 
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6.3 Series-Parallel Combinations 
of Inductance and Capacitance 

Just as series-parallel combinations of resistors can be reduced to a single 
equivalent resistor, series-parallel combinations of inductors or capacitors 
can be reduced to a single inductor or capacitor. Figure 6.13 shows induc
tors in series. Here, the inductors are forced to carry the same current; thus 
we define only one current for the series combination. The voltage drops 
across the individual inductors are Figure 6.13 A Inductors in series. 

di di di 
„ = £ , - , v2 = L1Jt, and v} = L,-. 

The voltage across the series connection is 

v = v\ + v2 + v3 = (L{ + L2 + L?)— 
at 

from which it should be apparent that the equivalent inductance of series-
connected inductors is the sum of the individual inductances. For n induc
tors in series, 

LeQ = Li + L2 + L3+ ••• + L„. (6.19) < Combining inductors in series 

If the original inductors carry an initial current of i(f0), the equivalent 
inductor carries the same initial current. Figure 6.14 shows the equivalent 
circuit for series inductors carrying an initial current. 

Inductors in parallel have the same terminal voltage. In the equivalent 
circuit, the current in each inductor is a function of the terminal voltage 
and the initial current in the inductor. For the three inductors in parallel 
shown in Fig. 6.15, the currents for the individual inductors are 

L, Ls 
v 

*0b) 

•^cu — L\+ L2+ LT, 

i\=— I v dr + /JOO), 

'2 v dr + /2(?oX 
'2 At 

Figure 6.14 A An equivalent circuit for inductors in 
series carrying an initial current i(t()). 

h -~T I vdT + i3(t{)). 
^3 At 

(6.20) v LiiliM L2i\i2(tn) ^ J j ' a f t ) ) 

The current at the terminals of the three parallel inductors is the sum of Fi9"re 6.15 A Three inductors in parallel, 
the inductor currents: 

i = ii + /'2 + /3. 

Substituting Eq. 6.20 into Eq. 6.21 yields 

(6.21) 

I — + — + — I I 1 : ; 
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Now we can interpret Eq. 6.22 in terms of a single inductor; that is, 

1 f 
i = — I vdr + i(t{)). (6.23) 

^eq J la 

Comparing Eq. 6.23 with (6.22) yields 

1 1 1 1 
— = - + — + — (6.24) 
^ e q -^1 *->2 JUT, 

^cq Lx L2 L3 i(tl)) = i&o) + i2(t{)) + i3((()). (6.25) 

*(%)! 3 ^cq Figure 6.16 shows the equivalent circuit for the three parallel inductors in 
Fig. 6.15. 

The results expressed in Eqs. 6.24 and 6.25 can be extended to 

Figure 6.16 • An equivalent circuit for three inductors n i n d u c t o r s m parallel: 
in parallel. 

I l l 1 
Combining inductors in parallel • = — + — + . . . + — (6.26) 

Leq L\ L2 Ln 

Equivalent inductance initial current • /(r0) = / ^ ) + j2(t0) + • • + in(t0). (6.27) 

Capacitors connected in series can be reduced to a single equivalent 
capacitor. The reciprocal of the equivalent capacitance is equal to the sum 
of the reciprocals of the individual capacitances. If each capacitor carries 
its own initial voltage, the initial voltage on the equivalent capacitor is the 
algebraic sum of the initial voltages on the individual capacitors. Figure 6.17 
and the following equations summarize these observations: 

1 1 1 1 
Combining capacitors in series • = 1 h • • • -\ , (6.28) 

Equivalent capacitance initial voltage • v(t0) = vi(t0) + v2(tQ) + • • • + vn(t0). (6.29) 

We leave the derivation of the equivalent circuit for series-connected 
capacitors as an exercise. (See Problem 6.32.) 

The equivalent capacitance of capacitors connected in parallel is sim
ply the sum of the capacitances of the individual capacitors, as Fig. 6.18 
and the following equation show: 

Combining capacitors in parallel • Ceq = C{ + C2 + • •• + Cn. (6.30) 

Capacitors connected in parallel must carry the same voltage. Therefore, if 
there is an initial voltage across the original parallel capacitors, this same 
initial voltage appears across the equivalent capacitance Ceq. The deriva
tion of the equivalent circuit for parallel capacitors is left as an exercise. 
(See Problem 6.33.) 

We say more about series-parallel equivalent circuits of inductors and 
capacitors in Chapter 7, where we interpret results based on their use. 
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Figure 6.17 • An equivalent circuit for capacitors connected in 
series, (a) The series capacitors, (b) The equivalent circuit. 

(b) 

Figure 6.18 • An equivalent circuit for capacitors connected in 
parallel, (a) Capacitors in parallel, (b) The equivalent circuit. 

/ASSESSMENT PROBLEMS 

Objective 3—Be able to combine inductors or capacitors in series and in parallel to form a single equivalent inductor 

6.4 The initial values of i[ and /2 in the circuit 
shown are + 3 A and - 5 A, respectively. The 
voltage at the terminals of the parallel induc
tors for t > 0 is -30e"5 ' mV. 

a) If the parallel inductors are replaced by a 
single inductor, what is its inductance? 

b) What is the initial current and its reference 
direction in the equivalent inductor? 

c) Use the equivalent inductor to find /(f). 

d) Find /t(f) and /2(f). Verify that the solutions 
for *']_(*), /2(f), and /(f) satisfy Kirchhoff s 
current law. 

I'W 

Answer: (a) 48 mH; 

(b) 2 A, up; 

(c) 0.125e~5' - 2.125 A, f > 0; 

(d)/!(f) = O.le-5' + 2.9 A, t > 0, 
kit) = 0.025e~5' - 5.025 A, f ; 0. 

6.5 The current at the terminals of the two capaci
tors shown is 240e~ 1()'/xA for f > 0. The initial 
values of v^ and v2 are - 1 0 V and - 5 V, 
respectively. Calculate the total energy trapped 
in the capacitors as f —* oo. (Hint: Don't com
bine the capacitors in series—find the energy 
trapped in each, and then add.) 

+ v, 

2/x¥ 

/i(0H60mH /2(0H240mH 

Answer: 20 /xJ. 

NOTE: Also try Chapter Problems 6.21, 6.25, 6.26, and 6.31. 

6.4 Mutual Inductance 
The magnetic field we considered in our study of inductors in Section 6.1 
was restricted to a single circuit. We said that inductance is the parameter 
that relates a voltage to a time-varying current in the same circuit; thus, 
inductance is more precisely referred to as self-inductance. 

We now consider the situation in which two circuits are linked by a 
magnetic field. In this case, the voltage induced in the second circuit can 
be related to the time-varying current in the first circuit by a parameter 
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Figure 6.19 • Two magnetically coupled coils. 

Figure 6.20 • Coil currents i{ and i2 used to describe 
the circuit shown in Fig. 6.19. 

Figure 6.21 A The circuit of Fig. 6.20 with dots added 
to the coils indicating the polarity of the mutually 
induced voltages. 

known as mutual inductance. The circuit shown in Fig. 6.19 represents two 
magnetically coupled coils. The self-inductances of the two coils arc 
labeled L] and L2, and the mutual inductance is labeled M. The double-
headed arrow adjacent to M indicates the pair of coils with this value of 
mutual inductance.This notation is needed particularly in circuits contain
ing more than one pair of magnetically coupled coils. 

The easiest way to analyze circuits containing mutual inductance is 
to use mesh currents.The problem is to write the circuit equations that 
describe the circuit in terms of the coil currents. First, choose the refer
ence direction for each coil current. Figure 6.20 shows arbitrarily 
selected reference currents. After choosing the reference directions for 
/, and /2, sum the voltages around each closed path. Because of the 
mutual inductance M, there will be two voltages across each coil, 
namely, a self-induced voltage and a mutually induced voltage. The self-
induced voltage is the product of the self-inductance of the coil and the 
first derivative of the current in that coil. The mutually induced voltage 
is the product of the mutual inductance of the coils and the first deriva
tive of the current in the other coil. Consider the coil on the left in 
Fig. 6.20 whose self-inductance has the value L\. The self-induced 
voltage across this coil is Lx(dixfdt) and the mutually induced voltage 
across this coil is M(di2/dt). But what about the polarities of these 
two voltages? 

Using the passive sign convention, the self-induced voltage is a voltage 
drop in the direction of the current producing the voltage. But the polarity 
of the mutually induced voltage depends on the way the coils are wound in 
relation to the reference direction of coil currents. In general, showing the 
details of mutually coupled windings is very cumbersome. Instead, we keep 
track of the polarities by a method known as the dot convention, in which a 
dot is placed on one terminal of each winding, as shown in Fig. 6.21. These 
dots carry the sign information and allow us to draw the coils schematically 
rather than showing how they wrap around a core structure. 

The rule for using the dot convention to determine the polarity of 
mutually induced voltage can be summarized as follows: 

Dot convention for mutually coupled coils • 
When the reference direction for a current enters the dotted termi
nal of a coil, the reference polarity of the voltage that it induces in 
the other coil is positive at its dotted terminal. 

Or, stated alternatively. 

Dot convention for mutually coupled coils 
(alternate) • 

When the reference direction for a current leaves the dotted termi
nal of a coil, the reference polarity of the voltage that it induces in 
the other coil is negative at its dotted terminal. 

For the most part, dot markings will be provided for you in the circuit 
diagrams in this text. The important skill is to be able to write the appro
priate circuit equations given your understanding of mutual inductance 
and the dot convention. Figuring out where to place the polarity dots if 
they are not given may be possible by examining the physical configura
tion of an actual circuit or by testing it in the laboratory. We will discuss 
these procedures after we discuss the use of dot markings. 

In Fig. 6.21, the dot convention rule indicates that the reference polar
ity for the voltage induced in coil 1 by the current i2 is negative at the dot
ted terminal of coil l.This voltage (Mdi2/dt) is a voltage rise with respect 
to /]_. The voltage induced in coil 2 by the current /| is Mdi\jdt, and its ref
erence polarity is positive at the dotted terminal of coil 2. This voltage is a 
voltage rise in the direction of i2. Figure 6.22 shows the self- and mutually 
induced voltages across coils 1 and 2 along with their polarity marks. 



Figure 6.22 • The self- and mutually induced voltages appearing 
across the coils shown in Fig. 6.21. 
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Now let's look at the sum of the voltages around each closed loop. In 
Eqs. 6.31 and 6.32, voltage rises in the reference direction of a current 
are negative: 

di\ di2 

dii du 
ioRo + L2-f - M - 1 

dt dt 
0. 

(6.31) 

(6.32) 

The Procedure for Determining Dot Markings 
We shift now to two methods of determining dot markings. The first 
assumes that we know the physical arrangement of the two coils and the 
mode of each winding in a magnetically coupled circuit. The following six 
steps, applied here to Fig. 6.23, determine a set of dot markings: 

a) Arbitrarily select one terminal—say, the D terminal—of one coil and 
mark it with a dot. 

b) Assign a current into the dotted terminal and label it /D. 

c) Use the right-hand rule1 to determine the direction of the magnetic 
field established by /D inside the coupled coils and label this field <j6D. 

d) Arbitrarily pick one terminal of the second coil—say, terminal A—and 
assign a current into this terminal, showing the current as /A. 

e) Use the right-hand rule to determine the direction of the flux estab
lished by /A inside the coupled coils and label this flux <£A. 

f) Compare the directions of the two fluxes <£D and <£A. If the fluxes 
have the same reference direction, place a dot on the terminal of the 
second coil where the test current (/A) enters. (In Fig. 6.23, the fluxes 
<£D and c/>A have the same reference direction, and therefore a dot 
goes on terminal A.) If the fluxes have different reference direc
tions, place a dot on the terminal of the second coil where the test 
current leaves. 

The relative polarities of magnetically coupled coils can also be deter
mined experimentally.This capability is important because in some situations, 
determining how the coils are wound on the core is impossible. One experi
mental method is to connect a dc voltage source, a resistor, a switch, and a dc 
voltmeter to the pair of coils, as shown in Fig. 6.24. The shaded box covering 
the coils implies that physical inspection of the coils is not possible. The resis
tor R limits the magnitude of the current supplied by the dc voltage source. 

The coil terminal connected to the positive terminal of the dc source 
via the switch and limiting resistor receives a polarity mark, as shown in 
Fig. 6.24. When the switch is closed, the voltmeter deflection is observed. If 
the momentary deflection is upscale, the coil terminal connected to the 
positive terminal of the voltmeter receives the polarity mark. If the 

eP2) 

__ Arbitrarily 
dotted 

D terminal 
(Stepl) 

Figure 6.23 • A set of coils showing a method for 
determining a set of dot markings. 

R 

+ 
Switch 

dc 
voltmeter 

Figure 6.24 • An experimental setup for determining 
polarity marks. 

See discussion of Faraday's law on page 193. 
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deflection is downscale, the coil terminal connected to the negative termi
nal of the voltmeter receives the polarity mark. 

Example 6.6 shows how to use the dot markings to formulate a set of 
circuit equations in a circuit containing magnetically coupled coils. 

Example 6.6 Finding Mesh-Current Equations for a Circuit with Magnetically Coupled Coils 

a) Write a set of mesh-current equations that 
describe the circuit in Fig. 6.25 in terms of the 
currents /j and i2. 

b) Verify that if there is no energy stored in the cir
cuit at t = 0 and if L = 16 - 16tf_5t A, the solu-
tions for i\ and i2 are 

b) To check the validity of /j and i2, we begin by 
testing the initial and final values of iL and i2. We 
know by hypothesis that /^(0) = i2(0) = 0. From 
the given solutions we have 

/j(0) = 4 + 64 - 68 = 0, 

4; / , = 4 + 64e_:* - 6&T" A, 
/2(0) = 1 - 52 + 51 = 0. 

/2 = 1 - 52«?"* + 51e"4' A. 

5 0 

4H 

8H 20 n 

1 
16 H f i2 \ 60 H 

Figure 6.25 • The circuit for Example 6.6. 

Now we observe that as t approaches infinity the 
source current (/<,) approaches a constant value 
of 16 A, and therefore the magnetically coupled 
coils behave as short circuits. Hence at t = oo 
the circuit reduces to that shown in Fig. 6.26. 
From Fig. 6.26 we see that at t = oo the three 
resistors are in parallel across the 16 A source. 
The equivalent resistance is 3.75 fl and thus the 
voltage across the 16 A current source is 60 V. It 
follows that 

z,(oo) = — + — = 4 A , u } 20 60 

Solution 

a) Summing the voltages around the ix mesh yields 

4 - ^ + 8 - ¾ - i2) + 20(/, - i2) + 5(it - ig) = 0. 

, 2 ( o o ) = | | = l A . 

These values agree with the final values pre
dicted by the solutions for ix and i2. 

Finally we check the solutions by seeing if 
they satisfy the differential equations derived in 
(a). We will leave this final check to the reader 
via Problem 6.37. 

The i2 mesh equation is 

20(/2 - h) + 60/2 + 16-7-(¾ - **) ~ 8 - r = 0. 
1 dt ~ gJ dt 

Note that the voltage across the 4 H coil due to 
the current (ig - i2), that is, 8d(ig - i2)/dt, is a 
voltage drop in the direction of ix. The voltage 
induced in the 16 Ff coil by the current / t, that is, 
8di\/dt, is a voltage rise in the direction of i2. 

16A 

20 n 
-VAr-

:60O 

Figure 6.26 • The circuit of Example 6.6 when t — oo. 
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•ASSESSMENT PROBLEM 

Objective 4—Use the dot convention to write mesh-current equations for mutually coupled coils 

6.6 a) Write a set of mesh-current equations for 
the circuit in Example 6.6 if the dot on the 
4 H inductor is at the right-hand terminal, 
the reference direction of/̂ , is reversed, and 
the 60 ft resistor is increased to 780 ft. 

b) Verify that if there is no energy stored in the 
circuit at t = 0,andififf = 1.96 - 1.96e~* A, 
the solutions to the differential equations 
derived in (a) of this Assessment Problem are 

Answer: (a) A{dijdt) + 25ix + 8(di2/dt) - 20i2 

= -5ig - $(dig/dt) 

and 

%{di<Jdt) - 20¾ + 16(di2/dt) + 800/2 

= -16(dig/dt); 

(b) verification. 

-0.4 -

-0.01 

11.6e"4' + 12e_5 'A, 
,-4/ 0.99<T" + e~™ A. -St 

NOTE: Also try Chapter Problem 6.39. 

6.5 A Closer Look at Mutual Inductance 
In order to fully explain the circuit parameter mutual inductance, and to 
examine the limitations and assumptions made in the qualitative discussion 
presented in Section 6.4, we begin with a more quantitative description of 
self-inductance than was previously provided. 

A Review of Self-Inductance 
The concept of inductance can be traced to Michael Faraday, who did pio
neering work in this area in the early 1800s. Faraday postulated that a 
magnetic field consists of lines of force surrounding the current-carrying 
conductor. Visualize these lines of force as energy-storing elastic bands 
that close on themselves. As the current increases and decreases, the elas
tic bands (that is, the lines of force) spread and collapse about the conduc
tor. The voltage induced in the conductor is proportional to the number of 
lines that collapse into, or cut, the conductor. This image of induced volt
age is expressed by what is called Faraday's law; that is, 

dX_ 

dt ' 
(6.33) 

where A is referred to as the flux linkage and is measured in weber-turns. 
How do we get from Faraday's law to the definition of inductance pre

sented in Section 6.1? We can begin to draw this connection using Fig. 6.27 
as a reference. 

The lines threading the N turns and labeled 4> represent the magnetic 
lines of force that make up the magnetic field. The strength of the mag
netic field depends on the strength of the current, and the spatial orienta
tion of the field depends on the direction of the current. The right-hand 
rule relates the orientation of the field to the direction of the current: 
When the fingers of the right hand are wrapped around the coil so that the 
fingers point in the direction of the current, the thumb points in the direc
tion of that portion of the magnetic field inside the coil. The flux linkage is 
the product of the magnetic field (<£), measured in webers (Wb), and the 
number of turns linked by the field (N): 

N turns 

Figure 6.27 • Representation of a magnetic field link
ing an vV-turn coil. 

A = N<f>. (6.34) 
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The magnitude of the flux, ¢, is related to the magnitude of the coil 
current by the relationship 

$ = SWi, (6.35) 

where N is the number of turns on the coil, and SP is the permeance of the 
space occupied by the flux. Permeance is a quantity that describes the 
magnetic properties of this space, and as such, a detailed discussion of per
meance is outside the scope of this text. Here, we need only observe that, 
when the space containing the flux is made up of magnetic materials (such 
as iron, nickel, and cobalt), the permeance varies with the flux, giving a 
nonlinear relationship between 4> and i. But when the space containing the 
flux is comprised of nonmagnetic materials, the permeance is constant, 
giving a linear relationship between cj> and L Note from Eq. 6.35 that the 
flux is also proportional to the number of turns on the coil. 

Here, we assume that the core material—the space containing the flux— 
is nonmagnetic. Then, substituting Eqs. 6.34 and 6.35 into Eq. 6.33 yields 

v = 
dX d(N4>) 

dt dt 

d<b d, 

dt dt 

dt 
di 
dt' 

(6.36) 

which shows that self-inductance is proportional to the square of the num
ber of turns on the coil. We make use of this observation later. 

The polarity of the induced voltage in the circuit in Fig. 6.27 reflects the 
reaction of the field to the current creating the field. For example, when i is 
increasing, di/dt is positive and v is positive. Thus energy is required to 
establish the magnetic field. The product vi gives the rate at which energy is 
stored in the field. When the field collapses, di/dt is negative, and again the 
polarity of the induced voltage is in opposition to the change. As the field 
collapses about the coil, energy is returned to the circuit. 

Keeping in mind this further insight into the concept of self-inductance, 
we now turn back to mutual inductance. 

Figure 6.28 A Two magnetically coupled coils. 

The Concept of Mutual Inductance 
Figure 6.28 shows two magnetically coupled coils. You should verify that 
the dot markings on the two coils agree with the direction of the coil wind
ings and currents shown. The number of turns on each coil are A^ and N2, 
respectively. Coil 1 is energized by a time-varying current source that 
establishes the current i\ in the A7] turns. Coil 2 is not energized and is 
open. The coils are wound on a nonmagnetic core. The flux produced by 
the current i\ can be divided into two components, labeled <f>n and 02J. 
The flux component 4>X\ is the flux produced by i\ that links only the Ny 
turns.The component <£21 is the flux produced by f] that links the N2 turns 
and the Ny turns. The first digit in the subscript to the flux gives the coil 
number, and the second digit refers to the coil current. Thus </>n is a flux 
linking coil 1 and produced by a current in coil 1, whereas cf)2\ is a flux link
ing coil 2 and produced by a current in coil 1. 



The total flux linking coil 1 is <̂ >|, the sum of </>n and 02i : 

01 = 0n + <t>2\- (6-37) 

The flux <f>{ and its components 4>n and 4>z\ are related to the coil current 
ii as follows: 

</>! = ?i>
1N1/i, (6.38) 

011 = 9uNiiu (6.39) 

^21 = ^ 2 l W i , (6.40) 

where flf^ is the permeance of the space occupied by the flux 01,27*11 is the 
permeance of the space occupied by the flux 0 U , and P?21 i

s t n e permeance 
of the space occupied by the flux 02i- Substituting Eqs. 6.38,6.39, and 6.40 
into Eq. 6.37 yields the relationship between the permeance of the space 
occupied by the total flux 4>x and the permeances of the spaces occupied 
by its components 4>\\ and 02 I : 

PJ>, = 0>ii + 9*21- (6-4l) 

We use Faraday's law to derive expressions for ?;t and v2: 

rfA, d(NM d 

, di\ » di\ di\ 
= Aft*, , + 9 > 2 , ) ^ = N P ^ = L , ^ , (6.42) 

and 

dk2 d(N2(f>2\) iT d ,™ A, . x 

= N2N^2l-^. (6.43) 

The coefficient of d/t/d7 in Eq. 6.42 is the self-inductance of coil 1. The 
coefficient of dixjdt in Eq. 6.43 is the mutual inductance between coils 
1 and 2. Thus 

M21 = N2Ni^2\- (6.44) 

The subscript on M specifies an inductance that relates the voltage induced 
in coil 2 to the current in coil 1. 

The coefficient of mutual inductance gives 

V2 = M21-^- (6.45) 

Note that the dot convention is used to assign the polarity reference to v2 

in Fig. 6.28. 
For the coupled coils in Fig. 6.28, exciting coil 2 from a time-varying cur

rent source (i2) and leaving coil 1 open produces the circuit arrangement 
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shown in Fig. 6.29. Again, the polarity reference assigned to Vy is based on 
the dot convention. 1 (T^H + I 

>l jLL> i /*TN The total flux linking coil 2 is 

Figure 6.29 • The magnetically coupled coils of 
Fig. 6.28, with coil 2 excited and coil 1 open. 

<t>2 = 4>22 + <Ai2- (6.46) 

The flux 4>2 and its components (f>22 and <pn are related to the coil current 
h as follows: 

(f)2 = 8̂ 2̂ 2*2» 

(f>22 = <3>22N2i2, 

012 = ^12^2/2-

(6.47) 

(6.48) 

(6.49) 

Tlie voltages v2 and Vj are 

(6.50) 

(6.51) 

The coefficient of mutual inductance that relates the voltage induced in coil 
1 to the time-varying current in coil 2 is the coefficient of di2/dt in Eq. 6.51: 

Mu = NyN^u- (6.52) 

For nonmagnetic materials, the permeances 0^ 2
 a n d ^21 a r e equal, 

and therefore 

Myi = M2\ = M. (6.53) 

Hence for linear circuits with just two magnetically coupled coils, attach
ing subscripts to the coefficient of mutual inductance is not necessary. 

Mutual Inductance in Terms of Self-Inductance 
The value of mutual inductance is a function of the self-inductances. We 
derive this relationship as follows. From Eqs. 6.42 and 6.50, 

L2 = Np2, 

(6.54) 

(6.55) 

respectively. From Eqs. 6.54 and 6.55, 

— \j2\rZc LXL2 = NiNfr&i (6.56) 

file:///j2/rZc
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We now use Eq. 6.41 and the corresponding expression for ?P2
 t o write 

L,L2 = NM(®n + ^21 ) (¾ + ^12). (6.57) 

But for a linear system, 0>2i = ^12, so Eq. 6.57 becomes 

=«•('*&)('* a ) 
Replacing the two terms involving permeances by a single constant 
expresses Eq. 6.58 in a more meaningful form: 

* - ( • • & ) ( • • & } 
Substituting Eq. 6.59 into Eq. 6.58 yields 

M2 = k2L}L2 

or 

M = A:VLjL2, (6.60) ^ Relating self-inductances and mutual 
inductance using coupling coefficient 

where the constant k is called the coefficient of coupling. According to 
Eq. 6.59, l/k2 must be greater than 1, which means that k must be less than 1. 
In fact, the coefficient of coupling must lie between 0 and 1, or 

0 < k < 1. (6.61) 

The coefficient of coupling is 0 when the two coils have no common 
flux; that is, when <£12 = ¢21 = 0. This condition implies that 8P12 = 0, and 
Eq. 6.59 indicates that l/k2 = 001 or k — 0. If there is no flux linkage 
between the coils, obviously M is 0. 

The coefficient of coupling is equal to 1 when c/>n and <f>22 are O.This 
condition implies that all the flux that links coil 1 also links coil 2. In terms 
of Eq. 6.59, SPJI = ^ 2 2 = 0, which obviously represents an ideal state; in 
reality, winding two coils so that they share precisely the same flux is phys
ically impossible. Magnetic materials (such as alloys of iron, cobalt, and 
nickel) create a space with high permeance and are used to establish coef
ficients of coupling that approach unity. (We say more about this impor
tant quality of magnetic materials in Chapter 9.) 

NOTE: Assess your understanding of this material by trying Chapter 
Problems 6.48 and 6.49. 

Energy Calculations 

We conclude our first look at mutual inductance with a discussion of the 
total energy stored in magnetically coupled coils. In doing so, we will 
confirm two observations made earlier: For linear magnetic coupling, 
(1) Mn = M2l = M, and (2) M = kVL^L2, where 0 < k < 1. 



We use the circuit shown in Fig. 6.30 to derive the expression for the 
total energy stored in the magnetic fields associated with a pair of linearly 
coupled coils. We begin by assuming that the currents i{ and /2 are zero 
and that this zero-current state corresponds to zero energy stored in the 
coils. Then we let /} increase from zero to some arbitrary value I{ and com
pute the energy stored when il = / } . Because i2 = 0, the total power 
input into the pair of coils is v ^ , and the energy stored is 

rW\ eh 

j dw = Lx \ 
Jo ./0 

i]di[. 

Wt = -L.ll (6.62) 

Now we hold /] constant at I{ and increase i2 from zero to some arbitrary 
value /2. During this time interval, the voltage induced in coil 2 by ij is 
zero because Ix is constant. The voltage induced in coil 1 by /2 is M]2di2/dt. 
Therefore, the power input to the pair of coils is 

d'h 
p = I\MU— + i2v2. 

The total energy stored in the pair of coils when i2 = f2 is 

,.\v /./, pf2 

/ dw = / IiM]2di2 + / L2i2di2, 
Jw, Jo Jo 

or 

W = W1 + IXI2M{2 + -L2lh 

= -L,7? + -L2ll + IxI2Mn. (6.63) 

If we reverse the procedure—that is, if we first increase i2 from zero to / 2 

and then increase i{ from zero to 1{ — the total energy stored is 

W = \hxJ\ + \ L 2 1 \ + /,/2A#2i. (6.64) 

Equations 6.63 and 6.64 express the total energy stored in a pair of lin
early coupled coils as a function of the coil currents, the self-inductances, 
and the mutual inductance. Note that the only difference between these 
equations is the coefficient of the current product l\l2. We use Eq. 6.63 if 
/t is established first and Eq. 6.64 if /2 is established first. 

When the coupling medium is linear, the total energy stored is the 
same regardless of the order used to establish /] and /2 . The reason is that 
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in a linear coupling, the resultant magnetic flux depends only on the final 
values of/j and /2, not on how the currents reached their final values. If the 
resultant flux is the same, the stored energy is the same. Therefore, for lin
ear coupling, M\i = M2\. Also, because 1\ and J2 are arbitrary values of /j 
and *"2, respectively, we represent the coil currents by their instantaneous 
values /*! and /2. Thus, at any instant of time, the total energy stored in the 
coupled coils is 

1 , 1 , 
w{t) = -Lxi\ + -L2t2 + Miy2. (6.65) 

We derived Eq. 6.65 by assuming that both coil currents entered 
polarity-marked terminals. We leave it to you to verify that, if one current 
enters a polarity-marked terminal while the other leaves such a terminal, 
the algebraic sign of the term Mi{i2 reverses. Thus, in general, 

1 , 1 , 
w(t) = —L\i\ + ~L2i2 ± Mi{i2. (6.66) A Energy stored in magnetically-coupled 

coils 

We use Eq. 6.66 to show that M cannot exceed VL]L2. The magneti
cally coupled coils are passive elements, so the total energy stored can 
never be negative. If w(t) can never be negative, Eq. 6.66 indicates that the 
quantity 

1 , 1 , 
-L{q + -L2ii - Mi}i2 

must be greater than or equal to zero when /j and i2 are either both posi
tive or both negative. The limiting value of M corresponds to setting the 
quantity equal to zero: 

1 , 1 , 
-Liq + ^ 2 ' 2 - Milk = 0. (6.67) 

To find the limiting value of M we add and subtract the term 
/1/2VL1L2 to the left-hand side of Eq. 6.67. Doing so generates a term that 
is a perfect square: 

+ /V2 VLJ72 - M = 0. (6.68) 

The squared term in Eq. 6.68 can never be negative, but it can be zero. 
Therefore w{t) 2t 0 only if 

VL{L2 > M, (6.69) 

which is another way of saying that 

M = kVLxL2 ( O ^ H 1). 

We derived Eq. 6.69 by assuming that i\ and i2 are either both positive or 
both negative. However, we get the same result if i\ and i2 are of opposite 
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sign, because in this case we obtain the limiting value of M by selecting the 
plus sign in Eq. 6.66. 

NOTE: Assess your understanding of this material by trying Chapter 
Problems 6.44 and 6.45. 

Practical Perspective 
Proximity Switches 

At the beginning of this chapter we introduced the capacitive proximity 
switch. There are two forms of this switch. The one used in table lamps 
is based on a single-electrode switch. I t is left to your investigation in 
Problem 6.52. In the example here, we consider the two-electrode switch 
used in elevator call buttons. 

EXAMPLE 

The elevator call button is a small cup into which the finger is inserted, 
as shown in Fig. 6.31. The cup is made of a metal ring electrode and a 
circular plate electrode that are insulated from each other. Sometimes 
two concentric rings embedded in insulating plastic are used instead. The 
electrodes are covered with an insulating Layer to prevent direct contact 
with the metal. The resulting device can be modeled as a capacitor, as 
shown in Fig. 6.32. 

(a) (b) 

Figure 6.31 • An elevator call button, (a) Front view, (b) Side view. 
Figure 6.32 • A capacitor model of the two-electrode 
proximity switch used in elevator call buttons. 

c2 Q 

Figure 6.33 A A circuit model of a capacitive 
proximity switch activated by finger touch. 

Unlike most capacitors, the capacitive proximity switch permits you to 
insert an object, such as a finger, between the electrodes. Because your fin
ger is much more conductive than the insulating covering surrounding the 
eLectrodes, the circuit responds as though another electrode, connected to 
ground, has been added. The result is a three-terminal circuit containing 
three capacitors, as shown in Fig. 6.33. 

The actual values of the capacitors in Figs. 6.32 and 6.33 are in the 
range of 10 to 50 pF, depending on the exact geometry of the switch, how 



Practical Perspective 

the finger is inserted, whether the person is wearing gloves, and so forth. 
For the following problems, assume that all capacitors have the same value 
of 25 pF. Also assume the elevator call button is placed in the capacitive 
equivalent of a voltage-divider circuit, as shown in Fig. 6.34. 

a) Calculate the output voltage with no finger present. 

b) Calculate the output voltage when a finger touches the button. 

Solution 

a) Begin by redrawing the circuit in Fig. 6.34 with the call button replaced 
by its capacitive model from Fig. 6.32. The resulting circuit is shown in 
Fig. 6.35. Write the current equation at the single node: 

_ d(v - vs) _ dv 
Ci . ' + C 2 — = 0. 

dt dt 
(6.70) 

*M(Z) 

Button ( A ) 

Fixed 
capacitor' ;25pF v(t) 

Figure 6.34 • An elevator call button circuit. 

Vs(t)(l) 

Button ] 

Fixed 
capacitor 

:c, 

+ 
• C2 v(t) 

r -
Figure 6.35 A A model of the elevator call button 

Rearrange this equation to produce a differential equation for the output QTm\i W1-th no finger present, 
voltage v(t): 

dv 

dt 

Cj dvs 

C, + C7 dt' 
(6.71) 

Finally, integrate Eq. 6.71 to find the output voltage: 

v(t) 
Ci 

c, +c 
-vs(t) + v(0). (6.72) 

The result in Eq. 6.72 shows that the series capacitor circuit in Fig. 6.35 
forms a voltage divider just as the series resistor circuit did in Chapter 3. 
In both voltage-divider circuits, the output voltage does not depend on 
the component values but only on their ratio. Here, C{ = C2 = 25 pF, 
so the capacitor ratio is Ci/C2 = 1. Thus the output voltage is 

v(t) = 0.5^(0 + v(0). (6.73) 

The constant term in Eq. 6.73 is due to the initial charge on the capacitor. 
We can assume that v(0) - 0 V, because the circuit that senses the out
put voltage eliminates the effect of the initial capacitor charge. Therefore, 
the sensed output voltage is 

v(t) = OMt). (6.74) 
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b) Now we replace the call button of Fig. 6.34 with the model of the acti
vated switch in Fig. 6.33. The result is shown in Fig. 6.36. Again, we cal
culate the currents leaving the output node: 

_ d(v - vs) dv „ dv 
Q - ^ - — - + C 2 — + C 3 — = 0. 

dt dt • dt 

Rearranging to write a differential equation for v(t) results in 

dv _ C\ dvs 

~dt ~ Q + C2 + C3 dt ' 

Finally, solving the differential equation in Eq. 6.76, we see 

(6.75) 

(6.76) 

v(t) 
C, 

vs(t) + v(0). 
Cx + C2 + C3 

If Q = C2 = C3 = 25 pF, 

v(t) = 0333vs(t) + v(0). 

(6.77) 

(6.78) 

As before, the sensing circuit eliminates v(Q), so the sensed output 
voltage is 

v(t) = 0.333^,(0- (6.79) 

Comparing Eqs. 6.74 and 6.79, we see that when the button is pushed, 
the output is one third of the input voltage. When the button is not 
pushed, the output voltage is one half of the input voltage. Any drop in 
output voltage is detected by the elevator's control computer and ulti
mately results in the elevator arriving at the appropriate floor. 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 
Problems 6.51 and 6.53. 

Button 

Fixed 
capacitor 

Figure 6.36 A A model of the elevator call button circuit when 
activated by finger touch. 
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Inductance is a linear circuit parameter that relates the 
voltage induced by a time-varying magnetic field to the 
current producing the field. (See page 176.) 

Capacitance is a linear circuit parameter that relates the 
current induced by a time-varying electric field to the 
voltage producing the field. (See page 182.) 

Inductors and capacitors are passive elements; they can 
store and release energy, but they cannot generate or 
dissipate energy. (See page 176.) 

The instantaneous power at the terminals of an inductor 
or capacitor can be positive or negative, depending on 
whether energy is being delivered to or extracted from 
the element. 

An inductor: 

• does not permit an instantaneous change in its termi
nal current 

• does permit an instantaneous change in its teminal 
voltage 

• behaves as a short circuit in the presence of a constant 
terminal current (See page 188.) 

A capacitor: 

• does not permit an instantaneous change in its termi
nal voltage 

• does permit an instantaneous change in its terminal 
current 

• behaves as an open circuit in the presence of a con
stant terminal voltage (See page 183.) 

Equations for voltage, current, power, and energy in 
ideal inductors and capacitors are given in Table 6.1. 

Inductors in series or in parallel can be replaced by an 
equivalent inductor. Capacitors in series or in parallel 
can be replaced by an equivalent capacitor. The equa
tions are summarized in Table 6.2. See Section 6.3 for a 
discussion on how to handle the initial conditions for 
series and parallel equivalent circuits involving induc
tors and capacitors. 

TABLE 6.1 Terminal Equations for Ideal Inductors 
and Capacitors 

Inductors 

i) = J -0 udt 

i = if v dr + 
J fa 

p = vi = Li% 

w = I Li2 

Capacitors 

v = £ 1 idr + 
Jfa 

1 *- dt 

p = vi = Cv'j§ 

w = \Cv2 

Kh) 

v(U)) 

(V) 

(A) 

(W) 

(J) 

(V) 

(A) 

(W) 

(J) 

TABLE 6.2 Equations for Series- and Parallel-Connected 
Inductors and Capacitors 

Series-Connected 

^ecj = L\ + Li + • • • + Ln 

J - =-L + _L 
c„ 

Parallel-Connected 

J_ = i_ + X + ... 

+ G, 

Mutual inductance, M, is the circuit parameter relating 
the voltage induced in one circuit to a time-varying cur
rent in another circuit. Specifically, 

dU di2 

Vl = L l - + Ml2-

di] dU 
»2 = M 2 , - + L 2 - , 



204 Inductance, Capacitance, and Mutual Inductance 

where V\ and i{ are the voltage and current in circuit 1, 
and v2 and i2 are the voltage and current in circuit 2. For 
coils wound on nonmagnetic cores, M12 = M2\ = M 
(See page 190.) 

The dot convention establishes the polarity of mutually 
induced voltages: 

When the reference direction for a current enters 
the dotted terminal of a coil, the reference polar
ity of the voltage that it induces in the other coil 
is positive at its dotted terminal. 

Or, alternatively, 

When the reference direction for a current leaves 
the dotted terminal of a coil, the reference polar
ity of the voltage that it induces in the other coil 
is negative at its dotted terminal. 

(See page 190.) 

The relationship between the self-inductance of each 
winding and the mutual inductance between windings is 

M = kVLJ72. 

The coefficient of coupling, k, is a measure of the degree 
of magnetic coupling. By definition, 0 < k < 1. (See 
page 197.) 

The energy stored in magnetically coupled coils in a lin
ear medium is related to the coil currents and induc
tances by the relationship 

1 , 1 9 
w = -Lxi\ + -L2ij ± Mi{i2. 

(See page 199.) 

Problems 

Section 6.1 

6.1 The current in the 2.5 mH inductor in Fig. P6.1 is 
known to be 1 A for t < 0. The inductor voltage for 
t ^ 0 is given by the expression 

vL(t) = 3e~4' mV, 0+ < t < 2 s 

vL{t) = -3e" 4 ( / _ 2 ) mV, 2 s < t < oo 

Sketch vL{t) and iL{t) for 0 < t < oo. 

Figure P6.1 

'7.(0 

«/.(01 |2.5mH 

PSPICE 

MULTISIM 

6.2 The current in a 50 /xH inductor is known to be 

iL = 18te~10tA for t > 0. 

a) Find the voltage across the inductor for t > 0. 
(Assume the passive sign convention.) 

b) Find the power (in microwatts) at the terminals 
of the inductor when t = 200 ms. 

c) Is the inductor absorbing or delivering power at 
200 ms? 

d) Find the energy (in microjoules) stored in the 
inductor at 200 ms. 

e) Find the maximum energy (in microjoules) 
stored in the inductor and the time (in milli
seconds) when it occurs. 

6.3 The voltage at the terminals of the 200 /xH inductor 
PSPICE in pig. P6.3(a) is shown in Fig. P6.3(b). The inductor 

1M current i is known to be zero for t < 0. 

a) Derive the expressions for i for f > 0. 

b) Sketch i versus t for 0 < t < oo. 

Figure P6.3 
vs (mV) 

200 /xH-

t (ms) 
(a) (b) 

6.4 The triangular current pulse shown in Fig. P6.4 is 
™±l. applied to a 20 mH inductor. 

MULTISIM 

a) Write the expressions that describe /(f) in 
the four intervals t < 0, 0 ^ / ^ 5 ms, 
5 ms ^ t ^ 10 ms, and t > 10 ms. 

b) Derive the expressions for the inductor volt
age, power, and energy. Use the passive sign 
convention. 

Figure P6.4 

/(mA) 

250 

t (ms) 
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6.5 The current in and the voltage across a 5 H inductor 
are known to be zero for t < 0. The voltage across 
the inductor is given by the graph in Fig. P6.5 
for t > 0. 

a) Derive the expression for the current as a 
function of time in the intervals 0 < t < 1 s, 
I s < t < 3 s, 3 s < t < 5 s, 5 s < t < 6 s, and 
6 s < t < oo. 

b) For t > 0, what is the current in the inductor 
when the voltage is zero? 

c) Sketch i versus t for 0 < t < oo. 

Figure P6.5 
v (V) 

100 - / v 

6.9 a) Find the inductor current in the circuit in 
PSP.CE Fig. P6.9 if v = - 50 sin 250 t V, L = 20 mH, 

MULTISIM and/(0) = 10 A. 

b) Sketch v, i, ps and w versus t. In making these 
sketches, use the format used in Fig. 6.8. Plot over 
one complete cycle of the voltage waveform. 

c) Describe the subintervals in the time interval 
between 0 and Sn ms when power is being 
absorbed by the inductor. Repeat for the 
subintervals when power is being delivered by 
the inductor. 

Figure P6.9 

6.10 The current in a 4 H inductor is 

i = 10 A, t < 0; 

i = {B\ cos At + B2 sin 4t)e~tf2 A, t > 0. 

The voltage across the inductor (passive sign con
vention) is 60 V at t = 0. Calculate the power at the 
terminals of the inductor at t = 1 s. State whether 
the inductor is absorbing or delivering power. 

6.11 Evaluate the integral 

for Example 6.2. Comment on the significance of 
the result. 

6.12 The expressions for voltage, power, and energy 
derived in Example 6.5 involved both integration 
and manipulation of algebraic expressions. As an 
engineer, you cannot accept such results on faith 
alone. That is, you should develop the habit of ask
ing yourself, "Do these results make sense in terms 
of the known behavior of the circuit they purport to 
describe?" With these thoughts in mind, test the 
expressions of Example 6.5 by performing the fol
lowing checks: 

a) Check the expressions to see whether the volt
age is continuous in passing from one time inter
val to the next. 

b) Check the power expression in each interval 
by selecting a time within the interval and see
ing whether it gives the same result as the cor
responding product of v and i. For example, 
test at 10 and 30 (JLS. 

c) Check the energy expression within each interval 
by selecting a time within the interval and seeing 
whether the energy equation gives the same 
result as \Cv2. Use 10 and 30 /xs as test points. 

6.13 Initially there was no energy stored in the 5 H 
inductor in the circuit in Fig. P6.13 when it was 
placed across the terminals of the voltmeter. At 

6.6 The current in a 20 mH inductor is known to be 

i = 40 mA, t < 0; 

i = A,e~mm[ + yW-4()(X,0'A, 0. 

The voltage across the inductor (passive sign con
vention) is 28 V at t = 0. 

a) Find the expression for the voltage across the 
inductor for t > 0. 

b) Find the time, greater than zero, when the power 
at the terminals of the inductor is zero. 

6.7 Assume in Problem 6.6 that the value of the voltage 
across the inductor at t = 0 is - 6 8 V instead of 28 V. 

a) Find the numerical expressions for i and v for 
t > 0 . 

b) Specify the time intervals when the inductor is 
storing energy and the time intervals when the 
inductor is delivering energy. 

c) Show that the total energy extracted from the 
inductor is equal to the total energy stored. 

6.8 The current in a 25 mH inductor is known to be 
PSPICE - i o A for / < 0 and - (10 cos 400r - 5 sin 400/)<T2,)()' A 

for t Sr 0. Assume the passive sign convention. 

a) At what instant of time is the voltage across the 
inductor maximum? 

b) What is the maximum voltage? 

http://psp.ce
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t = 0 the inductor was switched instantaneously to 
position b where it remained for 1.6 s before returning 
instantaneously to position a. The d'Arsonval volt
meter has a full-scale reading of 20 V and a sensitivity 
of 1000 ft/V. What will the reading of the voltmeter 
be at the instant the switch returns to position a if the 
inertia of the d'Arsonval movement is negligible? 

Figure P6.13 

3mV +) Vol tmeter 

PSPICE 

HULTISIH 

Section 6.2 

6.14 The current shown in Fig. P6.14 is applied to a 
0.25 /xF capacitor. The initial voltage on the capaci
tor is zero. 

a) Find the charge on the capacitor at t = 15 /xs. 

b) Find the voltage on the capacitor at t = 30 /xs. 

c) How much energy is stored in the capacitor by 
this current? 

Figure P6.14 
i (mA) 

t (fis) 

6.15 The initial voltage on the 0.5 /xF capacitor shown in 
PSPICE Fig. P6.15(a) is - 2 0 V. The capacitor current has 

m n s m the waveform shown in Fig. P6.15(b). 

a) How much energy, in microjoules, is stored in 
the capacitor at t = 500 /xs? 

b) Repeat (a) for t = oo. 

6.16 The rectangular-shaped current pulse shown in 
PSPICE pig. P6.16 is applied to a 0.1 fxF capacitor. The ini-

' tial voltage on the capacitor is a 15 V drop in the 
reference direction of the current. Derive the 
expression for the capacitor voltage for the time 
intervals in (a)-(d). 

a) 0 < t < 10 /xs; 

b) 10/AS < t =5 20/xs; 

c) 20 /xs < t < 40 /xs 

d) 40 /xs < t < oo 

c) Sketch v{t) over the interval - 1 0 /xs ^ t ^ 50 ju.s. 

Figure P6.16 
i (mA) 

160 

PSPICE 

MULTISIM 

100 

0 

50 

10 20 30 40 
t(fJLS) 

6.17 A 20 fxF capacitor is subjected to a voltage pulse 
having a duration of 1 s. The pulse is described by 
the following equations: 

30t2 V, 

< 3 0 ( f - 1)2V, 

0 

0 < t < 0.5 s; 

0.5 s < t < 1 s; 

elsewhere. 

Sketch the current pulse that exists in the capacitor 
during the 1 s interval. 

6.18 The voltage across the terminals of a 0.2 /xF capaci
tor is 

v = 
150 V, t < 0; 

(Ate**** + A*TsaiDt)V, t>0. 

Figure P6.15 

0.5 /xF 

-20 V 
v 

(a) 

i (n 

50 

25 

0 

lA) 

I 
100 

50e-20()()'mA,/>0 

1 1 1 l 
200 300 400 500 

f(jiS) 

(b) 
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6.19 
PSPICE 

MULTISIM 

V = 

The initial current in the capacitor is 250 mA. 
Assume the passive sign convention. 

a) What is the initial energy stored in the capacitor? 

b) Evaluate the coefficients A{ and A2. 

c) What is the expression for the capacitor current? 

The voltage at the terminals of the capacitor in 
Fig. 6.10 is known to be 

-20 V, / < 0; 

100 - 40^200()'(3 cos 1000? + sin 1000/) V t > 0. 

Assume C = 4 /xF. 

a) Find the current in the capacitor for t < 0. 

b) Find the current in the capacitor for t > 0. 

c) Is there an instantaneous change in the voltage 
across the capacitor at t = 0? 

d) Is there an instantaneous change in the current 
in the capacitor at t = 0? 

e) How much energy (in millijoules) is stored in 
the capacitor at t = oo? 

Section 6.3 

6.20 Assume that the initial energy stored in the induc-
PSPICE tors of Fig. P6.20 is zero. Find the equivalent induc

tance with respect to the terminals a,b. 

Figure P6.20 

30FH20H 

10 H 8H 

6.21 Assume that the initial energy stored in the induc
tors of Fig. P6.21 is zero. Find the equivalent induc
tance with respect to the terminals a,b. 

Figure P6.21 

3H 

8H 

6.22 Use realistic inductor values from Appendix H to con
struct series and parallel combinations of inductors to 
yield the equivalent inductances specified below. Try 
to minimize the number of inductors used. Assume 
that no initial energy is stored in any of the inductors. 

a) 3mH 

b) 250/xH 

c) 6QfxH 

6.23 The three inductors in the circuit in Fig. P6.23 are con-
PSPICE nected across the terminals of a black box at t = 0. 

The resulting voltage for t > 0 is known to be 

va = 2000e"100' V. 

If /,(0) = - 6 A a n d / 2 ( 0 ) = 1 A, find 

a) U0); 
b) U0, t > 0; 
c) ii(f)»* s 0; 

d) /2(/), t > 0: 

e) the initial energy stored in the three inductors; 

f) the total energy delivered to the black box; and 

g) the energy trapped in the ideal inductors. 

Figure P6.23 

6.24 For the circuit shown in Fig. P6.23, how many milli
seconds after the switch is opened is the energy 
delivered to the black box 80% of the total energy 
delivered? 

6.25 The two parallel inductors in Fig. P6.25 are con
nected across the terminals of a black box at t = 0. 
The resulting voltage v for t > 0 is known to be 
64e-4 ' V. It is also known that /,(0) = - 1 0 A and 
/2(0) = 5 A. 

a) Replace the original inductors with an equiva
lent inductor and find /(f) for f > 0. 

b) Find *',(*) for t > 0. 

c) Find i2(t) for t > 0. 

d) How much energy is delivered to the black box 
in the time interval 0 < f < oo? 

e) How much energy was initially stored in the par
allel inductors? 

f) How much energy is trapped in the ideal inductors? 

g) Show that your solutions for /, and /2 agree with 
the answer obtained in (f). 

Figure P6.25 
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6.26 Find the equivalent capacitance with respect to the 
terminals a,b for the circuit shown in Fig. P6.26. 

30 V + - OV + 

6.27 Find the equivalent capacitance with respect to the 
terminals a,b for the circuit shown in Fig. P6.27. 

Figure P6.27 

5 V 

6.28 Use realistic capacitor values from Appendix H to 
construct series and parallel combinations of capac
itors to yield the equivalent capacitances specified 
below. Try to minimize the number of capacitors 
used. Assume that no initial energy is stored in any 
of the capacitors. 

a) 330/AF 

b) 750 nF 

c) 150 pF 

6.29 The four capacitors in the circuit in Fig. P6.29 are con
nected across the terminals of a black box at t — 0. 
The resulting current ib for t > 0 is known to be 

•-50' m A . h -5e 

If vu(0) = - 2 0 V, vc(0) = - 30 V, and 
v(,(0) = 250 V, find the following for / ^ 0: (a) vh(t), 
(b) vM (<0 »<#). (d) *X0. (e) h(t\ and (f) i2(t). 

Figure P6.29 

200 nF: 

6.30 For the circuit in Fig. P6.29, calculate 

a) the initial energy stored in the capacitors; 

b) the final energy stored in the capacitors; 

c) the total energy delivered to the black box; 

d) the percentage of the initial energy stored that is 
delivered to the black box; and 

e) the time, in milliseconds, it takes to deliver 
7.5 mJ to the black box. 

6.31 The two series-connected capacitors in Fig. P6.31 
are connected to the terminals of a black box at 
t = 0. The resulting current i(t) for t > 0 is known 
to be 800<T25' (xA. 

a) Replace the original capacitors with an equiva
lent capacitor and find va(t) for t > 0. 

b) Find »!(0 for/ > 0. 

c) Find v2(t) for / > 0. 

d) How much energy is delivered to the black box 
in the time interval 0 < t < oo? 

e) How much energy was initially stored in the 
series capacitors? 

f) How much energy is trapped in the ideal capacitors? 

g) Show that the solutions for V\ and v2 agree with 
the answer obtained in (f). 

Figure P6.31 

5 V -

+ 

+ 

25 V ^ 

-

—»-

^2fxF »i 

+ 

^ 8 / x F v2 

+ 

> 
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/ = 0 -

*\, 

1 

Black 
box 

1.25/tF 

6.32 Derive the equivalent circuit for a series connection 
of ideal capacitors. Assume that each capacitor has 
its own initial voltage. Denote these initial voltages 
as V\(t[)), ^2(/0)1 and so on. (Hint: Sum the voltages 
across the string of capacitors, recognizing that the 
series connection forces the current in each capaci
tor to be the same.) 

6.33 Derive the equivalent circuit for a parallel connec
tion of ideal capacitors. Assume that the initial volt
age across the paralleled capacitors is v(t{)). (Hint: 
Sum the currents into the string of capacitors, rec
ognizing that the parallel connection forces the 
voltage across each capacitor to be the same.) 

Sections 6.1-6.3 

6.34 The current in the circuit in Fig. P6.34 is known to be 

io = 5<r2()0,)f(2 cos 4000/ + sin 4000/) A 

for t > 0+. Find z;t(0
+) and v2(0

+). 
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Figure P6.34 
40 ft 

v2 < 10 mH 

6.35 At t = 0, a series-connected capacitor and induc
tor are placed across the terminals of a black box, 
as shown in Fig. P6.35. For t > 0, it is known that 

L=1.5 e - ] 6 ' 0 0 0 ' -0 .5e- 4 0 0 0 'A . 

If vc(0) = - 5 0 V find v() for t 

Figure P6.35 

0. 

+ 

25 mH 

~625nF 

Section 6.4 

X 
/ - 0 

>,> 

+ 
Black 
box 

6.36 a) Show that the differential equations derived in 
(a) of Example 6.6 can be rearranged as follows: 

4-^- + 25/T - 8 - - 20/2 = 5ig - 8 - ^ ; 
dt dt dt 

dL dii dig 
- 8 — - - 20/, + 16—^ + 80/2 = 1 6 - r -

dt dt dt 

b) Show that the solutions for ih and i2 given in 
(b) of Example 6.6 satisfy the differential 
equations given in part (a) of this problem. 

6.37 Let va represent the voltage across the 16 H 
inductor in the circuit in Fig. 6.25. Assume v0 is 
positive at the dot. As in Example 6.6, 
ig = 1 6 - 16e_5 'A. 

a) Can you find v„ without having to differenti
ate the expressions for the currents? Explain. 

b) Derive the expression for v0. 

c) Check your answer in (b) using the appropri
ate current derivatives and inductances. 

6.38 Let vR represent the voltage across the current 
source in the circuit in Fig. 6.25. The reference for 
vg is positive at the upper terminal of the current 
source. 

a) Find vg as a function of time when 
iK = 16 - 16<T5' A. 

b) What is the initial value of vj 

c) Find the expression for the power developed by 
the current source. 

d) How much power is the current source develop
ing when t is infinite? 

e) Calculate the power dissipated in each resistor 
when t is infinite. 

6.39 There is no energy stored in the circuit in Fig. P6.39 
at the time the switch is opened. 

a) Derive the differential equation that governs 
the behavior of /2 if Lj = 4 H, L2 = 16 H, 
M = 2 H, and R0 = 32 H. 

b) Show that when ig = 8 - 8e"'A, t > 0, the dif
ferential equation derived in (a) is satisfied 
when i2 = e~l - e~2t A, t > 0. 

c) Find the expression for the voltage V\ across the 
current source. 

d) What is the initial value of v{t Does this make 
sense in terms of known circuit behavior? 

Figure P6.39 

6.40 a) Show that the two coupled coils in Fig. P6.40 can 
be replaced by a single coil having an inductance 
of Lab = L\ + L2 + 2M, (Hint: Express va^ as a 
function of /ab.) 

b) Show that if the connections to the terminals 
of the coil labeled L2 are reversed, 
Lab = Lx + L2 - 2M. 

Figure P6.40 

6.41 a) Show that the two magnetically coupled coils in 
Fig. P6.41 (see page 210) can be replaced by a 
single coil having an inductance of 

^ab -
LXL2 Ml 

L{ + U 2M 

(Hint: Let i\ and i2 be clockwise mesh currents in 
the left and right "windows" of Fig. P6.41, respec
tively. Sum the voltages around the two meshes. 
In mesh 1 let vah be the unspecified applied volt
age. Solve for dijdt as a function of vab.) 

b) Show that if the magnetic polarity of coil 2 is 
reversed, then 

•^ab — 

L{L2 - M2 

Lx + L2 + 2M' 
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Figure P6.41 
a« 

M 

6.42 The polarity markings on two coils are to be deter
mined experimentally. The experimental setup is 
shown in Fig. P6.42. Assume that the terminal con
nected to the negative terminal of the battery has 
been given a polarity mark as shown. When the 
switch is opened, the dc voltmeter kicks upscale. 
Where should the polarity mark be placed on the 
coil connected to the voltmeter? 

Figure P6.42 

/ = 0 

r - ^ > \ 

VBK-
voltmeter 

6.43 The physical construction of four pairs of magneti
cally coupled coils is shown in Fig. P6.43. (See 
page 211.) Assume that the magnetic flux is confined 
to the core material in each structure. Show two possi
ble locations for the dot markings on each pair of coils. 

Section 6.5 

6.44 The self-inductances of the coils in Fig. 6.30 are 
L\ = 18 mH and L2 = 32 mH. If the coefficient of 
coupling is 0.85, calculate the energy stored in the 
system in millijoules when (a) ix = 6 A, i2 = 9 A; 
(b) i{ = - 6 A, i2 = -9 A; (c) i} = - 6 A, i2 = 9 A; 
and (d) 2, = 6 A, i2 = - 9 A . 

6.45 The coefficient of coupling in Problem 6.44 is 
increased to 1.0. 

a) If /j equals 6 A, what value of i2 results in zero 
stored energy? 

b) Is there any physically realizable value of i2 that 
can make the stored energy negative? 

6.46 Two magnetically coupled coils have self-inductances 
of 60 mH and 9.6 mH, respectively.The mutual induc
tance between the coils is 22.8 mH. 

a) What is the coefficient of coupling? 

b) For these two coils, what is the largest value that 
M can have? 

c) Assume that the physical structure of these cou
pled coils is such that 2?*j = 9>2- What is the turns 
ratio N\/N2 if N\ is the number of turns on the 
60 mH coil? 

6.47 The self-inductances of two magnetically coupled 
coils are 72 mH and 40.5 mH, respectively. The 72 mH 
coil has 250 turns, and the coefficient of coupling 

between the coils is %.The coupling medium is non
magnetic. When coil 1 is excited with coil 
2 open, the flux linking only coil 1 is 0.2 as large as the 
flux linking coil 2. 

a) How many turns does coil 2 have? 

b) What is the value of <&2 in nanowebers per 
ampere? 

c) What is the value of S n̂ in nanowebers per 
ampere? 

d) What is the ratio (^22/^12)? 

6.48 Two magnetically coupled coils are wound on a 
nonmagnetic core. The self-inductance of coil 1 is 
288 mH, the mutual inductance is 90 mH, the coeffi
cient of coupling is 0.75, and the physical structure 
of the coils is such that SPn = 9^2-

a) Find L2 and the turns ratio Ni/N2. 

b) If N{ = 1200, what is the value of S^ and 2P2? 

6.49 The self-inductances of two magnetically coupled coils 
are L{ = 180/xH and L2 = 500 /xH. The coupling 
medium is nonmagnetic. If coil 1 has 300 turns and 
coil 2 has 500 turns, find <?fin and 5P2i (in nanowebers 
per ampere) when the coefficient of coupling is 0.6. 

6.50 a) Starting with Eq. 6.59, show that the coefficient 
of coupling can also be expressed as 

¢1 

¢12 

02 

b) On the basis of the fractions 4>2\f4>\ and <f>\2/(f>2, 
explain why k is less than 1.0. 

Sections 6.1-6.5 

6.51 Rework the Practical Perspective example, except 
PERSSE

 t n a t this time, put the button on the bottom of the 
divider circuit, as shown in Fig. P6.51. Calculate the 
output voltage v(t) when a finger is present. 

Figure P6.51 

>M&) 

Fixed 
capacitor' 25 pF 

Button 

+ 

( A ) » ( 0 

6.52 Some lamps are made to turn on or off when the 
PERSPECTIVEbase *s touched. These use a one-terminal variation 

of the capacitive switch circuit discussed in the 
Practical Perspective. Figure P6.52 shows a circuit 
model of such a lamp. Calculate the change in the 
voltage v(t) when a person touches the lamp. 
Assume all capacitors are initially discharged. 
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Figure P6.43 

Figure P6.52 Figure P6.53 

10 pF Lamp Person 10 pF 

«*>© 
10 pF! 

t • 
+ 

tt 
loo pF; 

6.53 In the Practical Perspective example, we calculated 
PRACTICAL the output voltage when the elevator button is the 

PERSPECTIVE r ° 

upper capacitor in a voltage divider. In 
Problem 6.51, we calculated the voltage when the 
button is the bottom capacitor in the divider, and we 
got the same result! You may wonder if this will be 
true for all such voltage dividers. Calculate the volt
age difference (finger versus no finger) for the cir
cuits in Figs. P6.53 (a) and (b), which use two 
identical voltage sources. 

— ' Fixed 

Button 

25 pF 

capacitor 

25 pF + 
"•* v{t) No finger 

(a) 

25 pF 25 pF 

Button 

25 pF F i x c d 

-" capacitor 

25 pF + 
"* v(t) Finger 

(b) 
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1 Be able to determine the natural response of 
both RL and RC circuits. 

2 Be able to determine the step response of both 
RL and RC circuits. 

3 Know how to analyze circuits with sequential 
switching. 

4 Be able to analyze op amp circuits containing 
resistors and a single capacitor. 
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Response of First-Order 
RL and RC Circuits 
In Chapter 6, we noted that an important attribute of inductors 
and capacitors is their ability to store energy. We are now in a 
position to determine the currents and voltages that arise when 
energy is either released or acquired by an inductor or capacitor 
in response to an abrupt change in a dc voltage or current source. 
In this chapter, we will focus on circuits that consist only of 
sources, resistors, and either (but not both) inductors or capaci
tors. For brevity, such configurations are called RL (resistor-
inductor) and RC (resistor-capacitor) circuits. 

Our analysis of RL and RC circuits will be divided into three 
phases. In the first phase, we consider the currents and voltages 
that arise when stored energy in an inductor or capacitor is sud
denly released to a resistive network. This happens when the 
inductor or capacitor is abruptly disconnected from its dc source. 
Thus we can reduce the circuit to one of the two equivalent forms 
shown in Fig. 7.1 on page 214. The currents and voltages that arise 
in this configuration are referred to as the natural response of the 
circuit, to emphasize that the nature of the circuit itself, not exter
nal sources of excitation, determines its behavior. 

In the second phase of our analysis, we consider the currents 
and voltages that arise when energy is being acquired by an induc
tor or capacitor due to the sudden application of a dc voltage or 
current source. This response is referred to as the step response. 
The process for finding both the natural and step responses is the 
same; thus, in the third phase of our analysis, we develop a general 
method that can be used to find the response of RL and RC cir
cuits to any abrupt change in a dc voltage or current source. 

Figure 7.2 on page 214 shows the four possibilities for the gen
eral configuration of RL and RC circuits. Note that when there 
are no independent sources in the circuit, the Thevenin voltage or 
Norton current is zero, and the circuit reduces to one of those 
shown in Fig. 7.1; that is, we have a natural-response problem. 

RL and RC circuits are also known as first-order circuits, 
because their voltages and currents are described by first-order 
differential equations. No matter how complex a circuit may 



Practical Perspective 
A Flashing Light Circuit 
You can probably think of many different applications that 
require a flashing light. A still camera used to take pictures in 
low light conditions employs a bright flash of light to illumi
nate the scene for just long enough to record the image on 
film. Generally, the camera cannot take another picture until 
the circuit that creates the flash of light has "re-charged." 

Other applications use flashing lights as warning for haz
ards, such as tall antenna towers, construction sites, and 
secure areas. In designing circuits to produce a flash of light 
the engineer must know the requirements of the application. 
For example, the design engineer has to know whether the 
flash is controlled manually by operating a switch (as in the 
case of a camera) or if the flash is to repeat itself automati
cally at a predetermined rate. The engineer also has to know if 
the flashing light is a permanent fixture (as on an antenna) or 
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i 
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a temporary installation (as at a construction site). Another 
question that has to be answered is whether a power source is 
readily available. 

Many of the circuits that are used today to control flashing 
lights are based on electronic circuits that are beyond the 
scope of this text. Nevertheless we can get a feel for the 
thought process involved in designing a flashing light circuit 
by analyzing a circuit consisting of a dc voltage source, a resis
tor, a capacitor, and a lamp that is designed to discharge a 
flash of light at a critical voltage. Such a circuit is shown in the 
figure. We shall discuss this circuit at the end of the chapter. 

213 
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R eq C, eq. 

(a) (b) 

Figure 7.1 • The two forms of the circuits for natural 
response, (a) RL circuit, (b) RC circuit. 

R rii L i v 

(b) 

(d) 

Figure 7.2 A Four possible first-order circuits. 
(a) An inductor connected to a Thevem'n equivalent. 
(b) An inductor connected to a Norton equivalent. 
(c) A capacitor connected to a Thevem'n equivalent. 
(d) A capacitor connected to a Norton equivalent. 

^ V 
r = () 

Ro Rkv 

Figure 7.3 • An RL circuit. 

/(0) = I \ L RZv 

appear, if it can be reduced to a Thevenin or Norton equivalent connected 
to the terminals of an equivalent inductor or capacitor, it is a first-order 
circuit. (Note that if multiple inductors or capacitors exist in the original 
circuit, they must be interconnected so that they can be replaced by a sin
gle equivalent element.) 

After introducing the techniques for analyzing the natural and step 
responses of first-order circuits, we discuss some special cases of interest. 
The first is that of sequential switching, involving circuits in which switching 
can take place at two or more instants in time. Next is the unbounded 
response. Finally, we analyze a useful circuit called the integrating amplifier. 

7.1 The Natural Response 
of an RL Circuit 

The natural response of an RL circuit can best be described in terms of the 
circuit shown in Fig. 7.3. We assume that the independent current source 
generates a constant current of Is A, and that the switch has been in a 
closed position for a long time. We define the phrase a long time more 
accurately later in this section. For now it means that all currents and volt
ages have reached a constant value. Thus only constant, or dc, currents can 
exist in the circuit just prior to the switch's being opened, and therefore 
the inductor appears as a short circuit (Ldi/dt = 0) prior to the release of 
the stored energy. 

Because the inductor appears as a short circuit, the voltage across the 
inductive branch is zero, and there can be no current in either R() or R. 
Therefore, all the source current / s appears in the inductive branch. 
Finding the natural response requires finding the voltage and current at 
the terminals of the resistor after the switch has been opened, that is, after 
the source has been disconnected and the inductor begins releasing 
energy. If we let t = 0 denote the instant when the switch is opened, the 
problem becomes one of finding v(t) and i(t) for f > 0 . For t S 0, the cir
cuit shown in Fig. 7.3 reduces to the one shown in Fig. 7.4. 

Deriving the Expression for the Current 

To find i(i), we use Kirchhoff s voltage law to obtain an expression involv
ing i, R, and L. Summing the voltages around the closed loop gives 

r dl 
L— + Ri 

dt 
0, (7.1) 

where we use the passive sign convention. Equation 7.1 is known as a first-
order ordinary differential equation, because it contains terms involving 
the ordinary derivative of the unknown, that is, di/dt. The highest order 
derivative appearing in the equation is 1; hence the term first-order. 

We can go one step further in describing this equation. The coeffi
cients in the equation, R and L, are constants; that is, they are not func
tions of either the dependent variable i or the independent variable f.Thus 
the equation can also be described as an ordinary differential equation 
with constant coefficients. 

To solve Eq. 7.1, we divide by L, transpose the term involving i to the 
right-hand side, and then multiply both sides by a differential time dt. The 
result is 

Figure 7.4 A The circuit shown in Fig. 7.3, for t s 0. 
—dt= —-idt. 
dt L 

(7.2) 
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Next, we recognize the left-hand side of Eq. 7.2 as a differential change in 
the current /, that is, di. We now divide through by i, getting 

di RJ 
— = —rdt. 
i L 

(7.3) 

We obtain an explicit expression for i as a function of f by integrating both 
sides of Eq. 7.3. Using x and y as variables of integration yields 

*(0 dx R 

i(/„) X U< 
(7.4) 

in which /(f0) is the current corresponding to time fg, and /(f) is the current 
corresponding to time f. Here, f() = 0. Therefore, carrying out the indi
cated integration gives 

/(f) 
In /(0) 

R 
= ~1L 

Based on the definition of the natural logarithm, 

/(f) = i(0)e~ls/LK 

(7.5) 

(7.6) 

Recall from Chapter 6 that an instantaneous change of current cannot 
occur in an inductor. Therefore, in the first instant after the switch has 
been opened, the current in the inductor remains unchanged. If we use 0~ 
to denote the time just prior to switching, and 0+ for the time immediately 
following switching, then 

,(0-) = /(0+) = /0, -4 Initial inductor current 

where, as in Fig. 7.1, /() denotes the initial current in the inductor. The initial 
current in the inductor is oriented in the same direction as the reference 
direction of /. Hence Eq. 7.6 becomes 

/(f) = /0<TWL) ' , f ^ 0, (7.7) -4 Natural response of an RL circuit 

which shows that the current starts from an initial value I() and decreases 
exponentially toward zero as f increases. Figure 7.5 shows this response. 

We derive the voltage across the resistor in Fig. 7.4 from a direct appli
cation of Ohm's law: 

v = iR = I0Re-WL)t, t > 0+. (7.8) 

Note that in contrast to the expression for the current shown in Eq. 7.7, 
the voltage is defined only for t > 0, not at f = 0. The reason is that a step 
change occurs in the voltage at zero. Note that for t < 0, the derivative of 
the current is zero, so the voltage is also zero. (This result follows from 
v = Ldi/dt = 0.) Thus 

?;(CT) = 0, 

v(0+) = I0R, 

(7.9) 

(7.10) 

where v(0+) is obtained from Eq. 7.8 with f = 0"1".1 With this step change at 
an instant in time, the value of the voltage at f = 0 is unknown. Thus we 
use f > 0+ in defining the region of validity for these solutions. 

Figure 7.5 A The current response for the circuit shown 
in Fig. 7.4. 

1 We can define the expressions ()"" and u+ more formally. The expression x(0~) refers to the 
limit of the variable x as / —»0 from the left, or from negative time. The expression .v(O') 
refers to the limit of the variable x as / —*• 0 from the right, or from positive time. 
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We derive the power dissipated in the resistor from any of the follow
ing expressions: 

v2 

p = vi, p = i2R, or p = —. (7.11) 

R 

Whichever form is used, the resulting expression can be reduced to 

p = llRe-2{RIL)\ t > 0+. (7.12) 
The energy delivered to the resistor during any interval of time after the 
switch has been opened is 

w = / pdx = / llRe-2{RfL)xdx 
Jo Jo 

' llR(l - e-
2WV) 

2{R/L) 

= \ui(\ - e~2(RIL)% t > 0. (7.13) 

Note from Eq. 7.13 that as t becomes infinite, the energy dissipated in the 
resistor approaches the initial energy stored in the inductor. 

The Significance of the Time Constant 
The expressions for i{t) (Eq. 7.7) and v{t) (Eq. 7.8) include a term of the 
form e~WL''. The coefficient of t—namely, R/L—determines the rate at 
which the current or voltage approaches zero. The reciprocal of this ratio 
is the time constant of the circuit, denoted 

Time constant for RL circuit • T = time constant = —. (7.14) 
R v ' 

Using the time-constant concept, we write the expressions for current, 
voltage, power, and energy as 

/(0 = hiS~tl7, t > 0, (7.15) 

v(t) = hRe~ll\ t > 0+, (7.16) 

p = llRe~2,l\ t > 0+, (7.17) 

w = -Ul{\ - e'2!/T\ t > 0. (7.18) 

The time constant is an important parameter for first-order circuits, so 
mentioning several of its characteristics is worthwhile. First, it is conven
ient to think of the time elapsed after switching in terms of integral multi
ples of r. Thus one time constant after the inductor has begun to release 
its stored energy to the resistor, the current has been reduced to e_1, or 
approximately 0.37 of its initial value. 
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Table 7.1 gives the value of e~'/r for integral multiples of r from 1 to 
10. Note that when the elapsed time exceeds five time constants, the 
current is less than 1 % of its initial value. Thus we sometimes say that 
five time constants after switching has occurred, the currents and volt
ages have, for most practical purposes, reached their final values. For 
single time-constant circuits (first-order circuits) with 1% accuracy, the 
phrase a long time implies that five or more time constants have 
elapsed. Thus the existence of current in the RL circuit shown in 
Fig. 7.1(a) is a momentary event and is referred to as the transient 
response of the circuit. The response that exists a long time after the 
switching has taken place is called the steady-state response. The phrase 
a long time then also means the time it takes the circuit to reach its 
steady-state value. 

Any first-order circuit is characterized, in part, by the value of its 
time constant. If we have no method for calculating the time constant of 
such a circuit (perhaps because we don't know the values of its compo
nents), we can determine its value from a plot of the circuit's natural 
response. That's because another important characteristic of the time 
constant is that it gives the time required for the current to reach its final 
value if the current continues to change at its initial rate. To illustrate, we 
evaluate di/dt at 0+ and assume that the current continues to change at 
this rate: 

TABLE 7.1 Value of e 
Integral Multiples of T 

t e"lh 

T 3.6788 x 10-1 

2r 1.3534 X 10"1 

3T 4.9787 X lCT2 

4T 1.8316 X It)-2 

5T 6.7379 x 1(T3 

t/T For t Equal to 

t 

6T 

IT 

ST 

9T 

10T 

er<lr 

2.4788 x lCT3 

9.1188 X 1(T4 

3.3546 X lCT4 

1.2341 X 10"4 

4.5400 X 10 5 

> = - ! ' -
(7.19) 

Now, if i starts as / 0 and decreases at a constant rate of IQ/T amperes per 
second, the expression for i becomes 

- \ 
T 

:0 (7.20) 

Equation 7.20 indicates that i would reach its final value of zero in 
r seconds. Figure 7.6 shows how this graphic interpretation is useful in 
estimating the time constant of a circuit from a plot of its natural 
response. Such a plot could be generated on an oscilloscope measuring 
output current. Drawing the tangent to the natural response plot at t — 0 
and reading the value at which the tangent intersects the time axis gives 
the value of x. 

Calculating the natural response of an RL circuit can be summarized 
as follows: 

Figure 7.6 A A graphic interpretation of the time con
stant of the RL circuit shown in Fig. 7.4. 

1. Find the initial current, I0, through the inductor. 
2. Find the time constant of the circuit, r = LjR. 
3. Use Eq. 7.15, Ioe~^T, to generate i(t) 

from / 0 and r. 

<4 Calculating the natural response 
of RL circuit 

All other calculations of interest follow from knowing i(t). 
Examples 7.1 and 7.2 illustrate the numerical calculations associated with 
the natural response of an RL circuit. 
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Determining the Natural Response of an RL Circuit 

The switch in the circuit shown in Fig. 7.7 has 
been closed for a long time before it is opened at 
t = 0. Find 

a) //,(0 for t > 0, 

b) i()(t) for t > 0+ , 

c) v0(t)iort > 0+, 
d) the percentage of the total energy stored in the 

2 H inductor that is dissipated in the 10 ft resistor. 

/ = 0 

X 2 a 

f J20 A ¢0.1 fi //.1¾ H ^ 10 O *\,^4011 

Figure 7.7 • The circuit for Example 7.1. 

Solution 

a) The switch has been closed for a long time prior 
to t = 0, so we know the voltage across the 
inductor must be zero at t = 0". Therefore the 
initial current in the inductor is 20 A at t = 0~. 
Hence, z'/X0+) also is 20 A, because an instanta
neous change in the current cannot occur in an 
inductor. We replace the resistive circuit con
nected to the terminals of the inductor with a 
single resistor of 10 ft: 

Rcq = 2 + (40 || 10) = 10 ft. 

The time constant of the circuit is L/Req, or 
0.2 s, giving the expression for the inductor 
current as 

lL(t) = 20<T5' A, t > 0. 

b) We find the current in the 40 ft resistor most 
easily by using current division; that is, 

10 
to = -'I. 10 + 40" 

Note that this expression is valid for t ^ 0+ 

because /'„ = 0 at t = 0~. The inductor behaves as 
a short circuit prior to the switch being opened, 
producing an instantaneous change in the current 
ia. Then, 

ijj) = -4<r5 ' A , t > o+. 

c) We find the voltage va by direct application of 
Ohm's law: 

v0(t) = 40/„ = -160e~5,V, / > 0 \ 

d) The power dissipated in the 10 ft resistor is 

/ W O = ^ = 2560<T10'W, f > 0 + . 

The total energy dissipated in the 10 ft resistor is 

«>ion(0 = I 2560e~mt dt = 256 J. 

The initial energy stored in the 2 H inductor is 

w(O) = 2 L / 2 ( ° ) = | ( 2 ) ( 4 ( ) ° ) = 4 0 0 J-

Therefore the percentage of energy dissipated in 
the 10 ft resistor is 

256 
400 

(100) = 64%. 
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Determining the Natural Response of an RL Circuit with Parallel Inductors 

In the circuit shown in Fig. 7.8, the initial currents in 
inductors Lx and L2 have been established by 
sources not shown. The switch is opened at t = 0. 

a) Find ih /2, and i3 for t s 0. 

b) Calculate the initial energy stored in the parallel 
inductors. 

c) Determine how much energy is stored in the 
inductors as t —> oo. 

d) Show that the total energy delivered to the resis
tive network equals the difference between the 
results obtained in (b) and (c). 

Solution 

a) The key to finding currents ih /2, and /3 lies in 
knowing the voltage v(t). We can easily find v(t) 
if we reduce the circuit shown in Fig. 7.8 to the 
equivalent form shown in Fig. 7.9. The parallel 
inductors simplify to an equivalent inductance of 
4 H, carrying an initial current of 12 A. The resis
tive network reduces to a single resistance of 
8 Q. Hence the initial value of i(t) is 12 A and 
the time constant is 4/8, or 0.5 s. Therefore 

i(t) = lie'2' A, t > 0. 

Now v(t) is simply the product 8/, so 

v{t) = 96e~2t V, t > 0+. 

The circuit shows that v(t) = 0 at t = 0~, so the 
expression for v(t) is valid for t > 0+. After 
obtaining v(t), we can calculate /,, /2, and /3: 

1 -2x /, = - %e~lxdx - 8 
5 Jo 

= 1.6 - 9.6e"2/A, t > 0, 

/ , = 4 - / 96e~2xdx - 4 
- 20 y„ 

4H 

/3 

-1.6 - 2Ae~2' A, t > 0, 

t*0 15 c _ _2, 
10 25 

5.76<T2' A, t > 0+. 

Note that the expressions for the inductor currents 
i\ and /2 are valid for t sr 0, whereas the expres
sion for the resistor current /3 is valid for t > 0+. 

12 A H 4 H v(t) 811 

Figure 7.9 • A simplification of the circuit shown in Fig. 7.8. 

b) The initial energy stored in the inductors is 

w = i(5)(64) + i(20)(16) = 320J. 

c) As t —* 00, /, -» 1.6 A and /2 -> -1.6 A. 
Therefore, a long time after the switch has been 
opened, the energy stored in the two inductors is 

w | (5)(l-6)2 + |(20)(- 1.6)2 = 32 J. 

d) We obtain the total energy delivered to the resis
tive network by integrating the expression for 
the instantaneous power from zero to infinity: 

w pdt l\52e~4tdt 
0 .70 

-4t 00 

1152^—2 
- 4 0 

288 J. 

This result is the difference between the initially 
stored energy (320 J) and the energy trapped in 
the parallel inductors (32 J). The equivalent 
inductor for the parallel inductors (which pre
dicts the terminal behavior of the parallel com
bination) has an initial energy of 288 J; that is, 
the energy stored in the equivalent inductor rep
resents the amount of energy that will be deliv
ered to the resistive network at the terminals of 
the original inductors. 

ion 

Figure 7.8 A The circuit for Example 7.2. 
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t / A S S E S S M E N T PROBLE 

Objective 1—Be able to determine the natural response of both RL and RC circuits 

7.1 The switch in the circuit shown has been closed 
for a long time and is opened at t = 0. 

a) Calculate the initial value of i. 

b) Calculate the initial energy stored in the 
inductor. 

c) What is the time constant of the circuit for 
t > 0? 

d) What is the numerical expression for i{t) for 
t > 0? 

e) What percentage of the initial energy stored 
has been dissipated in the 2 fl resistor 5 ms 
after the switch has been opened? 

r = 0 
3H 6fl 

120 V 

NOTE: Also try Chapter Problems 7.4, 7.5, and 7.7. 

Answer: (a) -12.5 A; 

(b) 625 mJ; 

(c) 4 ms; 

(d) -USe-^A, t ^ 0; 

(e) 91.8%. 

7.2 At t = 0, the switch in the circuit shown moves 
instantaneously from position a to position b. 

a) Calculate v„ for t a 0+. 

b) What percentage of the initial energy stored 
in the inductor is eventually dissipated in 
the 4 D, resistor? 

6.4 A 

Answer: (a) -8e~m V, t > 0; 

(b) 80%. 

Figure 7.10 • An RC circuit. 

Figure 7.11 • The circuit shown in Fig. 7.10, after 
switching. 

7.2 The Natural Response 
of an RC Circuit 

As mentioned in Section 7.1, the natural response of an RC circuit is anal
ogous to that of an RL circuit. Consequently, we don't treat the RC circuit 
in the same detail as we did the RL circuit. 

The natural response of an RC circuit is developed from the circuit 
shown in Fig. 7.10. We begin by assuming that the switch has been in posi
tion a for a long time, allowing the loop made up of the dc voltage source 
Vg, the resistor Ru and the capacitor C to reach a steady-state condition. 
Recall from Chapter 6 that a capacitor behaves as an open circuit in the 
presence of a constant voltage. Thus the voltage source cannot sustain a 
current, and so the source voltage appears across the capacitor terminals. 
In Section 7.3, we will discuss how the capacitor voltage actually builds to 
the steady-state value of the dc voltage source, but for now the important 
point is that when the switch is moved from position a to position b (at 
t = 0), the voltage on the capacitor is Vg. Because there can be no instan
taneous change in the voltage at the terminals of a capacitor, the problem 
reduces to solving the circuit shown in Fig. 7.11. 
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Deriving the Expression for the Voltage 
We can easily find the voltage v(t) by thinking in terms of node voltages. 
Using the lower junction between R and C as the reference node and sum
ming the currents away from the upper junction between R and C gives 

^.dv v 
C — + — = 0. 

dt R 
(7.21) 

Comparing Eq. 7.21 with Eq. 7.1 shows that the same mathematical tech
niques can be used to obtain the solution for v{t). We leave it to you to 
show that 

v(t) = v(0)e-'/RC< t > 0. (7.22) 

As we have already noted, the initial voltage on the capacitor equals the 
voltage source voltage Vg, or 

«(<T) = «(0) = u(0+) = Vg = V0, (7.23) ^ Initial capacitor voltage 

where V{) denotes the initial voltage on the capacitor. The time constant for 
the RC circuit equals the product of the resistance and capacitance, 
namely, 

T = RC. (7.24) 4 Time constant for RC circuit 

Substituting Eqs. 7.23 and 7.24 into Eq. 7.22 yields 

v(t) = Voe-'/Tt t > 0, (7.25) < Natural response of an RC circuit 

which indicates that the natural response of an RC circuit is an exponen
tial decay of the initial voltage. The time constant RC governs the rate of 
decay. Figure 7.12 shows the plot of Eq. 7.25 and the graphic interpreta
tion of the time constant. 

After determining v(t), we can easily derive the expressions for /, p, 
and w: 

,(,) =
 I T = >""' '£0+-

p = vi 
V2 

R ' 
t > 0+, 

IV p ax = / —e ' ax 
Jo Jo R 

v(t) 

~~\ 
\ i>(t) = Vbf 

v{t) -

-lh 

- v { ) -
r 

(7.26) 0 T 

Figure 7.12 A The natural response of an RC circuit. 

(7.27) 

= 2 C T / o O ~ e " 2 ' / T ) ' l - °- (7.28) 
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Calculating the natural response of an RC circuit can be summarized 
as follows: 

Calculating the natural response of an 
RC circuit • 

1. Find the initial voltage, VQ, across the capacitor. 
2. Find the time constant of the circuit, r = RC. 
3. Use Eq. 7.25, v(t) = V0e~r/'T, to generate v(t) from V0 and r. 

All other calculations of interest follow from knowing v(t). 
Examples 7.3 and 7.4 illustrate the numerical calculations associated with 
the natural response of an RC circuit. 

Example 7.3 Determining the Natural Response of an RC Circuit 

The switch in the circuit shown in Fig. 7.13 has been 
in position x for a long time. At t = 0, the switch 
moves instantaneously to position y. Find 

a) vc(t) for t > 0, 

b) vt>{t) for/ > 0+ , 

c) i0{t) for t > 0+ , and 

d) the total energy dissipated in the 60 kfl resistor. 

10kn.v\ / v32kO 

b) The easiest way to find va{t) is to note that the 
resistive circuit forms a voltage divider across 
the terminals of the capacitor. Thus 

48 
v0(t) = jjjjffcW = 6Q.T* V, t > 0+. 

This expression for v()(t) is valid for t 2t 0' 
because vo(0~) is zero.Tlius we have an instanta
neous change in the voltage across the 240 kH 
resistor. 

c) We find the current i(,(t) from Ohm's law: 

Figure 7.13 • The circuit for Example 7.3. Ut) = —j = e - ' m A , t s 0 . 
60 x 10-

Solution d) The power dissipated in the 60 kQ resistor is 

a) Because the switch has been in position x for a 
long time, the 0.5 mF capacitor will charge to 
100 V and be positive at the upper terminal. We 
can replace the resistive network connected to 
the capacitor at t = 0+ with an equivalent resist
ance of 80 ki l . Hence the time constant of the 
circuit is (0.5 X 10_fi)(80 X 103) or 40 ms. Then, 

vc(t) = 100e"25r V, t s» 0. 

PMkiiW = #(0(60 x 100 = 60«r*vmW, t > 0 

The total energy dissipated is 

«60kO = / #(0(60 X 10-') dt = 1.2 mJ. 
fa 
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Determining the Natural Response of an RC Circuit with Series Capacitors 

The initial voltages on capacitors C\ and C2 in the 
circuit shown in Fig. 7.14 have been established by 
sources not shown. The switch is closed at t — 0. 

a) Find v^t), v2(t), and v(t) for r > 0 and /(0 for 
t > 0+. 

b) Calculate the initial energy stored in the capaci
tors C\ and C2. 

c) Determine how much energy is stored in the 
capacitors as t —> oo. 

d) Show that the total energy delivered to the 
250 kCl resistor is the difference between the 
results obtained in (b) and (c). 

Solution 
a) Once we know v(t), we can obtain the current i(t) 

from Ohm's law. After determining i{t), we can 
calculate V\(t) and v2(t) because the voltage across 
a capacitor is a function of the capacitor current. 
To find v(t), we replace the series-connected 
capacitors with an equivalent capacitor. It has a 
capacitance of 4 /x¥ and is charged to a voltage of 
20 V. Therefore, the circuit shown in Fig. 7.14 
reduces to the one shown in Fig. 7.15, which 
reveals that the initial value of v(t) is 20 V, and that 
the time constant of the circuit is (4)(250) X 10~3, 
or 1 s.Thus the expression for v(t) is 

v{t) = 20c"' V, t > 0 , 

The current i(t) is 

m v(t) 
250.000 

= 80e~lfiA, t > 0"1 

Knowing i(t), we calculate the expressions for 
Vi(t) and v2(t): 

106 fl 

Vx(t) = - — / 80 X KTV'rfjc - 4 
--5 Jo 

-6„-.v 

= (16e"r - 20) V, t > 0, 

106 f 
v2(t) = - — / 80 X l f r V V * + 24 

= (4e~' + 20) V, t > 0. 

b) The initial energy stored in C\ is 

»1 = ~(5 X 10~6)(16) = 40 fiJ. 

The initial energy stored in C2 is 

w2 = -(20 x 10~r,)(576) = 5760 /JL 

4V; 

+ 

+ 

24V 

An 
r = o 

Q(5)uF) y,(/) 

C2 (20 AtF) w2(f) 

|»W 

?;(0|250kO 

Figure 7.14 • The circuit for Example 7.4. 

250 kO 

Figure 7.15 • A simplification of the circuit shown in Fig. 7.14. 

The total energy stored in the two capacitors is 

w0 = 40 + 5760 = 5800 fiL 

c) As t —* oo, 

v, -> -20 V and v2 -> +20 V. 

Therefore the energy stored in the two capaci
tors is 

Woe = - (5 + 20) x 10^(400) = 5000/AJ. 

d) The total energy delivered to the 250 kH resistor is 

400<T2' 
dt = 800 / J . : /, " * = y0 250.000 

Comparing the results obtained in (b) and (c) 
shows that 

800 & = (5800 - 5000) /xJ. 

The energy stored in the equivalent capacitor in 
Fig. 7.15 is |(4 X 10"6)(400), or 800 fiJ. Because 
this capacitor predicts the terminal behavior of 
the original series-connected capacitors, the 
energy stored in the equivalent capacitor is the 
energy delivered to the 250 kCl resistor. 
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/ "ASSESSMENT PROBLEMS 

Objective 1—Be able to determine the natural response of both RL and RC circuits 

7.3 The switch in the circuit shown has been closed 
for a long time and is opened at t = 0. Find 

a) the initial value of v(t), 

b) the time constant for t > 0, 

c) the numerical expression for v(t) after the 
switch has been opened, 

d) the initial energy stored in the capacitor, and 

e) the length of time required to dissipate 75% 
of the initially stored energy. 

20kft 
-#—AA/V 

50 Ml 

Answer: (a) 200 V; 

(b) 20 ms; 

(c) 200£T50' V, t > 0; 

(d) 8 mJ; 

(e) 13.86 ms. 

NOTE: Also try Chapter Problems 7.23 and 7.26. 

7.4 The switch in the circuit shown has been closed 
for a long time before being opened at t = 0. 

a) Find v0{t) for t > 0. 

b) What percentage of the initial energy stored 
in the circuit has been dissipated after the 
switch has been open for 60 ms? 

Answer: (a) 8e~25' + 4<T10' V, t > 0; 

(b) 81.05%. 

7.3 The Step Response of RL 
and RC Circuits 

We are now ready to discuss the problem of finding the currents and volt
ages generated in first-order RL or RC circuits when either dc voltage or 
current sources are suddenly applied. The response of a circuit to the sud
den application of a constant voltage or current source is referred to as the 
step response of the circuit. In presenting the step response, we show how 
the circuit responds when energy is being stored in the inductor or capac
itor. We begin with the step response of an RL circuit. 

R 
^vw- An 

v 5 ^ 

+ 
= o" 
L W) 

Figure 7.16 • A circuit used to illustrate the step 
response of a first-order RL circuit. 

The Step Response of an RL Circuit 

To begin, we modify the first-order circuit shown in Fig. 7.2(a) by adding a 
switch. We use the resulting circuit, shown in Fig. 7.16, in developing the 
step response of an RL circuit. Energy stored in the inductor at the time 
the switch is closed is given in terms of a nonzero initial current /(0). The 
task is to find the expressions for the current in the circuit and for the volt
age across the inductor after the switch has been closed. The procedure is 
the same as that used in Section 7.1; we use circuit analysis to derive the 
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differential equation that describes the circuit in terms of the variable of 
interest, and then we use elementary calculus to solve the equation. 

After the switch in Fig. 7.16 has been closed, Kirchhoff s voltage law 
requires that 

V& = Ri + L -£ , (7.29) 
at 

which can be solved for the current by separating the variables i and t and 
then integrating. The first step in this approach is to solve Eq. 7.29 for the 
derivative di/dt: 

di -Ri + V, -R(. Vs\ 
i - - r . (7.30) dt L L \ R 

Next, we multiply both sides of Eq. 7.30 by a differential time df.This step 
reduces the left-hand side of the equation to a differential change in the 
current. Thus 

di , -R(. VS\J , N 

5*--d'-i?r- (7-31) 

or 
~R( V 

We now separate the variables in Eq. 7.31 to get 

di -R 

i - {VJR) L 
dt, (7.32) 

and then integrate both sides of Eq. 7.32. Using x and y as variables for the 
integration, we obtain 

*" dx -R <•• 
./,„ , - (VJR) L J0 ">• <"3 ' 

where / 0 is the current at t = 0 and i(t) is the current at any t > 0. 
Performing the integration called for in Eq. 7.33 generates the expression 

m - (VJR) -R 
ln7^7W = ̂ ' ' (734) 

from which 

or 

V ( V \ 
Kt) = Y + {/() ~ ~Rje~WL)t* (7 '35) 4 S t eP response of RL circuit 

When the initial energy in the inductor is zero, /() is zero. Thus Eq. 7.35 
reduces to 

Kt) = | - ^e-W-\ (7.36) 

Equation 7.36 indicates that after the switch has been closed, the cur
rent increases exponentially from zero to a final value of Vs/R. The time 
constant of the circuit, L/R, determines the rate of increase. One time 
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constant after the switch has been closed, the current will have reached 
approximately 63% of its final value, or 

i(T) vt 
V 

R R 
s - i 0.6321 

R 
(7.37) 

If the current were to continue to increase at its initial rate, it would reach 
its final value at / = T; that is, because 

di 
dt 

VJ-l 

R L 
= -lV'A (7.38) 

the initial rate at which i{t) increases is 

>"£ (7.39) 

If the current were to continue to increase at this rate, the expression for i 
would be 

L ' 
(7.40) 

from which, at t = T, 

L R R 
(7.41) 

K 

vs 
R 

V 
0.632 -^ 

0 

0 

/l / -, , V, 

_ JY '"> = it 

1 ' I I 
T 2r 3T 

Vs 

1 
4T 

1 
5T 

Figure 7.17 A The step response of the RL circuit 
shown in Fig. 7.16 when /() = 0. 

0.368 V, 

0 r 2r 3T 4r 5T 

Figure 7.18 A Inductor voltage versus time. 

Equations 7.36 and 7.40 are plotted in Fig. 7.17. The values given by 
Eqs. 7.37 and 7.41 are also shown in this figure. 

The voltage across an inductor is Ldi/dt, so from Eq. 7.35, for t >. 0+, 

v = L 
-R 
L /o 

R 
f l - W - (Vs - IQR)e-WLK (7.42) 

The voltage across the inductor is zero before the switch is closed. 
Equation 7.42 indicates that the inductor voltage jumps to Vs - l()R at 
the instant the switch is closed and then decays exponentially to zero. 

Does the value of v at t = 0+ make sense? Because the initial current 
is /() and the inductor prevents an instantaneous change in current, the 
current is / 0 in the instant after the switch has been closed. The voltage 
drop across the resistor is IQR, and the voltage impressed across the induc
tor is the source voltage minus the voltage drop, that is, Vs — I{)R. 

When the initial inductor current is zero, Eq. 7.42 simplifies to 

v = Vse-(R/L)t. (7.43) 

If the initial current is zero, the voltage across the inductor jumps to Vs. We 
also expect the inductor voltage to approach zero as t increases, because the 
current in the circuit is approaching the constant value of VJR. Figure 7.18 
shows the plot of Eq. 7.43 and the relationship between the time constant 
and the initial rate at which the inductor voltage is decreasing. 
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If there is an initial current in the inductor, Eq. 7.35 gives the solution 
for it. The algebraic sign of / 0 is positive if the initial current is in the same 
direction as /'; otherwise, / 0 carries a negative sign. Example 7.5 illustrates 
the application of Eq. 7.35 to a specific circuit. 

| Determining the Step Response of an RL Circuit 

The switch in the circuit shown in Fig. 7.19 has been 
in position a for a long time. At t = 0, the switch 
moves from position a to position b. The switch is a 
make-before-break type; that is, the connection at 
position b is established before the connection at 
position a is broken, so there is no interruption of 
current through the inductor. 

a) Find the expression for /(/•) for t ^ 0. 

b) What is the initial voltage across the inductor just 
after the switch has been moved to position b? 

c) How many milliseconds after the switch has been 
moved does the inductor voltage equal 24 V? 

d) Does this initial voltage make sense in terms of 
circuit behavior? 

e) Plot both i(t) and v(t) versus t. 

t = 0 

Figure 7.19 A The circuit for Example 7.5. 

Solution 

a) The switch has been in position a for a long time, 
so the 200 mH inductor is a short circuit across 
the 8 A current source. Therefore, the inductor 
carries an initial current of 8 A. This current is 
oriented opposite to the reference direction for i; 
thus / 0 is - 8 A. When the switch is in position b, 
the final value of i will be 24/2, or 12 A. The time 
constant of the circuit is 200/2, or 100 ms. 
Substituting these values into Eq. 7.35 gives 

i= 12 + ( - 8 - 12)e~'/01 

= 12 - 20e~ la A, t > 0. 

b) The voltage across the inductor is 

r di 
v = L — 

dt 

= 0.2(200<T1(") 

= 40<Tll)'V, t > 0+. 

The initial inductor voltage is 

v{0+) = 40 V. 

c) Yes; in the instant after the switch has been 
moved to position b, the inductor sustains a cur
rent of 8 A counterclockwise around the newly 
formed closed path. This current causes a 16 V 
drop across the 2 fl resistor. This voltage drop 
adds to the drop across the source, producing a 
40 V drop across the inductor. 

d) We find the time at which the inductor voltage 
equals 24 V by solving the expression 

24 = A0e~m 

for/: 

1 , 40 
t=w]nT4 

= 51.08 X 10"3 

= 51.08 ms. 

e) Figure 7.20 shows the graphs of i(t) and v{t) versus 
t. Note that the instant of time when the current 
equals zero corresponds to the instant of time 
when the inductor voltage equals the source volt
age of 24 V, as predicted by Kirchhoff s voltage law. 
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Figure 7.20 • The current and voltage waveforms for 
Example 7.5. 
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I /ASSESSMENT PROBLE 

Objective 2—Be able to determine the step response of both RL and RC circuits 

7.5 Assume that the switch in the circuit shown in 
Fig. 7.19 has been in position b for a long time, 
and at t = 0 it moves to position a. Find 
(a) /-(0+); (b) v(0+); (c) T,t > 0; (d) i(t), t > 0; 
and (e) v(t), t > 0+. 

NOTE: Also try Chapter Problems 7.35-737. 

Answer: (a) 12 A; 
(b) -200 V; 
(c) 20 ms; 
(d) - 8 + 20<T50' A, t > 0; 
(e) -200<T50f V, t > 0+. 

We can also describe the voltage v(t) across the inductor in Fig. 7.16 
directly, not just in terms of the circuit current. We begin by noting that the 
voltage across the resistor is the difference between the source voltage 
and the inductor voltage. We write 

Yrt V* V{t) 

l{t) = R-lf> 
(7.44) 

where Vs is a constant. Differentiating both sides with respect to time yields 

(7.45) 
di 

dt 

]_dv 
R dt' 

Then, if we multiply each side of Eq. 7.45 by the inductance L, we get an 
expression for the voltage across the inductor on the left-hand side, or 

v — -
L dv 

R dt' 
(7.46) 

Putting Eq. 7.46 into standard form yields 

dv R 
— + — v ~ 0. 
dt L 

(7.47) 

You should verify (in Problem 7.38) that the solution to Eq. 7.47 is identi
cal to that given in Eq. 7.42. 

At this point, a general observation about the step response of an 
RL circuit is pertinent. (This observation will prove helpful later.) When 
we derived the differential equation for the inductor current, we obtained 
Eq. 7.29. We now rewrite Eq. 7.29 as 

di R Vs — + — / = — . 
dt L L 

(7.48) 

Observe that Eqs. 7.47 and 7.48 have the same form. Specifically, each 
equates the sum of the first derivative of the variable and a constant times 
the variable to a constant value. In Eq. 7.47, the constant on the right-hand 
side happens to be zero; hence this equation takes on the same form as the 
natural response equations in Section 7.1. In both Eq. 7.47 and Eq. 7.48, 
the constant multiplying the dependent variable is the reciprocal of the 
time constant, that is, R/L = 1/r. We encounter a similar situation in the 
derivations for the step response of an RC circuit. In Section 7.4, we will 
use these observations to develop a general approach to finding the natu
ral and step responses of RL and RC circuits. 
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7.3 The Step Response of RL and RC Circuits 

We can find the step response of a first-order RC circuit by analyzing the 
circuit shown in Fig. 7.21. For mathematical convenience, we choose the 
Norton equivalent of the network connected to the equivalent capacitor. 
Summing the currents away from the top node in Fig. 7.21 generates the 
differential equation 

dvc vc C—- + — = I 
dt R s (7.49) 

Division of Eq. 7.49 by C gives 

dvc vc _ Is 

~dt ~RC~~C' 
(7.50) 

Figure 7.21 A A circuit used to illustrate the step 
response of a first-order RC circuit. 

Comparing Eq. 7.50 with Eq. 7.48 reveals that the form of the solution for 
Vc is the same as that for the current in the inductive circuit, namely, 
Eq. 7.35. Therefore, by simply substituting the appropriate variables and 
coefficients, we can write the solution for i?c directly. The translation 
requires that ls replace Vg, C replace L, 1/JR replace R, and VQ replace /(). 
We get 

vc = I.R + (V0 - IsR)e-'/RC, t > 0. (7.51) -^ Step response of an RC circuit 

A similar derivation for the current in the capacitor yields the differential 
equation 

di 1 
(7.52) 

Equation 7.52 has the same form as Eq. 7.47, hence the solution for i is 
obtained by using the same translations used for the solution of 
Eq. 7.50. Thus 

i = I, - -i IRC t > 0+, (7.53) 

where V() is the initial value of vc, the voltage across the capacitor. 
We obtained Eqs. 7.51 and 7.53 by using a mathematical analogy to 

the solution for the step response of the inductive circuit. Let's see 
whether these solutions for the RC circuit make sense in terms of 
known circuit behavior. From Eq. 7.51, note that the initial voltage 
across the capacitor is V{h the final voltage across the capacitor is ISR, 
and the time constant of the circuit is RC. Also note that the solution 
for Vc is valid for t 2: 0. These observations are consistent with the 
behavior of a capacitor in parallel with a resistor when driven by a con
stant current source. 

Equation 7.53 predicts that the current in the capacitor at t = 0+ is 
h ~ K)/^- This prediction makes sense because the capacitor voltage can
not change instantaneously, and therefore the initial current in the resistor 
is VQ/R. The capacitor branch current changes instantaneously from zero 
at t = 0~ to Is - V()/R at t = 0+. The capacitor current is zero at t = oo. 
Also note that the final value of v = ISR. 

Example 7.6 illustrates how to use Eqs. 7.51 and 7.53 to find the step 
response of a first-order RC circuit. 
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Example 7.6 Determining the Step Response of an RC Circuit 

The switch in the circuit shown in Fig. 7.22 has been 
in position 1 for a long time. At t = 0, the switch 
moves to position 2. Find 

a) v0(t) for t > 0 and 

b) ia{t) for t > 0+. 

The value of the Norton current source is the 
ratio of the open-circuit voltage to the Thevenin 
resistance, or -60/(40 X 103) = -1.5 mA. The 
resulting Norton equivalent circuit is shown in 
Fig. 7.23. From Fig. 7.23, 1KR = - 60 V and 
RC = \0ms. We have already noted that 
vo(0) = 30 V, so the solution for v0 is 

20 kH K /oSkfi 40 kO 
-t Uv t = 0 /4^-VvV—•-

40 V %60kfi 
0.25 jaFPp: »„ X 

160kO ( ^ )75 V 

Figure 7.22 • The circuit for Example 7.6. 

v0 = -60 + [30 - (-60)]e~mu 

= - 6 0 + 90e~1(,(" V, t > 0. 

b) We write the solution for i„ directly from 
Eq. 7.53 by noting that 7V= -1.5 mA and 
VJR = (30/40) X 10"3, or 0.75 mA: 

ia = -2.25e" ,uu ' mA, t > 0+. 

Solution 

a) The switch has been in position 1 for a long time, 
so the initial value of v0 is 40(60/80), or 30 V. To 
take advantage of Eqs. 7.51 and 7.53, we find the 
Norton equivalent with respect to the terminals 
of the capacitor for t > 0. To do this, we begin by 
computing the open-circuit voltage, which is 
given by the -75 V source divided across the 
40 kfl and 160 ktt resistors: 

Vu 
160 x 10-1 

(40 + 160) X 10 
j (-75) = -60 V. 

We check the consistency of the solutions for v() 

and ia by noting that 

ia = C1^- = (0.25 X 10-6)(-9000fr i000 
at 

= -225e-mtmA. 

Because dvo(0 )/dt = 0, the expression for iQ 

clearly is valid only for t > 0+. 

Next, we calculate the Thevenin resistance, as 
seen to the right of the capacitor, by shorting the 
-75 V source and making series and parallel 
combinations of the resistors: 

ttn, = 8000 + 40,000 || 160,000 = 40 101 
Figure 7.23 • The equivalent circuit for t > 0 for the circuit 
shown in Fig. 7.22. 
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^ A S S E S S M E N T PROBLEM 

Objective 2—Be able to determine the step response of both RL and RC circuits 

7.6 a) Find the expression for the voltage across 
the 160 kfi resistor in the circuit shown in 
Fig. 7.22. Let this voltage be denoted vA, and 
assume that the reference polarity for the 
voltage is positive at the upper terminal of 
the 160 kH resistor. 

NOTE: Also try Chapter Problems 7.51 and 7.53. 

b) Specify the interval of time for which the 
expression obtained in (a) is valid. 

Answer: (a) -60 + 12e~m)t V; 

(b) t > 0*. 

7.4 A General Solution for Step 
and Natural Responses 

The general approach to finding either the natural response or the step 
response of the first-order RL and RC circuits shown in Fig. 7.24 is based 
on their differential equations having the same form (compare Eq. 7.48 
and Eq. 7.50). To generalize the solution of these four possible circuits, we 
let x(t) represent the unknown quantity, giving x(t) four possible values. It 
can represent the current or voltage at the terminals of an inductor or the 
current or voltage at the terminals of a capacitor. From Eqs. 7.47, 7.48, 
7.50, and 7.52, we know that the differential equation describing any one 
of the four circuits in Fig. 7.24 takes the form 

£ +£ = K -
dt T 

(7.54) 

where the value of the constant K can be zero. Because the sources in the 
circuit are constant voltages and/or currents, the final value of x will be 
constant; that is, the final value must satisfy Eq. 7.54, and, when x reaches 
its final value, the derivative dxjdt must be zero. Hence 

xf = KT, (7.55) 

where xy represents the final value of the variable. 
We solve Eq. 7.54 by separating the variables, beginning by solving for 

the first derivative: 

dt T 

(x - Kr) "(x - Xf) 
(7.56) 

L<n 

Figure 7.24 • Four possible first-order circuits. 
(a) An inductor connected to a Thevenin equivalent. 
(b) An inductor connected to a Norton equivalent. 
(c) A capacitor connected to a Thevenin equivalent. 
(d) A capacitor connected to a Norton equivalent. 
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General solution for natural and step 
responses of RL and RC circuits • 

In writing Eq. 7.56, we used Eq. 7.55 to substitute Xf for Kr. We now mul
tiply both sides of Eq. 7.56 by dt and divide by x - Xt to obtain 

dx - 1 
= — d t . 

X — Xf T 
(7.57) 

Next, we integrate Eq. 7.57. To obtain as general a solution as possible, we 
use time tQ as the lower limit and t as the upper limit. Time t{) corresponds 
to the time of the switching or other change. Previously we assumed that 
t0 = 0, but this change allows the switching to take place at any time. 
Using u and v as symbols of integration, we get 

m du 
= — / dv. 

x(ta) » - Xf 

Carrying out the integration called for in Eq. 7.58 gives 

x(t) = xf + [x(t0) - xf]e-{t-^\ 

(7.58) 

(7.59) 

The importance of Eq. 7.59 becomes apparent if we write it out in words: 

the unknown 

variable as a 

function of time 

the final 
value of the 

variable 

+ 
the initial the final 

value of the — value of the 

variable variable 

\y „ -[(-(time of switching)! 
e (time constant) (7.60) 

Calculating the natural or step response of 
RL or RC circuits • 

In many cases, the time of switching—that is, r0—is zero. 
When computing the step and natural responses of circuits, it may 

help to follow these steps: 

1. Identify the variable of interest for the circuit. For RC circuits, it is 
most convenient to choose the capacitive voltage; for RL circuits, 
it is best to choose the inductive current. 

2. Determine the initial value of the variable, which is its value at tQ. 
Note that if you choose capacitive voltage or inductive current as 
your variable of interest, it is not necessary to distinguish between 
t = ?o and t = tQ.2 This is because they both are continuous vari
ables. If you choose another variable, you need to remember that 
its initial value is defined at t — $. 

3. Calculate the final value of the variable, which is its value as t —> oo. 
4. Calculate the time constant for the circuit. 

With these quantities, you can use Eq. 7.60 to produce an equation 
describing the variable of interest as a function of time. You can then find 
equations for other circuit variables using the circuit analysis techniques 
introduced in Chapters 3 and 4 or by repeating the preceding steps for the 
other variables. 

Examples 7.7-7.9 illustrate how to use Eq. 7.60 to find the step 
response of an RC or RL circuit. 

2 The expressions /() and $ are analogous to 0 and 0 ' . Thus x(t{)) is the limit of x(t) as t 
from the left, and X(IQ) is The limit of x(t) as t —»z() from the right. 
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Using the General Solution Method to Find an RC Circuit's Step Response 

The switch in the circuit shown in Fig. 7.25 has been 
in position a for a long time. At t = 0 the switch is 
moved to position b. 

a) What is the initial value of vcl 

b) What is the final value of vcl 

c) What is the time constant of the circuit when the 
switch is in position b? 

d) What is the expression for vc(t) when t a 0? 

e) What is the expression for i(t) when t > 0+? 

f) How long after the switch is in position b does 
the capacitor voltage equal zero? 

g) Plot vc(t) and i(t) versus t. 

Solution 

a) The switch has been in position a for a long time, 
so the capacitor looks like an open circuit. 
Therefore the voltage across the capacitor is the 
voltage across the 60 H resistor. From the voltage-
divider rule, the voltage across the 60 fl resistor 
is 40 X [60/(60 + 20)], or 30 V. As the refer
ence for VQ is positive at the upper terminal of 
the capacitor, we have vc(0) — —30 V. 

b) After the switch has been in position b for a long 
time, the capacitor will look like an open circuit 
in terms of the 90 V source. Thus the final value 
of the capacitor voltage is + 90 V. 

c) The time constant is 

r = RC 

= (400 X 103)(0.5 X 10-6) 

= 0.2 s. 

d) Substituting the appropriate values for vp v(0), 
and t into Eq. 7.60 yields 

vc{t) = 90 + ( -30 - 90)e-5 ' 

= 90 - 120e_5'V, t > 0. 

e) Here the value for r doesn't change. Thus we 
need to find only the initial and final values for 
the current in the capacitor. When obtaining the 
initial value, we must get the value of l(0+), 
because the current in the capacitor can change 
instantaneously. This current is equal to the cur
rent in the resistor, which from Ohm's law is 
[90 - (-30)]/(400 X 103) = 300 fxA. Note that 
when applying Ohm's law we recognized that the 

400 kO h 20 n 

Figure 7.25 • The circuit for Example 7.7. 

capacitor voltage cannot change instantaneously. 
The final value of i(t) = 0, so 

'(0 0 + (300 - 0)e -5 ' 

300e~5VA, t > 0+. 

We could have obtained this solution by dif
ferentiating the solution in (d) and multiplying by 
the capacitance. You may want to do so for your
self. Note that this alternative approach to finding 
i{t) also predicts the discontinuity at t = 0. 

f) To find how long the switch must be in position b 
before the capacitor voltage becomes zero, we 
solve the equation derived in (d) for the time 
when vc{t) = 0: 

120e" 90 or e5l = 
120 

9 0 ' 

so 

'=Mf 
= 57.54 ms. 

Note that when vc = 0, i = 225 JXA and the 
voltage drop across the 400 kft resistor is 90 V. 

g) Figure 7.26 shows the graphs of vc(t) and i(t) 
versus t. 

i(/*A) v c (V) 

300 120 
250 100 
200 80 
150 60 
100 40 
50 20 

0 
-20 

_ry' 

~i \ y 
-1 / \ 
-1 / 

y ' 
/ 200 

r -30 

i 
400 

vC 

—H 1 
600 800 

t (ms) 

Figure 7.26 A The current and voltage waveforms for 
Example 7.7, 
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Example 7.8 Using the General Solution Method with Zero Initial Conditions 

The switch in the circuit shown in Fig. 7.27 has been 
open for a long time. The initial charge on the 
capacitor is zero. At t = 0, the switch is closed. Find 
the expression for 

a) i(t) for t > 0+ and 

b) v{t) when f > 0+ . 

0.1 /xF 

-A^Ht 
7.5 mA I »(0S20kQ '(0 :3()kn 

Figure 7.27 A The circuit for Example 7.8. 

Solution 

a) Because the initial voltage on the capacitor is 
zero, at the instant when the switch is closed the 
current in the 30 kO branch will be 

/(0+) = 
(7.5)(20) 

50 
= 3 mA. 

The final value of the capacitor current will be 
zero because the capacitor eventually will 
appear as an open circuit in terms of dc current. 
Thus if = 0. The time constant of the circuit will 
equal the product of the Thevenin resistance (as 
seen from the capacitor) and the capacitance. 

Therefore T = (20 + 30)1(^(0.1) X 10-6 = 5 ms. 
Substituting these values into Eq. 7.60 generates 
the expression 

/(f) = 0 -f (3 - 0)e ' f / 5 x l ( r 3 

= 3e-2(,0fmA, t > 0+. 

b) To find v(t), we note from the circuit that it 
equals the sum of the voltage across the capaci
tor and the voltage across the 30 kf! resistor. To 
find the capacitor voltage (which is a drop in the 
direction of the current), we note that its initial 
value is zero and its final value is (7.5)(20), or 
150 V. The time constant is the same as before, or 
5 ms. Therefore we use Eq. 7.60 to write 

vc(t) = 150 + ( 0 - I50)e"mi 

= (150 - 150<r2()(") V, t > 0. 

Hence the expression for the voltage v(t) is 

v(t) = 150 - 150^200 ' + (30)(3K2,)(" 

= (150 - 60<T20()f)V, f > 0 + . 

As one check on this expression, note that it pre
dicts the initial value of the voltage across the 
20 LI resistor as 150 - 60, or 90 V. The instant 
the switch is closed, the current in the 20 kO 
resistor is (7.5)(30/50), or 4.5 mA. This current 
produces a 90 V drop across the 20 kil resistor, 
confirming the value predicted by the solution. 

Example 7.9 Using the General Solution Method to Find an RL Circuit's Step Response 

The switch in the circuit shown in Fig. 7.28 has been 
open for a long time. At t = 0 the switch is closed. 
Find the expression for 

a) v{t) when t > 0+ and 

b) i(i) when t > 0. 

20 V 

Figure 7.28 • The circuit for Example 7.9. 

v(t) j80mH 

Solution 
a) The switch has been open for a long time, so the 

initial current in the inductor is 5 A, oriented 
from top to bottom. Immediately after the switch 
closes, the current still is 5 A, and therefore the 
initial voltage across the inductor becomes 
20 - 5(1), or 15 V. The final value of the induc
tor voltage is 0 V. With the switch closed, the time 
constant is 80/1, or 80 ms. We use Eq. 7.60 to 
write the expression for v(t): 

v(t) = 0 + (15 - 0)e-'/80x10"s 

= 15<T12-5' V, t > 0+. 

b) We have already noted that the initial value of 
the inductor current is 5 A. After the switch has 
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been closed for a long time, the inductor current 
reaches 20/1, or 20 A. The circuit time constant is 
80 ms, so the expression for /(/) is 

/(/) = 20 + ( 5 - 20)<r12J5f 

= (20 - 15e_l2-5')A, t > 0. 

We determine that the solutions for v(t) and i(t) 
agree by noting that 

V{t) = LJt 
= 80 X 10-3[15(12.5K12-5/] 

= 15fT12-5'V, / > 0+. 

NOTE: Assess your understanding of the general solution method by trying Chapter Problems 7.55 and 7.56. 

Example 7.10 shows that Eq. 7.60 can even be used to find the step 
response of some circuits containing magnetically coupled coils. 

Example 7.10 Determining Step Response of a Circuit with Magnetically Coupled Coils 

There is no energy stored in the circuit in Fig. 7.29 
at the time the switch is closed. 

a) Find the solutions for im vt), iu and /2. 

b) Show that the solutions obtained in (a) make 
sense in terms of known circuit behavior. 

Solution 

a) For the circuit in Fig. 7.29, the magnetically cou
pled coils can be replaced by a single inductor 
having an inductance of 

LXL2 - M2 45 - 36 

18 - 12 
1.5 H. 

(See Problem 6.41.) It follows that the circuit in 
Fig. 7.29 can be simplified as shown in Fig. 7.30. 

By hypothesis the initial value of /(, is zero. 
From Fig. 7.30 we see that the final value of ia 

will be 120/7.5 or 16 A. The time constant of the 
circuit is 1.5/7.5 or 0.2 s. It follows directly from 
Eq. 7.60 that 

i0 = 16 - 16e~5'A, / > 0. 

The voltage v0 follows from Kirchhoff s 
voltage law. Thus, 

va - 120 — 7.5/(, 

= 120«""* V, t > 0+. 

To find i[ and /2 we first note from 
Fig. 7.29 that 

du dh di\ di7 

3 - ^ + 6 - ^ = 6-r + 1 5 - 1 

dt dt dt dt 
or 

dt dt ' 

7.5 fl 

1 = 0 

120 V 

• I ^ 6 H ^ « 

" p 3 H i * 15 H^ 

Figure 7.29 A The circuit for Example 7.10. 

120 V 

7.5 ft Hr 
>'„ ^1.5 H 

Figure 7.30 • The circuit in Fig. 7.29 with the magnetically 
coupled coils replaced by an equivalent coil. 

It also follows from Fig. 7.29 that because 

to = ' I + «2» 

di0 di\ di2 

dt dt dt ' 

Therefore 

a** = - 2 ^ . 
dt 

Because /2(0) is zero we have 

Jo 

= - 8 + 8e~5t A, / > 0. 

Using Kirchhoffs current law we get 

it = 24 - 24e"5/ A, / > 0. 

b) First we observe that io(0), /*i(0), and /2(0) are all 
zero, which is consistent with the statement that 
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no energy is stored in the circuit at the instant 
the switch is closed. 

Next we observe vo(0
+) = 120 V, which is 

consistent with the fact that io(0) = 0. 
Now we observe the solutions for ^ and 

i2 are consistent with the solution for v0 by 
observing 

dii di2 
va = 3 — + 6 — 

dt dt 

= 360*T5' - 240<T5' 

= 120«?-* V, t > 0+, 

or 

dt dt 

= 720e~5' - 600e_5/ 

= 120e"5' V, t > 0+. 

The final values of i\ and /2 can be checked 
using flux linkages. The flux linking the 3 H coil 
(Aj) must be equal to the flux linking the 15 H 
coil (A2), because 

v„ = 

Now 

and 

rfAj 

~dt 

dki 

dt' 

A, = 3ij + 6/2 Wb-turns 

A2 = 6i] + 15/2 Wb-turns. 

Regardless of which expression we use, we 
obtain 

A, = A2 = 24 - 24<T5' Wb-turns. 

Note the solution for At or A2 is consistent with 
the solution for vD. 

The final value of the flux linking either 
coil 1 or coil 2 is 24 Wb-turns, that is, 

At(oo) = A2(oo) = 24 Wb-turns. 

The final value of iy is 

^(oo) = 24 A 

and the final value of i2 is 

/2(oo) = - 8 A. 

The consistency between these final values 
for jj and i2 and the final value of the flux link
age can be seen from the expressions: 

A^oo) = 3/2(00) + 6/2(oo) 

= 3(24) + 6(-8) = 24 Wb-turns, 

A2(oo) = 6^(00) + 15/2(oo) 

= 6(24) + 15(-8) = 24 Wb-turns. 

It is worth noting that the final values of ij 
and /2 can only be checked via flux linkage 
because at t — 00 the two coils are ideal short 
circuits. The division of current between ideal 
short circuits cannot be found from Ohm's law. 

NOTE: Assess your understanding of this material by using the general solution method to solve Chapter 
Problems 7.68 and 7.69. 

7.5 Sequential Switching 
Whenever switching occurs more than once in a circuit, we have sequential 
switching. For example, a single, two-position switch may be switched back 
and forth, or multiple switches may be opened or closed in sequence. The 
time reference for all switchings cannot be f = 0. We determine the volt
ages and currents generated by a switching sequence by using the tech
niques described previously in this chapter. We derive the expressions for 
v(t) and i(t) for a given position of the switch or switches and then use 
these solutions to determine the initial conditions for the next position of 
the switch or switches. 

With sequential switching problems, a premium is placed on obtaining 
the initial value x(t0). Recall that anything but inductive currents and 
capacitive voltages can change instantaneously at the time of switching. 
Thus solving first for inductive currents and capacitive voltages is even 
more pertinent in sequential switching problems. Drawing the circuit that 
pertains to each time interval in such a problem is often helpful in the 
solution process. 
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Examples 7.11 and 7.12 illustrate the analysis techniques for circuits 
with sequential switching. The first is a natural response problem with two 
switching times, and the second is a step response problem. 

Example 7.11 Analyzing an RL Circuit that has Sequential Switching 

The two switches in the circuit shown in Fig. 7.31 
have been closed for a long time. At t - 0, switch 1 
is opened. Then, 35 ms later, switch 2 is opened. 

a) Find iL{t) for 0 < t < 35 ms. 

b) Find iL for t a 35 ms. 

c) What percentage of the initial energy stored in 
the 150 mH inductor is dissipated in the 18 ft 
resistor? 

d) Repeat (c) for the 3 17 resistor. 

e) Repeat (c) for the 6 D, resistor. 

t = 0 t = 35 ms 
4H 

KVr^fr^— 

60 V £12 (1 £6(1 <M 150 mH $18(1 

Figure 7.31 • The circuit for Example 7.11. 

Solution 

a) For t < 0 both switches are closed, causing the 
150 mH inductor to short-circuit the 18 D, resis
tor. The equivalent circuit is shown in Fig. 7.32. We 
determine the initial current in the inductor by 
solving for ii£0~) in the circuit shown in Fig. 7.32. 
After making several source transformations, we 
find iL(0~) to be 6 A. For 0 < t < 35 ms, switch 1 
is open (switch 2 is closed), which disconnects the 
60 V voltage source and the 4 H and 12 £l resis
tors from the circuit. The inductor is no longer 
behaving as a short circuit (because the dc source 
is no longer in the circuit), so the 18 O resistor is 
no longer short-circuited. The equivalent circuit is 
shown in Fig. 7.33. Note that the equivalent resist
ance across the terminals of the inductor is the 
parallel combination of 9 O and 18 0 , or 6 i\. 
The time constant of the circuit is (150/6) X 10~3, 
or 25 ms. Therefore the expression for iL is 

iL = 6e-A{]l A, 0 < t < 35 ms. 

4(1 3 (1 

60 V two") 

Figure 7.32 • The circuit shown in Fig. 7.31, for t < 0. 

Figure 7.33 • The circuit shown in Fig. 7.31, for 0 < t ^35 ms. 

b) When t = 35 ms, the value of the inductor 
current is 

iL = 6e~u = 1.48 A. 

Thus, when switch 2 is opened, the circuit 
reduces to the one shown in Fig. 7.34, and the 
time constant changes to (150/9) x 10_ \ or 
16.67 ms.The expression for iL becomes 

i,= 1.486>-6(,('-a()35>A, t > 3 5 ms. 

Note that the exponential function is shifted in 
time by 35 ms. 

3 ( . 

*'/. 
6(1 vL ] 150 mH 

_ ? |iL{0.035)s 1.48 A 

Figure 7.34 • The circuit shown in Fig. 7.31, for t > 35 ms. 

c) The 18 n resistor is in the circuit only during the 
first 35 ms of the switching sequence. During this 
interval, the voltage across the resistor is 

v, = 0.154(6<?"40') 
dt 

= -36e~40 ' V, 0 < t < 35 ms. 
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The power dissipated in the 18 ft resistor is 

p = - ^ = 72<r80' W, 0 < t < 35 ms. 
18 

Hence the energy dissipated is 

/.().035 

W = 72<ThlV/ 80/ 

.7(1 

72 -SO/ 
0.035 

0 -80 

= 0.9(1 - ef2-8) 

= 845.27 rnJ. 

Tlie initial energy stored in the 150 mH inductor is 

Wi = j(0.15)(36) = 2.7 J = 2700 mj. 

Therefore (845.27/2700) x 100, or 31.31% of 
the initial energy stored in the 150 mH inductor 
is dissipated in the 18 ft resistor. 

d) For 0 < i < 35 ms, the voltage across the 3 ft 
resistor is 

*>m 
»L 

(3) 

= rL 

40/ 

Therefore the energy dissipated in the 3 ft resis
tor in the first 35 ms is 

.().035 

WMl 
"I44e -SO/ 

dt 
Jo 3 

= 0.6(1 - e'2*) 

= 563.51 mJ. 

For t > 35 ms, the current in the 3 O resistor is 

ha = <L = (6e-^)e~W-^ A. 

Hence the energy dissipated in the 3 ft resistor for 
t > 35 ms is 

t%i = I iiti X3dt 
/().035 

f 3(36)e-2*e-ia*-tt,B5>A 
.7().035 

108e--8 x 
,-120(/-0.035) 

120 0.035 

1 0 8 _•) o _ . __, 
— , » - 54.73mJ. 

The total energy dissipated in the 3 ("1 resistor is 

w3(l(total) = 563.51 + 54.73 

= 618.24 mJ. 

The percentage of the initial energy stored is 

618.24 

2700 
X 100 = 22.90%. 

e) Because the 6 ft resistor is in series with the 3 12 
resistor, the energy dissipated and the percent
age of the initial energy stored will be twice that 
of the 3 ft resistor: 

w6n(total) = 1236.48 mJ, 

and the percentage of the initial energy stored is 
45.80%. We check these calculations by observ
ing that 

1236.48 4- 618.24 + 845.27 = 2699.99 mJ 

and 

31.31 + 22.90 + 45.80 = 100.01%. 

The small discrepancies in the summations are 
the result of roundoff errors. 
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Example 7.12 Analyzing an RC Circuit that has Sequential Switching 

The uncharged capacitor in the circuit shown in 
Fig. 7.35 is initially switched to terminal a of the 
three-position switch. At t — 0, the switch is moved 
to position b, where it remains for 15 ms. After the 
15 ms delay, the switch is moved to position c, where 
it remains indefinitely. 

a) Derive the numerical expression for the voltage 
across the capacitor. 

b) Plot the capacitor voltage versus time. 

c) When will the voltage on the capacitor equal 
200 V? 

Solution 

a) At the instant the switch is moved to position b, 
the initial voltage on the capacitor is zero. If the 
switch were to remain in position b, the capacitor 
would eventually charge to 400 V. The time con
stant of the circuit when the switch is in position b 
is 10 ms. Therefore we can use Eq. 7.59 with 
t() = 0 to write the expression for the capacitor 
voltage: 

v = 400 + (0 - 400)e -100/ 

= (400 - 400e"m") V, 0 =s t < 15 ms. 

Note that, because the switch remains in posi
tion b for only 15 ms, this expression is valid only 
for the time interval from 0 to 15 ms. After the 
switch has been in this position for 15 ms, the 
voltage on the capacitor will be 

y(15ms) = 400 - 400e~15 = 310.75 V. 

Therefore, when the switch is moved to position c, 
the initial voltage on the capacitor is 310.75 V. 
With the switch in position c, the final value of 
the capacitor voltage is zero, and the time con
stant is 5 ms. Again, we use Eq. 7.59 to write the 
expression for the capacitor voltage: 

v = 0 + (310.75 - ())e-200(/-o.oi5) 

= 310.75e-20t)('-0()15>V, 15ms s i / . 

400 V ( ) L v(t)^:0AfjLF 

Figure 7.35 A The circuit for Example 7.12. 

In writing the expression for ?;, we recognized 
that r<) = 15 ms and that this expression is valid 
only for t ^ 15 ms. 

b) Figure 7.36 shows the plot of v versus t. 

c) The plot in Fig. 7.36 reveals that the capacitor 
voltage will equal 200 V at two different times: 
once in the interval between 0 and 15 ms and 
once after 15 ms. We find the first time by solving 
the expression 

200 = 400 - 400<T10,,\ 

which yields t\ = 6.93 ms. We find the second 
time by solving the expression 

200 = 310.756>-2(,0(';-°-,),5). 

In this case, u = 17.20 ms. 

v = 4()0-4()0t'",m/ 

v = 3U).75e 2m' {m5) 

t (ms) 

Figure 7.36 • The capacitor voltage for Example 7.12. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 3—Know how to analyze circuits with sequential switching 

7.7 In the circuit shown, switch 1 has been closed 
and switch 2 has been open for a long time. At 
t = 0, switch 1 is opened. Then 10 ms later, 
switch 2 is closed. Find 

a) vc(t) for 0 < f < 0.01 s, 

b) vc(t) for t > 0.01 s, 

c) the total energy dissipated in the 25 kft 
resistor, and 

d) the total energy dissipated in the 100 kO 
resistor. 

( U 60kn r = 1 0 m 

" )10mAf40kft 25kft£lAtF 

Answer: (a) 80e~40/ V; 

(b) 53.63e-5°('-a01W; 

(c) 2.91 mJ; 

(d) 0.29 mJ. 

NOTE: Also try Chapter Problems 7.71 and 7.78. 

7.8 Switch a in the circuit shown has been open for 
a long time, and switch b has been closed for a 
long time. Switch a is closed at t = 0 and, after 
remaining closed for 1 s, is opened again. 
Switch b is opened simultaneously, and both 
switches remain open indefinitely. Determine 
the expression for the inductor current i that is 
valid when ( a ) 0 s f < h and (b) t > 1 s. 

Answer: (a) (3 - 3e_a5') A, 0 < f < 1 s; 

(b) (-4.8 + 5.98tf~l-25('~1>) A, t > 1 s. 

7.6 Unbounded Response 
A circuit response may grow, rather than decay, exponentially with time. 
This type of response, called an unbounded response, is possible if the cir
cuit contains dependent sources. In that case, the Thevenin equivalent 
resistance with respect to the terminals of either an inductor or a capacitor 
may be negative. This negative resistance generates a negative time con
stant, and the resulting currents and voltages increase without limit. In an 
actual circuit, the response eventually reaches a limiting value when a 
component breaks down or goes into a saturation state, prohibiting fur
ther increases in voltage or current. 

When we consider unbounded responses, the concept of a final value 
is confusing. Hence, rather than using the step response solution given in 
Eq. 7.59, we derive the differential equation that describes the circuit con
taining the negative resistance and then solve it using the separation of 
variables technique. Example 7.13 presents an exponentially growing 
response in terms of the voltage across a capacitor. 
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Example 7.13 Finding the Unbounded Response in an RC Circuit 

a) When the switch is closed in the circuit shown in 
Fig. 7.37, the voltage on the capacitor is 10 V. 
Find the expression for va for t > 0. 

b) Assume that the capacitor short-circuits when 
its terminal voltage reaches 150 V. How many 
milliseconds elapse before the capacitor short-
circuits? 

20 kn 

Figure 7.37 • The circuit for Example 7.13. 

Solution 

a) To find the Thevenin equivalent resistance with 
respect to the capacitor terminals, we use the test-
source method described in Chapter 4. Figure 7.38 
shows the resulting circuit, where vr is the test 
voltage and iT is the test current. For Vj expressed 
in volts, we obtain 

ir = TT: ~ 7(--) + —- mA. 
' 10 W 20 

Solving for the ratio Vj/ir yields the Thevenin 
resistance: 

Km = — = - 5 k n . 
iT 

With this Thevenin resistance, we can simplify 
the circuit shown in Fig. 7.37 to the one shown in 
Fig. 7.39. 

'T 

Figure 7.38 • The test-source method used to find i?Th. 

-5kO 

Figure 7.39 A A simplification of the circuit shown in 
Fig. 7.37. 

For t S: 0, the differential equation describing 
the circuit shown in Fig. 7.39 is 

(5 X 10 - 6)—^ - - r X 1()-J = 0. 
dt 5 

Dividing by the coefficient of the first derivative 
yields 

dv0 

dt 
4(h>„ = 0. 

We now use the separation of variables technique 
to find v(,(t): 

v()(t) = lOe40' V, t>0. 

b) va = 150 V when em = 15. Therefore, 40r = In 15, 
and t = 67.70 ms. 

NOTE: Assess your understanding of this material by trying Chapter Problems 7.85 and 7.87. 

The fact that interconnected circuit elements may lead to ever-
increasing currents and voltages is important to engineers. If such inter
connections are unintended, the resulting circuit may experience 
unexpected, and potentially dangerous, component failures. 

7.7 The Integrating Amplifier 
Recall from the introduction to Chapter 5 that one reason for our interest in 
the operational amplifier is its use as an integrating amplifier. We are now 
ready to analyze an integrating-amplifier circuit, which is shown in Fig. 7.40. 
The purpose of such a circuit is to generate an output voltage proportional 
to the integral of the input voltage. In Fig. 7.40, we added the branch cur
rents if and /v, along with the node voltages vn and vp, to aid our analysis. Figure 7.40 • An integrating amplifier. 



242 Response of First-Order RL and RC Circuits 

» i 

K„ -

2f, 

Figure 7.41 • An input voltage signal. 

Figure 7.42 • The output voltage of an integrating 
amplifier. 

We assume that the operational amplifier is ideal. Thus we take 
advantage of the constraints 

Because v„ = 0, 

if + is = 0, 
vn = vp. 

i = ^ -

l^^~dt 

Hence, from Eqs. 7.61,7.63, and 7.64, 

dva _ 1 

dt ~ RsCf 
vs. 

(7.61) 
(7.62) 

(7.63) 

(7.64) 

(7.65) 

Multiplying both sides of Eq. 7.65 by a differential time dt and then inte
grating from f() to t generates the equation 

Vo(0 
\ 

R<C 
vs dy + v0(t()). (7.66) 

/•/A, 

In Eq. 7.66, t() represents the instant in time when we begin the integration. 
Thus u„(?o) is the value of the output voltage at that time. Also, because 
vn = vp = 0, vo(t0) is identical to the initial voltage on the feedback 
capacitor C/. 

Equation 7.66 states that the output voltage of an integrating ampli
fier equals the initial value of the voltage on the capacitor plus an inverted 
(minus sign), scaled (l/RsCf) replica of the integral of the input voltage. If 
no energy is stored in the capacitor when integration commences, Eq. 7.66 
reduces to 

vM = -
i 

RSC 
Vs dy. (7.67) 

f A, 

If vs is a step change in a dc voltage level, the output voltage will vary lin
early with time. For example, assume that the input voltage is the rectan
gular voltage pulse shown in Fig. 7.41. Assume also that the initial value of 
va(t) is zero at the instant vs steps from 0 to Vm. A direct application of 
Eq. 7.66 yields 

v„ = 
1 

Vmt + 0, 0 < t < th (7.68) 

When t lies between t\ and 2tu 

1 
v,t = -

# s Q Jt 
{-V,n)dy -

RSC, Vmh 

RcCi 

2Vm 

Rxct 
th tL < t < 2tv (7.69) 

Figure 7.42 shows a sketch of v(,(t) versus t. Clearly, the output voltage is 
an inverted, scaled replica of the integral of the input voltage. 

The output voltage is proportional to the integral of the input voltage 
only if the op amp operates within its linear range, that is, if it doesn't sat
urate. Examples 7.14 and 7.15 further illustrate the analysis of the inte
grating amplifier. 
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Example 7.14 Analyzing an Integrating Amplifier 

Assume that the numerical values for the signal 
voltage shown in Fig. 7.41 are Vm = 50 mV and 
t\ = 1 s. This signal voltage is applied to the 
integrating-amplifier circuit shown in Fig. 7.40. The 
circuit parameters of the amplifier are Rs = 100 kfl, 
Cf = 0.1 ^iF, and Vcc = 6 V. The initial voltage on 
the capacitor is zero. 

a) Calculate va(t). 

b) Plot v()(t) versus t. 

Solution 

a) For 0 < t < 1 s, 

- 1 

" (100 X 103)(0.1 x 10"6) 

= St V, 0 < f < 1 s. 

50 X 10~3f + 0 

For 1 < t < 2 s, 

v<t = (5r - 10) V. 

b) Figure 7.43 shows a plot of v„(t) versus r. 

»„(0(V)* 

2 t{t) 

Figure 7.43 • The output voltage for Example 7.14. 

Example 7.15 Analyzing an Integrating Amplifier that has Sequential Switching 

At the instant the switch makes contact with termi
nal a in the circuit shown in Fig. 7.44, the voltage on 
the 0.1 /AF capacitor is 5 V. The switch remains at 
terminal a for 9 ms and then moves instantaneously 
to terminal b. How many milliseconds after making 
contact with terminal b does the operational ampli
fier saturate? 

Figure 7.44 • The circuit for Example 7.15. 

Solution 
The expression for the output voltage during the 
time the switch is at terminal a is 

1 

io-27o 
= (-5 + 10000 v 

( - 1 0 ) ^ 

Thus, 9 ms after the switch makes contact with ter
minal a, the output voltage is - 5 + 9, or 4 V. 

The expression for the output voltage after the 
switch moves to terminal b is 

&dy 
10"2 

9X 1()-

= 4 - 800(t - 9 X 10"3) 

= (11.2 - 8000 V. 

During this time interval, the voltage is decreas
ing, and the operational amplifier eventually satu
rates at —6 V. Therefore we set the expression for va 

equal to —6 V to obtain the saturation time ts: 

11.2 - 800/, = - 6 , 

or 

ts = 21.5 ms. 

Thus the integrating amplifier saturates 21.5 ms 
after making contact with terminal b. 
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From the examples, we see that the integrating amplifier can perform 
the integration function very well, but only within specified limits that 
avoid saturating the op amp. The op amp saturates due to the accumula
tion of charge on the feedback capacitor. We can prevent it from saturat
ing by placing a resistor in parallel with the feedback capacitor. We 
examine such a circuit in Chapter 8. 

Note that we can convert the integrating amplifier to a differentiating 
amplifier by interchanging the input resistance Rs and the feedback capac
itor Cf. Then 

va = -RSC, 
~dt 

(7.70) 

We leave the derivation of Eq. 7.70 as an exercise for you. The differentiat
ing amplifier is seldom used because in practice it is a source of unwanted 
or noisy signals. 

Finally, we can design both integrating- and differentiating-amplifier 
circuits by using an inductor instead of a capacitor. However, fabricating 
capacitors for integrated-circuit devices is much easier, so inductors are 
rarely used in integrating amplifiers. 

^ A S S E S S M E N T P R O B L E M S 

Objective 4—Be able to analyze op amp circuits containing resistors and a single capacitor 

7.9 There is no energy stored in the capacitor at 
the time the switch in the circuit makes contact 
with terminal a. The switch remains at position 
a for 32 ms and then moves instantaneously to 
position b. How many milliseconds after mak
ing contact with terminal a does the op amp 
saturate? 

7.10 a) When the switch closes in the circuit 
shown, there is no energy stored in the 
capacitor. How long does it take to saturate 
the op amp? 

b) Repeat (a) with an initial voltage on the 
capacitor of 1 V, positive at the upper 
terminal. 

40 m 

10 kO 
-AW 

40 kn 
/VW 

v„ £ 6.8 kO, 

Answer: 262 ms. 

NOTE: Also try Chapter Problems 7.95 and 7.96. 

Answer: (a) 1.11 ms; 

(b) 1.76 ms. 
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Practical Perspective 
A Flashing Light Circuit 
We are now ready to analyze the flashing light circuit introduced at the 
start of this chapter and shown in Fig. 7.45. The lamp in this circuit 
starts to conduct whenever the lamp voltage reaches a value Vmax. During 
the time the lamp conducts, i t can be modeled as a resistor whose resist
ance is RL. The lamp will continue to conduct until the lamp voltage 
drops to the value V^lin. When the lamp is not conducting, i t behaves as 
an open circuit. 

Before we develop the analytical expressions that describe the behav
ior of the circuit, let us develop a feel for how the circuit works by noting 
the following. First, when the lamp behaves as an open circuit, the dc 
voltage source will charge the capacitor via the resistor R toward a value 
of Vs volts. However, once the lamp voltage reaches Vmax, i t starts con
ducting and the capacitor will start to discharge toward the Thevenin 
voltage seen from the terminals of the capacitor. But once the capacitor 
voltage reaches the cutoff voltage of the lamp (Vmin), the lamp will act as 
an open circuit and the capacitor will start to recharge. This cycle of 
charging and discharging the capacitor is summarized in the sketch shown 
in Fig. 7.46. 

In drawing Fig. 7.46 we have chosen t = 0 at the instant the capacitor 
starts to charge. The time t0 represents the instant the lamp starts to con
duct, and tc is the end of a complete cycle. We should also mention that in 
constructing Fig. 7.46 we have assumed the circuit has reached the repeti
tive stage of its operation. Our design of the flashing light circuit requires 
we develop the equation for Vjjj) as a function of V^ax, Vj^^, Vs, R, C, and 
RL for the intervals 0 to t0 and tQ to fc. 

To begin the analysis, we assume that the circuit has been in operation 
for a long time. Let t = 0 at the instant when the lamp stops conducting. 
Thus, at t = 0, the lamp is modeled as an open circuit, and the voltage drop 
across the lamp is V^ in, as shown in Fig. 7.47. 

From the circuit, we find 

vd°°) = Vs, 
t>i,(0) = vmin, 

T = RC. 

R 
->VvV 

V. c: vL 

Lamp 

Figure 7.45 A A flashing light circuit. 

VL{t) 

y 
v max 

V • 

etc. 

Figure 7.46 • Lamp voltage versus time for the 
circuit in Fig. 7.45. 

+ 

R 

4-

vL 

Figure 7.47 A The flashing light circuit at t = 0, 
when the lamp is not conducting. 

Thus, when the lamp is not conducting, 

VL(t) = Vs + (Knin ~ Vs)e-'SRC. 

How long does i t take before the lamp is ready to conduct? We can find this 
time by setting the expression for vL(t) equal to Vmax and solving for t. I f 
we call this value t0, then 

tn = RC In 
V • - V 
ymin vs 
V — V 
Kmax ys 

When the lamp begins conducting, i t can be modeled as a resistance RL, 
as seen in Fig. 7.48. In order to find the expression for the voltage drop 

+ 

T 

R 

C^ 
+ 

^vL 1 R, 

Figure 7.48 • The flashing light circuit at t = t0 

when the lamp is conducting. 
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across the capacitor in this circuit, we need to find the Thevenin equivalent 
as seen by the capacitor. We leave to you to show, in Problem 7.106, that 
when the lamp is conducting, 

where 

and 

RRLC 

R + RL 

We can determine how Long the lamp conducts by setting the above expres
sion for vL(t) to V^,in and solving for (tc - t0), giving 

</.-&-§&£-: Knav — Vxh 

R + RL Vmin - Vi Th 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 
Problems 7.103-7.105. 

Summary 

A first-order circuit may be reduced to a Thevenin (or 
Norton) equivalent connected to either a single equiva
lent inductor or capacitor. (See page 214.) 

The natural response is the currents and voltages that 
exist when stored energy is released to a circuit that 
contains no independent sources. (See page 212.) 

The time constant of an RL circuit equals the equiva
lent inductance divided by the Thevenin resistance as 
viewed from the terminals of the equivalent inductor. 
(See page 216.) 

The time constant of an RC circuit equals the equiva
lent capacitance times the Thevenin resistance as 
viewed from the terminals of the equivalent capacitor. 
(See page 221.) 

The step response is the currents and voltages that 
result from abrupt changes in dc sources connected to a 
circuit. Stored energy may or may not be present at the 
time the abrupt changes take place. (See page 224.) 

• The solution for either the natural or step response of 
both RL and RC circuits involves finding the initial and 
final value of the current or voltage of interest and the 
time constant of the circuit. Equations 7.59 and 7.60 
summarize this approach. (See page 232.) 

• Sequential switching in first-order circuits is analyzed 
by dividing the analysis into time intervals correspon
ding to specific switch positions. Initial values for a par
ticular interval are determined from the solution 
corresponding to the immediately preceding interval. 
(See page 236.) 

• An unbounded response occurs when the Thevenin 
resistance is negative, which is possible when the 
first-order circuit contains dependent sources. (See 
page 240.) 

• An integrating amplifier consists of an ideal op amp, a 
capacitor in the negative feedback branch, and a resis
tor in series with the signal source. It outputs the inte
gral of the signal source, within specified limits that 
avoid saturating the op amp. (See page 241.) 
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Section 7.1 

7.1 In the circuit in Fig. P7.1, the voltage and current 
expressions are 

v = 160e - l l , 'V, ; > 0 + ; 

i = 6.4e"10' A, t s 0. 

Find 
a) R. 
b) T (in milliseconds). 
c) L. 
d) the initial energy stored in the inductor. 
e) the time (in milliseconds) it takes to dissipate 

60% of the initial stored energy. 

Figure P7.1 

L F » | 

1 
ll< 

7.2 a) Use component values from Appendix H to create 
a first-order RL circuit (see Fig. 7.4) with a time 
constant of 1 ms. Use a single inductor and a net
work of resistors, if necessary. Draw your circuit. 

b) Suppose the inductor you chose in part (a) has 
an initial current of 10 mA. Write an expression 
for the current through the inductor for t s 0. 

c) Using your result from part (b), calculate the 
time at which half of the initial energy stored in 
the inductor has been dissipated by the resistor. 

7.3 The switch in the circuit in Fig. P7.3 has been open 
PSPICE for a long time. At t = 0 the switch is closed. 

a) Determine /„(0+) and ia{oo). 

b) Determine /,,(0 for t > 0+. 

c) How many milliseconds after the switch has been 
closed will the current in the switch equal 3 A? 

Figure P7.3 

125 V 

5(1 ion 

J* / = () 

2012 

!50mH 

is n 

7.4 The switch in the circuit in Fig. P7.4 has been closed 
PSPICE for a long time before opening at t = 0. 

MULnSIM a) Find i^CT) and /2(0 ). 

b) Find /,(0+) and /2(0+). 

c) Find i^t) for t > 0. 
d) Find i2{t) for t > 0+. 

e) Explain why /2(0) ^ h(®+)-

Figure P7.4 

500 n 

40 V 400 mH 

7.5 The switch shown in Fig. P7.5 has been open a long 
time before closing at t = 0. 

a) Find/o(0~). 

b) Find /L(0"). 

c) Find/f)(0+). 

d) Find iL(0+). 

e) Findi(X°°). 

f) Find//.(00). 

g) Write the expression for iL(t) for t > 0. 

h) Find vL(0~). 

i) Findv/.(0+). 

j) Find «L(oo). 

k) Write the expression for vL(t) for t S: 0+. 

1) Write the expression for i0(t) for t 2: 0+. 

Figure P7.5 

12V 

7.6 The switch in the circuit in Fig. P7.6 has been closed a 
PSPICE long time. At t = 0 it is opened. Find i0(t) for t ^ 0. 

Figure P7.6 

r = 0 
1.5 H V 12.45 0 

AA/V-

0.5 H ^54Q ^26(1 

V A r 

212 10 ft 
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7.7 In the circuit shown in Fig. P7.7, the switch makes 
contact with position b just before breaking contact 
with position a. As already mentioned, this is 
known as a make-before-break switch and is 
designed so that the switch does not interrupt the 
current in an inductive circuit. The interval of time 
between "making" and "breaking" is assumed to be 
negligible. The switch has been in the a position for 
a long time. At / = 0 the switch is thrown from posi
tion a to position b. 

a) Determine the initial current in the inductor. 

b) Determine the time constant of the circuit 
for t > 0. 

c) Find i, vh and v2 for f > 0. 

d) What percentage of the initial energy stored in 
the inductor is dissipated in the 72 fi resistor 
15 ms after the switch is thrown from position a 
to position b? 

Figure P7.7 

4 a 

24 V 
72 f 1 k v2 

80 
-AA/V-

1.6H f-'i 

7.8 The switch in the circuit seen in Fig. P7.8 has been 
in position 1 for a long time. At t — 0, the switch 
moves instantaneously to position 2. Find the value 
of R so that 10% of the initial energy stored in the 
10 mH inductor is dissipated in R in 10 jits. 

Figure P7.8 

7.9 In the circuit in Fig. P7.8, let Ig represent the dc cur
rent source, a represent the fraction of initial 
energy stored in the inductor that is dissipated in t(y 

seconds, and L represent the inductance. 

a) Show that 

7.10 In the circuit in Fig. P7.10, the switch has been 
closed for a long time before opening at t = 0. 

a) Find the value of L so that v0{t) equals 0.5 vo(0+) 
when t = \ ms. 

b) Find the percentage of the stored energy that 
has been dissipated in the 10 fi resistor when 
t = 1 ms. 

Figure P7.10 

3 0 m A M 

9kO 

t = 0 

i k a 

+ 

IO a V,AL 

7.11 In the circuit shown in Fig. P7.ll , the switch has 
PSPICE been in position a for a long time. At t — 0, it moves 

MULTISIM instantaneously from a to b. 

a) Find ia(t) for t > 0. 

b) What is the total energy delivered to the 8 fi 
resistor? 

c) How many time constants does it take to deliver 
95% of the energy found in (b)? 

Figure P7. l l 

30 a a)< 

X 
© 1 2 A ] 

' 1 

risoa 

• 

y? = o k 1 
< 8 mH < 

— © it 1 

2mH 

7.12 The switch in the circuit in Fig. P7.12 has been in 
PSPICE position 1 for a long time. At t - 0, the switch moves 

MULTISIM instantaneously to position 2. Find v0(t) for t > 0+. 

Figure P7.12 

12 a 
AAA-

1 4a 
-vw-

72 mH 

240 V 40a 10a: 
6a 

7.13 For the circuit of Fig. P7.12, what percentage of the 
initial energy stored in the inductor is eventually 
dissipated in the 40 O, resistor? 

R = 
L l n [ l / ( l - c r ) ] 

2f„ 

b) Test the expression derived in (a) by using it to 
find the value of R in Problem 7.8. 

7.14 The switch in Fig. P7.14 has been closed for a long 
time before opening at t = 0. Find 

a) iL(t), t > 0. 

b) vL(t), t > 0+. 

c) Ut), t > 0+. 

http://P7.ll
http://P7.ll
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Figure P7.18 

t=Q 204 o 
'A 

120V ^ a n 2 5 0 m H i " / 100a: 60 a: 

7.15 What percentage of the initial energy stored in the 
inductor in the circuit in Fig. P7.14 is dissipated by 
the 60 Q, resistor? 

7.16 The switch in the circuit in Fig. P7.16 has been 
PSPICE closed for a long time before opening at t = 0. Find 

MULT,SIM v0(t) for r > 0 + . 

Figure P7.16 

7.17 The 240 V, 2 ft source in the circuit in Fig. P7.17 is 
PSPICE inadvertently short-circuited at its terminals a,b. At 

1 the time the fault occurs, the circuit has been in 
operation for a long time. 

a) What is the initial value of the current /ah in the 
short-circuit connection between terminals a,b? 

b) What is the final value of the current /ab? 

c) How many microseconds after the short circuit 
has occurred is the current in the short equal 
to 114 A? 

Figure P7.17 

240 V 

15 n 

6mH 

7.18 The two switches in the circuit seen in Fig. P7.18 are 
synchronized. The switches have been closed for a 
long time before opening at t = 0. 

a) How many microseconds after the switches are 
open is the energy dissipated in the 4 kO, resis
tor 10% of the initial energy stored in the 6 H 
inductor? 

b) At the time calculated in (a), what percentage of 
the total energy stored in the inductor has been 
dissipated? 

t = (). / = 0. 

7.19 The two switches shown in the circuit in Fig. P7.19 
PSPICE operate simultaneously. Prior to t = 0 each switch 

has been in its indicated position for a long time. At 
t — 0 the two switches move instantaneously to 
their new positions. Find 

a) v0(t),t>Q\ 

b) i0(t), t > 0. 

Figure P7.19 

I J2A | l 0 O 3l0H % it><6H 

7.20 For the circuit seen in Fig. P7.19, find 

a) the total energy dissipated in the 7.5 kfl resistor. 

b) the energy trapped in the ideal inductors. 

Section 7.2 

7.21 In the circuit in Fig. P7.21 the voltage and current 
expressions are 

v = 72e"500' V, t > 0; 

i = 9e~500' mA, t > 0+. 

Find 

a) R. 

b) C. 

c) r (in milliseconds). 

d) the initial energy stored in the capacitor. 

e) how many microseconds it takes to dissipate 
68% of the initial energy stored in the capacitor. 

Figure P7.21 

i 
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7.22 a) Use component values from Appendix H to cre
ate a first-order RC circuit (see Fig. 7.11) with a 
time constant of 50 ms. Use a single capacitor 
and a network of resistors, if necessary. Draw 
your circuit. 

b) Suppose the capacitor you chose in part (a) has an 
initial voltage drop of 50 V. Write an expression for 
the voltage drop across the capacitor for t a 0. 

c) Using you result from part (b), calculate the 
time at which the voltage drop across the capac
itor has reached 10 V. 

7.23 The switch in the circuit in Fig. P7.23 has been in 
position a for a long time and v2 — 0 V. At t = 0, 
the switch is thrown to position b. Calculate 

a) i, vh and v2 for t a 0+. 

b) the energy stored in the capacitor at t = 0. 

c) the energy trapped in the circuit and the total 
energy dissipated in the 25 kfl resistor if the 
switch remains in position b indefinitely. 

Figure P7.23 

40 V 

3.3 kO a b 25 kH 

1 /xF 

+ - +. 
t = i) 

tfj 4 /xF 

X 

PSPICE 

MULTISIM 

7.24 The switch in the circuit in Fig. P7.24 is closed at 
t = 0 after being open for a long time. 

a) Find /^0") and /2(0~). 

b) Find /,.(0+) andj2(0+). 

c) Explain why ^(0 -) = fj(0+). 

d) Explain why /2(0") * /2(0+). 

e) Find it(t) for t > 0. 

f) Find i2(t) for t > 0+ . 

Figure P7.24 

100 raA 2/JLF 

7.25 In the circuit shown in Fig. P7.25, both switches 
operate together; that is, they either open or close at 
the same time. The switches are closed a long time 
before opening at t = 0. 

a) How many microjoules of energy have been 
dissipated in the 12 kfl resistor 12 ms after the 
switches open? 

b) How long does it take to dissipate 75% of the 
initially stored energy? 

Figure P7.25 

r = 0 
1.8 kfl 

t = 0 

7.26 Both switches in the circuit in Fig. P7.26 have been 
PSPICE closed for a long time. At t = 0, both switches open 

MULTISIM , . , 

simultaneously. 

a) Find ia{t) for t a ()+. 

b) Find vjf) for t > 0. 

c) Calculate the energy (in microjoules) trapped in 
the circuit. 

Figure P7.26 

/ = () 

P>V 
f J40mA \ 6 kfl 

1 kfi 
-vw 

t= 0 

300 nF ",-: 

X 
:600nF3kl2 

7.27 After the circuit in Fig. P7.27 has been in operation 
PSPICE for a long time, a screwdriver is inadvertently con

nected across the terminals a,b. Assume the resist
ance of the screwdriver is negligible. 

a) Find the current in the screwdriver at t = 0+ and 
t = co. 

b) Derive the expression for the current in the 
screwdriver for t a 0+. 

Figure P7.27 

30 O 

7.28 The switch in the circuit seen in Fig. P7.28 has been 
in position x for a long time. At t = 0, the switch 
moves instantaneously to position y. 

a) Find a so that the time constant for t > 0 is 
40 ms. 

b) For the a found in (a), find %, 
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Figure P7.28 

20 kft 

7.29 a) In Problem 7.28, how many microjoules of 
energy are generated by the dependent current 
source during the time the capacitor discharges 
toOV? 

b) Show that for t s 0 the total energy stored and 
generated in the capacitive circuit equals the 
total energy dissipated. 

7.30 The switch in the circuit in Fig. P7.30 has been in 
PSPICE position 1 for a long time before moving to posi-

MULTI5,M tion 2 at t = 0. Find i0(t) for t s 0+. 

c) Find vx{t) for t > 0. 

d) Find v2(t) for t > 0. 

e) Find the energy (in millijoules) trapped in the 
ideal capacitors. 

Figure P7.32 

2/xF 

y<>*250kfi 

Section 7.3 

Figure P7.30 

PSPICE 

MULTISIM 

4.7 kO 1 
-AAA. •< \^ 

Q,v 
r- /̂ = 0 

15(1 

5 i0 

O 
"T 

2/JJF 

7.31 At the time the switch is closed in the circuit in 
Fig. P7.31, the voltage across the paralleled capaci
tors is 50 V and the voltage on the 250 nF capacitor 
is 40 V. 

a) What percentage of the initial energy stored in 
the three capacitors is dissipated in the 24kfl 
resistor? 

b) Repeat (a) for the 400 il and 16 kft resistors. 

c) What percentage of the initial energy is trapped 
in the capacitors? 

Figure P7.31 

250 nF 

1(-
400 n 

<T> SU V < " 

+ 4 0 V - f _ 0 

+ 24kfi£l6kO 
200 n F ^ 50 V ^SOOnF 

7.32 At the time the switch is closed in the circuit shown 
in Fig. P7.32, the capacitors are charged as shown. 

a) Find v()(t) for t > 0+. 

b) What percentage of the total energy initially 
stored in the three capacitors is dissipated in the 
250 kO resistor? 

7.33 The current and voltage at the terminals of the 
inductor in the circuit in Fig. 7.16 are 

i(t) = (4 + 4<r40f) A, t > 0; 

v(t) = -80e - 4 0 ' V, t > 0+ . 

a) Specify the numerical values of Vs, JR, 7f>, and L. 

b) How many milliseconds after the switch has 
been closed does the energy stored in the induc
tor reach 9 J? 

7.34 a) Use component values from Appendix H to 
create a first-order RL circuit (see Fig. 7.16) 
with a time constant of 8 fis. Use a single induc
tor and a network of resistors, if necessary. 
Draw your circuit. 

b) Suppose the inductor you chose in part (a) has 
no initial stored energy. At t = 0, a switch con
nects a voltage source with a value of 25 V in 
series with the inductor and equivalent resist
ance. Write an expression for the current 
through the inductor for t > 0. 

c) Using your result from part (b), calculate the 
time at which the current through the inductor 
reaches 75% of its final value. 

7.35 The switch in the circuit shown in Fig. P7.35 has 
PSPICE been closed for a long time before opening at t - 0. 

MULTISIM 

a) Find the numerical expressions for iL{t) and 
v0(t) for f > 0. 

b) Find the numerical values of vL(0+) and v0(Q
+). 
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Figure P7.35 

5 A 

7.36 After the switch in the circuit of Fig. P7.36 has been 
open for a long time, it is closed at t = 0. Calculate 
(a) the initial value of /; (b) the final value of /; 
(c) the time constant for t > 0; and (d) the numeri
cal expression for /(/) when t & 0. 

20 \a 

Figure P7.36 

150 V 

7.37 The switch in the circuit shown in Fig. P7.37 has 
PSPICE been in position a for a long time. At t - 0, the 

switch moves instantaneously to position b. 

a) Find the numerical expression for /„(/) when 
t > 0. 

b) Find the numerical expression for v0{t) for 
/ s 0+. 

Figure P7.37 

© 5OA fsft 

12()0 

ion 
^VW-

1W40O 40 mH-
800 V 

7.38 a) Derive Eq. 7.47 by first converting the Thevenin 
equivalent in Fig. 7.16 to a Norton equivalent 
and then summing the currents away from the 
upper node, using the inductor voltage v as the 
variable of interest. 

b) Use the separation of variables technique to find 
the solution to Eq. 7.47. Verify that your solution 
agrees with the solution given in Eq. 7.42. 

7.39 The switch in the circuit shown in Fig. P7.39 has 
been closed for a long time. The switch opens at 
t = 0. For t > 0+: 

a) Find va(t) as a function of Ig, Rh R2, and L. 

b) Explain what happens to v0(t) as R2 gets larger 
and larger. 

c) Find v s w as a function of Ig, Rh R2, and L. 

d) Explain what happens to v s w as R2 gets larger 
and larger. 

Figure P7.39 

7< 
/ = 0 

R2 

+ y»w -

Ri 

i 

L j 17,,(/) 

7.40 The switch in the circuit in Fig. P7.40 has been 
closed for a long time. A student abruptly opens the 
switch and reports to her instructor that when the 
switch opened, an electric arc with noticeable per
sistence was established across the switch, and at 
the same time the voltmeter placed across the coil 
was damaged. On the basis of your analysis of the 
circuit in Problem 7.39, can you explain to the stu
dent why this happened? 

Figure P7.40 

7.41 The switch in the circuit in Fig. P7.41 has been 
PSPICE open a long time before closing at t = 0. Find vJt) 

MULTISIM r , ^ r>+ 

for t > 0 . 

Figure P7.41 

ion 5 a 
f — W v - £ / = 0 

\ J20mA115Q i>„j4mH J 8 0 9/A(f)50mA( | 

7.42 The switch in the circuit in Fig. P7.42 has been open a 
PSPICE | o n g t j m e before c io s ing at t = 0. Find /,,(/) for / & 0. 

MULTISIM ° 

Figure P7.42 

80 mH 

is n 

20 ft 
/yyV-
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7.43 The switch in the circuit in Fig. P7.43 has been 
PSPICE open a long time before closing at t = 0. Find v(>(t) 

MULTISIM for t a ( ) + 

Figure P7.43 

Figure P7.46 

15 A 

50 V 1.5 H v„ > 40 a 

7,47 For the circuit in Fig. P7.46, find (in joules): 

a) the total energy dissipated in the 40 ft resistor; 

b) the energy trapped in the inductors; 

c) the initial energy stored in the inductors. 

7.44 There is no energy stored in the inductors L\ and L2 

at the time the switch is opened in the circuit shown 
in Fig. P7.44. 

a) Derive the expressions for the currents tj(f) and 
i2(t) for t ^ 0. 

b) Use the expressions derived in (a) to find /'i(oo) 
and i2{oo). 

Figure P7.44 

f = 0 
R„ *"i(0|Ui hi') \ 1L2 

PSPICE 

MULTISIM 

7.45 The make-before-break switch in the circuit of 
Fig. P7.45 has been in position a for a long time. At 
t = 0, the switch moves instantaneously to posi
tion b. Find 

a) va(t), t > 0+. 

b) 4(0 , t 

c) i2(t), t 

0. 

0. 

Figure P7.45 

50 mA 

7.46 The switch in the circuit in Fig. P7.46 has been in 
PSPICE position 1 for a long time. At t = 0 it moves instan-

IULTISIM taneously to position 2. How many milliseconds 
after the switch operates does v0 equal 100 V? 

7.48 The current and voltage at the terminals of the 
capacitor in the circuit in Fig. 7.21 are 

/(0 = 3e-2500' mA, t > 0+ ; 

v(t) = (40 - 24eT25(K,0 V, t > 0. 

a) Specify the numerical values of Is, V0, R, C, 
and T. 

b) How many microseconds after the switch has 
been closed does the energy stored in the capac
itor reach 81 % of its final value? 

7.49 a) Use component values from Appendix H to cre
ate a first-order RC circuit (see Fig. 7.21) with a 
time constant of 250 ms. Use a single capacitor 
and a network of resistors, if necessary. Draw 
your circuit. 

b) Suppose the capacitor you chose in part (a) has an 
initial voltage drop of 100 V. At t = 0, a switch con
nects a current source with a value of 1 mA in par
allel with the capacitor and equivalent resistance. 
Write an expression for the voltage drop across 
the capacitor for t 2: 0. 

c) Using your result from part (b), calculate the 
time at which the voltage drop across the capici-
tor reaches 50 V. 

7.50 The switch in the circuit shown in Fig. P7.50 has 
been closed a long time before opening at t = 0. 

a) What is the initial value of /(,(0? 

b) What is the final value of /„(r)? 

c) What is the time constant of the circuit for t 2: 0? 

d) What is the numerical expression for i0{t) when 
t > 0+? 

e) What is the numerical expression for va(t) when 
t > 0+? 

PSPICE 

MULTISIM 
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Figure P7.50 

40 V 

7.54 

3.2 Ml PSPICE 

MUITISIM 

The switch in the circuit seen in Fig. P7.54 has been 
in position a for a long time. At t = 0, the switch 
moves instantaneously to position b. Find va(t) and 
i0{t) for t > 04. 

0.8 ^F 
Figure P7.54 

7.51 The switch in the circuit shown in Fig. P7.51 has 
PSPICE been closed a long time before opening at t = 0. 

MULHSIM F o r f >0
+,find 

30 Ml I }'„(') 

10 raA © 

Figure 

a) 

b) 

c) 

v0(t). 

ao-
k(t). 

d) /2(0-
e) 

P7.5: 

h(0+). 

[ 

50 kO 

+ 
20 kn 

16 nF 

7.55 Assume that the switch in the circuit of Fig. P7.55 
has been in position a for a long time and that at 
t = 0 it is moved to position b. Find (a) vc(0

+); 
(b) Vc(oo); (c) r fo r r > 0; (d) /(0+); (e) vCi t > 0; 
and (f) i, t > 0+. 

500 nF 

7.52 The switch in the circuit seen in Fig. P7.52 has been in 
PSPICE position a for a long time. At t = 0, the switch moves 

MULTISIM instantaneously to position b. For / > 0+, find 

a) v0(t). 

b) /,,(0-
c) t>g(f). 

d) ^ (0 + ) . 

Figure P7.55 

400 M . 

50 V 

/ | vc~25nF 'i -^T^< 

30 V 

Figure P7.52 

lOkfi \ / 12.5 kO 
-#v/ = 0/« *AV-

^ b /,,(0 

7.56 The switch in the circuit of Fig. P7.56 has been in 
position a for a long time. At i = 0 the switch is 
moved to position b. Calculate (a) the initial voltage 
on the capacitor; (b) the final voltage on the capaci
tor; (c) the time constant (in microseconds) for 
t > 0; and (d) the length of time (in microseconds) 
required for the capacitor voltage to reach zero 
after the switch is moved to position b. 

120 V 
40 nF: 

+ 150 k £ l | 5 0 m i vH(t)( I )4 mA Figure P7.56 

io kn 
'WW 

7.53 The circuit in Fig. P7.53 has been in operation for a 
PSPICE i o ng tjme. At t = 0, the voltage source reverses 

polarity and the current source drops from 3 mA to 
2 mA. Find va(t) for t £2 0. 

Figure P7.53 

10 kn 

1.5 mA 

4kn 

7.57 The switch in the circuit in Fig. P7.57 has been in 
PSPICE position a for a long time. At t = 0, the switch 

1 moves instantaneously to position b. At the instant 
the switch makes contact with terminal b, switch 2 
opens. Find va{t) for t a 0. 
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7.58 
PSPICE 

MULTISIM 

The switch in the circuit shown in Fig. P7.58 has 
been in the OFF position for a long time. At t = 0, 
the switch moves instantaneously to the ON posi
tion. Find va(t) for t >: 0. 

Figure P7.58 

6kO 
30 X 10¾ 

20 kO 

7.59 Assume that the switch in the circuit of Fig. P7.58 
PSPICE has been in the ON position for a long time before 

MULTISIM switching instantaneously to the OFF position at 
t = 0. Find va(t) for t > 0. 

7.60 The switch in the circuit shown in Fig. P7.60 opens at 
PSPICE t = o after being closed for a long time. How many 

milliseconds after the switch opens is the energy 
stored in the capacitor 36% of its final value? 

7.61 a) Derive Eq. 7.52 by first converting the Norton 
equivalent circuit shown in Fig. 7.21 to aThevenin 
equivalent and then summing the voltages around 
the closed loop, using the capacitor current i as the 
relevant variable. 

b) Use the separation of variables technique to find 
the solution to Eq. 7.52. Verify that your solution 
agrees with that of Eq. 7.53. 

7.62 There is no energy stored in the capacitors Cx and 
Ci at the time the switch is closed in the circuit seen 
in Fig. P7.62. 

a) Derive the expressions for V\{t) and v2(/) for 
t > 0. 

b) Use the expressions derived in (a) to find Vi(°o) 
and v2(°°). 

7.63 The switch in the circuit in Fig. P7.63 has been in 
position x for a long time. The initial charge on the 
10 nF capacitor is zero. At t = 0, the switch moves 
instantaneously to position y. 

a) Find v0{t) for t > 0+. 

b) Find vx{t) for t > 0. 

Figure P7.63 

10 nF 

^£250kfl 

7.64 The switch in the circuit of Fig. P7.64 has been in 
pspi« position a for a long time. At t = 0, it moves instan-

WLTISIM t a n e o u s | y t o position b. For t > 0+, find 

a) va(t). 

b) i()(t). 

c) Vl(t). 

d) v2(t). 

e) the energy trapped in the capacitors as t —* oo. 

Figure P7.64 

2.2 k f i 
—>VW- ^ 

/ b 6.25 Ml 
m 'VW— 

40 V 6 0.2 fxF 

0.8 /xF 

/ = 0 

+ + 

+ <',. 

Qsov 

Figure P7.60 

120 /xA C\j 33 kfl k / V 47 kO i 25/b U ) 16 kD.i 0.25 /xF 
/ - 0 

• • 
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Section 7.4 

7.65 Repeat (a) and (b) in Example 7.10 if the mutual 
inductance is reduced to zero. 

7.66 There is no energy stored in the circuit in Fig. P7.66 
PSPICE at the time the switch is closed. 

MULTISIM 

a) Find /(/) for t > 0. 

b) Find v^t) for t > 0+. 

c) Find v2(t) for t > 0. 
d) Do your answers make sense in terms of known 

circuit behavior? 

Figure P7.66 

80 V 

Figure P7.69 

250 O 

10 V 

Section 7.5 

7.70 In the circuit in Fig. P7.70, switch A has been open 
PSPICE and switch B has been closed for a long time. At 

t = 0, switch A closes. Five seconds after switch A 
closes, switch B opens. Find iL{t) for t a 0. 

Figure P7.70 

5 
• A W 

t = 5s 

*—T—v\—r 
iL(t) 

10 V :5H 

7.67 Repeat Problem 7.66 if the dot on the 10 H coil is at 
PSPICE the top of the coil. 

MULTISIM 

7.68 There is no energy stored in the circuit of Fig. P7.68 
at the time the switch is closed. 

a) Find i0{t) for t > 0. 

b) Find v0(t) for t > 0+ . 

c) Find /, (r) for/ a 0. 

d) Find i2{t) for t > 0. 

e) Do your answers make sense in terms of known 
circuit behavior? 

Figure P7.68 

80 V 10 H 

7.69 There is no energy stored in the circuit in Fig. P7.69 
PSPICE at the time the switch is closed. 

WUTSIM 

a) Find ia(t) for t > 0. 

b) Find v0(t) for t > 0+. 

c) Find i^t) for t > 0. 

d) Find /2(f) for t > 0. 

e) Do your answers make sense in terms of known 
circuit behavior? 

7.71 The action of the two switches in the circuit seen in 
PSPICE Fig. P7.71 is as follows. For t < 0, switch 1 is in posi

tion a and switch 2 is open. This state has existed for 
a long time. At t = 0, switch 1 moves instanta
neously from position a to position b, while switch 2 
remains open. Ten milliseconds after switch 1 oper
ates, switch 2 closes, remains closed for 10 ms and 
then opens. Find vjt) 25 ms after switch 1 moves to 
position b. 

Figure P7.71 

0+ 10 ms-

7.72 For the circuit in Fig. P7.71, how many milliseconds 
after switch 1 moves to position b is the energy 
stored in the inductor 4% of its initial value? 

7.73 
PSPICE 

MULTISIM 

The switch in the circuit shown in Fig. P7.73 has 
been in position a for a long time. At t = 0, the 
switch is moved to position b, where it remains for 
1 ms. The switch is then moved to position c, where 
it remains indefinitely. Find 

a) /(0+). 

b) /(200/AS). 

c) /(6 ms). 

d) -y(l"ms). 

e) -y(l+ms). 
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Figure P7.73 

20 A ( f ) 4 0 a H 8 0 m H 

7.74 There is no energy stored in the capacitor in the cir-
PSPICE c u i t in Fig. P7.74 when switch 1 closes at t = 0. Ten 

microseconds later, switch 2 closes. Find va{t) for 
t > 0. 

Figure P7.74 

r^rrA 16 kfl 

30 V 

7.75 The capacitor in the circuit seen in Fig. P7.75 has 
PSPICE been charged to 300 V. At t = 0, switch 1 closes, 

causing the capacitor to discharge into the resistive 
network. Switch 2 closes 200/ ts after switch 1 
closes. Find the magnitude and direction of the cur
rent in the second switch 300 /AS after switch 1 
closes. 

Figure P7.75 

60 kfl 

300 V 

40 kfl 

7.76 In the circuit in Fig. P7.76, switch 1 has been in posi
tion a and switch 2 has been closed for a long time. 
At t = 0, switch 1 moves instantaneously to posi
tion b. Eight hundred microseconds later, switch 2 
opens, remains open for 300 tts, and then recloses. 
Find va 1.5 ms after switch 1 makes contact with 
terminal b. 

Figure P7.76 

a 1 

7.5mA( M l O k a J v„ 

0 + 800 /.is 
2 Ml ^ 2 

-^vw— 
r = 0 
500 nF: 

Ml 

^ 
0 + 1.1 ms 

3 kfl 

7.77 For the circuit in Fig. P7.76, what percentage of the 
PSPICE initial energy stored in the 500 nF capacitor is dissi-

MumsiM pated in the 3 k f l resistor? 

7.78 The switch in the circuit in Fig. P7.78 has been in 
PSPICE position a for a long time. Alt = 0, it moves instan

taneously to position b, where it remains for five 
seconds before moving instantaneously to position 
c. Find va for t ^ 0. 

Figure P7.78 

100 kfl 

7.79 The voltage waveform shown in Fig. P7.79(a) is 
PSPICE applied to the circuit of Fig. P7.79(b). The initial 

mTISIM current in the inductor is zero. 

a) Calculate v(,(t). 

b) Make a sketch of v0(t) versus t. 

c) Find i() at t = 5 ms. 

Figure P7.79 

%(V) 

80 
20 fl 

!40mH v, 

2.5 t (ms) 

(a) (b) 

7.80 The current source in the circuit in Fig. P7.80(a) 
PSPICE generates the current pulse shown in Fig. P7.80(b). 

HULTISIH T h e r e j s n o e n e r g y stored at t = 0. 

a) Derive the numerical expressions for v(>(t) for 
the time intervals / < 0, 0 < t < 75 /AS, and 
75 /ts < t < oo. 

b) Calculate va (75" /AS) and v0 (75+ /AS). 

c) Calculate ia (75~ tis) and i0 (75+ /AS). 

Figure P7.80 

is (mA) 

25 

if \ ) 2 kfl J 9,, j250mH 

75 t(fjs) 

(b) 
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7.81 The voltage waveform shown in Fig. P7.81(a) is 
PSPICE applied to the circuit of Fig. P7.81 (b). The initial 

voltage on the capacitor is zero. 

a) Calculate v0{t). 

b) Make a sketch of v()(t) versus t. 

d) Sketch ia{t) versus t for the interval 
- 1 ms < t < 4 ms. 

e) Sketch va(t) versus t for the interval 
- 1 ms < t < 4 ms. 

Figure P7.81 

vs (V) 
50 

10 nF 

i\ 400 kft 

1 t (ms) 

(a) (b) 

Figure P7.83 

L (inA) 

20 
0.2 /xF 

(a) 
0 2 /(ms) 

(b) 

7.82 The voltage signal source in the circuit in Fig. P7.82(a) 
PSPICE is generating the signal shown in Fig. P7.82(b).There is 
mnm no stored energy at f = 0. 

a) Derive the expressions for v0{t) that apply in the 
intervals t < 0; 0 < t < 4 ms; 4 ms < t < 8 ms; 

and 8 ms < t < oo. 

b) Sketch va and vs on the same coordinate axes. 

c) Repeat (a) and (b) with R reduced to 50 kfi. 

Figure P7.82 

R = 200 kO 
AM, 

25 nF: 

(a) 

»,00 

100 

0 

tooh 

t (ms) 

(b) 

7.83 The current source in the circuit in Fig. P7.83(a) 
PSPICE generates the current pulse shown in Fig. P7.83(b). 

mnsiM T h e r e i s Q O e n e r g y s t o r e d a t t = Q 

a) Derive the expressions for i0(t) and v0(t) for the 
time intervals / < 0 ; 0 < r < 2 ms; and 
2 ms < t < oo. 

b) Calculate io(0~); io(0
+); /o(0.002"); and 

/;/0.002+). 

c) Calculate vQ(0~); vo(0
+); t?o(0.002~); and 

^(0.002+). 

Section 7.6 

7.84 The capacitor in the circuit shown in Fig. P7.84 is 
PSPICE charged to 20 V at the time the switch is closed. If 

the capacitor ruptures when its terminal voltage 
equals or exceeds 20 kV, how long does it take to 
rupture the capacitor? 

Figure P7.84 

7.85 The switch in the circuit in Fig. P7.85 has been 
PSPICE closed for a long time. The maximum voltage rating 

mns,M of the 1.6 ^ F capacitor is 14.4 kV. How long after 
the switch is opened does the voltage across the 
capacitor reach the maximum voltage rating? 

Figure P7.85 

PSPICE 

MULTISIM 

7.86 The inductor current in the circuit in Fig. P7.86 is 
25 mA at the instant the switch is opened. The 
inductor will malfunction whenever the magnitude 
of the inductor current equals or exceeds 5 A. How 
long after the switch is opened does the inductor 
malfunction? 
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Figure P7.86 

10 H 

Figure P7.88 

4kO 

7.87 The gap in the circuit seen in Fig. P7.87 will arc over 
PSPICE whenever the voltage across the gap reaches 45 kV. 

The initial current in the inductor is zero. The value 
of /3 is adjusted so the Thevenin resistance with 
respect to the terminals of the inductor is —5 kO. 

a) What is the value of /3? 

b) How many microseconds after the switch has 
been closed will the gap arc over? 

Figure P7.87 

5kft 
^VW-

i = 0 

140V 20 kO i /3/,, ( f ) i 200 mH *Gap 

7.88 The circuit shown in Fig. P7.88 is used to close the 
switch between a and b for a predetermined length 
of time. The electric relay holds its contact arms 
down as long as the voltage across the relay coil 
exceeds 5 V. When the coil voltage equals 5 V, the 
relay contacts return to their initial position by a 
mechanical spring action. The switch between a and 
b is initially closed by momentarily pressing the 
push button. Assume that the capacitor is fully 
charged when the push button is first pushed down. 
The resistance of the relay coil is 25 kO, and the 
inductance of the coil is negligible. 

a) How long will the switch between a and b 
remain closed? 

b) Write the numerical expression for i from the 
time the relay contacts first open to the time the 
capacitor is completely charged. 

c) How many milliseconds (after the circuit 
between a and b is interrupted) does it take the 
capacitor to reach 85% of its final value? 

Push button 

2/JLF 

Section 7.7 

7.89 The voltage pulse shown in Fig. P7.89(a) is applied 
PSPICE to the ideal integrating amplifier shown in 

Fig. P7.89(b). Derive the numerical expressions for 
v(>(t) when vo(0) = 0 for the time intervals 

a) t < 0. 

b) 0 < t < 250 ms. 

c) 250 ms < t < 500 ms. 

d) 500 ms < t < oo. 

Figure P7.89 
vg (mV) 

200 

0 

-200 

250 500 t(ms) 

(a) 

400 nF 

(b) 

7.90 Repeat Problem 7.89 with a 5 Mft resistor placed 
PSPICE across the 400 nF feedback capacitor. 

MULTIS1M 
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7.91 The energy stored in the capacitor in the circuit 
PSPICE shown in Fig. P7.91 is zero at the instant the switch 

is closed. The ideal operational amplifier reaches 
saturation in 15 ms. What is the numerical value of 
R in kilo-ohms? 

Figure P7.91 

7.92 A t the instant the switch is closed in the circuit of 
PSPICE Fig. P7.91, the capacitor is charged to 6 V, positive at 

HULTISIM t h e right-hand terminal. If the ideal operational 
amplifier saturates in 40 ms, what is the value of /?? 

7.93 The voltage source in the circuit in Fig. P7.93(a) is 
PSPICE generating the triangular waveform shown in 

MULTISIM F i g P 7 9 3 ( b ) Assume the energy stored in the 
capacitor is zero at t = 0 and the op amp is ideal. 
a) Derive the numerical expressions for va{t) for 

the following time intervals: 0 < t < 1 /xs; 
1 /xs < / < 3 /xs; and 3 /xs ^ t ^ 4 /xs. 

b) Sketch the output waveform between 0 and 4 /xs. 

c) If the triangular input voltage continues to repeat 
itself for t > 4 /xs, what would you expect the 
output voltage to be? Explain. 

Figure P7.93 

800 pF 

7.94 There is no energy stored in the capacitors in the 
PSPICE c i r c u i t shown in Fig. P7.94 at the instant the two 

MULTISIM . , , » i • • , 

switches close. Assume the op amp is ideal. 
a) Find v() as a function of v&, vb, R, and C. 

b) On the basis of the result obtained in (a), 
describe the operation of the circuit. 

c) How long will it take to saturate the amplifier 
if va = 40 mV; vh = 15mV; R = 50 kO; 
C = 10 nF; and Vcc = 6 V? 

Figure P7.94 

7.95 At the time the double-pole switch in the circuit 
PSPICE shown in Fig. P7.95 is closed, the initial voltages on 

MULTISIM . . - r t i r . AVT I T - I t 

the capacitors are 12 V and 4 V, as shown. Find the 
numerical expressions for vt>(t), v2(t), and vAt) that 
are applicable as long as the ideal op amp operates 
in its linear range. 

Figure P7.95 

7.96 At the instant the switch of Fig. P7.96 is closed, the 
PSPKE voltage on the capacitor is 56 V. Assume an ideal 

operational amplifier. How many milliseconds 
after the switch is closed will the output voltage v„ 
equal zero? 

(b) 
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Figure P7.96 

33 kii > 47 kn 
-̂ Wv * 

- 56V + 

— 1 ( — 

/ = 0 

© 14 V 

Sections 7.1-7.7 

7.97 
PSPICE 

MULTISIM 

The circuit shown in Fig. P7.97 is known as a 
monostable multivibrator.The adjective monostable 
is used to describe the fact that the circuit has one 
stable state. That is, if left alone, the electronic 
switch T2 will be ON, and Tj will be OFF. (The opera
tion of the ideal transistor switch is described in 
detail in Problem 7.99.) T2 can be turned OFF by 
momentarily closing the switch S. After S returns to 
its open position, T2 will return to its ON state. 

a) Show that if T2 is ON, T{ is OFF and will stay OFF. 

b) Explain why T2 is turned OFF when S is momen
tarily closed. 

c) Show that T2 will stay OFF for RC In 2 s. 

Figure P7.97 

7.98 The parameter values in the circuit in Fig. P7.97 
are Vcc = 6 V; Rx = 5.0 kft; RL = 20 kH; 
C = 250 pF; and R = 23,083 H. 

a) Sketch vce2 versus t, assuming that after S is 
momentarily closed, it remains open until the 
circuit has reached its stable state. Assume S is 
closed at t = 0. Make your sketch for the inter
val - 5 < t < lOjus. 

b) Repeat (a) for /b2 versus t. 

7.99 
PSPICE 

MULTISIM 

The circuit shown in Fig. P7.99 is known as an 
astable multivibrator and finds wide application in 
pulse circuits. The purpose of this problem is to 
relate the charging and discharging of the capaci
tors to the operation of the circuit. The key to ana
lyzing the circuit is to understand the behavior of 
the ideal transistor switches Ti and T2. The circuit is 
designed so that the switches automatically alter
nate between ON and OFF. When T{ is OFF, T2 is ON 
and vice versa. Thus in the analysis of this circuit, we 
assume a switch is either ON or OFF. We also assume 
that the ideal transistor switch can change its state 
instantaneously. In other words, it can snap from 
OFF to ON and vice versa. When a transistor switch is 
ON, (1) the base current ib is greater than zero, 
(2) the terminal voltage vbc is zero, and (3) the ter
minal voltage vce is zero. Thus, when a transistor 
switch is ON, it presents a short circuit between the 
terminals b,e and c,e. When a transistor switch is 
OFF, (1) the terminal voltage vhe is negative, (2) the 
base current is zero, and (3) there is an open circuit 
between the terminals c,e. Thus when a transistor 
switch is OFF, it presents an open circuit between 
the terminals b,e and c,e. Assume that T2 has been 
ON and has just snapped OFF, while Tj has been OFF 
and has just snapped ON. You may assume that at 
this instance, C2 is charged to the supply voltage 
Vcc, a n d t n e charge on C\ is zero. Also assume 
Cx = C2 and Rx = R2 = 10RL. 

a) Derive the expression for vbc2 during the inter
val that T2 is OFF. 

b) Derive the expression for vcc2 during the inter
val that T2 is OFF. 

c) Find the length of time T2 is OFF. 

d) Find the value of vce2 at the end of the interval 
that T2 is OFF. 

e) Derive the expression for /bl during the interval 
that T2 is OFF. 

f) Find the value of ibx at the end of the interval 
that T2 is OFF. 

g) Sketch vcc2 versus t during the interval that T2 

is OFF. 

h) Sketch /M versus t during the interval that T2 

is OFF. 
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Figure P7.99 
PSPICE 

MULTISIM 

7.100 The component values in the circuit of Fig. P7.99 
are Vcc = 9 V; RL = 3 kH; C, = C2 = 2 nF; and 
i?i = i?2 = 18kfl. 

a) How long is T2 in the OFF state during one cycle 
of operation? 

b) How long is T2 in the ON state during one cycle 
of operation? 

c) Repeat (a) for Tj. 

d) Repeat (b) for Tj. 

e) At the first instant after T] turns ON, what is the 
value of//,1 ? 

f) At the instant just before Ti turns OFF, what is 
the value of//,]? 

g) What is the value of vce2
 a t the instant just 

before T2 turns ON? 

7.101 Repeat Problem 7.100 with C{ = 3 nF and 
C2 = 2.8 nF. All other component values are 
unchanged. 

7.102 The astable multivibrator circuit in Fig. P7.99 is to 
satisfy the following criteria: (1) One transistor 
switch is to be ON for 48 /AS and OFF for 36 (xs for 
each cycle; (2) RL = 2 kH; (3) Vcc = 5 V; 
(4) R\ = R2\ and (5) 6RL < R^ ^ 50RL. What are 
the limiting values for the capacitors C\ and C2? 

7.103 Suppose the circuit in Fig. 7.45 models a portable 
PRACTICAL flashing light circuit. Assume that four 1.5 V batter

ies power the circuit, and that the capacitor value is 
10 /JLF. Assume that the lamp conducts when its 
voltage reaches 4 V and stops conducting when its 
voltage drops below 1 V. The lamp has a resistance 
of 20 kO when it is conducting and has an infinite 
resistance when it is not conducting. 

a) Suppose we don't want to wait more than 10 s in 
between flashes. What value of resistance R is 
required to meet this time constraint? 

b) For the value of resistance from (a), how long 
does the flash of light last? 

PSPICE 

MULTISIM 

7.104 In the circuit of Fig. 7.45, the lamp starts to conduct 
PRACTICAL whenever the lamp voltage reaches 15 V. During 

PERSPECTIVE r O & 

the time when the lamp conducts, it can be modeled 
as a 10 kfl resistor. Once the lamp conducts, it will 
continue to conduct until the lamp voltage drops to 
5 V. When the lamp is not conducting, it appears as 
an open circuit. Vs = 40 V; R - 800 kO; and 
C = 25 fiF. 
a) How many times per minute will the lamp 

turn on? 
b) The 800 kfl resistor is replaced with a variable 

resistor R. The resistance is adjusted until the 
lamp flashes 12 times per minute. What is the 
value of /?? 

7.105 In the flashing light circuit shown in Fig. 7.45, the 
PRACTICAL lamp can be modeled as a 1.3 kO resistor when it is 

PERSPECTIVE r 

PSPICE conducting. The lamp triggers at 900 V and cuts off 
MULTISIM at 3 0 0 V . 

a) If Vs = 1000 V, R = 3.7 kO, and C = 250 fiF, 
how many times per minute will the light flash? 

b) What is the average current in milliamps deliv
ered by the source? 

c) Assume the flashing light is operated 24 hours 
per day. If the cost of power is 5 cents per kilowatt-
hour, how much does it cost to operate the light 
per year? 

7.106 a) Show that the expression for the voltage drop 
across the capacitor while the lamp is conduct
ing in the flashing light circuit in Fig. 7.48 is 
given by 

vL(0 = Vm + (Vmax - VTh)t'-<'-"^ 

PRACTICAL 
PERSPECTIVE 

where 

Vi 
R> 

Th v; R + RL 

RRLC 
7
 R + RL' 

b) Show that the expression for the time the lamp 
conducts in the flashing light circuit in Fig. 7.48 
is given by 

(tc ~ Q 
RRLc , V U - vTh 

R + R, 
In 

v„ K, ih 



7.107 The relay shown in Fig. P7.107 connects the 30 V dc 
PRACTICAL generator to the dc bus as long as the relay current 

PERSPECTIVE b & J 

is greater than 0.4 A. If the relay current drops to 
0.4 A or less, the spring-loaded relay immediately 
connects the dc bus to the 30 V standby battery. The 
resistance of the relay winding is 60 ft. The induc
tance of the relay winding is to be determined. 
a) Assume the prime motor driving the 30 V dc 

generator abruptly slows down, causing the gen
erated voltage to drop suddenly to 21 V. What 
value of L will assure that the standby battery 
will be connected to the dc bus in 0.5 seconds? 

b) Using the value of L determined in (a), state 
how long it will take the relay to operate if the 
generated voltage suddenly drops to zero. 

Figure P7.107 

30 V • r v , 

*en ^ (R,L) 
DC 
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Natural and Step 

Responses of RLC Circuits 
C H A P T E R CONTE 

8.1 Introduction to the Natural Response of a 
Parallel RLC Circuit p. 266 

8.2 The Forms of the Natural Response of a 
Parallel RLC Circuit p. 270 

8.3 The Step Response of a Parallel 
RLC Circuit p. 280 

8.4 The Natural and Step Response of a Series 
RLC Circuit p. 285 

8.5 A Circuit with Two Integrating 
Amplifiers p. 289 

1 Be able to determine the natural response and 
the step response of parallel RLC circuits. 

2 Be able to determine the natural response and 
the step response of series RLC circuits. 

In this chapter, discussion of the natural response and step 

response of circuits containing both inductors and capacitors is 

limited to two simple structures: the parallel RLC circuit and the 

series RLC circuit. Finding the natural response of a parallel RLC 

circuit consists of finding the voltage created across the parallel 

branches by the release of energy stored in the inductor or capac

itor or both. The task is defined in terms of the circuit shown in 

Fig. 8.1 on page 266. The initial voltage on the capacitor, V(h repre

sents the initial energy stored in the capacitor. The initial current 

through the inductor, I{h represents the initial energy stored in the 

inductor. If the individual branch currents are of interest, you can 

find them after determining the terminal voltage. 

We derive the step response of a parallel RLC circuit by using 

Fig. 8.2 on page 266. We are interested in the voltage that appears 

across the parallel branches as a result of the sudden application 

of a dc current source. Energy may or may not be stored in the 

circuit when the current source is applied. 

Finding the natural response of a series RLC circuit consists 

of finding the current generated in the seriesconnected elements 

by the release of initially stored energy in the inductor, capacitor, 

or both. The task is defined by the circuit shown in Fig. 8.3 on 

page 266. As before, the initial inductor current, I{h and the initial 

capacitor voltage, V{h represent the initially stored energy. If any 

of the individual element voltages are of interest, you can find 

them after determining the current. 

We describe the step response of a series RLC circuit in terms 

of the circuit shown in Fig. 8.4 on page 266. We are interested in 

the current resulting from the sudden application of the dc volt

age source. Energy may or may not be stored in the circuit when 

the switch is closed. 

If you have not studied ordinary differential equations, deri

vation of the natural and step responses of parallel and series 

RLC circuits may be a bit difficult to follow. However, the results 

are important enough to warrant presentation at this time. We 

begin with the natural response of a parallel RLC circuit and 

cover this material over two sections: one to discuss the solution 

of the differential equation that describes the circuit and one to 

present the three distinct forms that the solution can take. After 

264 



Practical Perspective 
An Ignition Circuit 
In this chapter we introduce the step response of an RLC cir
cuit. An automobile ignition circuit is based on the transient 
response of an RLC circuit. In such a circuit, a switching oper
ation causes a rapid change in the current in an inductive 
winding known as an ignition coil. The ignition coil consists 
of two magnetically coupled coils connected in series. This 
series connection is also known as an autotransformer. The 
coil connected to the battery is referred to as the primary 
winding and the coil connected to the spark plug is referred 
to as the secondary winding. The rapidly changing current in 
the primary winding induces via magnetic coupling (mutual 
inductance) a very high voltage in the secondary winding. 
This voltage, which peaks at from 20 to 40 kV, is used to 
ignite a spark across the gap of the spark plug. The spark 
ignites the fuel-air mixture in the cylinder. 

Ignition coil 
(autotransformer;' 

Secondary 

| # Primary 

Battery i 

Switch^ | • . 
(distributor point) * \ ^ ^ J 

Spark 
plug 

Capacitor 
(condenser) 

A schematic diagram showing the basic components of an 
ignition system is shown in the accompanying figure. In 
today's automobile, electronic (as opposed to mechanical) 
switching is used to cause the rapid change in the primary 
winding current. An understanding of the electronic switching 
circuit requires a knowledge of electronic components that is 
beyond the scope of this text. However, an analysis of the 
older, conventional ignition circuit will serve as an introduc
tion to the types of problems encountered in the design of a 
useful circuit. 
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c; 

Figure 8 
response 

introducing these three forms, we show that the same forms apply 

to the step response of a parallel RLC circuit as well as to the natu

ral and step responses of series RLC circuits. 

,1 A A circuit used to illustrate the natural 
of a parallel RLC circuit. 

Figure 8. 
response 

2 A A circuit used to illustrate the step 
of a parallel RLC circuit. 

Figure 8.3 A A circuit used to illustrate the natural 
response of a series RLC circuit. 

^ V 
/ = 0 

c 

Figure 8.4 A A circuit used to illustrate the step 
response of a series RLC circuit. 

8,1 Introduction to the Natural 
Response of a Parallel RLC Circuit 

The first step in finding the natural response of the circuit shown in Fig. 8.1 
is to derive the differential equation that the voltage v must satisfy. We 
choose to find the voltage first, because it is the same for each component. 
After that, a branch current can be found by using the current-voltage 
relationship for the branch component. We easily obtain the differential 
equation for the voltage by summing the currents away from the top node, 
where each current is expressed as a function of the unknown voltage v: 

v I f , r ^dv 
(8.1) 

We eliminate the integral in Eq. 8.1 by differentiating once with respect to t, 
and, because 70 is a constant, we get 

1 dv v d v 
R dt L dt2 (8.2) 

We now divide through Eq. 8.2 by the capacitance C and arrange the 
derivatives in descending order: 

d v 1 dv v 
~diI + lRClt+ Tc~ ' 

(8.3) 

Comparing Eq. 8.3 with the differential equations derived in Chapter 7 
reveals that they differ by the presence of the term involving the second 
derivative. Equation 8.3 is an ordinary, second-order differential equation 
with constant coefficients. Circuits in this chapter contain both inductors and 
capacitors, so the differential equation describing these circuits is of the sec
ond order. Therefore, we sometimes call such circuits second-order circuits. 

The General Solution of the Second-Order Differential 
Equation 
We can't solve Eq. 8.3 by separating the variables and integrating as we 
were able to do with the first-order equations in Chapter 7. The classical 
approach to solving Eq. 8.3 is to assume that the solution is of exponential 
form, that is, to assume that the voltage is of the form 

v = Aes (8.4) 

where A and s are unknown constants. 
Before showing how this assumption leads to the solution of Eq. 8.3, 

we need to show that it is rational. The strongest argument we can make in 
favor of Eq. 8.4 is to note from Eq. 8.3 that the second derivative of the 
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solution, plus a constant times the first derivative, plus a constant times the 
solution itself, must sum to zero for all values of t. This can occur only if 
higher order derivatives of the solution have the same form as the solu
tion. The exponential function satisfies this criterion. A second argument 
in favor of Eq. 8.4 is that the solutions of all the first-order equations we 
derived in Chapter 7 were exponential. It seems reasonable to assume that 
the solution of the second-order equation also involves the exponential 
function. 

If Eq. 8.4 is a solution of Eq. 8.3, it must satisfy Eq. 8.3 for all values of t. 
Substituting Eq. 8.4 into Eq. 8.3 generates the expression 

, -, _, As v, Aest 

As2est + e" + = 0, 
RC LC 

or 

! + ^ + 7Z' 

which can be satisfied for all values of t only if A is zero or the parentheti
cal term is zero, because ext ¥• 0 for any finite values of st. We cannot use 
A = 0 as a general solution because to do so implies that the voltage is 
zero for all time —a physical impossibility if energy is stored in either the 
inductor or capacitor. Therefore, in order for Eq. 8.4 to be a solution of 
Eq. 8.3, the parenthetical term in Eq. 8.5 must be zero, or 

2 s 1 
s + —— + —— = 0. (8.6) A Characteristic equation, parallel 

KC LC RLC circuit 

Equation 8.6 is called the characteristic equation of the differential equa
tion because the roots of this quadratic equation determine the mathe
matical character of v(t). 

The two roots of Eq. 8.6 are 

2RC V \ 2 R C / LC 
; T ^ (8-7) 

* = -55c-\/l^] - - ^ - (8-8) 

If either root is substituted into Eq. 8.4, the assumed solution satisfies the 
given differential equation, that is, Eq. 8.3. Note from Eq. 8.5 that this 
result holds regardless of the value of A Therefore, both 

v = A^*1 'and 

v = Aif* 
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satisfy Eq. 8.3. Denoting these two solutions v} and v2, respectively, we can 
show that their sum also is a solution. Specifically, if we let 

v = Vi + v2 = A^1' + A2e
Sl, (8.9) 

then 

dv 
— = Aw**' + A2s2e

s>1, 
at 

(8.10) 

- T = Arfe* + A2s
2
2e^. 

at 
(8.11) 

Substituting Eqs. 8.9-8.11 into Eq. 8.3 gives 

1 ; l + ̂  + Ic ) + A^' H + i ^ + ̂ l ' r 

But each parenthetical term is zero because by definition s t and s2 are 
roots of the characteristic equation. Hence the natural response of the 
parallel RLC circuit shown in Fig. 8.1 is of the form 

v = Axe
S]t + A2e

$2t (8.13) 

Equation 8.13 is a repeat of the assumption made in Eq. 8.9. We have 
shown that v} is a solution, v2 is a solution, and vx + v2 is a solution. 
Therefore, the general solution of Eq. 8.3 has the form given in Eq. 8.13. 
The roots of the characteristic equation (^ and s2) are determined by the 
circuit parameters /?, L, and C.The initial conditions determine the values 
of the constants A] and A2. Note that the form of Eq. 8.13 must be modi
fied if the two roots s\ and s2 are equal. We discuss this modification when 
we turn to the critically damped voltage response in Section 8.2. 

The behavior of v(t) depends on the values of s-i and s2. Therefore the 
first step in finding the natural response is to determine the roots of the 
characteristic equation. We return to Eqs. 8.7 and 8.8 and rewrite them 
using a notation widely used in the literature: 

-a + Va2 — a>j), 

.92 = —a — va2 
wf), 

(8.14) 

(8.15) 

where 

Neper frequency, parallel RLC circuit • a — 2RC7 (8.16) 

Resonant radian frequency, parallel 
RLC circuit • w0 = (8.17) 

These results are summarized in Table 8.1. 
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TABLE 8.1 Natural Response Parameters of the Parallel RLC Circuit 

Parameter 

«u 

Terminology 
Value In 
Natural Response 

Characteristic roots 

Neper frequency 

Resonant radian frequency 

SX = -a + Va2 

s2 = -a - Vcr 

a = 2RC 
1 

"°~ Vie 

- col 

- (4 

The exponent of e must be dimensionless, so both ,vj and s2 (and 
hence a and a>()) must have the dimension of the reciprocal of time, or fre
quency. To distinguish among the frequencies sh s2, a, and w(), we use the 
following terminology: ,5¾ and s2 are referred to as complex frequencies, a 
is called the neper frequency, and IOQ is the resonant radian frequency. The 
full significance of this terminology unfolds as we move through the 
remaining chapters of this book. All these frequencies have the dimen
sion of angular frequency per time. For complex frequencies, the neper 
frequency, and the resonant radian frequency, we specify values using the 
unit radians per second (rad/s). The nature of the roots s{ and s2 depends 
on the values of a and o)(). There are three possible outcomes. First, if 
<of) < a2, both roots will be real and distinct. For reasons to be discussed 
later, the voltage response is said to be overdamped in this case. Second, 
if col > a2, both s-\ and s2 will be complex and, in addition, will be conju
gates of each other. In this situation, the voltage response is said to be 
underdamped. The third possible outcome is that co2) = a2. In this case, $i 
and 52 will be real and equal. Here the voltage response is said to be 
critically damped. As we shall see, damping affects the way the voltage 
response reaches its final (or steady-state) value. We discuss each case 
separately in Section 8.2. 

Example 8.1 illustrates how the numerical values of S[ and s2 are 
determined by the values of R, L, and C. 

Example 8.1 Finding the Roots of the Characteristic Equation of a Parallel RLC Circuit 

a) Find the roots of the characteristic equation that 
governs the transient behavior of the voltage 
shown in Fig. 8.5 if R - 200 O, L = 50 mH, and 
C = 0.2 ixF. 

b) Will the response be overdamped, underdamped, 
or critically damped? 

c) Repeat (a) and (b) for R = 312.5 H. 

d) What value of R causes the response to be criti
cally damped? 

Solution 

a) For the given values of R, L, and C, 

1 10f 

a = 2RC (400)(0.2) 
= 1.25 X 104 rad/s, 

2 l (io3)(io6) i n 8 2 , 

From Eqs. 8.14 and 8.15, 

st = -1.25 X 104 + Vl.5625 X 108 - 108 

= -12,500 + 7500 = -5000 rad/s, 

Figure 8.5 A A circuit used to illustrate the natural response of 
a parallel RLC circuit. 

fc = -1.25 x 104 - Vl.5625 X 108 - 108 
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b) The voltage response is overdamped because 
o)() < a . 

c) Fori? = 312.511, 

106 

a = = 8000 rad/s. 
(625)(0.2) 

a2 = 64 X 106 = 0.64 X 108rad2/s2. 

As col remains at 108 rad2/s2, 

Si = -8000 + /6000 rad/s, 

s2 = -8000 - /6000 rad/s. 

(In electrical engineering, the imaginary number 
V—T is represented by the letter /", because the 
letter /' represents current.) 

In this case, the voltage response is under-
damped since ag > a2. 

d) For critical damping, a2 = co2
h so 

or 

= 10\ 

and 

R 

i v 
2RC) 

1 
2RC 

106 

1 
LC ' 

= 104 

(2 X 104)(0.2) 
= 250 Q. 

I /ASSESSMENT PROBLEM 

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits 

8.1 The resistance and inductance of the circuit in 
Fig. 8.5 are 100 O and 20 mH, respectively. 

a) Find the value of C that makes the voltage 
response critically damped. 

b) If C is adjusted to give a neper frequency of 
5 krad/s, find the value of C and the roots of 
the characteristic equation. 

c) If C is adjusted to give a resonant frequency 
of 20 krad/s, find the value of C and the 
roots of the characteristic equation. 

NOTE: Also try Chapter Problem 8.1. 

Answer: (a) 500 nF; 

(b) C = 1 juF, 
Si = -5000 + /5000 rad/s, 
s2 = -5000 - y'5000 rad/s; 

(c) C = 125 nF, 
s?! = -5359 rad/s, 
s2 = -74,641 rad/s. 

8.2 The Forms of the Natural Response 
of a Parallel RLC Circuit 

So far we have seen that the behavior of a second-order RLC circuit depends 
on the values of .Vj and .v2, which in turn depend on the circuit parameters R, 
L, and C. Therefore, the first step in finding the natural response is to calcu
late these values and, relatedly, determine whether the response is over-, 
under-, or critically damped. 

Completing the description of the natural response requires finding two 
unknown coefficients, such as A{ and A2 in Eq. 8.13.The method used to do 
this is based on matching the solution for the natural response to the initial 
conditions imposed by the circuit, which are the initial value of the current (or 
voltage) and the initial value of the first derivative of the current (or voltage). 
Note that these same initial conditions, plus the final value of the variable, will 
also be needed when finding the step response of a second-order circuit. 

In this section, we analyze the natural response form for each of the 
three types of damping, beginning with the overdamped response. As we will 
see, the response equations, as well as the equations for evaluating the 
unknown coefficients, are slightly different for each of the three damping 
configurations. This is why we want to determine at the outset of the problem 
whether the response is over-, under-, or critically damped. 
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The Overdamped Voltage Response 

When the roots of the characteristic equation are real and distinct, the volt
age response of a parallel RLC circuit is said to be overdamped. The solu
tion for the voltage is of the form 

A ^ + A2e
Sl\ (8.18) < Voltage natural response—overdamped 

parallel RLC circuit 
where S] and s2 are the roots of the characteristic equation. The constants 
A] and A2 are determined by the initial conditions, specifically from the 
values of v(Q+) and dv(Q+)/dt, which in turn are determined from the ini
tial voltage on the capacitor, V(h and the initial current in the inductor, /(). 

Next, we show how to use the initial voltage on the capacitor and the 
initial current in the inductor to find Ax and A2. First we note from Eq. 8.18 
that A\ and A2. First we note from Eq. 8.18 that 

v(0+) = A, + A2, (8.19) 

dv(Q+) 

di 
= sxAx + s2A2. (8.20) 

With S\ and s2 known, the task of finding A{ and A2 reduces to finding 
v(0+) and dv(0+)/dt. The value of v(0+) is the initial voltage on the capac
itor V{\. We get the initial value of dv/dt by first finding the current in the 
capacitor branch at t = 0+. Then, 

dv(0+) ic(0
+) 

We use Kirchhoff s current law to find the initial current in the capac
itor branch. We know that the sum of the three branch currents at t - 0+ 

must be zero. The current in the resistive branch at t = ()+ is the initial 
voltage Vo divided by the resistance, and the current in the inductive 
branch is /(). Using the reference system depicted in Fig. 8.5, we obtain 

/ c (°+ ) = ~R~ h' (8-22) 

After finding the numerical value of J*c(0+)i we use Eq. 8.21 to find the ini
tial value of dv/dt. 

We can summarize the process for finding the overdamped response, 
v(t), as follows: 

1. Find the roots of the characteristic equation, s} and s2, using the val
ues of /?, L, and C. 

2. Find v(0+) and dv(0+)/dt using circuit analysis. 

3. Find the values of Ai and A2 by solving Eqs. 8.23 and 8.24 
simultaneously: 

v(0+) = At + A2, (8.23) 

——— = ——- = sxAx + s2A2. (8.24) 

4. Substitute the values for su s2, Aj, and A2 into Eq. 8.18 to deter
mine the expression for v(t) for t > 0. 

Examples 8.2 and 8.3 illustrate how to find the overdamped response of a 
parallel RLC circuit. 
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Example 8.2 Finding the Overdamped Natural Response of a Parallel RLC Circuit 

For the circuit in Fig. 8.6, v(0+) = 12 V, and 
'"L(0+) = 30 mA. 

a) Find the initial current in each branch of the 
circuit. 

b) Find the initial value of dv/dt, 

c) Find the expression for v(t). 

d) Sketch v(t) in the interval 0 < r < 250 ms. 

Solution 

a) The inductor prevents an instantaneous change 
in its current, so the initial value of the inductor 
current is 30 mA: 

fe(0") = fe(0) = / L ( 0 + ) = 30mA. 

The capacitor holds the initial voltage across the 
parallel elements to 12 V. Thus the initial current 
in the resistive branch, //?(0+), is 12/200, or 
60 mA. Kirchhoffs current law requires the sum 
of the currents leaving the top node to equal 
zero at every instant. Hence 

/c(o+) = - / L (o + ) - ;*(o+) 

= -90 mA. 

Note that if we assumed the inductor current and 
capacitor voltage had reached their dc values at 
the instant that energy begins to be released, 
*c(0_) = 0. In other words, there is an instanta
neous change in the capacitor current alt = 0. 

b) Because ic — C(dv/dt), 

dv(()+) - 9 0 X 10" 

dt 0.2 X 10 -6 -450 kV/s. 

c) The roots of the characteristic equation come 
from the values of R, L, and C. For the values 
specified and from Eqs. 8.14 and 8.15 along with 
8.16 and 8.17, 

-1.25 X 104 + Vl.5625 X 108 - 108 

-12,500 + 7500 = -5000rad/s, 

s2 = -1.25 X 104 - 2 1.5625 X 108 - 108 

-12,500 - 7500 = -20,000 rad/s. 

Figure 8.6 A The circuit for Example 8.2. 

Because the roots are real and distinct, we know 
that the response is overdamped and hence has 
the form of Eq. 8.18. We find the co-efficients Ax 

and A2 from Eqs. 8.23 and 8.24. We've already 
determined s\, s2, v(0+), and dv(Q+)/dt, so 

12 = Al + A2, 

-450 X 103 = - 5 0 ( ) 0 ^ - 20,000A2. 

We solve two equations for Ar and A2 to obtain 
Ai = -14 V and A2 = 26 V. Substituting these 
values into Eq. 8.18 yields the overdamped volt
age response: 

v(t) = (-Ue'5i)m + 26e-20000 ') V, t > 0. 

As a check on these calculations, we note that 
the solution yields v(0) = 12 V and dv(0+)/dt 
= -450,000 V/s. 

d) Figure 8.7 shows a plot of v(t) versus t over the 
interval 0 < t < 250 ms. 

t(/XS) 

Figure 8.7 • The voltage response for Example 8.2. 

Jason
註解
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Calculating Branch Currents in the Natural Response of a Parallel RLC Circuit 

Derive the expressions that describe the three 
branch currents iR, /L, and ic in Example 8.2 
(Fig. 8.6) during the time the stored energy is being 
released. 

Solution 

We know the voltage across the three branches 
from the solution in Example 8.2, namely. 

,-500()/ -20,000/ v(t) = (-14*?-™"" + 26<r^uuu ') V, t > 0 

The current in the resistive branch is then 

iR(t) = ^ - (-70e-5m)l + 130*-20'000') mA, t > 0. 

There are two ways to find the current in the induc
tive branch. One way is to use the integral relation
ship that exists between the current and the voltage 
at the terminals of an inductor: 

hiO = 7 / vL(x)dx + /(). 

A second approach is to find the current in the 
capacitive branch first and then use the fact that 
ia + ijL + 'c = 0. Let's use this approach. The cur
rent in the capacitive branch is 

i c (0 = c 
dv 
dt 

0.2 X l(r6(70,000e" -5000/ 20,000/ 520,000<rz,WJUW) 

(14c -5000/ 104^-20.000/)mA^ , > ( ) + 

Note that *c(0+) = -90 mA, which agrees with the 
result in Example 8.2. 

Now we obtain the inductive branch current 
from the relationship 

k(0 = -<K(0 - W0 

(56c -5000/ 2 ^ - 2 0 . 0 0 0 / ) m A ? / s 0 

We leave it to you, in Assessment Problem 8.2, to 
show that the integral relation alluded to leads to 
the same result. Note that the expression for iL 

agrees with the initial inductor current, as it must. 

^ A S S E S S M E N T PROBLEMS 

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits 

8.2 Use the integral relationship between iL and v 
to find the expression for iL in Fig. 8.6. 

,-5000/ 20,000/N Answer: iL(t) = ( 5 6 ^ ^ - 2de~mwx) mA, t > 0. 

8.3 The element values in the circuit shown are 
R = 2 kH, L = 250 mH, and C = 10 nF. The 
initial current / 0 in the inductor is —4 A, and 
the initial voltage on the capacitor is 0 V. The 
output signal is the voltage v. Find (a) //?(0+); 
(b) /c(0+); (c) dv(0+)/dt; (d) AX; (e) A2; and 
(f) v{t) when t > 0. 

Answer: (a) 0; 

(b)4A; 
(c) 4 X 108 V/s; 

(d) 13,333 V; 

(e) -13,333 V; 

(f) 13,333(e-iao00' — e 
-40.000/ ) V. 

NOTE: Also try Chapter Problems 8.8, 8.11, and 8.18. 
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The Underdamped Voltage Response 
When IOQ > a2, the roots of the characteristic equation are complex, and 
the response is underdamped. For convenience, we express the roots j j 
and Si as 

(8.25) 

(8.26) 

where 

Damped radian frequency • cod = Vwo - a2. (8.27) 

The term (od is called the damped radian frequency. We explain later the 
reason for this terminology. 

The underdamped voltage response of a parallel RLC circuit is 

Voltage natural response—underdamped 
parallel RLC circuits • v(t) = B\e~at cos <odt + B2e~at sin wdt, (8.28) 

which follows from Eq. 8.18. In making the transition from Eq. 8.18 to 
Eq. 8.28, we use the Euler identity: 

e±jo = c o s 0 ± j s i n 0 ^ 2 9 ) 

Thus, 

v{t) = A^-n+l"'l)l + A2e~{a+Mt 

= Aie-^ei"* + A2e~ate~^ 

= e~"'(Ai cos codt + /Ai sin o>/ + A2coso)(tt - jA2 sin (odt) 

= e~°"[(Ai + A2) coscodt + j{A{ - A2)smcDdt]. 

At this point in the transition from Eq. 8.18 to 8.28, replace the arbitrary 
constants A\ + A2 and }(A\ - A2) with new arbitrary constants denoted 
Bx and B2 to get 

v = e~m(B] coscodt + B2sma)dt) 

= Bxe~°" cos codt + B2e~at sin a)dt. 

The constants Bx and B2 are real, not complex, because the voltage is a 
real function. Don't be misled by the fact that B2 = j(Ai - A2). In this 
underdamped case, A j and A2 are complex conjugates, and thus B{ and B2 

are real. (See Problems 8.12 and 8.13.) The reason for defining the under-
damped response in terms of the coefficients Bx and B2 is that it yields a sim-
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pier expression for the voltage, v. We determine B{ and B2 by the initial 
energy stored in the circuit, in the same way that we found A x and A2 for the 
overdamped response: by evaluating v at t = 0+ and its derivative at t = 0+. 
As with S\ and .y2, a and ojd are fixed by the circuit parameters R, L, and C. 

For the underdamped response, the two simultaneous equations that 
determine B{ and B2 are 

v(0+) = VQ = 0, (8.30) 

dv(0+) ic(0
+) 

dl C 
= —aB\ + d>d^2- (8.31) 

Let's look at the general nature of the underdamped response. First, 
the trigonometric functions indicate that this response is oscillatory; that 
is, the voltage alternates between positive and negative values. The rate at 
which the voltage oscillates is fixed by a)d. Second, the amplitude of the 
oscillation decreases exponentially. The rate at which the amplitude falls 
off is determined by a. Because a determines how quickly the oscillations 
subside, it is also referred to as the damping factor or damping coefficient. 
That explains why a>d is called the damped radian frequency. If there is no 
damping, a = 0 and the frequency of oscillation is a){). Whenever there is a 
dissipative element, R, in the circuit, a is not zero and the frequency of 
oscillation, a>d, is less than o>0. Thus when a is not zero, the frequency of 
oscillation is said to be damped. 

The oscillatory behavior is possible because of the two types of energy-
storage elements in the circuit: the inductor and the capacitor. (A mechan
ical analogy of this electric circuit is that of a mass suspended on a spring, 
where oscillation is possible because energy can be stored in both the 
spring and the moving mass.) We say more about the characteristics of the 
underdamped response following Example 8.4, which examines a circuit 
whose response is underdamped. In summary, note that the overall 
process for finding the underdamped response is the same as that for the 
overdamped response, although the response equations and the simulta
neous equations used to find the constants are slightly different. 

Example 8.4 Finding the Underdamped Natural Response of a Parallel RLC Circuit 

In the circuit shown in Fig. 8.8, V{) = 0, and 
/() = -12.25 mA. 

a) Calculate the roots of the characteristic equation. 

b) Calculate v and dv/dt at t = 0+. 

c) Calculate the voltage response for t S: 0. 

d) Plot v{t) versus t for the time interval 
( ) < / < ! ! ms. 

0.125 /xF 

Figure 8.8 • The circuit for Example 8.4. 

Solution 

a) Because 

1 1(T 

2RC 2(20) 103(0.125) 

0)() = 

we have 

10f 

(8)(0.125) 

200 rad/s, 

103 rad/s. 

a>5 > a~ 
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Therefore, the response is underdamped. Now, 

w(i = V(4 ~ a2 = VlO 6 - 4 X 104 = 100V96 

= 979.80 rad/s, 

Sl = -a + jood = -200 + /979.80 rad/s, 

s2 = - a - j(oti = -200 - /979.80 rad/s. 

For the underdamped case, we do not ordinarily 
solve for S] and s2 because we do not use them 
explicitly. However, this example emphasizes 
why S] and s2 are known as complex frequencies. 

b) Because v is the voltage across the terminals of a 
capacitor, we have 

v(0) = v(0+) = V0 = 0. 

Because v(0+) = 0, the current in the resistive 
branch is zero at t = 0+. Hence the current in 
the capacitor at t = 0+ is the negative of the 
inductor current: 

*c(0+) = - ( -12.25) = 12.25 mA. 

Therefore the initial value of the derivative is 

dv(0+) (12.25)(10""3) 
, J = f- = 98,000 V/s. 

dt (0.125)(10-6) ' 

c) From Eqs. 8.30 and 8.31,5, = 0 and 

98,000 
B7 100 V. 

cod 

Substituting the numerical values of a, cod, B\s 

and B2 into the expression for v(t) gives 

v(t) = 100<rZUUf sin 979.80? V, t > 0. 

d) Figure 8.9 shows the plot of v(t) versus t for the 
first 11 ms after the stored energy is released. It 
clearly indicates the damped oscillatory nature 
of the underdamped response. The voltage v(t) 
approaches its final value, alternating between 
values that are greater than and less than the 
final value. Furthermore, these swings about the 
final value decrease exponentially with time. 

v(V) 

t(ms) 

Figure 8.9 A The voltage response for Example 8.4. 

Characteristics of the Underdamped Response 
The underdamped response has several important characteristics. First, as 
the dissipative losses in the circuit decrease, the persistence of the oscilla
tions increases, and the frequency of the oscillations approaches w0. In 
other words, as R —> oo, the dissipation in the circuit in Fig. 8.8 approaches 
zero because /; = v2/R. As R —> oo, a —* 0, which tells us that md —* w(). 
When a - 0, the maximum amplitude of the voltage remains constant; 
thus the oscillation at a>() is sustained. In Example 8.4, if R were increased 
to infinity, the solution for v(t) would become 

v(t) = 98sinl000rV, t > 0. 

Thus, in this case the oscillation is sustained, the maximum amplitude of 
the voltage is 98 V, and the frequency of oscillation is 1000 rad/s. 

We may now describe qualitatively the difference between an under-
damped and an overdamped response. In an underdamped system, the 
response oscillates, or "bounces," about its final value. This oscillation is 
also referred to as ringing. In an overdamped system, the response 
approaches its final value without ringing or in what is sometimes 
described as a "sluggish" manner. When specifying the desired response of 
a second order system, you may want to reach the final value in the short
est time possible, and you may not be concerned with small oscillations 
about that final value. If so, you would design the system components to 
achieve an underdamped response. On the other hand, you may be con
cerned that the response not exceed its final value, perhaps to ensure that 
components are not damaged. In such a case, you would design the system 
components to achieve an overdamped response, and you would have to 
accept a relatively slow rise to the final value. 
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^ A S S E S S M E N T P R O B L E M 

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits 

8.4 A 10 mH inductor, a 1 /xF capacitor, and a vari
able resistor are connected in parallel in the 
circuit shown. The resistor is adjusted so that 
the roots of the characteristic equation are 
-8000 ± /6000 rad/s. The initial voltage on the 
capacitor is 10 V, and the initial current in the 
inductor is 80 mA. Find 

a) R; 

b) dv(0+)/dt; 

c) Bx and B2 in the solution for v; and 

d) idt). 

NOTE: Also try Chapter Problems 8.7 and 8.19. 

Answer: (a) 62.5 ft; 

(b) -240,000 V/s; 

(c) Bx = 10 V, B2 = -80 /3 V; 

(d)iL(t) = 10e-80()0f[8 cos 6000? 
+ (82/3) sin 6000f] mA when t 

The Critically Damped Voltage Response 
The second-order circuit in Fig. 8.8 is critically damped when coj, = a2, or 
tu() = a. When a circuit is critically damped, the response is on the verge of 
oscillating. In addition, the two roots of the characteristic equation are 
real and equal; that is. 

1 
Si = $2 —a = — 2RC 

(8.32) 

When this occurs, the solution for the voltage no longer takes the form 
of Eq. 8.18. This equation breaks down because if s% = .ŝ  = - a , it pre
dicts that 

{Ax + A2)e~at = AQe (8.33) 

where A{) is an arbitrary constant. Equation 8.33 cannot satisfy two inde
pendent initial conditions (VQ, /0) with only one arbitrary constant, A{). 
Recall that the circuit parameters R and C fix a. 

We can trace this dilemma back to the assumption that the solution 
takes the form of Eq. 8.18. When the roots of the characteristic equation 
are equal, the solution for the differential equation takes a different 
form, namely 

v(t) = D{te~a' + D2e (8.34) 

Thus in the case of a repeated root, the solution involves a simple expo
nential term plus the product of a linear and an exponential term. The jus
tification of Eq. 8.34 is left for an introductory course in differential 
equations. Finding the solution involves obtaining Dx and D2 by following 
Ihe same pattern set in the overdamped and underdamped cases: We use 
the initial values of the voltage and the derivative of the voltage with 
respect to time to write two equations containing D\ and/or D2. 

< Voltage natural response—critically 
damped parallel RLC circuit 
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From Eq. 8.34, the two simultaneous equations needed to determine 
Dx and D2 are 

,,(0+) = V() = D2, 

dv(Q+) /c(0+) 

dt c 
= Di - aDj. 

(8.35) 

(8.36) 

Example 8.5 

As we can see, in the case of a critically damped response, both the 
equation for v(t) and the simultaneous equations for the constants D\ and 
D2 differ from those for over- and underdamped responses, but the general 
approach is the same. You will rarely encounter critically damped systems 
in practice, largely because co0 must equal a exactly. Both of these quanti
ties depend on circuit parameters, and in a real circuit it is very difficult to 
choose component values that satisfy an exact equality relationship. 

Example 8.5 illustrates the approach for finding the critically damped 
response of a parallel RLC circuit. 

Finding the Critically Damped Natural Response of a Parallel RLC Circuit 

a) For the circuit in Example 8.4 (Fig. 8.8), find the 
value of R that results in a critically damped volt
age response. 

b) Calculate v(t) for t > 0. 

c) Plot v(t) versus t for 0 < t =s 7 ms. 

Solution 

a) From Example 8.4, we know that o>o = 106. 
Therefore for critical damping. 

or 

R 

a = 1()-1 = 

106 

1 
2i?C 

= 4000 a. 
(2000)(0.125) 

b) From the solution of Example 8.4, we know that 
v(0+) = 0 and dv{0+)/dt = 98,000 V/s. From 
Eqs. 8.35 and 8.36, D2 = 0 and Dx = 98,000 V/s. 

Substituting these values for a, Dl% and D2 into 
Eq. 8.34 gives 

v(t) = 98,000*e_1000f V, t s> 0. 

c) Figure 8.10 shows a plot of v(t) versus t in the 
interval 0 < r ^ 7 ms. 

1 2 3 4 5 6 7 

Figure 8.10 • The voltage response for Example 8.5. 

L. t (ms) 

^ A S S E S S M E N T P R O B L E M 

Objective 1—Be able to determine the natural and the step response of parallel RLC circuits 

8.5 The resistor in the circuit in Assessment 
Problem 8.4 is adjusted for critical damping. 
The inductance and capacitance values are 
0.4 H and 10 fiF, respectively. The initial energy 
stored in the circuit is 25 mJ and is distributed 
equally between the inductor and capacitor. 
Find (a) R\ (b) V0; (c) /(); (d) Dx and D2 in the 
solution for v; and (e) iR, t S 0+. 

Answer: (a) 100 O; 

(b)50V; 

(c) 250 mA; 

(d) -50,000 V/s, 50 V; 

(e) iR(t) = (-500te~5m + 0.50e-500') A, 
t £= 0+. 

NOTE: Also try Chapter Problems 8.9 and 8.20. 
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A Summary of the Results 
We conclude our discussion of the parallel RLC circuit's natural response 
with a brief summary of the results. The first step in finding the natural 
response is to calculate the roots of the characteristic equation. You then 
know immediately whether the response is overdamped, underdamped, or 
critically damped. 

If the roots are real and distinct (c_2, < a2), the response is over-
damped and the voltage is 

v(t) = A{e
Sit + A2e

s*, 

where 

S\ = —a + voT 

s2 = —a — Va2 

1 
2RC 

2 _ 1 

"° " LC-

- w{
2,, 

- <4h 

The values of A{ and A2 are determined by solving the following simulta
neous equations: 

v(0+) = Ai + A2, 

dv{0+) /C(0+) 

If the roots are complex OJ2
} > a" the response is underdamped and 

the voltage is 

v(t) = B{e~n' cos o>/ + B2e~a! sin ctjt, 

where 

to (l = vo){) — or. 

The values of B\ and B2 are found by solving the following simultaneous 
equations: 

v(Q+) - % = Bh 

dv(0+) ic(0+) _ , _ 
_____ = _______ _aB] + ^ . . 

If the roots of the characteristic equation are real and equal (OJQ = a"), 
the voltage response is 

v(t) = D^e-o" + D2e~a\ 

where a is as in the other solution forms. To determine values for the con
stants D) and D2, solve the following simultaneous equations: 

v(0+) = V0 = D2, 

dv(0+) ic(0
+) _ - _ - _ — __ A - aD, 



: 8,3 The Step Response of a Parallel 
RLC Circuit 

• Finding the step response of a parallel RLC circuit involves finding the 
voltage across the parallel branches or the current in the individual 
branches as a result of the sudden application of a dc current source. 
There may or may not be energy stored in the circuit when the current 
source is applied. The task is represented by the circuit shown in Fig. 8.11. 
To develop a general approach to finding the step response of a second-
order circuit, we focus on finding the current in the inductive branch (//). 
This current is of particular interest because it does not approach zero as 
t increases. Rather, after the switch has been open for a long time, the 
inductor current equals the dc source current I. Because we want to focus 
on the technique for finding the step response, we assume that the initial 
energy stored in the circuit is zero. This assumption simplifies the calcula
tions and doesn't alter the basic process involved. In Example 8.10 
we will see how the presence of initially stored energy enters into the 
general procedure. 

To find the inductor current iL, we must solve a second-order differ
ential equation equated to the forcing function /, which we derive as fol
lows. From Kirchhoffs current law, we have 

k + hi + k = U 

or 

Because 

v _ dv 
lL + - + C - = I. (8.37) 

dir 
v = L—-, (8.38) 

we get 

dt ' 

dv T d2iL 

Substituting Eqs. 8.38 and 8.39 into Eq. 8.37 gives 

L dir afit 

R dt dt 

For convenience, we divide through by LC and rearrange terms: 

d2i, 1 diL iL I , 
— £ + + —^ = . (8.41) 
dt1 RC dt LC LC 

Comparing Eq. 8.41 with Eq. 8.3 reveals that the presence of a nonzero 
term on the right-hand side of the equation alters the task. Before show
ing how to solve Eq. 8.41 directly, we obtain the solution indirectly. 
When we know the solution of Eq. 8.41, explaining the direct approach 
will be easier. 



The Indirect Approach 
We can solve for iL indirectly by first finding the voltage v. We do this with 
the techniques introduced in Section 8.2, because the differential equation 
that v must satisfy is identical to Eq. 8.3. To see this, we simply return to 
Eq. 8.37 and express iL as a function of v; thus 

I f , v „dv 

li vdT + J + cTt = '• (842) 

Differentiating Eq. 8.42 once with respect to t reduces the right-hand side 
to zero because I is a constant. Thus 

v 1 dv d2v 
— + — — + C—r = 0, 
L R dt dt2 

or 

d2v 1 dv v 

^ + 7 ^ + ^ = 0- (8'43) 

As discussed in Section 8.2, the solution for v depends on the roots of the 
characteristic equation. Thus the three possible solutions are 

v = Axe
Slt + A2e

&2\ (8.44) 

v = Bxe~a' cos o)dt + B2e~al sin a) / , (8.45) 

v = Dxte~a' + D2e~at. (8.46) 

A word of caution: Because there is a source in the circuit for t > 0, you 
must take into account the value of the source current at t = 0+ when you 
evaluate the coefficients in Eqs. 8.44-8.46. 

To find the three possible solutions for /L, we substitute Eqs. 8.44-8.46 
into Eq. 8.37. You should be able to verify, when this has been done, that 
the three solutions for iL will be 

iL = I + A\eSli + A'2e
s-1, (8.47) 

//, = I + B\e~at cos o)dt + B'2e~at sin wj, (8.48) 

iL = I + D[te-at + D'2e~at, (8.49) 

where A\, A2, B[, B2, D\, and D'2, are arbitrary constants. 
In each case, the primed constants can be found indirectly in terms of 

the arbitrary constants associated with the voltage solution. However, this 
approach is cumbersome. 

The Direct Approach 
It is much easier to find the primed constants directly in terms of the ini
tial values of the response function. For the circuit being discussed, we 
would find the primed constants from /L(0) and dii(0)/dt. 

The solution for a second-order differential equation with a constant 
forcing function equals the forced response plus a response function 
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identical in form to the natural response. Thus we can always write the 
solution for the step response in the form 

. _ [function of the same form! 
' \ as the natural response J ' 

or 

v = Vf + {function of the same form 1 
as the natural response J ' 

(8.50) 

(8.51) 

where If and Vf represent the final value of the response function. The 
final value may be zero, as was, for example, the case with the voltage v in 
the circuit in Fig. 8.8. 

Examples 8.6-8.10 illustrate the technique of finding the step 
response of a parallel RLC circuit using the direct approach. 

Example 8.6 Finding the Overdamped Step Response of a Parallel RLC Circuit 

The initial energy stored in the circuit in Fig. 8.12 is 
zero. At t = 0, a dc current source of 24 mA is 
applied to the circuit. The value of the resistor is 
400 ft. 

a) What is the initial value of iLl 

b) What is the initial value of dijdtl 

c) What are the roots of the characteristic equation? 

d) What is the numerical expression for //,(/1) when 
t > 0? 

'(p'X 
Figure 8.12 • The circuit for Example 8.6. 

Solution 

a) No energy is stored in the circuit prior to the 
application of the dc current source, so the initial 
current in the inductor is zero. The inductor pro
hibits an instantaneous change in inductor cur
rent; therefore iL(0) = 0 immediately after the 
switch has been opened. 

b) The initial voltage on the capacitor is zero 
before the switch has been opened; therefore it 
will be zero immediately after. Now, because 
v = Ldifjdt, 

di 

dt 
- (0+ ) = 0. 

c) From the circuit elements, we obtain 

, 1 1012 

(-0() = 

a = 

LC (25)(25) 

1 10y 

2RC (2)(400)(25) 

16 x 10*, 

= 5 x 104rad/s, 

or 

a2 = 25 X 108. 

Because a»o < a2, the roots of the characteristic 
equation are real and distinct. Thus 

Sl = - 5 X 104 + 3 X 104 = -20,000 rad/s, 

s2 = - 5 X 104 - 3 X 104 = -80,000 rad/s. 

d) Because the roots of the characteristic equation 
are real and distinct, the inductor current response 
will be overdamped. Thus iL(t) takes the form of 
Eq. 8.47, namely, 

iL = If + A[eSit + A!2e
s-'. 

• Inductor current in overdamped parallel 
RLC circuit step response 

Hence, from this solution, the two simultaneous 
equations that determine A\ and A^are 

*t(0) = If + A\ + A'2 = 0, 

diL 

di 
(0) = sxA\ + s2A

,
2 = 0. 

Solving for A\ and A'2 gives 

A[ = - 32 mA and A'2 = 8 mA. 

The numerical solution for iL(t) is 

iL{t) = (24 - 32e-20-000' + 8e-")mk) mA, t > 0. 
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Finding the Underdamped Step Response of a Parallel RLC Circuit 

The resistor in the circuit in Example 8.6 (Fig. 8.12) 
is increased to 625 ft. Find iL(t) for t 2s 0. 

Solution 

Because L and C remain fixed, col has the same 
value as in Example 8.6; that is, col = 16 X 108. 
Increasing R to 625 ft decreases a to 
3.2 X 104rad/s. With col > oc\ the roots of the 
characteristic equation are complex. Hence 

sx = -3.2 X 104 + /2.4 X 104rad/s, 

s2 = -3.2 X 104 - /2.4 X 104 rad/s. 

The current response is now underdamped and 
given by Eq. 8.48: 

kit) = I/ + B[e~°" cos codt + B'2e~at sin todt. 

• Inductor current in underdamped parallel 
RLC circuit step response 

Here, a is 32,000 rad/s, cod is 24,000 rad/s, and 
If is 24 mA. 

As in Example 8.6, B[ and B'2 are determined 
from the initial conditions. Thus the two simultane
ous equations are 

I'ZXO) = If + B[ = 0, 

^(0)=co(lB2-aB[ = Q. 

Then, 

and 

B\ = - 2 4 mA 

54 = - 3 2 mA. 

The numerical solution for iL (t) is 

iL(t) = (24 - 24e-3Z000'cos24,000r 

- 32e"32'000' sin 24,000?) mA, t > 0. 

Example 8.8 Finding the Critically Damped Step Response of a Parallel RLC Circuit 

The resistor in the circuit in Example 8.6 (Fig. 8.12) 
is set at 500 ft. Find iL for t > 0. 

Solution 

We know that col remains at 16 X 108. With R set at 
500 ft, a becomes 4 X 104s~\ which corresponds 
to critical damping. Therefore the solution for iL(t) 
takes the form of Eq. 8.49: 

kit) = If + D\te~at + D'2e~°". 

• Inductor current in critically damped parallel 
RLC circuit step response 

Again, D\ and D2 are computed from initial 
conditions, or 

iL(0) = If + D'2 = 0, 

~ ( 0 ) = D\ - aD'o = 0. 
at 

Thus 

D\ = -960,000 mA/s and D'2 = - 2 4 mA. 

The numerical expression for iL{i) is 

iL(t) = (24 - 960,000re-4(X()0{)' - 24e_40'000') mA, t > 0. 
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Example 8.9 Comparing the Three-Step Response Forms 

a) Plot on a single graph, over a range from 0 to 
220 jus, the overdamped, underdamped, and 
critically damped responses derived in 
Examples 8.6-8.8. 

b) Use the plots of (a) to find the time required for 
iL to reach 90% of its final value. 

c) On the basis of the results obtained in (b), which 
response would you specify in a design that puts 
a premium on reaching 90% of the final value of 
the output in the shortest time? 

d) Which response would you specify in a design 
that must ensure that the final value of the cur
rent is never exceeded? 

iL (mA) 

Underdamped {R = 625 il) 

jOverdamped (R = 400 SI) 
I Critically damped {R = 500 Q) 

tQa) 0 20 60 100 140 180 

Figure 8.13 A The current plots for Example 8.9. 

Solution 

a) See Fig. 8.13. 

b) The final value of iL is 24 mA, so we can read the 
times off the plots corresponding to iL = 21.6 mA. 
Thus tod = 130 ^is, tcd = 97 /xs, and tud = 74 fis. 

c) The underdamped response reaches 90% of the 
final value in the fastest time, so it is the desired 
response type when speed is the most important 
design specification. 

d) From the plot, you can see that the under-
damped response overshoots the final value of 
current, whereas neither the critically damped 
nor the overdamped response produces currents 
in excess of 24 mA. Although specifying either of 
the latter two responses would meet the design 
specification, it is best to use the overdamped 
response. It would be impractical to require a 
design to achieve the exact component values 
that ensure a critically damped response. 

Example 8.10 Finding Step Response of a Parallel RLC Circuit with Initial Stored Energy 

Energy is stored in the circuit in Example 8.8 
(Fig. 8.12, with R = 500 n) at the instant the dc cur
rent source is applied. The initial current in the 
inductor is 29 mA, and the initial voltage across the 
capacitor is 50 V. Find (a) /L(0); (b) diL{0)/dt; 
(c) iL{t) for t > 0; (d) v(t) for t > 0. 

Solution 

a) There cannot be an instantaneous change of cur
rent in an inductor, so the initial value of iL in the 
first instant after the dc current source has been 
applied must be 29 mA. 

b) The capacitor holds the initial voltage across the 
inductor to 50 V. Therefore 

c) From the solution of Example 8.8, we know that 
the current response is critically damped. Thus 

idO = if + D\te~at + D2e~at, 

where 

2RC 
= 40,000 rad/s and If = 24 mA. 

Notice that the effect of the nonzero initial 
stored energy is on the calculations for the con
stants D[ and D'2, which we obtain from the ini
tial conditions. First we use the initial value of 
the inductor current: 

Lf«n = 50, 

^ ( 0 + ) = § X 103 = 2000 A/s. 
at 25 

iL(0) = If + D'2 = 29 mA, 

from which we get 

D'2 = 29 - 24 = 5 mA. 
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The solution for D[ is 

~(0+) = D{ - aD'2 = 2000, 

or 

D\ = 2000 + aD'2 

= 2000 + (40,000)(5 X 10~3) 

= 2200 A/s = 2.2 X 106 m A/s. 

Thus the numerical expression for iL(t) is 

iL(t) = (24 + 2.2 X lO'Ve"40-000' 

+ 5e~4{UMH) mA, t > 0. 

d) We can get the expression for v(t), t > 0 by 
using the relationship between the voltage and 
current in an inductor: 

dij 
v(t) = L ^ 

= (25 X 10~3)[(2.2 X 106)(-40,000)te-4ao,1()' 

+ 2.2 X ioV40-000 ' 

+ (5)(-40,000)<r4(M)00'] X 10~3 

= -2.2 x lO6^40-000 ' + 5 0 e ^ w u * V, / s> 0. 

To check this result, let's verify that the initial 
voltage across the inductor is 50 V: 

v(0) = -2.2 X 106(0)(1) + 50(1) = 50 V. 

^ A S S E S S M E N T P R O B L E M 

Objective 1—Be able to determine the natural response and the step response of parallel RLC circuits 

8.6 In the circuit shown, R = 500 O, L = 0.64 H, 
C = 1 fxF, and I = —1 A. The initial voltage 
drop across the capacitor is 40 V and the initial 
inductor current is 0.5 A. Find (a) //?(0+); 
(b) ic(0

+); (c) diL(0+)/dt; (d) st, s2; (e) iL(t) for 
t > 0; and (f) v(t) for t > 0+. 

Answer: (a) 80 mA; 

(b)-1.58 A; 

(c) 62.5 A/s; 

(d) (-1000 + ;750) rad/s, 
(-1000 - /750) rad/s; 

( e ) [ - l + <r1000'[1.5cos750f 
+ 2.0833 sin 750f] A, for t > 0; 

(f) £r1000'(40cos750; - 2053.33 sin 750r) V, 
for t > 0+. 

NOTE: Also try Chapter Problems 8.29-8.31. 

8.4 The Natural and Step Response 
of a Series RLC Circuit 

The procedures for finding the natural or step responses of a series RLC 
circuit are the same as those used to find the natural or step responses of a 
parallel RLC circuit, because both circuits are described by differential 
equations that have the same form. We begin by summing the voltages 
around the closed path in the circuit shown in Fig. 8.14. Thus 

/* 1 p 
Ri + L~ + - idr + V0 = 0. 

dt CJ() 

We now differentiate Eq. 8.52 once with respect to t to get 

ndi , dri i 
R— + L— + — = 0, 

dt dt2 C 

(8.52) 

(8.53) 

R 

•"•"N, 

iy 

L 

X 
) d 

+ 
^Va 

Figure 8.14 A A circuit used to illustrate the natural 
response of a series RLC circuit. 



286 Natural and Step Responses of RLC Circuits 

which we can rearrange as 

Characteristic equation—series 
RLC circuit • 

d2i R di i 
—r + —— + = 0. 
dr L dt LC 

(8.54) 

Comparing Eq. 8.54 with Eq. 8.3 reveals that they have the same form. 
Therefore, to find the solution of Eq. 8.54, we follow the same process that 
led us to the solution of Eq. 8.3. 

From Eq. 8.54, the characteristic equation for the series RLC circuit is 

2 R 1 ^ 
(8.55) 

The roots of the characteristic equation are 

Neper frequency—series RLC circuit • 

Resonant radian frequency—series 
RLC circuit • 

*l,2 

*1 

R 
2L 

i — 

± 

-a 

U 
±vV 

r -
Oil-

1 
LC 

or 

The neper frequency (a) for the series RLC circuit is 

R A, 

a = — rad/s, 

and the expression for the resonant radian frequency is 

1 

(8.56) 

(8.57) 

(8.58) 

w0 = rad/s. (8.59) 

Current natural response forms in series 
RLC circuits F • 

Note that the equation for neper frequency of the series RLC circuit differs 
from that of the parallel RLC circuit, but the equations for resonant and 
damped radian frequencies are the same. 

The current response will be overdamped, underdamped, or critically 
damped according to whether col < a2, WQ > a2, or a>o = a2, respectively. 
Thus the three possible solutions for the current are as follows: 

/(f) = Ate
Sit + A2e

S2t (overdamped), (8.60) 

i(t) = Bxe~ai cos o)dt + B2e~at sin ojdt (underdamped), (8.61) 

i(t) = Drfe'"1 + L\e~al (critically damped). (8.62) 

r = 0 
- W W 

R 

+ v 

c: 

Figure 8.15 • A circuit used to illustrate the step 
response of a series RLC circuit. 

When you have obtained the natural current response, you can find the 
natural voltage response across any circuit element. 

To verify that the procedure for finding the step response of a series 
RLC circuit is the same as that for a parallel RLC circuit, we show that the 
differential equation that describes the capacitor voltage in Fig. 8.15 has 
the same form as the differential equation that describes the inductor cur
rent in Fig. 8.11. For convenience, we assume that zero energy is stored in 
the circuit at the instant the switch is closed. 

Applying Kirchhoff s voltage law to the circuit shown in Fig. 8.15 gives 

V = Ri + L^- + vc. dt 
(8.63) 



8.4 The Natural and Step Response of a Series RLC Circuit 287 

The current (i) is related to the capacitor voltage (%•) by the expression 

, dvc 
i = C 

dt 
(8.64) 

from which 

d[ = d2vc 

dt dt1 ' 
(8.65) 

Substitute Eqs. 8.64 and 8.65 into Eq. 8.63 and write the resulting 
expression as 

d2vc R dvc vc V 

dr L dt LC LC 
(8.66) 

Equation 8.66 has the same form as Eq. 8.41; therefore the procedure for 
finding vc parallels that for finding iL. The three possible solutions for vc 

are as follows: 

vc = Vf + A\eSlt + A'2e
S2' (overdamped), (8.67) 

vc = Vf + B\e~at cos todt + B'2e~at sin (odt (underdamped), (8.68) 4 Capadtor voltage step response forms in 

vc = Vf+ D[te~at + D'2e~a1 (critically damped), (8.69) series RLC drcuits 

where Vf is the final value of vc. Hence, from the circuit shown in Fig. 8.15, 
the final value of vc is the dc source voltage V. 

Example 8.11 and 8.12 illustrate the mechanics of finding the natural 
and step responses of a series RLC circuit. 

Example 8.11 Finding the Underdamped Natural Response of a Series RLC Circuit 

The 0.1 /xF capacitor in the circuit shown in 
Fig. 8.16 is charged to 100 V. At t = 0 the capacitor 
is discharged through a series combination of a 
100 mH inductor and a 560 fl resistor. 

a) Find i(t) for t > 0. 

b) Find vc(t) for t > 0. 

/ = 0 
100 mH 

Figure 8.16 A The circuit for Example 8.11. 

Solution 

a) The first step to finding /'(?) is to calculate the 
roots of the characteristic equation. For the given 
element values, 

2 

a = 

1 

LC 

(103)(1Q6) 

(100)(0.1) 

A 
2L 

560 

108, 

2(100) 

= 2800 rad/s 

X 103 
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Next, we compare a^ to a2 and note that o)l > a2, 
because 

a2 - 7.84 X 106 

= 0.0784 X 108. 

At this point, we know that the response is under-
damped and that the solution for /(f) is of the form 

/(f) = B^'**1 cos wj + B2e~at sincojt, 

where a = 2800 rad/s and a)d = 9600 rad/s. The 
numerical values of B{ and B2 come from the initial 
conditions. The inductor current is zero before the 
switch has been closed, and hence it is zero immedi
ately after. Therefore 

/(0) = 0 = B{. 

To find B2, we evaluate di(()+)/dt. From the circuit, we 
note that, because /(0) = 0 immediately after the 
switch has been closed, there will be no voltage drop 
across the resistor. Thus the initial voltage on the 
capacitor appears across the terminals of the inductor, 
which leads to the expression, 

L dt % ' 

or 
di(0+) V0 100 

dt " L " 100 X 1 0 

= 1000 A/s. 

Because B} = 0, 

di 
— = 40032<r28()0'(24 cos 9600f - 7sin9600f). 

Thus 

di(Q+) 

dt 
= 960052, 

The solution for /(f) is 

/(f) = 0.1042<T2800' sin 9600f A, f > 0 . 

b) To find Vc(t), we can use either of the following rela
tionships: 

1 fl 

vc = — / idr + 100 or 
w o 

r di 
vc = iR + L—. 

dt 

Whichever expression is used (the second is recom
mended), the result is 

vc(t) = (100cos9600f + 29.17sin9600f)e-280UrV, t > 0. 

Example 8.12 Finding the Underdamped Step Response of a Series RLC Circuit 

No energy is stored in the 100 mH inductor or the 
0.4 ^iF capacitor when the switch in the circuit 
shown in Fig. 8.17 is closed. Find vc(t) for t > 0. 

48 V 

- \ 0.1 H 
f = 0 

-*M, 
28011 
0.4 M F ; 

+ 

Figure 8.17 • The circuit for Example 8.12. 

Solution 

The roots of the characteristic equation are 

280 280 
0.2 

10f 

(0.1)(0.4) 

= (-1400 +/4800) rad/s, 

s2 = (-1400 - ;4800) rad/s. 

The roots are complex, so the voltage response is 
underdamped. Thus 

vc(t) = 48 + Bie"14()0'cos4800f 

+ £^T1400'sin4800f, f > 0. 

No energy is stored in the circuit initially, so both 
i;c(0) and dvc(0

+)/dt are zero. Then, 

vc(0) 

dvc(0
+) 

dt 

= 0 = 48 + S'b 

= 0 = 4800B'2 - 14005;. 

Solving for B\ and B'2 yields 

B\ = - 4 8 V, 

B2 = - 1 4 V. 

Therefore, the solution for vc(t) is 

vc{t) = (48 - 48<T14()0'cos4800f 

- 14e"1400'sin 48000 V, ' * 0. 
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^ / A S S E S S M E N T PROBLEMS 

Objective 2—Be able to determine the natural response and the step response of series RLC circuits 

8.7 The switch in the circuit shown has been in 
position a for a long time. At t = 0, it moves to 
position b. Find (a) /(0+); (b) vc(0

+); 
(c) di(Q+)/dt; (d) 5,, s2; and (e) i(t) for t > 0. 

Answer: (a) 0; 

(b) 50 V; 

(c) 10,000 A/s; 

(d) (-8000 + /6000) rad/s, 
(-8000 - /6000) rad/s; 

(e) (1.67<r8000f sin 6000/) A for/ > 0. 

NOTE: Also try Chapter Problems 8.50-8.52. 

9kfl 5mH 

8.8 Find vc{t) for t > 0 for the circuit in 
Assessment Problem 8.7. 

Answer: [ 100 - <T8000f(50 cos 6000? 
+ 66.67 sin 6()00/)] V for t > 0. 

8.5 A Circuit with Two Integrating 
Amplifiers 

A circuit containing two integrating amplifiers connected in cascade1 is 
also a second-order circuit; that is, the output voltage of the second inte
grator is related to the input voltage of the first by a second-order differ
ential equation. We begin our analysis of a circuit containing two cascaded 
amplifiers with the circuit shown in Fig. 8.18. 

Figure 8.18 • Two integrating amplifiers connected in cascade. 

We assume that the op amps are ideal. The task is to derive the differ
ential equation that establishes the relationship between v(, and vg. We 
begin the derivation by summing the currents at the inverting input termi
nal of the first integrator. Because the op amp is ideal. 

From Eq. 8.70, 

0 - v„ d 

— + C , - ( 0 - »ol) = 0. 

dv o] 

dt vr. * .C , l 

(8.70) 

(8.71) 

' In a cascade connection, the output signal of the first amplifier (v<a in Fig. 8.18) is the input 
signal for the second amplifier. 
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Now we sum the currents away from the inverting input terminal of the 
second integrating amplifier: 

0 — u„i d 

-jf + c2-(o - %) - (., 
or 

dv„ 
dt 

Differentiating Eq. 8.73 gives 

d2v„ 

R-yCt 
h>V 

1 dvoi 

dt2 R2C2 dt 

(8.72) 

(8.73) 

(8.74) 

We find the differential equation that governs the relationship between va 

and vg by substituting Eq. 8.71 into Eq. 8.74: 

d2v,> 1 1 
-?V (8.75) 

dt2 R[Cl R2C2 *' 

Example 8.13 illustrates the step response of a circuit containing two cas
caded integrating amplifiers. 

Example 8.13 Analyzing Two Cascaded Integrating Amplifiers 

No energy is stored in the circuit shown in Fig. 8.19 
when the input voltage v„ jumps instantaneously 
from 0 to 25 mV. 

a) Derive the expression for v0(t) for 0 < t < /sat. 

b) How long is it before the circuit saturates? 

Solution 

a) Figure 8.19 indicates that the amplifier scaling 
factors are 

0,1 /*F 

1 1000 

R[Cl (250)(0.1) 

1 1000 

= 40, 

R2C2 (500)(1) 
= 2. 

Now, because vg = 25 m V for t > 0, Eq. 8.75 
becomes 

d2v(> 

dt2 

To solve for v(), we let 

= (40)(2)(25 X 10"3) = 2. 

then, 

dg(t) 
dt 

,,v dv() 

g(0 = -^-. 

2, and dg(t) = 2dt. 

Figure 8.19 • The circuit for Example 8.13. 

Hence 

from which 

However, 

dy = 2 I dx, 
g(0) ./() 

g(t) ~ g(0) = 2t. 

dvJQ) 

m - - ^ i - o . 
because the energy stored in the circuit ini
tially is zero, and the op amps are ideal. (See 
Prob lem 8.57.) Then, 

^ = 2t, and va = t2 + vo(0). 

But vo(0) = 0, so the experssion for va becomes 

v„ = t2, 0 < t < ;Sill. 
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b) The second integrating amplifier saturates when 
va reaches 9 V or t = 3 s. But it is possible that 
the first integrating amplifier saturates before 
t = 3 s. To explore this possibility, use Eq. 8.71 to 
find dv„i/dt: 

dVoi 
dt 

-40(25) X 10"3 = - 1 . 

Solving for vnl yields 

%] = -t. 

Thus, at t = 3 s, v()] = —3 V, and, because the power 
supply voltage on the first integrating amplifier is 
±5 V, the circuit reaches saturation when the second 
amplifier saturates. When one of the op amps satu
rates, we no longer can use the linear model to predict 
the behavior of the circuit. 

NOTE: Assess your understanding of this material by trying Chapter Problem 8.63. 

Two Integrating Amplifiers with Feedback Resistors 

Figure 8.20 depicts a variation of the circuit shown in Fig. 8.18. Recall from 
Section 7.7 that the reason the op amp in the integrating amplifier satu
rates is the feedback capacitor's accumulation of charge. Here, a resistor is 
placed in parallel with each feedback capacitor (C{ and C2) to overcome 
this problem. We rederive the equation for the output voltage, vtr and 
determine the impact of these feedback resistors on the integrating ampli
fiers from Example 8.13. 

We begin the derivation of the second-order differentia] equation that 
relates va] to vg by summing the currents at the inverting input node of the 
first integrator: 

() - Vg () - v„i d , 
(8.76) 

We simplify Eq. 8.76 to read 

dVai , 1 _ - ¾ 
dt RiC^"1 KaC, 

(8.77) 

For convenience, we let T\ = R\C\ and write Eq. 8.77 as 

dt T] 

•Vo 

RnC] 

(8.78) 

The next step is to sum the currents at the inverting input terminal of the 
second integrator: 

0 - v,,i 0 - vn d 
(8.79) 

Figure 8.20 • Cascaded integrating amplifiers with feedback resistors. 



We rewrite Eq. 8.79 as 

dvp va -voi 

^n+v2
 = i^: (8-80) 

where r2 = R2C2. Differentiating Eq. 8.80 yields 

d2va J_dv(> _ 1 dvol 

It? + V2~d7 ~ ~W2~^' (8-81) 

From Eq. 8.78, 

dvol -vol vg 

dt TJ RACX 
(8.82) 

and from Eq. 8.80, 

dv.y RbCi 
V0i = -RhC2-7r ~ -T^V0. (8.83) 

dt T2 

We use Eqs. 8.82 and 8.83 to eliminate dvaJdt from Eq. 8.81 and obtain 
the desired relationship: 

d \ ( 1 1 W / 1 \ vR 

From Eq. 8.84, the characteristic equation is 

ss • — + —)s + = 0. (8.85) 
Ji T2J T\T2 

The roots of the characteristic equation are real, namely, 

Si = —, (8.86) 
r i 

- 1 
ft = . (8.87) 

Example 8.14 illustrates the analysis of the step response of two cascaded 
integrating amplifiers when the feedback capacitors are shunted with 
feedback resistors. 
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Example 8.14 Analyzing Two Cascaded Integrating Amplifiers with Feedback Resistors 

The parameters for the circuit shown in Fig. 8.20 
are Ra = 100 kfi, RY = 500 kO, Cx = 0.1 ^F , 
Rh = 25 kH, R2 = 100 kO, and C2 = 1 /xF. The 
power supply voltage for each op amp is ±6 V. The 
signal voltage (vg) for the cascaded integrating 
amplifiers jumps from 0 to 250 mV at t = 0. No 
energy is stored in the feedback capacitors at the 
instant the signal is applied. 

a) Find the numerical expression of the differential 
equation for vQ. 

b) Find v()(t) for t > 0. 

c) Find the numerical expression of the differential 
equation for va]. 

d) Find v(A(t) for/ > 0. 

The solution for v» thus takes the form: 

Solution 

a) From the numerical values of the circuit parame
ters, we have TJ = R\C] = 0.05 s; r2 = R2C2 

= 0.10 s, and vg/R.ACiRhC2 = 1000 V/s2. Substi
tuting these values into Eq. 8.84 gives 

10f va = 5 + A[e~m + A'2e -2i.tr 

With vo(0) = 0 and dvo(0)/dt = 0, the numeri
cal values of A\ and A'2 are A\ — —10 V and 
A2 = 5 V. Therefore, the solution for v() is 

2QC\ v0(t) = (5 - 10e~lu' + 5e"iU0 V, f > 0. 

The solution assumes that neither op amp 
saturates. We have already noted that the final 
value of va is 5 V, which is less than 6 V; hence the 
second op amp does not saturate. The final value 
of vol is (250 X 10"3)(-500/100), or -1.25 V. 
Therefore, the first op amp does not saturate, and 
our assumption and solution are correct. 

c) Substituting the numerical values of the parame
ters into Eq. 8.78 generates the desired differen
tial equation: 

d v() dva 
—£ + 30—^ + 200vo = 1000. 
dt2 dt 

dv 0\ 

dt 
+ 20vol = - 2 5 . 

b) The roots of the characteristic equation are 
S] = -20rad / s and s2 = - lOrad/s . The final 
value of v0 is the input voltage times the gain of 
each stage, because the capacitors behave as 
open circuits as t —» oo. Thus, 

Vo(°°) (250 X 10 - 3 ) -
-500) (-100) 

100 25 
5 V. 

d) We have already noted the initial and final val
ues of v0\, along with the time constant T\. Thus 
we write the solution in accordance with the 
technique developed in Section 7.4: 

>o\ -1.25 + [0 - (-1.25)]e -20/ 

m = -1.25 + 1.25<T/l"V, t > 0 

NOTE: Assess your understanding of this material by trying Chapter Problem 8.64. 

http://-2i.tr
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Practical Perspective 

Figure 8.21 A The circuit diagram of the conven
tional automobile ignition system. 

An Ignition Circuit 
Now let us return to the conventional ignition system introduced at the 
beginning of the chapter. A circuit diagram of the system is shown in 
Fig. 8.21. Consider the circuit characteristics that provide the energy to 
ignite the fuel-air mixture in the cylinder. First, the maximum voltage avail
able at the spark plug, vsp, must be high enough to ignite the fuel. Second, 
the voltage across the capacitor must be limited to prevent arcing 
across the switch or distributor points. Third, the current in the primary 
winding of the autotransformer must cause sufficient energy to be stored in 
the system to ignite the fuel-air mixture in the cylinder. Remember that the 
energy stored in the circuit at the instant of switching is proportional to the 
primary current squared, that is, a>0 = |L/2 (0) . 

EXAMPLE 

a) Find the maximum voltage at the spark plug, assuming the following val
ues in the circuit of Fig. 8.21: Vdc = 12 V , R = 4 ft, L = 3 m H , 
C - OAfiF, and a = 100. 

b) What distance must separate the switch contacts to prevent arcing at 
the time the voltage at the spark plug is maximum? 

Solution 

a) We analyze the circuit in Fig. 8.21 to find an expression for the spark 
plug voltage vsp. We limit our analysis to a study of the voltages in the 
circuit prior to the firing of the spark plug. We assume that the current 
in the primary winding at the time of switching has its maximum possi
ble value V&JR, where R is the total resistance in the primary circuit. 
We also assume that the ratio of the secondary voltage (v2) to the pri
mary voltage (v{) is the same as the turns ratio N2/Ni. We can justify 
this assumption as follows. With the secondary circuit open, the voltage 
induced in the secondary winding is 

di 

dt 

and the voltage induced in the primary winding is 

(8.88) 

vl — L 
di 
It 

I t follows from Eqs. 8.88 and 8.89 that 

«i 

M_ 
L" 

(8.89) 

(8.90) 

I t is reasonable to assume that the permeance is the same for the fluxes 
4>u and <f>2\ in the iron-core autotransformer; hence Eq. 8.90 reduces to 

V2 

«1 

NtN2^ N2 

Nty Ni — a. (8.91) 

We are now ready to analyze the voltages in the ignition circuit. 
The values of R, L, and C are such that when the switch is opened, the 
primary coil current response is underdamped. Using the techniques 



developed in Section 8.4 and assuming t = 0 at the instant the switch 
is opened, the expression for the primary coil current is found to be 

I = Y*£ e-at 
R 

coswdt + I — ] sm o)dt (8.92) 

where 

R_ 
2 V a = 

" * " ^ L C - ° 

(See Problem 8.66(a).) The voltage induced in the primary winding 
of the autotransformer is 

V\ = L— = 
di -VAc _at 

e ut sin (odt. dt codRC 

(See Problem 8.66(b).) I t follows from Eq. 8.91 that 

(8.93) 

v2 = 
-«Kic _, 
iodRC e s m w / (8.94) 

The voltage across the capacitor can be derived either by using the 
relationship 

Vc = ~cl idx + Vc^ (8.95) 

or by summing the voltages around the mesh containing the primary 
winding: 

vc = Vdc - iR - L-}-. (8.96) 
at 

In either case, we find 

*V = Kfc[l _ e~a' cos codt + Ke~at sin <adt], (8.97) 

where 

cod\RC J 

(See Problem 8.66(c).) As can be seen from Fig. 8.21, the voltage 
across the spark plug is 

T/ ttV^ -at • 
= Vdc - ~^~^e S m Udt 

= Vr dc 1 -
iodRC 

e sin a)dt (8.98) 
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To find the maximum value of ^sp, we find the smallest positive value of 
time where dv&p/dt is zero and then evaluate vsp at this instant The 
expression for tmax is 

tarn = —tan"1) — ). (8.99) 
(od \a J 

(See Problem 8.67) For the component values in the problem statement, 
we have 

R 4 X 103 

a = —- = — - — = 666.67 rad/s, 
2L 

and 

f109 

<°d = A / T T ~ (666.67)2 = 28,859.81 rad/s. 
1.2 

Substituting these values into Eq. 8.99 gives 

^max = 53.63 flS. 

Now use Eq. 8.98 to find the maximum spark plug voltage, vsp(tmetx): 

V U = -25,975.69 V. 

b) The voltage across the capacitor at rmax is obtained from Eq. 8.97 as 

^ c ( W ) = 262.15 V . 

The dielectric strength of air is approximately 3 x 106 V / m , so this 
result tells us that the switch contacts must be separated by 
262.15/3 X 106, or 87.38, fj,m to prevent arcing at the points at ?max. 

In the design and testing of ignition systems, consideration must 
be given to nonuniform fuel-air mixtures; the widening of the spark plug 
gap over time due to the erosion of the plug electrodes; the relationship 
between available spark plug voltage and engine speed; the time i t takes 
the primary current to build up to its initial value after the switch 
is closed; and the amount of maintenance required to ensure reliable 
operation. 

We can use the preceding analysis of a conventional ignition system 
to explain why electronic switching has replaced mechanical switching in 
today's automobiles. First, the current emphasis on fuel economy and 
exhaust emissions requires a spark plug with a wider gap. This, in turn, 
requires a higher available spark plug voltage. These higher voltages (up 
to 40 kV) cannot be achieved with mechanical switching. Electronic 
switching also permits higher initial currents in the primary winding of 
the autotransformer. This means the initial stored energy in the system is 
larger, and hence a wider range of fuel-air mixtures and running condi
tions can be accommodated. Finally, the electronic switching circuit elim
inates the need for the point contacts. This means the deleterious effects 
of point contact arcing can be removed from the system. 

NOTE: Assess your understanding of the Practical Perspective by trying Chapter 
Problems 8.68 and 8.69. 
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The characteristic equation for both the parallel and 
series RLC circuits has the form 

s2 + 2as + O)Q = 0, 

where a = 1/2RC for the parallel circuit, a = R/2L for 
the series circuit, and col = ^/LC for both the parallel 
and series circuits. (See pages 267 and 286.) 

The roots of the characteristic equation are 

*1.2 B -a ± Vo2" (4-
(See page 268.) 

• The form of the natural and step responses of series 
and parallel RLC circuits depends on the values of a2 

and col; s u c r l responses can be overdamped, 
underdamped, or critically damped. These terms 
describe the impact of the dissipative element (R) on 
the response. The neper frequency, a, reflects the effect 
of R. (See pages 268 and 269.) 

• The response of a second-order circuit is overdamped, 
underdamped, or critically damped as shown in 
Table 8.2. 

• In determining the natural response of a second-order 
circuit, we first determine whether it is over-, under-, or 

critically damped, and then we solve the appropriate 
equations as shown in Table 8.3. 

• In determining the step response of a second-order cir
cuit, we apply the appropriate equations depending on 
the damping, as shown in Table 8.4. 

• For each of the three forms of response, the unknown 
coefficients (i.e., the As, B s, and Ds) are obtained by 
evaluating the circuit to find the initial value of the 
response, x(0), and the initial value of the first deriva
tive of the response, dx(Q)/dt. 

• When two integrating amplifiers with ideal op amps are 
connected in cascade, the output voltage of the second 
integrator is related to the input voltage of the first by an 
ordinary, second-order differential equation. Therefore, 
the techniques developed in this chapter may be used to 
analyze the behavior of a cascaded integrator. (See 
pages 289 and 290.) 

• We can overcome the limitation of a simple integrating 
amplifier—the saturation of the op amp due to charge 
accumulating in the feedback capacitor—by placing a 
resistor in parallel with the capacitor in the feedback 
path. (See page 291.) 

TABLE 8.2 The Response of a Second-Order Circuit is Overdamped, Underdamped, or Critically Damped 

The Circuit is When Qualitative Nature of the Response 

Overdamped a2 > oil 

Underdamped 

Critically damped 

a" < oj{) 

2 2 

The voltage or current approaches its final value without oscillation 

The voltage or current oscillates about its final value 

The voltage or current is on the verge of oscillating about its final value 

TABLE 8.3 In Determining the Natural Response of a Second-Order Circuit, We First Determine Whether i t is Over-, Under-, 
or Critically Damped, and Then We Solve the Appropriate Equations 

Damping Natural Response Equations 

Overdamped x(t) = A^e*1' + A2e
S2' 

Underdamped x{t) - (Bx cos <adt + B2 sin o)dt)e' 

Critically damped x(t) = {Dj. + D2)e~°" 

Coefficient Equations 

JC(0) = Ai + A2; 

dx/dt(0) = A{s{ + A2s2 

x(0) - B i ; 

dx/dt(0) = -aBi + <odB2, 

where o>d = VOJQ - a2 

-v(0) = D2, 

dx/dt(0) = Di- aD2 
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TABLE 8.4 In Determining the Step Response of a Second-Order Circuit, We Apply the Appropriate Equations Depending 
on the Damping 

Damping Step Response Equations9 

Overdamped x(t) = Xf + A[ eiV + A2 e*2' 

Underdamped x(t) = Xf + (B[ cos <odt + B'2 sin a>dt)e~ 

Critically damped x(t) = Xf + D[ te~al + D'2 e~al 

a where X* is the final value of x(t). 

Coefficient Equations 

x(0) = Xf + A\ + A2; 

dx/dt(0) = A\ s, + A2 s2 

x(0) - Xf + B\ ; 

dx/dt(0) = -aB\ + <odB'2 

x(0) = Xf + D'2; 

dx/dt(0) = D\ - aD'2 

Problems 

Sections 8.1-8.2 

8.1 The resistance, inductance, and capacitance in a 
parallel RLC circuit are 2000 ft, 250 mH, and 
10 nF, respectively. 

a) Calculate the roots of the characteristic equation 
that describe the voltage response of the circuit. 

b) Will the response be over-, under-, or critically 
damped? 

c) What value of R will yield a damped frequency 
of 12 krad/s? 

d) What are the roots of the characteristic equation 
for the value of R found in (c)? 

e) What value of R will result in a critically damped 
response? 

8.2 The circuit elements in the circuit in Fig. 8.1 are 
R = 200 ft, C = 200 nF, and L = 50 mH. The ini
tial inductor current is -45 mA, and the initial 
capacitor voltage is 15 V. 

a) Calculate the initial current in each branch of 
the circuit. 

b) Find v(t) for t > 0. 

c) Find iL{t) for t > 0. 

8.3 The resistance in Problem 8.2 is increased to 
PSPICE 312.5 ft. Find the expression for v(t) for t > 0. 

MULTISIM 

8.4 The resistance in Problem 8.2 is increased to 250 ft. 
PSPICE Find the expression for v(t) for t > 0. 

MULTISIM 

8.5 a) Design a parallel RLC circuit (see Fig. 8.1) using 
component values from Appendix H, with a res
onant radian frequency of 5000 rad/s. Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit. 

PSPICE 

MULTISIM 

b) Calculate the roots of the characteristic equa
tion for the resistance in part (a). 

8.6 a) Change the resistance for the circuit you 
designed in Problem 8.5(a) so that the response 
is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance. 

b) Change the resistance for the circuit you designed 
in Problem 8.5(a) so that the response is over-
damped. Continue to use components from 
Appendix H. Calculate the roots of the character
istic equation for this new resistance. 

8.7 The natural voltage response of the circuit in 
Fig. 8.1 is 

v(t) = 75<r800,)'(cos 6000/ - 4 sin 60000V, t > 0, 

when the inductor is 400 mH. Find (a) C; (b) R; 
( c )V 0 ; ( d ) / 0 ; and (e ) / L ( / ) . 

8.8 Suppose the capacitor in the circuit shown in 
Fig. 8.1 has a value of 0.1 juF and an initial voltage 
of 24 V. The initial current in the inductor is zero. 
The resulting voltage response for / s 0 is 

v(t) = -8e-250t + 32^1 0 0 0 ' V. 

a) Determine the numerical values of R, L, a, 
and <w0. 

b) Calculate iR(t), iL(t), and ic(t) for t > 0+. 

8.9 The voltage response for the circuit in Fig. 8.1 is 
known to be 

500* v(f) = Dite'™ + D2e -500/ t > 0 . 
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The initial current in the inductor (/()) is -10 mA, 
and the initial voltage on the capacitor (VQ) is 8 V. 
The inductor has an inductance of 4 H. 

a) Find the values of R, C, Dh and D2. 

b) Find ic(t) for t > 0+. 

8.10 The natural response for the circuit shown in Fig. 8.1 
is known to be 

v(t) = -l\e-im + 20e-400' V, t > 0. 

If C = 2 /xF and L = 12.5 H, find iL(i)+) in milli-
amperes. 

8.11 Tlie initial value of the voltage v in the circuit in 
Fig. 8.1 is zero, and the initial value of the capacitor 
current, /c(0+), is 45 mA. The expression for the 
capacitor current is known to be 

ic(t) = Axe-m)t + A2e~m\ t > 0+, 

when R is 250 ft. Find 

a) the values of a, co{), L, C, Ah and A2 

Hint: 
dic(0

+) diL(0+) diR(Q+) -v(0) 1 /c(0+) 

dt ell dt L R C 

b) the expression for v(t), t 2: 0, 

c) the expression for iR(t) > 0, 

d) the expression for iL{t) £: 0. 

8.12 Assume the underdamped voltage response of the 
circuit in Fig. 8.1 is written as 

v(t) = (Ax + A2)e~al cos (o(,t + y'(^i _ A2)e~at sin a>dt 

The initial value of the inductor current is /(), and 
the initial value of the capacitor voltage is V{). Show 
that A2 is the conjugate of A]_. (Hint: Use the same 
process as outlined in the text to find A\ and A2.) 

8.13 Show that the results obtained from Problem 8.12— 
that is, the expressions for Ax and A2—are consistent 
with Eqs. 8.30 and 8.31 in the text. 

8.14 In the circuit in Fig. 8.1, R = 5 kft , L = 8 H, 
PSPICE c = 125 n p , v0 = 30 V, and / 0 = 6 mA. 

MULTISIM 

a) Find v{t) for t > 0. 
b) Find the first three values of t for which dv/dt is 

zero. Let these values of t be denoted *j , t2, 
and r3. 

c) Show that t3 — t\ — T(l. 

d) Show that t2- tx = Td/2. 

e) Calculate v(t{), v(t2), and v(t3). 

f) Sketch v(t) versus t for 0 < t < t2. 

8.15 a) Find v(t) for t > 0 in the circuit in Problem 8.14 
if the 5 kfi resistor is removed from the circuit. 

MULTISIM 

b) Calculate the frequency of v(t) in hertz. 
c) Calculate the maximum amplitude of v(t) in volts. 

8.16 In the circuit shown in Fig. 8.1, a 2.5 H inductor is 
PSPICE shunted by a 100 nF capacitor, the resistor R is 

MULTISIM adjusted for critical damping, V0 = - 15 V, and 
/() = —5 mA. 

a) Calculate the numerical value of R. 

b) Calculate v(t) for t > 0. 

c) Find v{t) when ic(t) = 0. 

d) What percentage of the initially stored energy 
remains stored in the circuit at the instant /c(r) 
isO? 

8.17 The resistor in the circuit in Example 8.4 is changed 
«PICE to 3200 a. 

MULTISIM 

a) Find the numerical expression for v{t) when 
t > 0. 

b) Plot v(t) versus t for the time interval 
0 s f < 7 ras. Compare this response with 
the one in Example 8.4 (R = 20kft) and 
Example 8.5 (R = 4 kH). In particular, compare 
peak values of v(t) and the times when these 
peak values occur. 

8.18 The two switches in the circuit seen in Fig. P8.18 
PSPICE operate synchronously. When switch 1 is in position 

a, switch 2 is in position d. When switch 1 moves to 
position b, switch 2 moves to position c. Switch 1 has 
been in position a for a long time. At t = 0, the 
switches move to their alternate positions. Find 
v0(t) for t > 0. 

Figure P8.18 

i n 

8.19 The resistor in the circuit of Fig. P8.18 is increased 
PSPICE from 100 H to 200 O. Find va(t) for t > 0. 

MULTISIM 

8.20 The resistor in the circuit of Fig. P8.18 is increased 
"sn« from 100 ft to 125 ft. Find vjt) for t s 0. 

MULTISIM 

8.21 The switch in the circuit of Fig. P8.21 has been in 
PSPICE position a for a long time. At J = 0 the switch 

moves instantaneously to position b. Find v0(t) for 
/ s 0 . 

t = () 

a \ / b 

16 X lO3/* 

7.5 V %4kft 
24 kft 

!4nF ? 15.625 H A 
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8.22 The inductor in the circuit of Fig. P8.21 is decreased 
to 10 H. Find va{t) for t > 0. 

8.23 The inductor in the circuit of Fig. P8.21 is decreased 
to 6.4 H. Find v0(t) for t > 0. 

Section 8.3 

8.24 For the circuit in Example 8.6, find, for t > 0, 
PSPICE ( a ) v { t ) . ( b ) iR{t). a n d ( c ) / c ( 0 . 

MULTISIM 

8.25 For the circuit in Example 8.7, find, for t 3: 0, 
«"« (a) v(t) and (b) ic(t\ 

MULTISIM v \ / «-\ / 

8.26 For the circuit in Example 8.8, find v(t) for t > 0. 

8.27 The switch in the circuit in Fig. P8.27 has been open 

MULTISIM a l ° n § t n n e ^ e f ° r e closing at t = 0. Find 

a) v0(t) for t > 0+ , 

b) iL{t) for t > 0. 

Figure P8.27 

156.25 a 

25 V v0 < 312.5 mH 

PSPICE 

MULTISIM 

8.28 Use the circuit in Fig. P8.27 

a) Find the total energy delivered to the inductor. 

b) Find the total energy delivered to the equivalent 
resistor. 

c) Find the total energy delivered to the capacitor. 

d) Find the total energy delivered by the equiva
lent current source. 

e) Check the results of parts (a) through (d) 
against the conservation of energy principle. 

Assume that at the instant the 60 m A dc current 
source is applied to the circuit in Fig. P8.29, the ini
tial current in the 50 m H inductor is - 4 5 m A , and 
the initial voltage on the capacitor is 15 V (positive 
at the upper terminal). Find the expression for iL{t) 
fo r / > 0 if # equals 200 H . 

Figure P8.29 

8.29 
PSPICE 

MULTISIM 

60 mA '/.(0M5( 

8.30 The resistance in the circuit in Fig. P8.29 is changed 
PSPICE to 312.5 a . Find iL(t) for t > 0. 

MULTISIM 

8.31 The resistance in the circuit in Fig. P8.29 is changed 
PSPICE to 250 ft. Find iL{t) for t > 0. 

MULTISIM 

8.32 The switch in the circuit in Fig. P8.32 has been 
PSPICE open a long time before closing at t = 0. Find ir (t) 

MULTISIM f o r fe a 

Figure P8.32 

3 kfl 

15 V 

8.33 Switches 1 and 2 in the circuit in Fig. P8.33 are syn-
PSPKE chronized. When switch 1 is opened, switch 2 closes 

and vice versa. Switch 1 has been open a long time 
before closing at / = 0. Find iL(t) for t 2: (). 

8.34 The switch in the circuit in Fig. P8.34 has been open 
PSPICE for a long time before closing at t = 0. Find v0(t) 

mnsiM f o r / > 0 > 

Figure P8.34 

12 V 

400 a 

^ / = 0 

1.25/xF 

+ 

M l .251 

8.35 a) For the circuit in Fig. P8.34, find i0 for t > 0. 
PSPICE b) Show that your solution for L is consistent with 

MULTISIM ' ' v 

the solution for v0 in Problem 8.34. 

8.36 The switch in the circuit in Fig. P8.36 has been 
PSPICE open a long time before closing at t = 0. At the 

t ime the switch closes, the capacitor has no stored 
energy. Find va for t > 0. 

Figure P8.36 

7.5 V 

250 a 

^ / = 0 

!4H 

+ 

v0, 25 fiF 

Figure P8.33 

5 kfl Switch 1 

| ) 6 0 m A 
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8.37 There is no energy stored in the circuit in Fig. P8.37 
PSPICE when the switch is closed at t = 0. Find v()(t) 

™ f o r r > 0 . 

Figure P8.37 

12V 

400 n 

^ t = 0 

1.25/nF: 
+ 1 

vAl.25H 

8.38 a) For the circuit in Fig. P8.37, find ia for t > 0. 

b) Show that your solution for ia is consistent with 
the solution for v„ in Problem 8.37. 

PSPICE 

MULTISIM 

Section 8.4 

8.39 The initial energy stored in the 31.25 nF capacitor 
in the circuit in Fig. P8.39 is 9 /xJ. The initial energy 
stored in the inductor is zero. The roots of the char
acteristic equation that describes the natural behav
ior of the current i are -4000 s_1 and -16,000 s_1 

a) Find the numerical values of R and L. 

b) Find the numerical values of /(0) and di(0)/dt 
immediately after the switch has been closed. 

c) Find i(t) for 

d) How many microseconds after the switch closes 
does the current reach its maximum value? 

e) What is the maximum value of/ in milliamperes? 

f) Find vL{t) for t > 0. 

Figure P8.39 

31.25 nF 

8.40 a) Design a series RLC circuit (see Fig. 8.3) using 
component values from Appendix H, with a res
onant radian frequency of 20 krad/s. Choose a 
resistor or create a resistor network so that the 
response is critically damped. Draw your circuit. 

b) Calculate the roots of the characteristic equa
tion for the resistance in part (a). 

8.41 a) Change the resistance for the circuit you 
designed in Problem 8.40(a) so that the response 
is underdamped. Continue to use components 
from Appendix H. Calculate the roots of the 
characteristic equation for this new resistance. 

b) Change the resistance for the circuit you 
designed in Problem 8.40(a) so that the response 
is overdamped. Continue to use components 
from Appendix Ff. Calculate the roots of the 
characteristic equation for this new resistance. 

8.42 The current in the circuit in Fig. 8.3 is known to be 

i = 51<r2(,,),)' cos 1500f + B2e~2mt sin 1500/, t > 0. 

The capacitor has a value of 80 nF; the initial value 
of the current is 7.5 mA; and the initial voltage on 
the capacitor is -30 V. Find the values of R, L, Bh 

and B2. 

8.43 Find the voltage across the 80 nF capacitor for the 
circuit described in Problem 8.42. Assume the refer
ence polarity for the capacitor voltage is positive at 
the upper terminal. 

8.44 In the circuit in Fig. P8.44, the resistor is adjusted 
PSPICE for critical damping. The initial capacitor voltage is 

iiimsm 1 5 y a n c j t n e jn{ tial inductor current is 6 mA. 

a) Find the numerical value of R. 

b) Find the numerical values of i and di/dt immedi
ately after the switch is closed. 

c) Find vc(t) for t a 0. 

Figure P8.44 

+ TA 
!320nF 

R 
-vw-

125 mH 

8.45 The switch in the circuit shown in Fig. P8.45 has 
PSPICE been in position a for a long time. At t = 0, the 

switch is moved instantaneously to position b. Find 
/(0 for t > 0. 

Figure P8.45 

8012 
AM-

10 H 

8.46 The switch in the circuit in Fig. P8.46 on the next 
page has been in position a for a long time. At / = 0, 
the switch moves instantaneously to position b. 

a) What is the initial value of t>fl? 

b) What is the initial value of dvjdtl 

c) What is the numerical expression for vjf) 
for t > 0? 

PSPICE 

MULTISIM 
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Figure P8.46 Figure P8.50 

75 V 

1 kO 
AAA-

o.i MF: 

/ = 0 

2kO 
- A W -

3 kO 
-AAA— 

400 mH 

8.47 The switch in the circuit shown in Fig. P8.47 has 
PSPICE been closed for a long time. The switch opens at 
* ™ r = 0.Find 

a) i()(t) for t > 0, 

b) va{t) for t > 0. 

Figure P8.47 

f = 0 
300 a >v 

80 V 6 
500 n | f / , , (0 + 

2.5 mH • 

:4() nF 

8.48 The switch in the circuit shown in Fig. P8.48 has 
been closed for a long time. The switch opens at 
t = 0. Find vt)(t) for t > 0. 

Figure P8.48 

8.49 The circuit shown in Fig. P8.49 has been in operation 
PSPICE for a long time. At t = 0, the source voltage suddenly 

MULTI5IM jumps to 250 V. Find v(){t) for t > 0. 

Figure P8.49 

8kH 
^ A V -

160mH 

50V! 10 nF! 

+ 

v„[t) 

8.50 The initial energy stored in the circuit in Fig. P8.50 
PSPICE is zero. Find v(){t) for t > 0. 

250 n 

60 V 

8.51 The capacitor in the circuit shown in Fig. P8.50 is 
changed to 4 ju.F. The initial energy stored is still 
zero. Find v()(t) for t SE 0. 

8.52 The capacitor in the circuit shown in Fig. P8.50 is 
changed to 2.56 ^tF. The initial energy stored is still 
zero. Find va(t) for t > 0. 

8.53 The switch in the circuit of Fig. P8.53 has been in 
PSPICE position a for a long time. At t = 0 the switch 

moves instantaneously to position b. Find 

a) vo(0
+) 

b) dv()(Q
+)/dt 

c) v„(t) for t > 0. 

Figure P8.53 

8.54 The switch in the circuit shown in Fig. P8.54 has 
been closed for a long time before it is opened at 
t = 0. Assume that the circuit parameters are such 
that the response is underdamped. 

a) Derive the expression for vjt) as a function of 
Vg, a, cod, C, and R for t > 0. 

b) Derive the expression for the value of t when 
the magnitude of v0 is maximum. 

Figure P8.54 

t = 0 

\i-
R 

-AMr-

c 
+ 

Liva{t) 

8.55 The circuit parameters in the circuit of Fig. P8.54 
PSPICE are R = 4800 ft, L = 64 mH, C = 4 nF, and 

«iunsm ^ = _ 7 2 V 

a) Express va(t) numerically for t & 0. 

b) How many microseconds after the switch opens 
is the inductor voltage maximum? 
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c) What is the maximum value of the inductor 
voltage? 

d) Repeat (a)-(c) with R reduced to 480 ft. 

8.56 The two switches in the circuit seen in Fig. P8.56 
PSPICE operate synchronously. When switch 1 is in 

position a, switch 2 is closed. When switch 1 is 
in position b, switch 2 is open. Switch 1 has been in 
position a for a long time. At ( = 0, it moves instan
taneously to position b. Find vc(t) for t > 0. 

Figure P8.56 

w4.(') £1811 

8.57 Assume that the capacitor voltage in the circuit of 
Fig. 8.15 is underdamped. Also assume that no 
energy is stored in the circuit elements when the 
switch is closed. 

a) Show that dvc/dt = (a)Q/a)(i)Ve~lxl s'mwdt. 

b) Show that dvc/dt = 0 when t = mrfo)th where 
n = 0,1,2 

c) Let tn = mr/aj, and show that vc(t„) 
= y _ y/_|\ne-t«Hr/«Brf 

d) Show that 

1 vc{h) - V 
(X = 777" m :—: — , 

Td vc(h) - V 

where Td - t3 - t{. 
8.58 The voltage across a 100 nF capacitor in the circuit 

of Fig. 8.15 is described as follows: After the switch 
has been closed for several seconds, the voltage is 
constant at 100 V. The first time the voltage exceeds 
100 V, it reaches a peak of 163.84 V. This occurs 
7r/7 ms after the switch has been closed. The second 
time the voltage exceeds 100 V, it reaches a peak of 
126.02 V. This second peak occurs 3-77-/7 after the 
switch has been closed. At the time when the switch 
is closed, there is no energy stored in cither the 
capacitor or the inductor. Find the numerical values 
of R and L. (Hint: Work Problem 8.57 first.) 

Section 8.5 

8.59 Show that, if no energy is stored in the circuit 
shown in Fig. 8.19 at the instant vs jumps in value, 
then dvjdt equals zero at t = 0. 

8.60 a) Find the equation for v(,(t) for 0 < t < rsat in 
the circuit shown in Fig. 8.19 if u„i(0) = 5 V and 
vJQ) = 8 V. 

b) How long does the circuit take to reach 
saturation? 

8.61 a) Rework Example 8.14 with feedback resistors 
Ri and R2 removed. 

b) Rework Example 8.14 with vol(0) = - 2 V a n d 
vo(0) = 4 V. 

8.62 a) Derive the differential equation that relates 
the output voltage to the input voltage for the 
circuit shown in Fig. P8.62. 

b) Compare the result with Eq. 8.75 when 
Rtd - R2C2 = RC in Fig. 8.18. 

c) What is the advantage of the circuit shown in 
Fig. P8.62? 

Figure P8.62 

8.63 The voltage signal of Fig. P8.63(a) is applied to 
PSPICE the cascaded integrating amplifiers shown in 

MULT1SIM Fig. P8.63(b). There is no energy stored in the 
capacitors at the instant the signal is applied. 

a) Derive the numerical expressions for va(t) and 
vai(t) for the time intervals 0 < t < 0.5 s and 
0.5 s < t < tm. 

b) Compute the value of tS(lt. 

Figure P8.63 

MrrAO 

80 

0 
- 4 0 

. 

0.5 
1 
1 

f ( s ) 

(a) 
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8.64 The circuit in Fig. P8.63(b) is modified by adding a 
PSPICE i Mil resistor in parallel with the 500 nF capacitor 

mTISIM and a 5 MH resistor in parallel with the 200 nF 
capacitor. As in Problem 8.63, there is no energy 
stored in the capacitors at the time the signal is 
applied. Derive the numerical expressions for vn(t) 
and vo[(t) for the time intervals 0 < t < 0.5 s and 
t > 0.5 s. 

8.65 We now wish to illustrate how several op amp cir
cuits can be interconnected to solve a differential 
equation. 

a) Derive the differential equation for the spring-
mass system shown in Fig. P8.65(a). Assume 
that the force exerted by the spring is directly 
proportional to the spring displacement, that 

the mass is constant, and that the frictional 
force is directly proportional to the velocity of 
the moving mass. 

b) Rewrite the differential equation derived in (a) 
so that the highest order derivative is expressed 
as a function of all the other terms in the equa
tion. Now assume that a voltage equal to d2x/dt2 

is available and by successive integrations gen
erates dx/dt and x. We can synthesize the coeffi
cients in the equations by scaling amplifiers, and 
we can combine the terms required to generate 
d2x/dt2 by using a summing amplifier. With 
these ideas in mind, analyze the interconnection 
shown in Fig. P8.65(b). In particular, describe 
the purpose of each shaded area in the circuit 
and describe the signal at the points labeled B, 

Figure P8.65 

K 
M 

-*(0 — 

(a) 

Ri 

(b) 
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C, D, E, and F, assuming the signal at A repre
sents d2x/dt2. Also discuss the parameters R; R], 
Ci; R2, C2; R$, R4', R5, Re', and R7, i?8 in terms 
of the coefficients in the differential equation. 

Sections 8.1-8.5 

8.66 a) Derive Eq. 8.92. 

mSSmb) Derive Eq. 8.93. 

c) Derive Eq. 8.97. 

8.67 Derive Eq. 8.99. 
PRACTICAL 

8.68 a) Using the same numerical values used in the 
Practical Perspective example in the text, find 
the instant of time when the voltage across the 
capacitor is maximum. 

PRACTICAL 

PERSPECTIVE 

b) Find the maximum value of vc. 

c) Compare the values obtained in (a) and (b) with 
and vc(rmax). 

PRACTICAL p j c r 
PERSPECTIVE 6 

V 

8.69 The values of the parameters in the circuit in 
8.21 are R = 3 O; L = 5 mH; C = 0.25 juF; 

ic — 12 V; and a = 50. Assume the switch opens 
when the primary winding current is 4 A. 

a) How much energy is stored in the circuit at 
t = 0+? 

b) Assume the spark plug does not fire. What is the 
maximum voltage available at the spark plug? 

c) What is the voltage across the capacitor when 
the voltage across the spark plug is at its maxi
mum value? 

8.70 Repeat Problem 8.68 using the values given in 
Problem 8.69. 
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1 Understand phasor concepts and be able to 
perform a phasor transform and an inverse 
phasor transform. 

2 Be able to transform a circuit with a sinusoidal 
source into the frequency domain using phasor 
concepts. 

3 Know how to use the following circuit analysis 
techniques to solve a circuit in the frequency 
domain: 

• Kirchhoffs laws; 

• Series, parallel, and delta-to-wye 
simplifications; 

• Voltage and current division; 

• Thevenin and Norton equivalents; 

• Node-voltage method; and 

• Mesh-current method. 

4 Be able to analyze circuits containing linear 
transformers using phasor methods. 

5 Understand the ideal transformer constraints 
and be able to analyze circuits containing ideal 
transformers using phasor methods. 
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Sinusoidal 
Steady-State Analysis 
Thus far, we have focused on circuits with constant sources; in 
this chapter we are now ready to consider circuits energized by 
time-varying voltage or current sources. In particular, we are inter
ested in sources in which the value of the voltage or current varies 
sinusoidally. Sinusoidal sources and their effect on circuit behavior 
form an important area of study for several reasons. First, the gen
eration, transmission, distribution, and consumption of electric 
energy occur under essentially sinusoidal steady-state conditions. 
Second, an understanding of sinusoidal behavior makes it possible 
to predict the behavior of circuits with nonsinusoidal sources. 
Third, steady-state sinusoidal behavior often simplifies the design 
of electrical systems. Thus a designer can spell out specifications in 
terms of a desired steady-state sinusoidal response and design the 
circuit or system to meet those characteristics. If the device satis
fies the specifications, the designer knows that the circuit will 
respond satisfactorily to nonsinusoidal inputs. 

The subsequent chapters of this book are largely based on a 
thorough understanding of the techniques needed to analyze cir
cuits driven by sinusoidal sources. Fortunately, the circuit analysis 
and simplification techniques first introduced in Chapters 1-4 
work for circuits with sinusoidal as well as dc sources, so some of 
the material in this chapter will be very familiar to you. The chal
lenges in first approaching sinusoidal analysis include developing 
the appropriate modeling equations and working in the mathe
matical realm of complex numbers. 



Practical Perspective 
A Household Distribution Circuit 
Power systems that generate, transmit, and distribute electri
cal power are designed to operate in the sinusoidal steady 
state. The standard household distribution circuit used in the 
United States is the three-wire, 240/120 V circuit shown in 
the accompanying figure. 

The transformer is used to reduce the utility distribution 
voltage from 13.2 kV to 240 V. The center tap on the second
ary winding provides the 120 V service. The operating fre
quency of power systems in the United States is 60 Hz. Both 
50 and 60 Hz systems are found outside the United States. 

^ o y 1 0 3 

The voltage ratings alluded to above are rms values. The rea
son for defining an rms value of a time-varying signal is 
explained in Chapter 10. 
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9.1 The Sinusoidal Source 
A sinusoidal voltage source (independent or dependent) produces a volt
age that varies sinusoidally with time. A sinusoidal current source (inde
pendent or dependent) produces a current that varies sinusoidally with 
time. In reviewing the sinusoidal function, we use a voltage source, but our 
observations also apply to current sources. 

We can express a sinusoidally varying function with either the sine 
function or the cosine function. Although either works equally well, we 
cannot use both functional forms simultaneously. We will use the cosine 
function throughout our discussion. Hence, we write a sinusoidally varying 
voltage as 

v = Vm cos (art + 4>). (9.1) 

To aid discussion of the parameters in Eq. 9.1, we show the voltage 
versus time plot in Fig. 9.1. 

Note that the sinusoidal function repeats at regular intervals. Such a 
function is called periodic. One parameter of interest is the length of time 
required for the sinusoidal function to pass through all its possible values. 
This time is referred to as the period of the function and is denoted T. It is 
measured in seconds. The reciprocal of T gives the number of cycles per 
second, or the frequency, of the sine function and is denoted /, or 

f = f- (9.2) 

A cycle per second is referred to as a hertz, abbreviated Hz. (The term 
cycles per second rarely is used in contemporary technical literature.) The 
coefficient of t in Eq. 9.1 contains the numerical value of Torf. Omega (co) 
represents the angular frequency of the sinusoidal function, or 

co = 2-77-/ = 2-77-/71 (radians/second). (9.3) 

Equation 9.3 is based on the fact that the cosine (or sine) function passes 
through a complete set of values each time its argument, cot, passes 
through 2-7T rad (360°). From Eq. 9.3, note that, whenever t is an integral 
multiple of T, the argument cot increases by an integral multiple of 2TT rad. 

The coefficient Vm gives the maximum amplitude of the sinusoidal 
voltage. Because ±1 bounds the cosine function, ±Vm bounds the ampli
tude. Figure 9.1 shows these characteristics. 

The angle cp in Eq. 9.1 is known as the phase angle of the sinusoidal 
voltage. It determines the value of the sinusoidal function at t = 0; there
fore, it fixes the point on the periodic wave at which we start measuring 
time. Changing the phase angle cp shifts the sinusoidal function along the 
time axis but has no effect on either the amplitude (Vm) or the angular fre
quency (co). Note, for example, that reducing cp to zero shifts the sinusoidal 
function shown in Fig. 9.1 cp/co time units to the right, as shown in Fig. 9.2. 
Note also that if cp is positive, the sinusoidal function shifts to the left, 
whereas if cp is negative, the function shifts to the right. (See Problem 9.5.) 

A comment with regard to the phase angle is in order: cot and cp must 
carry the same units, because they are added together in the argument of 
the sinusoidal function. With cot expressed in radians, you would expect cp 
to be also. However, cp normally is given in degrees, and cot is converted 
from radians to degrees before the two quantities are added. We continue 
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this bias toward degrees by expressing the phase angle in degrees. Recall 
from your studies of trigonometry that the conversion from radians to 
degrees is given by 

(number of degrees) 
18CT 

TT 
(number of radians). (9.4) 

Another important characteristic of the sinusoidal voltage (or cur
rent) is its rms value. The rms value of a periodic function is defined as the 
square root of the mean value of the squared function. Hence, if 
v = Vm cos (cot + 4>), the rms value of v is 

t»+ T 

V2
m COS 2(cot + ¢) dt. (9.5) 

Note from Eq. 9.5 that we obtain the mean value of the squared voltage by 
integrating v2 over one period (that is, from t0 to tQ + T) and then dividing 
by the range of integration, T. Note further that the starting point for the 
integration t(] is arbitrary. 

The quantity under the radical sign in Eq. 9.5 reduces to V2„/2. (See 
Problem 9.6.) Hence the rms value of v is 

V -
y rms 

Vm 

vr 
(9.6) M rms value of a sinusoidal voltage source 

The rms value of the sinusoidal voltage depends only on the maximum 
amplitude of v, namely, Vm. The rms value is not a function of either the 
frequency or the phase angle. We stress the importance of the rms value as 
it relates to power calculations in Chapter 10 (see Section 10.3). 

Thus, we can completely describe a specific sinusoidal signal if we know 
its frequency, phase angle, and amplitude (either the maximum or the rms 
value). Examples 9.1, 9.2, and 9.3 illustrate these basic properties of the 
sinusoidal function. In Example 9.4, we calculate the rms value of a periodic 
function, and in so doing we clarify the meaning of root mean square. 

Example 9 .1 Finding the Characteristics of a Sinusoidal Current 

A sinusoidal current has a maximum amplitude of 
20 A . The current passes through one complete cycle 
in 1 ms. The magnitude of the current at zero time 
is 10 A. 

a) What is the frequency of the current in hertz? 

b) What is the frequency in radians per second? 

c) Write the expression for i(t) using the cosine 
function. Express <£ in degrees. 

d) What is the rms value of the current? 

Solution 

a) From the statement of the problem, T = 1 ms; 
hence / = 1/T = 1000 Hz. 

b) to « 277-/ = 2000TT rad /s . 

c) We have i(t) = Im cos (<ot + ¢) = 20 COS(2000TT/ 

+ <f>), but /(0) = 10 A. Therefore 10 = 20 cos 4> 
and cl> = 60°. Thus the expression for i(t) becomes 

/(f) = 20cos(20007rf + 60°). 

d) From the derivation of Eq. 9.6, the rms value of a 
sinusoidal current is /„, /V2. Therefore the rms 
value is 20/V2, or 14.14 A. 
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Finding the Characteristics of a Sinusoidal Voltage 

A sinusoidal voltage is given by the expression 
v = 300 cos (12()77/ + 30°). 

a) What is the period of the voltage in milliseconds? 

b) What is the frequency in hertz? 

c) What is the magnitude of v at t = 2.778 ms? 

d) What is the rms value of V? 

Solution 

a) From the expression for v, to = 12077 rad/s. 
Because (0 = 2TT/7\ T = 2TT/<O = ̂  s, 
or 16.667 ms. 

b) The frequency is 1/71, or 60 Hz. 

c) From (a), co = 2 77-/ 16.667; thus, at t = 2.778 ms, 
at is nearly 1.047 rad, or 60°. Therefore, 
y(2.778ms) = 300 cos (60° + 30°) = 0 V. 

d)Vms = 300/ V2 = 212.13 V. 

Example 9.3 Translating a Sine Expression to a Cosine Expression 

We can translate the sine function to the cosine 
function by subtracting 90° (TT/2 rad) from the argu
ment of the sine function. 

a) Verify this translation by showing that 

sin (tot + 0) = cos (tot + 8 - 90°). 

b) Use the result in (a) to express sin (cot + 30°) as 
a cosine function. 

Solution 

a) Verification involves direct application of the 
trigonometric identity 

cos(a — /3) = cos a cos /3 + sin a sin /3. 

We let a = ait + 0 and /3 = 90°. As cos 90° = 0 and 
sin 90° = 1, we have 

cos(a -/3)= sin a = sin(atf + 0) = cos(a>/ + 0 - 90°). 

b) From (a) we have 

sin(wr + 30°) = cos(o>/ + 30° - 90°) = cos(atf - 60°). 

Example 9.4 Calculating the rms Value of a Triangular Waveform 

Calculate the rms value of the periodic triangular 
current shown in Fig. 9.3. Express your answer in 
terms of the peak current Ip. 

-772\ -

Figure 9.3 A Periodic triangular current. 

Solution 

From Eq. 9.5, the rms value of i is 

^rms \l -T-

Interpreting the integral under the radical sign as 
the area under the squared function for an interval 
of one period is helpful in finding the rms value. 
The squared function with the area between 0 and 
T shaded is shown in Fig. 9.4, which also indicates 
that for this particular function, the area under the 
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squared current for an interval of one period is 
equal to four times the area under the squared cur
rent for the interval 0 to TfA seconds; that is, 

t«+T /.7/4 

i2dt = 4 / i2dt. 

etc. 

- 7 /2 -7 /4 0 

Figure 9.4 • r versus t. 

7/4 7/2 37/4 7 

The analytical expression for /' in the interval 0 to 
774is 

47 
i = -jrt, 0 < / < 774. 

The area under the squared function for one 
period is 

/ i2dt = 4 / 
Tlj 

r 2 3 

The mean, or average, value of the function is 
simply the area for one period divided by the 
period. Thus 

1 ^ - i,2 
— in' 7 3 3 p' 

The rms value of the current is the square root of 
this mean value. Hence 

rms V 3 ' 

NOTE: Assess your understanding of this material by trying Chapter Problems 9.1, 9.4, 9.8. 

9.2 The Sinusoidal Response 
Before focusing on the steady-state response to sinusoidal sources, let's 
consider the problem in broader terms, that is, in terms of the total 
response. Such an overview will help you keep the steady-state solution in 
perspective. The circuit shown in Fig. 9.5 describes the general nature of 
the problem. There, vs is a sinusoidal voltage, or 

vs = Vm
 c o s i^t + </>)• (9.7) 

For convenience, we assume the initial current in the circuit to be zero and 
measure time from the moment the switch is closed. The task is to derive 
the expression for /(0 when t > 0. It is similar to finding the step response 
of an RL circuit, as in Chapter 7. The only difference is that the voltage 
source is now a time-varying sinusoidal voltage rather than a constant, or 
dc, voltage. Direct application of Kirchhoffs voltage law to the circuit 
shown in Fig. 9.5 leads to the ordinary differential equation 

Figure 9.5 • An RL circuit excited by a sinusoidal 
voltage source. 

L— + Ri = Vm cos {a)t + 4>\ (9.8) 

the formal solution of which is discussed in an introductory course in dif
ferential equations. We ask those of you who have not yet studied differ
ential equations to accept that the solution for / is 

-v., 
VR2 + <o2L2 cos (0 -6)e~WL)t + 

V„ 
VR2 + <o2L2 

cos (cot + 4> - 0), 

(9.9) 



where 0 is defined as the angle whose tangent is coL/R. Thus we can easily 
determine 0 for a circuit driven by a sinusoidal source of known frequency. 

We can check the validity of Eq. 9.9 by determining that it satisfies 
Eq. 9.8 for all values of t > 0; this exercise is left for your exploration in 
Problem 9.10. 

The first term on the right-hand side of Eq. 9.9 is referred to as the 
transient component of the current because it becomes infinitesimal as 
time elapses. The second term on the right-hand side is known as the 
steady-state component of the solution. It exists as long as the switch 
remains closed and the source continues to supply the sinusoidal voltage. 
In this chapter, we develop a technique for calculating the steady-state 
response directly, thus avoiding the problem of solving the differential 
equation. However, in using this technique we forfeit obtaining either the 
transient component or the total response, which is the sum of the tran
sient and steady-state components. 

We now focus on the steady-state portion of Eq. 9.9. It is important to 
remember the following characteristics of the steady-state solution: 

1. The steady-state solution is a sinusoidal function. 

2. The frequency of the response signal is identical to the frequency of 
the source signal. This condition is always true in a linear circuit 
when the circuit parameters, R, L, and C, are constant. (If frequen
cies in the response signals are not present in the source signals, 
there is a nonlinear element in the circuit.) 

3. The maximum amplitude of the steady-state response, in general, 
differs from the maximum amplitude of the source. For the circuit 
being discussed, the maximum amplitude of the response signal is 
VJ\/R2 + arL2, and the maximum amplitude of the signal source 
is Vm. 

4. The phase angle of the response signal, in general, differs from the 
phase angle of the source. For the circuit being discussed, the phase 
angle of the current is 4> - 0 and that of the voltage source is <f>. 

These characteristics are worth remembering because they help you 
understand the motivation for the phasor method, which we introduce in 
Section 9.3. In particular, note that once the decision has been made to 
find only the steady-state response, the task is reduced to finding the max
imum amplitude and phase angle of the response signal. The waveform 
and frequency of the response are already known. 

NOTE: Assess your understanding of this material by trying Chapter 
Problem 9.9. 

9.3 The Phasor 
The phasor is a complex number that carries the amplitude and phase 
angle information of a sinusoidal function.1 The phasor concept is rooted 
in Euler's identity, which relates the exponential function to the trigono
metric function: 

e±jd = cos6» ± / s in0. (9.10) 

Equation 9.10 is important here because it gives us another way of express
ing the cosine and sine functions. We can think of the cosine function as the 

If you feel a bit uneasy about complex numbers, peruse Appendix B. 
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real part of the exponential function and the sine function as the imaginary 
part of the exponential function; that is, 

cosfl = Sfc{tf**}, (9.11) 

and 

sin0 = 3{<?'0}, (9.12) 

where 5ft means "the real part of1 and S means "the imaginary part of." 
Because we have already chosen to use the cosine function in analyz

ing the sinusoidal steady state (see Section 9.1), we can apply Eq. 9.11 
directly. In particular, we write the sinusoidal voltage function given by 
Eq. 9.1 in the form suggested by Eq. 9.11: 

v = Vm cos (cot 4- (f>) 

= Vm$t{e**efi}. (9.13) 

We can move the coefficient Vm inside the argument of the real part of the 
function without altering the result. We can also reverse the order of the 
two exponential functions inside the argument and write Eq. 9.13 as 

V = U{Vmejtj>ei101}. (9.14) 

In Eq. 9.14, note that the quantity Vme® is a complex number that carries 
the amplitude and phase angle of the given sinusoidal function. This 
complex number is by definition the phasor representation, or phasor 
transform, of the given sinusoidal function. Thus 

V = Vmef* = V{Vmcos(cot + ¢)), (9,15) < Phasor transform 

where the notation V{Vm cos (cot + <f>)} is read "the phasor transform of 
Vmcos (cot 4- <£)."Thus the phasor transform transfers the sinusoidal func
tion from the time domain to the complex-number domain, which is also 
called the frequency domain, since the response depends, in general, on to. 
As in Eq. 9.15, throughout this book we represent a phasor quantity by 
using a boldface letter. 

Equation 9.15 is the polar form of a phasor, but we also can express a 
phasor in rectangular form. Thus we rewrite Eq. 9.15 as 

V = Vm cos $ + jVm sin </>. (9.16) 

Both polar and rectangular forms are useful in circuit applications of the 
phasor concept. 

One additional comment regarding Eq. 9.15 is in order. The frequent 
occurrence of the exponential function e^ has led to an abbreviation that 
lends itself to text material. This abbreviation is the angle notation 

We use this notation extensively in the material that follows. 



Inverse Phasor Transform 
So far we have emphasized moving from the sinusoidal function to its pha
sor transform. However, we may also reverse the process. That is, for a 
phasor we may write the expression for the sinusoidal function. Thus for 
V = l ( )0 / -26° , the expression for v is 100cos (a)t - 26°) because we 
have decided to use the cosine function for all sinusoids. Observe that we 
cannot deduce the value of co from the phasor. The phasor carries only 
amplitude and phase information. The step of going from the phasor 
transform to the time-domain expression is referred to as finding the 
inverse phasor transform and is formalized by the equation 

V~x{Vme^} = $t{Vmei4>e>m}, (9.17) 

where the notation V~l{Vme^} is read as "the inverse phasor transform of 
Vme'^." Equation 9.17 indicates that to find the inverse phasor transform, we 
multiply the phasor by <?/W and then extract the real part of the product. 

The phasor transform is useful in circuit analysis because it reduces 
the task of finding the maximum amplitude and phase angle of the steady-
state sinusoidal response to the algebra of complex numbers. The follow
ing observations verify this conclusion: 

1. The transient component vanishes as time elapses, so the steady-
state component of the solution must also satisfy the differential 
equation. (See Problem 9.10[b].) 

2. In a linear circuit driven by sinusoidal sources, the steady-state 
response also is sinusoidal, and the frequency of the sinusoidal 
response is the same as the frequency of the sinusoidal source. 

3. Using the notation introduced in Eq. 9.11, we can postulate that the 
steady-state solution is of the form lR{Ae'lieJM'}, where A is the 
maximum amplitude of the response and /3 is the phase angle of the 
response. 

4. When we substitute the postulated steady-state solution into the 
differential equation, the exponential term e,u>l cancels out, leaving 
the solution for A and ft in the domain of 
complex numbers. 

We illustrate these observations with the circuit shown in Fig. 9.5 (see 
p. 311). We know that the steady-state solution for the current i is of the form 

W O = K { / / f l , (9.18) 

where the subscript uss" emphasizes that we are dealing with the steady-
state solution. When we substitute Eq. 9.18 into Eq. 9.8, we generate the 
expression 

®.{}<oLIme®ei«*} + n{RImeiPeJ(M} = ^{Vme^wt\. (9.19) 

In deriving Eq. 9.19 we recognized that both differentiation and multiplica
tion by a constant can be taken inside the real part of an operation. We also 
rewrote the right-hand side of Eq. 9.8, using the notation of Eq. 9.11. From 



the algebra of complex numbers, we know that the sum of the real parts is the 
same as the real part of the sum. Therefore we may reduce the left-hand side 
of Eq. 9.19 to a single term: 

9R{(/wL + K ^ ' V * } = ftlV^V*"}. (9.20) 

Recall that our decision to use the cosine function in analyzing the 
response of a circuit in the sinusoidal steady state results in the use of 
the 5ft operator in deriving Eq. 9.20. If instead we had chosen to use the 
sine function in our sinusoidal steady-state analysis, we would have 
applied Eq. 9.12 directly, in place of Eq. 9.11, and the result would be 
Eq.9.21: 

Q{(j(ol + R)Imeifie^} = ^{Vmej^wt}. (9.21) 

Note that the complex quantities on either side of Eq. 9.21 are identical to 
those on either side of Eq. 9.20. When both the real and imaginary parts of 
two complex quantities are equal, then the complex quantities are them
selves equal. Therefore, from Eqs. 9.20 and 9.21, 

(J(oL + R)Ime® = Vme i<!> 

or 

<-* - OiZ ( 9 - 2 2> 
Note that eJa>t has been eliminated from the determination of the ampli
tude (/,„) and phase angle (/3) of the response. Thus, for this circuit, the 
task of finding /,„ and /3 involves the algebraic manipulation of the com
plex quantities Vme® and R + jwL. Note that we encountered both polar 
and rectangular forms. 

An important warning is in order: The phasor transform, along with 
the inverse phasor transform, allows you to go back and forth between 
the time domain and the frequency domain. Therefore, when you obtain 
a solution, you are either in the time domain or the frequency domain. 
You cannot be in both domains simultaneously. Any solution that con
tains a mixture of time domain and phasor domain nomenclature is 
nonsensical. 

The phasor transform is also useful in circuit analysis because it applies 
directly to the sum of sinusoidal functions. Circuit analysis involves sum
ming currents and voltages, so the importance of this observation is obvi
ous. We can formalize this property as follows: If 

v = Vi + Vj + ••• + vn (9.23) 

where all the voltages on the right-hand side are sinusoidal voltages of the 
same frequency, then 

v = v, -+-v2 + ••• + v„. (9.24) 
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Thus the phasor representation is the sum of the phasors of the individual 
terms. We discuss the development of Eq. 9.24 in Section 9.5. 

Before applying the phasor transform to circuit analysis, we illus
trate its usefulness in solving a problem with which you are already 
familiar: adding sinusoidal functions via trigonometric identities. 
Example 9.5 shows how the phasor transform greatly simplifies this 
type of problem. 

Example 9.5 

If yi = 20 cos 
express y = 

Adding Cosines Using Phasors 

, (cot - 30°) and y2 = 40 cos (oot + 60°), 
y{ + y2 as a single sinusoidal function. 

a) Solve by using trigonometric identities. 

b) Solve by using the phasor concept. 

Solution 

a) First we expand both y1 and y2, using the cosine 
of the sum of two angles, to get 

>'! = 20 cos cot cos 30° + 20 sin w/ sin 30°; 

y2 = 40 cos a>r cos 60° - 40 sin cot sin 60°. 

Adding y\ and y2, we obtain 

y = (20 cos 30 + 40 cos 60) cos cot 

+ (20 sin 30 - 40 sin 60) sin cot 

— 37.32 cos cot - 24.64 sin cot. 

To combine these two terms we treat the 
co-efficients of the cosine and sine as sides of a right 
triangle (Fig. 9.6) and then multiply and divide the 
right-hand side by the hypotenuse. Our expression 
for y becomes 

^ / 3 7 . 3 2 24.64 . \ 
y = 44.72 _ A „„ cos cot AAmn sm (at 

\ 44.72 44.72 ) 

= 44.72( cos 33.43° cos cot - sin 33.43° sin cot). 

Again, we invoke the identity involving the 
cosine of the sum of two angles and write 

y = 44.72 cos (cot + 33.43°). 

44.72// 

/ 3 3 . 4 3 ° 
/ * 

37.32 

24.64 

Figure 9.6 • A right triangle used in the solution for y. 

b) We can solve the problem by using phasors as 
follows: Because 

y = yi + y2, 

then, from Eq. 9.24, 

Y = Y, + Y2 

= 2 0 / - 3 0 ° + 40/60° 

= (17.32 - /10) + (20 + /34.64) 

= 37.32 + /24.64 

= 44.72/33.43°. 

Once we know the phasor Y, we can write the 
corresponding trigonometric function for y by 
taking the inverse phasor transform: 

y = ^-^44.726^3343} = ^ {44 .72^ 3 3 4 3 ^} 

= 44.72 cos (cot + 33.43°). 

The superiority of the phasor approach for 
adding sinusoidal functions should be apparent. 
Note that it requires the ability to move back 
and forth between the polar and rectangular 
forms of complex numbers. 
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/ "ASSESSMENT PROBLEMS 

Objective 1—Understand phasor concepts and be able to perform a phasor transform and an inverse phasor transform 

9.1 Find the phasor transform of each trigonomet
ric function: 

a) v = 170cos(377r - 40°) V. 

b) i = 10 sin (1000/1 + 20°) A. 

c) i = [5 cos (art + 36.87°) + 10cos(art 
-53.13°)] A. 

d) v = [300cos(20,00077t + 45°) 
- 100 sin(20,0007rr + 30°)] mV. 

Answer: (a) 170/-40° V; 

(b) 10 / -70° A; 

NOTE: Also try Chapter Problem 9.11. 

(c) 11.18/-26.57° A; 

(d) 339.90/61.51° mV, 

9.2 Find the time-domain expression correspon
ding to each phasor: 

a) V = 18.6/-54° V. 

b) I = (20/45^ - 5 0 / - 3 0 ° ) mA. 

c) V = (20 + /80 - 30/15°) V. 

Answer: (a) 18.6 cos (cot - 54°) V; 

(b) 48.81 cos (cot + 126.68°) mA; 

(c) 72.79 cos (cot + 97.08°) V. 

9.4 The Passive Circuit Elements 
in the Frequency Domain 

The systematic application of the phasor transform in circuit analysis 
requires two steps. First, we must establish the relationship between the 
phasor current and the phasor voltage at the terminals of the passive cir
cuit elements. Second, we must develop the phasor-domain version of 
Kirchhoff s laws, which we discuss in Section 9.5. In this section, we estab
lish the relationship between the phasor current and voltage at the termi
nals of the resistor, inductor, and capacitor. We begin with the resistor and 
use the passive sign convention in all the derivations. 

The V-I Relationship for a Resistor 

From Ohm's law, if the current in a resistor varies sinusoidally with time — 
that is, if i = Im cos (cot + 0,) —the voltage at the terminals of the resistor, 
as shown in Fig. 9.7, is 

v = R[Im cos (cot + Of)] 

= RIm[ cos (cot + Si)], (9.25) 

where /,„ is the maximum amplitude of the current in amperes and 0,- is 
the phase angle of the current. 

The phasor transform of this voltage is 

Figure 9.7 • A resistive element carrying a sinusoidal 
current. 

V = RIme^ = Rln/Oi. (9.26) 

But Im/0j is the phasor representation of the sinusoidal current, so we can 
write Eq. 9.26 as 

V = Rl, (9.27) -4 Relationship between phasor voltage and 
phasor current for a resistor 
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Figure 9.8 • The frequency-domain equivalent circuit of 
a resistor. 

V,l 

V 

/ i \ 
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V 

I ' \ 

IT 

Figure 9.9 A A plot showing that the voltage and cur
rent at the terminals of a resistor are in phase. 

which states that the phasor voltage at the terminals of a resistor is simply 
the resistance times the phasor current. Figure 9.8 shows the circuit dia
gram for a resistor in the frequency domain. 

Equations 9.25 and 9.27 both contain another important piece of 
information—namely, that at the terminals of a resistor, there is no phase 
shift between the current and voltage. Figure 9.9 depicts this phase rela
tionship, where the phase angle of both the voltage and the current wave
forms is 60°. The signals are said to be in phase because they both reach 
corresponding values on their respective curves at the same time (for 
example, they are at their positive maxima at the same instant). 

2T The V-I Relationship for an Inductor 
We derive the relationship between the phasor current and phasor voltage 
at the terminals of an inductor by assuming a sinusoidal current and using 
Ldi/dt to establish the corresponding voltage. Thus, for /' = /,„ cos (cot 
+ 0,-), the expression for the voltage is 

v — L— = -coLIinsin (cot + fy). 
at 

(9.28) 

We now rewrite Eq. 9.28 using the cosine function: 

v = -coLIm cos (cot + 0, - 90°). (9.29) 

The phasor representation of the voltage given by Eq. 9.29 is 

V = -coLlJ^-^ 

Relationship between phasor voltage and • 
phasor current for an inductor 

= -<oLI,Je<e-J90° 

= jtoLlJ6' 

(9.30) 

= jcoLl. 

Note that in deriving Eq. 9.30 we used the identity 

-^ = cos90° - /sin90° = -j. 

Figure 9.10 • The frequency-domain equivalent circuit 
for an inductor. 

Equation 9.30 states that the phasor voltage at the terminals of an inductor 
equals jtoL times the phasor current. Figure 9.10 shows the frequency-
domain equivalent circuit for the inductor. It is important to note that the 
relationship between phasor voltage and phasor current for an inductor 
applies as well for the mutual inductance in one coil due to current flowing 
in another mutually coupled coil. That is, the phasor voltage at the termi
nals of one coil in a mutually coupled pair of coils equals jcoM times the 
phasor current in the other coil. 
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We can rewrite Eq. 9.30 as 

V = (0)/,/90-)/,,,/0,-

= a>LIm/(0j + 90)°, (9.31) 

which indicates that the voltage and current are out of phase by exactly 
90°. In particular, the voltage leads the current by 90°, or, equivalently, the 
current lags behind the voltage by 90°. Figure 9.11 illustrates this concept 
of voltage leading current or current lagging voltage. For example, the volt
age reaches its negative peak exactly 90° before the current reaches its 
negative peak. The same observation can be made with respect to the 
zero-going-positive crossing or the positive peak. 

We can also express the phase shift in seconds. A phase shift of 90° 
corresponds to one-fourth of a period; hence the voltage leads the current 
by T/4, or^y second. 

The V-I Relationship for a Capacitor 
We obtain the relationship between the phasor current and phasor voltage 
at the terminals of a capacitor from the derivation of Eq. 9.30. In other 
words, if we note that for a capacitor that 

v. i 

Figure 9.11 • A plot showing the phase relationship 
between the current and voltage at the terminals of an 
inductor (0,- = 60"). 

i = C 
Mv 

df 

and assume that 

v = V,,, cos (to/ + (9,,), 

then 

I = jwC\. (9.32) 

Now if we solve Eq. 9.32 for the voltage as a function of the current, we get 

V = 
jWC 

(9.33) A Relationship between phasor voltage and 
phasor current for a capacitor 

Equation 9.33 demonstrates that the equivalent circuit for the capacitor in 
the phasor domain is as shown in Fig. 9.12. 

The voltage across the terminals of a capacitor lags behind the current 
by exactly 90°. We can easily show this relationship by rewriting Eq. 9.33 as 

1 
v = ^lz*Lh„M. 

1/jioC 

+ V 

I 

Figure 9.12 • The frequency domain equivalent circuit 
of a capacitor. 

coC m - 9oy (9.34) 
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Figure 9.13 • A plot showing the phase relationship 
between the current and voltage at the terminals of a 
capacitor (0, = 60°). 

The alternative way to express the phase relationship contained in 
Eq. 9.34 is to say that the current leads the voltage by 90°. Figure 9.13 
shows the phase relationship between the current and voltage at the ter
minals of a capacitor. 

Impedance and Reactance 

We conclude this discussion of passive circuit elements in the frequency 
domain with an important observation. When we compare Eqs. 9.27,9.30, 
and 9.33, we note that they are all of the form 

Definition of impedance • V = ZI, (9.35) 

TABLE 9.1 Impedance and Reactance Values 

Circuit 
Element 

Resistor 

Inductor 

Capacitor 

Impedance 

R 

j(oL 

K-l/wQ 

Reactance 

coL 

-1/taC 

where Z represents the impedance of the circuit element. Solving for Z in 
Eq. 9.35, you can see that impedance is the ratio of a circuit element's volt
age phasor to its current phasor. Thus the impedance of a resistor is R, the 
impedance of an inductor is jcoL, the impedance of mutual inductance is 
jcoM, and the impedance of a capacitor is 1/ytuC. In all cases, impedance 
is measured in ohms. Note that, although impedance is a complex number, 
it is not a phasor. Remember, a phasor is a complex number that shows up 
as the coefficient of ej<ot. Thus, although all phasors are complex numbers, 
not all complex numbers are phasors. 

Impedance in the frequency domain is the quantity analogous to 
resistance, inductance, and capacitance in the time domain. The imaginary 
part of the impedance is called reactance. The values of impedance and 
reactance for each of the component values are summarized in Table 9.1. 

And finally, a reminder. If the reference direction for the current in a 
passive circuit element is in the direction of the voltage rise across the ele
ment, you must insert a minus sign into the equation that relates the volt
age to the current. 

^/ASSESSMENT PROBLEMS 

Objective 2—Be able to transform a circuit with a sinusoidal source into the frequency domain using phasor concepts 

9.3 The current in the 20 mH inductor is 
10 cos (10,000? + 30°) mA. Calculate (a) the 
inductive reactance; (b) the impedance of the 
inductor; (c) the phasor voltage V; and 
(d) the steady-state expression for v(t). 

20 mH 

v 
- » 
i 

9.4 The voltage across the terminals of the 5 /iF 
capacitor is 30 cos (4000r + 25°) V. Calculate 
(a) the capacitive reactance; (b) the impedance 
of the capacitor; (c) the phasor current I; and 
(d) the steady-state expression for i(t). 

5/xF 

— 1 ( — 

Answer: (a) 200 ft; 

(b)/200 O; 

(c) 2 /120° V; 

(d) 2 cos (10,000? + 120°) V. 

Answer: (a) - 5 0 O; 

(b) - /50 O; 

(c) 0.6/115° A; 

(d) 0.6 cos (4000/ + 115°) A. 

NOTE: Also try Chapter Problems 9.13 and 9.14. 
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9.5 Kirchhoffs Laws 
in the Frequency Domain 

We pointed out in Section 9.3, with reference to Eqs. 9.23 and 9.24, that the 
phasor transform is useful in circuit analysis because it applies to the sum 
of sinusoidal functions. We illustrated this usefulness in Example 9.5. We 
now formalize this observation by developing Kirchhoffs laws in the fre
quency domain. 

Kirchhoffs Voltage Law in the Frequency Domain 

We begin by assuming that vx — vn represent voltages around a closed 
path in a circuit. We also assume that the circuit is operating in a sinusoidal 
steady state. Thus Kirchhoffs voltage law requires that 

v, + v2 + ••• + v„ = 0, (9.36) 

which in the sinusoidal steady state becomes complex 

Vmy cos (mt + 6]) + Vim cos (a>t + 02) + • • • + V;„wcos (tat + $„) = 0. 

(9.37) 

We now use Euler's identity to write Eq. 9.37 as 

^{Vllhej0^wl} + M{Vmie>°ieJ°>'} + ••• + » { V W - C / V * } (9.38) 

which we rewrite as 

%t{Vme^e>** + Vtlue>(hei10' + ••• + K „ , / V w } = 0. (9.39) 

Factoring the term e?0* from each term yields 

*t{{Vm/* + V,n/h + ••• + Vn^y0"} = 0, 

or 

&{(Vi + V2 + ••• + V„)6>'} = 0. (9.40) 

But eJu)t * 0, so 

Yi + V2 + • • • + \ a = 0, (9.41) < KVL in the frequency domain 

which is the statement of Kirchhoffs voltage law as it applies to phasor 
voltages. In other words, Eq. 9.36 applies to a set of sinusoidal voltages in 
the time domain, and Eq. 9.41 is the equivalent statement in the fre
quency domain. 

Kirchhoffs Current Law in the Frequency Domain 

A similar derivation applies to a set of sinusoidal currents. Thus if 

i j + /2 + • • • + /„ = 0, (9.42) 
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then 

KCL in the frequency domain • Ii + I? + + 1. (9.43) 

where lh I2, • • •, I„ are the phasor representations of the individual cur
rents ii, /2, • • •, in. 

Equations 9.35, 9.41, and 9.43 form the basis for circuit analysis in the 
frequency domain. Note that Eq. 9.35 has the same algebraic form as Ohm's 
law, and that Eqs. 9.41 and 9.43 state Kirchhoff s laws for phasor quantities. 
Therefore you may use all the techniques developed for analyzing resistive 
circuits to find phasor currents and voltages. You need learn no new analytic 
techniques; the basic circuit analysis and simplification tools covered in 
Chapters 2-4 can all be used to analyze circuits in the frequency domain. 
Phasor circuit analysis consists of two fundamental tasks: (1) You must be 
able to construct the frequency-domain model of a circuit; and (2) you must 
be able to manipulate complex numbers and/or quantities algebraically. We 
illustrate these aspects of phasor analysis in the discussion that follows, 
beginning with series, parallel, and delta-to-wye simplifications. 

/ "ASSESSMENT PROBLEM 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.5 Four branches terminate at a common node. 
The reference direction of each branch current 
(*j, i2, /3, and /4) is toward the node. If 

NOTE: Also try Chapter Problem 9.15. 

ix = 100 cos (G>* + 25°) A, 
i2 = 100cos(o)f + 145°) A, and 
13 = 100 cos (eat - 95°) A, find/4. 

Answer: i4 = 0. 

9.6 Series, Parallel, and Delta-to-Wye 
Simplifications 

The rules for combining impedances in series or parallel and for making 
delta-to-wye transformations are the same as those for resistors. The only 
difference is that combining impedances involves the algebraic manipula
tion of complex numbers. 

+ 

-. m 

Z, z2 

I 

z„ 

Figure 9.14 • Impedances in series. 

Combining Impedances in Series and Parallel 

Impedances in series can be combined into a single impedance by simply 
adding the individual impedances.The circuit shown in Fig. 9.14 defines the 
problem in general terms. The impedances Zj , Z2, • • •, Zn are connected in 
series between terminals a,b. When impedances are in series, they carry the 
same phasor current I. From Eq. 9.35, the voltage drop across each imped
ance is Z]l, Z2I, • • •, Z,J, and from Kirchhoff s voltage law, 

ah Z,I + Z2I + • • • + Znl 

(Z t + Z2 + • • • + Z„)I. (9.44) 

The equivalent impedance between terminals a,b is 

Vab 
Z a b = -y = Z{ + Z2 + 

Example 9.6 illustrates a numerical application of Eq. 9.45. 

+ Z, (9.45) 
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Example 9.6 Combining Impedances in Series 

A 90 ft resistor, a 32 mH inductor, and a 5 /xF 
capacitor are connected in series across the termi
nals of a sinusoidal voltage source, as shown in 
Fig. 9.15. The steady-state expression for the source 
voltage vs is 750 cos (5000/ + 30°) V. 

a) Construct the frequency-domain equivalent 
circuit. 

b) Calculate the steady-state current / by the phasor 
method. 

The phasor transform of vs is 

V, = 750 /30° V. 

Figure 9.16 illustrates the frequency-domain 
equivalent circuit of the circuit shown in Fig. 9.15. 

b) We compute the phasor current simply by divid
ing the voltage of the voltage source by the equiv
alent impedance between the terminals a,b. From 
Eq. 9.45, 

90 fi 32 mH 

5/iF 

Figure 9.15 • The circuit for Example 9.6. 

Solution 

a) From the expression for vs, we have 
ay = 5000 rad/s. Therefore the impedance of the 
32 mH inductor is 

ZL = ju>L = /(5000)(32 X 10~3) = /160 ft, 

and the impedance of the capacitor is 

Zab = 90 + / 1 6 0 - /40 

= 90 + /120 = 150/53.13° ft. 

Thus 

750/30° 

We may now write the steady-state expression 
for / directly: 

i = 5cos(5000r - 23.13°) A. 

750/30°/ 
V -/40 n 

- 1 106 
Figure 9.16 A The frequency-domain equivalent circuit of the 
circuit shown in Fig. 9.15. 

^ A S S E S S M E N T PROBLEM 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.6 Using the values of resistance and inductance in 
the circuit of Fig. 9.15, let Ys = 125 / - 6 0 ° V 
and a) = 5000 rad/s. Find 

a) the value of capacitance that yields a 
steady-state output current i with a phase 
angle of -105°. 

b) the magnitude of the steady-state output 
current f. 

Answer: (a) 2.86 fiF; 

(b) 0.982 A. 

NOTE: Also try Chapter Problem 9.24. 
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Impedances connected in parallel may be reduced to a single equiva
lent impedance by the reciprocal relationship 

1 

Z„b 

1 1 
+ + 

Zv Z2 
+ (9.46) 

Zah V I, j Z: 

Figure 9.17 A Impedances in parallel. 

Figure 9.17 depicts the parallel connection of impedances. Note that when 
impedances are in parallel, they have the same voltage across their termi
nals. We derive Eq. 9.46 directly from Fig. 9.17 by simply combining 
Kirchhoffs current law with the phasor-domain version of Ohm's law, that 
is, Eq. 9.35. From Fig. 9.17, 

I = Ii + h + + lir 

or 

V V V V 
— = — + — + • • • + —. 
Zab Z[ Z2 Zn 

(9.47) 

Canceling the common voltage term out of Eq. 9.47 reveals Eq. 9.46. 
From Eq. 9.46, for the special case of just two impedances in parallel, 

Zab = 
Z\Z 1^2 

Zi + Z, 
(9.48) 

We can also express Eq. 9.46 in terms of admittance, defined as the recip
rocal of impedance and denoted F.Thus 

Y = — = G + jB (Siemens). (9.49) 

Admittance is, of course, a complex number, whose real part, G, is called 
conductance and whose imaginary part, B, is called susceptance. Like 
admittance, conductance and susceptance are measured in Siemens (S). 
Using Eq. 9.49 in Eq. 9.46, we get 

Y ab Yi +Y? + + Y„. (9.50) 

The admittance of each of the ideal passive circuit elements also is 
worth noting and is summarized in Table 9.2. 

Example 9.7 illustrates the application of Eqs. 9.49 and 9.50 to a spe
cific circuit. 

TABLE 9.2 Admittance and Susceptance Values 

Circuit Element Admittance (Y) 

Resistor G (conductance) 

Inductor j(-l/wL) 

Capacitor j<oC 

Susceptance 

-\/u)L 

(oC 
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Combining Impedances in Series and in Parallel 

The sinusoidal current source in the circuit shown in 
Fig. 9.18 produces the current is = 8 cos 200,000f A. 

a) Construct the frequency-domain equivalent 
circuit. 

b) Find the steady-state expressions for v, ih i2, 
and /3. 

Solution 

a) The phasor transform of the current source is 
8 / 0 ° ; the resistors transform directly to the fre
quency domain as 10 and 6 ft; the 40 /xH 
inductor has an impedance of /8 fl at the given 
frequency of 200,000 rad/s; and at this fre
quency the 1 /xF capacitor has an impedance of 
—/'5 ft. Figure 9.19 shows the frequency-domain 
equivalent circuit and symbols representing the 
phasor transforms of the unknowns. 

b) The circuit shown in Fig. 9.19 indicates that we 
can easily obtain the voltage across the current 
source once we know the equivalent impedance 
of the three parallel branches. Moreover, once 
we know V, we can calculate the three phasor 
currents lh I2, and I3 by using Eq. 9.35. To find 
the equivalent impedance of the three branches, 
we first find the equivalent admittance simply 
by adding the admittances of each branch. The 
admittance of the first branch is 

y' = To = 0 1 s' 
the admittance of the second branch is 

Yi = 
1 /8 = 0.06 - /0.08 S, 

6 + /8 100 

and the admittance of the third branch is 

y3 = - L = ,0.2S. 

The admittance of the three branches is 

Y = Yt + Y2 + Y3 

= 0.16 + /0.12 

= 0.2/36.87° S. 

The impedance at the current source is 

Z = — = 5 / -36 .87° a . 

xQijv ion 1/xF 

Figure 9.18 • The circuit for Example 9.7. 

-/5 n 

Figure 9.19 • The frequency-domain equivalent circuit. 

The Voltage V is 

V = ZI = 40 / -36 .87° V. 

Hence 

4 0 / - 3 6 . 8 7 
Ii = 

I2 = 

10 

40 / -36 .87 ' 

6 + /8 

= 4 / -36 .87° = 3.2 - /2.4 A, 

- 4 / - 9 0 ° = - / 4 A, 

and 

40 / -36 .87° 
h = / , = = 8/53.13° = 4.8 + /6.4 A. 

5 / - 9 0 L J 

We check the computations at this point by veri
fying that 

Ii + I2 + I3 = I 

Specifically, 

3.2 - /2.4 - /4 + 4.8 + /6.4 = 8 + /0. 

The corresponding steady-state time-domain 
expressions are 

v = 40cos(200,000r - 36.87°) V, 

it = 4 cos (200,000/ - 36.87°) A, 

/2 = 4cos(200,000r - 90°) A, 

/3 = 8cos (200,000/ + 53.13") A. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.7 A 20 fl resistor is connected in parallel with a 
5 mH inductor. This parallel combination is 
connected in series with a 5 ft resistor and a 
25 ^iF capacitor. 

a) Calculate the impedance of this inter
connection if the frequency is 2 krad/s. 

b) Repeat (a) for a frequency of 8 krad/s. 

c) At what finite frequency does the imped
ance of the interconnection become purely 
resistive? 

d) What is the impedance at the frequency 
found in (c)? 

NOTE: Also try Chapter Problems 9.28, 9.29, and 9.32. 

Answer: (a) 9 - /12 fl; 

(b) 21 + /3 O; 

(c) 4 krad/s; 

(d) 15 ft, 

9.8 The interconnection described in Assessment 
Problem 9.7 is connected across the terminals 
of a voltage source that is generating 
v = 150 cos 4000f V. What is the maximum 
amplitude of the current in the 5 mH inductor? 

Answer: 7.07 A. 

Figure 9.20 • The delta-to-wye transformation. 

Delta-to-Wye Transformations 

The A-to-Y transformation that we discussed in Section 3.7 with regard 
to resistive circuits also applies to impedances. Figure 9.20 defines the 
A-connected impedances along with the Y-equivalent circuit. The 
Y impedances as functions of the A impedances are 

(9.51) 

Z3 

z, = 

zd 

z. 

ZbZc 

+ zb + z; 

ZCZ,A 

+ zb + 

z»zb 

z/ 

z, + zh + zc 

(9.52) 

(9.53) 

The A-to-Y transformation also may be reversed; that is, we can start 
with the Y structure and replace it with an equivalent A structure. The A 
impedances as functions of the Y impedances are 

Z, = 

Z\Z2 

ZiZ2 

Z)Z2 

+ Z2Zi 

Z\ 

+ Z2Z3 

z2 

+ z2z3 

+ Z3Zi 

+ z3zx 

+ Zj,Zx 

z, 

(9.54) 

(9.55) 

(9.56) 

The process used to derive Eqs. 9.51-9.53 or Eqs. 9.54-9.56 is the same 
as that used to derive the corresponding equations for pure resistive cir
cuits. In fact, comparing Eqs. 3.44-3.46 with Eqs. 9.51-9.53, and 
Eqs. 3.47-3.49 with Eqs. 9.54-9.56, reveals that the symbol Z has replaced 
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the symbol R. You may want to review Problem 3.62 concerning the deri
vation of the A-to-Y transformation. 

Example 9.8 illustrates the usefulness of the A-to-Y transformation in 
phasor circuit analysis. 

Example 9.8 Using a Delta-to-Wye Transform in the Frequency Domain 

Use a A-to-Y impedance transformation to find I(), 
Ii, I2,13,14,15, V|, and V2 in the circuit in Fig. 9.21. 

C_) 12(M£ 

Figure 9.21 A The circuit for Example 9.8. 

Solution 

First note that the circuit is not amenable to series 
or parallel simplification as it now stands. A A-to-Y 
impedance transformation allows us to solve for all 
the branch currents without resorting to either the 
node-voltage or the mesh-current method. If we 
replace either the upper delta (abc) or the lower 
delta (bed) with its Y equivalent, we can further 
simplify the resulting circuit by series-parallel com
binations. In deciding which delta to replace, the 
sum of the impedances around each delta is worth 
checking because this quantity forms the denomi
nator for the equivalent Y impedances. The sum 
around the lower delta is 30 + /40, so we choose to 
eliminate it from the circuit. The Y impedance con
necting to terminal b is 

(21) + /60)(10) 
Z l = 30 + /40 = 1 2 + >4a' 

the Y impedance connecting to terminal c is 

10(-/20) 

and the Y impedance connecting to terminal d is 

(20 + ;60)(-y20) 

Inserting the Y-equivalent impedances into the cir
cuit, we get the circuit shown in Fig 9.22, which we 
can now simplify by series-parallel reductions. The 
impedence of the abn branch is 

Zahn = 12 + ./4 - /4 = 12 ft, 

and the impedance of the acn branch is 

Zacn = 63.2 + /2.4 - /2.4 - 3.2 = 60 ft. 

4ft 

-/2.4 ft 

Figure 9.22 • The circuit shown in Fig. 9.21, with the lower 
delta replaced by its equivalent wye. 

Note that the abn branch is in parallel with the acn 
branch. Therefore we may replace these two branches 
with a single branch having an impedance of 

•^an 
(60)(12) 

72 
10 ft. 

Combining this 10 ft resistor with the impedance 
between n and d reduces the circuit shown in Fig. 9.22 
to the one shown in Fig. 9.23. From the latter circuit. 

120/0° 
h = 7Z ~. = 4 / 5 3 . 1 3 ° 1 18 - /24 l 2.4 + /3.2 A. 

Z3 = 30 + /40 
= 8 - /24 ft. 

Once we know I(), we can work back through the 
equivalent circuits to find the branch currents in 
the original circuit. We begin by noting that I0 is 
the current in the branch nd of Fig. 9.22. Therefore 

Vnd = (8 - /24)1« = 96 - /32 V. 
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We may now calculate the voltage Van because 

* T an ' T nd 

and both V and Vnd are known. Thus 

Van = 120 - 96 + /32 = 24 + /32 V. 

We now compute the branch currents Iabn and Iacn: 

24 + /32 . 8 A 

Iabn = J^ = 2 + J ~ A, 

24 + /32 _ _4_ _8_ 

60 " ~ 10 + ; 15 A" 

In terms of the branch currents defined in Fig. 9.21, 

Ii = Iabn = 2 + / 3 A ' 

i_ •_§_ 
10 + 7 1 5 h = Iacn = T7T + 777 A« 

We check the calculations of Ii and I? by noting that 

I, + I2 = 2.4 + /3.2 = I0. 

•V a 

120/Q!/ + 
V 

i 8 n 

-/2412 

Figure 9.23 • A simplified version of the circuit shown in 
Fig. 9.22. 

To find the branch currents I3, I4, and I5, we must 
first calculate the voltages V! and V2. Refering to 
Fig. 9.21, we note that 

328 
Vt = 120/CT - ( - /4)1, = — + /8 V, 

V2 = 120/0° - (63.2 + /2.4)I2 = 96 - j ~ V. 

We now calculate the branch currents I3,14, and I5; 

V L - V2 4 . 12.8 
13 = - ^ - = 3 + i — A, 

l4 = 2^T7rS=3"7l-6A' 

^-g**"-
We check the calculations by noting that 

I4 + Is = 3 + jg - /1-6 + /4.8 = 2.4 + /3.2 = I0, 

4 2 12.8 M , „ .8 w 

I3 + I4 = 3 + 3 + ; — - ;1.6 = 2 + 7 - = lh 

4 4 12.8 8 26 

• /ASSESSMENT PROBLEM 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.9 Use a A -to-Y transformation to find the 
current I in the circuit shown. 1 ^ 

I 

Answer: I = 4 /28.07° A. 
136zD!/+^ 

1411 

/40 fl ^ -/15 H 

ion 

NOTE: Also try Chapter Problem 9.37. 
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9 J Source Transformations and 
Thevenin-Norton Equivalent Circuits 

The source transformations introduced in Section 4.9 and the Thevenin-
Norton equivalent circuits discussed in Section 4.10 are analytical tech
niques that also can be applied to frequency-domain circuits. We prove 
the validity of these techniques by following the same process used in 
Sections 4.9 and 4.10, except that we substitute impedance (Z) for resist
ance (/?). Figure 9.24 shows a source-transformation equivalent circuit 
with the nomenclature of the frequency domain. 

Figure 9.25 illustrates the frequency-domain version of a Thevenin 
equivalent circuit. Figure 9.26 shows the frequency-domain equivalent of 
a Norton equivalent circuit. The techniques for finding the Thevenin 
equivalent voltage and impedance are identical to those used for resistive 
circuits, except that the frequency-domain equivalent circuit involves the 
manipulation of complex quantities. The same holds for finding the 
Norton equivalent current and impedance. 

Example 9.9 demonstrates the application of the source-transformation 
equivalent circuit to frequency-domain analysis. Example 9.10 illustrates 
the details of finding a Thevenin equivalent circuit in the frequency domain. 

Zs 

v,/z. 

Figure 9.24 A A source transformation in the 
frequency domain. 

Frequency-domain 
linear circuit; 
may contain 
both independent 
and dependent 
sources. • " 

Figure 9.25 • The frequency-domain version of a 
Thevenin equivalent circuit. 

Frequency-domain 
linear circuit; 
may contain 
both independent 
and dependent , 
sources. * b 

Figure 9.26 • The frequency-domain version of a Norton 
equivalent circuit. 

Example 9.9 Performing Source Transformations in the Frequency Domain 

Use the concept of source transformation to find the 
phasor voltage V0 in the circuit shown in Fig. 9.27. 

i n y'3 0 0.2 a ; ' ° - 6 a 

I "WV rv-w>—^_/yy\ , ry\~r\ ^ 

/^ + \40ZQ! 

Figure 9.27 A The circuit for Example 9.9. 

Solution 

We can replace the series combination of the 
voltage source (40 /0°) and the impedance of 
1 + / 3 Q with the parallel combination of a 

current source and the 1 + /3 ft impedance. The 
source current is 

I = TTp = T o ( 1 - ; 3 ) /12 A. 

Thus we can modify the circuit shown in Fig. 9.27 to 
the one shown in Fig. 9.28. Note that the polarity 
reference of the 40 V source determines the refer
ence direction for I. 

Next, we combine the two parallel branches 
into a single impedance, 

Z = 
(1 + /3)(9 - /3) 

10 
= 1.8 + /2.4 a , 
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which is in parallel with the current source of 
4 - y*12 A. Another source transformation con
verts this parallel combination to a series combina
tion consisting of a voltage source in series with the 
impedance of 1.8 + /2.4 ft. The voltage of the volt
age source is 

V = (4 - /12)(1.8 + /2.4) = 36 - /12 V. 

Using this source transformation, we redraw the 
circuit as Fig. 9.29. Note the polarity of the voltage 
source. We added the current Io to the circuit to 
expedite the solution for VQ. 

0.2 0, /0.6 H 
>VvV ' ^ Y Y V 

Figure 9.28 • The first step in reducing the circuit shown 
in Fig. 9.27. 

1.8 n /2.4 n o.2 o /o.6 n 
l /\/W orw-\ /y^ OTTTL c 

Figure 9.29 • The second step in reducing the circuit shown 
in Fig. 9.27. 

Also note that we have reduced the circuit to a 
simple series circuit. We calculate the current Io by 
dividing the voltage of the source by the total series 
impedance: 

= 36 - /12 = 12(3 - /1) 
0 12 - /16 ~ 4(3 - /4) 

39 + /27 

25 
1.56 +/1.08 A. 

We now obtain the value of V0 by multiplying I0 by 
the impedance 10 - /19: 

Vfl = (1.56 + /1.08)(10 - /19) = 36.12 - /18.84 V. 

Example 9.10 Finding a Thevenin Equivalent in the Frequency Domain 

Find the Thevenin equivalent circuit with respect to 
terminals a,b for the circuit shown in Fig. 9.30. 

12 H 

-/40 a 

no a 

120ffi(^ v J 6 Q n ^ 1 0 V j 

Figure 9.30 • The circuit for Example 9.10. 

Solution 
We first determine the Thevenin equivalent voltage. 
This voltage is the open-circuit voltage appearing at 
terminals a,b. We choose the reference for the 
Thevenin voltage as positive at terminal a. We can 
make two source transformations relative to the 
120 V, 12 CI, and 60 CI circuit elements to simplify this 
portion of the circuit. At the same time, these transfor
mations must preserve the identity of the controlling 
voltage Vj because of the dependent voltage source. 

We determine the two source transformations by 
first replacing the series combination of the 120 V 
source and 12 CI resistor with a 10 A current source 
in parallel with 12 CI. Next, we replace the parallel 
combination of the 12 and 60 ft resistors with a single 
10 ft resistor. Finally, we replace the 10 A source in 
parallel with 10 ft with a 100 V source in series with 
10 ft. Figure 9.31 shows the resulting circuit. 

We added the current I to Fig. 9.31 to aid fur
ther discussion. Note that once we know the current 
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I, we can compute the Thevenin voltage. We find I 
by summing the voltages around the closed path in 
the circuit shown in Fig. 9.31. Hence 

100 = 101 - /401 + 1201 + 10Vt = (130 - /40)1 + 10VV. 

-/40 ft 

100/0!' 
V 

I 

120 ft 
'WV-

10 Vv 

-•a 
+ 

v-ni 
Figure 9.32 A A circuit for calculating the Thevenin equivalent 
impedance. 

Figure 9.31 • A simplified version of the circuit shown 
in Fig. 9.30. 

We relate the controlling voltage Vv to the current I 
by noting from Fig. 9.31 that 

'Hi en, 

Vv = 100 - 101. 

= 18/-126.87° A. 
30 - /40 

we now calculate Vx: 

Vv = 100 - 180/-126.87° = 208 + /144 V. 

Finally, we note from Fig. 9.31 that 

V-rh = 10¼ + 1201 

= 2080 + /1440 + 120(18)/-126.87° 

= 784 - /288 = 835.22/-20.17° V. 

To obtain the Thevenin impedance, we may 
use any of the techniques previously used to find 
the Thevenin resistance. We illustrate the test-
source method in this example. Recall that in 
using this method, we deactivate all independent 
sources from the circuit and then apply either a 
test voltage source or a test current source to the 
terminals of interest. The ratio of the voltage to 
the current at the source is the Thevenin imped
ance. Figure 9.32 shows the result of applying this 
technique to the circuit shown in Fig. 9.30. Note 
that we chose a test voltage source \T. Also note 
that we deactivated the independent voltage 
source with an appropriate short-circuit and pre
served the identity of Vv. 

The branch currents I a and I b have been added to 
the circuit to simplify the calculation of IT. By 
straightforward applications of Kirchhoff s circuit 
laws, you should be able to verify the following 
relationships: 

Ih = 

10 - /40 

v r - iovA 

120 

_ -V 7 (9 + /4) 

' 120(1 - /4) * 

IT = la + lb 

^ V, = 10Ia, 

Vr f 9 + /4 
10 - /40 V 12 

V H 3 - / 4 ) 
' 1 2 ( 1 0 - / 4 0 ) 1 

Z-n, = T 1 = 91.2 - / 3 8 . 4 1 1 . 
If 

Figure 9.33 depicts the Thevenin equivalent circuit. 

784-/288/ + 
V 

91.2 ft 
/yyV— 

-/38.4X2 

+ 

Figure 9.33 • The Thevenin equivalent for the circuit shown 
in Fig. 9.30. 
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/ASSESS MEN 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.10 Find the steady-state expression for v0{t) in 
the circuit shown by using the technique of 
source transformations. The sinusoidal voltage 
sources are 

vx = 240 cos (4000/ + 53.13°) V, 

th = 96 sin 4000/ V. 

20 H 

Answer: 48 cos (4000/ + 36.87°) V 

NOTE: Also try Chapter Problems 9.45, 9.46, and 9.49. 

9.11 Find the Thevenin equivalent with respect to 
terminals a,b in the circuit shown. 

Answer: VTh = Vab = 10 /45^ V; 
ZTh = 5 - /5 H. 

9.8 The Node-Voltage Method 
In Sections 4.2-4.4, we introduced the basic concepts of the node-voltage 
method of circuit analysis. The same concepts apply when we use the 
node-voltage method to analyze frequency-domain circuits. Example 9.11 
illustrates the solution of such a circuit by the node-voltage technique. 
Assessment Problem 9.12 and many of the Chapter Problems give you an 
opportunity to use the node-voltage method to solve for steady-state sinu
soidal responses. 

Example 9.11 Using the Node-Voltage Method in the Frequency Domain 

Use the node-voltage method to find the branch 
currents Ia, Ib, and Ic in the circuit shown in Fig. 9.34. 

Figure 9.34 • The circuit for Example 9.11. 

Solution 

We can describe the circuit in terms of two node volt
ages because it contains three essential nodes. Four 
branches terminate at the essential node that stretches 
across the bottom of Fig. 9.34, so we use it as the refer
ence node. The remaining two essential nodes are 
labeled 1 and 2, and the appropriate node voltages are 
designated V] and V2. Figure 9.35 reflects the choice 
of reference node and the terminal labels. 

10.6/0! 
A 

1 l f t /2 ft 2 5 a 
f WV rwy~\—« ,yvV-

M j 100 

Figure 9.35 A The circuit shown in Fig. 9.34, with the node 
voltages defined. 

Summing the currents away from node 1 yields 

Vi Vi - V7 
-10.6 + 777 + - r ~ = °-

10 1 + j2 

Multiplying by 1 + /2 and collecting the coeffi
cients of V] and V2 generates the expression 

V^ l . l + /0.2) - V2 = 10.6 + /21.2. 
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Summing the currents away from node 2 gives 

V 2 - V 1 , V2 , V2 ~ 201 
+ 1 = U. 

1 + /2 - / 5 5 
The controlling current I, is 

I, 
1 + /2 

Substituting this expression for lx into the node 2 
equation, multiplying by 1 + /2 , and collecting 
coefficients of V, and V2 produces the equation 

- 5 V t + (4.8 + /0.6) V 2 = 0. 

The solutions for V^ and V2 are 

V! = 68.40 - /16 .80 V, 

V2 = 68 - /26 V. 

Hence the branch currents are 

Ia = ^ = 6 .84- /1 .68 A, 

Vi - V2 

1 + / 2 
= 3.76 + /1.68 A, 

V2 - 20IX 
Ib = - * — = -1.44 - /11.92 A, 

V, 
Ic = - ^ + = 5.2 + /13.6 A. 

- ; 5 

To check our work, we note that 

Ia + I , = 6.84 - /1.68 + 3.76 + /1.68 
= 10.6 A, 

Iv = I b + Ic = -1.44 - /11.92 + 5.2 + /13.6 
= 3.76 + /1.68 A. 

^ A S S E S S M E N T PROBLEM 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.12 Use the node-voltage method to find the steady-
state expression for v(t) in the circuit shown. The 
sinusoidal sources are is = 10 cos cot A and 
vs = 100 sin cot V, where to - 50 krad/s. 

Answer: v(t) = 31.62 cos (50,000r - 71.57°) V. 

NOTE: Also try Chapter Problems 9.55 and 9.59. 

20 a 

9.9 The Mesh-Current Method 
We can also use the mesh-current method to analyze frequency-domain cir
cuits. The procedures used in frequency-domain applications are the same 
as those used in analyzing resistive circuits. In Sections 4.5-4.7, we intro
duced the basic techniques of the mesh-current method; we demonstrate 
the extension of this method to frequency-domain circuits in Example 9.12. 

Example 9.12 Using the Mesh-Current Method in the Frequency Domain 

Use the mesh-current method to find the voltages 
Vj, V2,and V3in the circuit shown in Fig. 9.36 on the 
next page. 

Solution 

The circuit has two meshes and a dependent volt
age source, so we must write two mesh-current 
equations and a constraint equation. The reference 
direction for the mesh currents I] and I2 is clock
wise, as shown in Fig. 9.37. Once we know ^ and I2, 
we can easily find the unknown voltages. Summing 
the voltages around mesh 1 gives 

150 = (1 + / 2 ) ^ + ( 1 2 - / 1 6 ) ( 1 , - I 2 ) , 

or 

150 = (13 - /14)¾ - (12 - /16)I2. 

Summing the voltages around mesh 2 generates the 
equation 

0 = (12 - /16)(¾ - 10 + ( 1 + /3)¾ + 391,. 

Figure 9.37 reveals that the controlling current I , is 
the difference between I, and I2; that is, the con
straint is 

Ir = It - h 
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+ V, - + V, 
I VvV L_rY-w-\ m / y ^ L_TY>nr\_ 

ui yzn+T m /3 a 
120¾ 

O'T v= 
-;'16ft: 

39 IA 

Figure 9.36 • The circuit for Example 9.12. 

1 fl /2 A 1 (1 /3 £1 
i <wv o"v>-> • »yy^ o r w > _ 

Solving for I] and I2 yields 

I, = - 2 6 - /52 A, 

I2 = - 2 4 - /58 A, 

Iv = - 2 + /6 A. 

The three voltages are 

Vj = (1 + /2)11 = 78 - / 1 0 4 V, 

V2 = (12 - /16)1, = 72 + /104 V, 

V3 = (1 + /3)I2 = 150 - /130 V. 

Also 

391 v = -78 + /234 V. 

Figure 9.37 • Mesh currents used to solve the circuit shown 
in Fig. 9.36. 

Substituting this constraint into the mesh 2 equa
tion and simplifying the resulting expression gives 

0 = (27 + /16)¾ - (26 + /13)¾. 

We check these calculations by summing the volt
ages around closed paths: 

-150 + Vj + V2 = -150 + 78 - /104 + 72 

+ /104 = 0, 

-V2 + V3 + 39¾ = -72 - /104 + 150 - /130 

- 78 + /234 = 0, 

-150 + V! + V3 + 39¾. = -150 + 78 - /104 + 150 

- /130 - 78 + /234 = 0. 

^ A S S E S S M E N T P R O B L E M 

Objective 3—Know how to use circuit analysis techniques to solve a circuit in the frequency domain 

9.13 Use the mesh-current method to find the pha-
sor current I in the circuit shown. 

Answer: I = 29 + /2 = 29.07/3.95° A. 

NOTE: Also try Chapter Problems 9.60 and 9.64. 

/^+^33.8/0° 

9.10 The Transformer 
A transformer is a device that is based on magnetic coupling. Transformers 
are used in both communication and power circuits. In communication cir
cuits, the transformer is used to match impedances and eliminate dc signals 
from portions of the system. In power circuits, transformers are used to estab
lish ac voltage levels that facilitate the transmission, distribution, and con
sumption of electrical power. A knowledge of the sinusoidal steady-state 
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behavior of the transformer is required in the analysis of both communication 
and power systems. In this section, we will discuss the sinusoidal steady-state 
behavior of the linear transformer, which is found primarily in communica
tion circuits. In Section 9.11, we will deal with the ideal transformer, which is 
used to model the ferromagnetic transformer found in power systems. 

Before starting we make a useful observation. When analyzing circuits 
containing mutual inductance use the meshor loop-current method for writ
ing circuit equations. The node-voltage method is cumbersome to use when 
mutual inductance in involved. This is because the currents in the various 
coils cannot be written by inspection as functions of the node voltages. 

The Analysis of a Linear Transformer Circuit 
A simple transformer is formed when two coils are wound on a single core 
to ensure magnetic coupling. Figure 9.38 shows the frequency-domain cir
cuit model of a system that uses a transformer to connect a load to a 
source. In discussing this circuit, we refer to the transformer winding con
nected to the source as the primary winding and the winding connected to 
the load as the secondary winding. Based on this terminology, the trans
former circuit parameters are 

jR] = the resistance of the primary winding, 

R2 = the resistance of the secondary winding, 

Lj = the self-inductance of the primary winding, 

L2 - the self-inductance of the secondary winding. 

M = the mutual inductance. 

The internal voltage of the sinusoidal source is Vv, and the internal 
impedance of the source is Zs. The impedance Z L represents the load con
nected to the secondary winding of the transformer. The phasor currents 
Ij and I2 represent the primary and secondary currents of the transformer, 
respectively. 

Analysis of the circuit in Fig. 9.38 consists of finding I, and I2 as func
tions of the circuit parameters Vv, Zs, Rh L t , L2, R2, M, ZL, and OJ. We are 
also interested in finding the impedance seen looking into the transformer 
from the terminals a,b.To find l\ and I2, we first write the two mesh-cur
rent equations that describe the circuit: 

Source Transformer Load 

Figure 9.38 A The frequency domain circuit model for a 
transformer used to connect a load to a source. 

Vv = (Zv + Ri + jo)Ll)ll - ja>Ml2, (9.57) 

0 = -;©Afl| + (R2 + joiL2 4- ZL)I2. (9.58) 

To facilitate the algebraic manipulation of Eqs. 9.57 and 9.58, we let 

Z,, = Z, + Rx + jtoLu (9.59) 

Z22 = R2 + jcoL2 + ZJL, (9.60) 

where Z (1 is the total self-impedance of the mesh containing the primary 
winding of the transformer, and Z22 is the total self-impedance of the 
mesh containing the secondary winding. Based on the notation introduced 
in Eqs. 9.59 and 9.60, the solutions for Ij and I2 from Eqs. 9.57 and 9.58 are 

I. = 
Z]]Z22 4- o)~M 

V 
~> * 1 7 x' 

(9.61) 

JOjM 

ZUZ22 + w'M 

io)M 
-V = - 1, (9.62) 

'22 



To the internal source voltage Vs, the impedance appears as V^/Ii, or 

Vv ZnZ22 + a>2M2 a>2M2 

J " = Am = 7 = Zu + - ^ - - (9.63) 
ll ^-22 ^ 2 2 

The impedance at the terminals of the source is Zint — Zs, so 

co2M2 „ . r a>2M2 

2«b = Zu + -Z Zs = R{ + ja>Lx + — ——. (9.64) 
Z 2 2 (R2 + J<oL2 + Z L ) 

Note that the impedance Zab is independent of the magnetic polarity 
of the transformer. The reason is that the mutual inductance appears in 
Eq. 9.64 as a squared quantity. This impedance is of particular interest 
because it shows how the transformer affects the impedance of the load as 
seen from the source. Without the transformer, the load would be con
nected directly to the source, and the source would see a load impedance 
of ZL; with the transformer, the load is connected to the source through 
the transformer, and the source sees a load impedance that is a modified 
version of ZL, as seen in the third term of Eq. 9.64. 

Reflected Impedance 
The third term in Eq. 9.64 is called the reflected impedance (Zr), because 
it is the equivalent impedance of the secondary coil and load impedance 
transmitted, or reflected, to the primary side of the transformer. Note that 
the reflected impedance is due solely to the existence of mutual induc
tance; that is, if the two coils are decoupled, M becomes zero, Zr becomes 
zero, and Zab reduces to the self-impedance of the primary coil. 

To consider reflected impedance in more detail, we first express the 
load impedance in rectangular form: 

Z L = RL + jXL, (9.65) 

where the load reactance XL carries its own algebraic sign. In other words, 
XL is a positive number if the load is inductive and a negative number if 
the load is capacitive. We now use Eq. 9.65 to write the reflected imped
ance in rectangular form: 

Zr = 
a?M2 

R2 + RL + j{coL2 + XL) 

_ OJ2M2[(R2 + RL) - ;(o>L2 + XL)] 

(R2 + RL)2 + (o>L2 + XLf 

2 A,/2 

1̂ 221 

The derivation of Eq . 9.66 takes advantage of the fact that, when Z L is 
written in rectangular form, the self-impedance of the mesh containing the 
secondary winding is 

-22 R2 + Rh + j(coL2 + XL). (9.67) 

Now observe from Eq. 9.66 that the self-impedance of the secondary 
circuit is reflected into the primary circuit by a scaling factor of 
(wM/|Z22|)2, and that the sign of the reactive component (wL2 -I- XL) is 
reversed. Thus the linear transformer reflects the conjugate of the self-
impedance of the secondary circuit (Zj2) into the primary winding by a 
scalar multiplier. Example 9.13 illustrates mesh current analysis for a cir
cuit containing a linear transformer. 
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Example 9.13 Analyzing a Linear Transformer in the Frequency Domain 

The parameters of a certain linear transformer are 
/?! = 200 ft, R2 = 100 ft, L{ = 9H, L2 = 4H , and 
k = 0.5. The transformer couples an impedance 
consisting of an 800 O resistor in series with a 1 (x¥ 
capacitor to a sinusoidal voltage source. The 300 V 
(rms) source has an internal impedance of 
500 + /100 ft and a frequency of 400 rad/s. 

a) Construct a frequency-domain equivalent circuit 
of the system. 

b) Calculate the self-impedance of the primary 
circuit. 

c) Calculate the self-impedance of the secondary 
circuit. 

d) Calculate the impedance reflected into the pri
mary winding. 

e) Calculate the scaling factor for the reflected 
impedance. 

f) Calculate the impedance seen looking into the 
primary terminals of the transformer. 

g) Calculate the Thevenin equivalent with respect 
to the terminals c,d-

Solution 

a) Figure 9.39 shows the frequency-domain equiva
lent circuit. Note that the internal voltage of the 
source serves as the reference phasor, and that 
Vj and V2 represent the terminal voltages of the 
transformer. In constructing the circuit in 
Fig. 9.39, we made the following calculations: 

;wL, = /(400)(9) = /3600 ft, 

ja>L2 = /(400)(4) = /1600 ft, 

M = 0.5V(9)(4) = 3 H, 

joM = /(400)(3) = /1200 ft, 

1 106 

b) The self-impedance of the primary circuit is 

Zn = 500 + /100 + 200 + /3600 = 700 + /3700 ft. 

c) The self-impedance of the secondary circuit is 

Z22 = 100 + /1600 + 800 - /2500 = 900 - /900 ft. 

d) The impedance reflected into the primary 
winding is 

Zr = 
1200 

|900 - /900| 
(900 + /900) 

= -(900 + /900) = 800 + /800 ft. 

e) The scaling factor by which Z22 is reflected is 8/9. 

f) The impedance seen looking into the primary ter
minals of the transformer is the impedance of the 
primary winding plus the reflected impedance; thus 

Z a b = 200 + /3600 + 800 + /800 = 1000 + /4400 ft. 

g) The Thevenin voltage will equal the open circuit 
value of Vcd. The open circuit value of \cd will 
equal /1200 times the open circuit value of lh 

The open circuit value of I] is 

I, = 
300 / 0 

jtoC /400 
= -/250() ft. 

700 + /3700 

= 79.67/-79.29° mA. 

Therefore 

VTh = /1200(79.67/-79.29°) x 10~3 

= 95.60/10.71° V. 

300 /0° V 

500 n /ioon a 2ooa .innn IOOH soon 
_onrv^ * ^/^ ] I ZOO /^V • "WV— 

+ • 

V, /3600O-

• + 

/16000 V2 -/2500 a 

Figure 9.39 • The frequency-domain equivalent circuit for Example 9.13. 



338 Sinusoidal Steady-State Analysis 

The Thevenin impedance will be equal to the imped
ance of the secondary winding plus the impedance 
reflected from the primary when the voltage source is 
replaced by a short-circuit. Thus 

/ 1200 V 
ZTh = 100 + /1600 + ( | 7 0 0 + J .3 7 ( ) ( ) | j (700 - /3700) 

= 171.09 +/1224.26 n . 

The Thevenin equivalent is shown in Fig. 9.40. 

/1224.26 li 

95.60/10.71°/H 
V 

171.09 O 
• W v — 

Figure 9.40 A The Thevenin equivalent circuit for Example 9.13. 

^ A S S E S S M E N T PROBLEM 

Objective 4—Be able to analyze circuits containing linear transformers using phasor methods 

9.14 A linear transformer couples a load consisting 
of a 360 O resistor in series with a 0.25 H 
inductor to a sinusoidal voltage source, as 
shown. The voltage source has an internal 
impedance of 184 + /0 Cl and a maximum volt
age of 245.20 V, and it is operating at 800 rad/s. 
The transformer parameters are Ri = 100 fl, 
Lt = 0.5 H, R2 = 40 O, L2 = 0.125 H, and 
k = 0.4. Calculate (a) the reflected impedance; 
(b) the primary current; and (c) the secondary 
current. 

NOTE: Also try Chapter Problems 9.76 and 9.77. 

Source Transformer d Load 

Answer: (a) 10.24 - /7.68 H; 

(b) 0.5 cos(800f - 53.13°) A; 

(c) 0.08 cos 800f A. 

9.11 The Ideal Transformer 
An ideal transformer consists of two magnetically coupled coils having N\ 
and N2 turns, respectively, and exhibiting these three properties: 

1. The coefficient of coupling is unity (k = 1). 

2. The self-inductance of each coil is infinite (Lj = L2 = oo). 

3. The coil losses, due to parasitic resistance, are negligible. 

Understanding the behavior of ideal transformers begins with Eq. 9.64 
which describes the impedance at the terminals of a source connected to a 
linear transformer. We repeat this equation below and examine it further. 

Exploring Limiting Values 

A useful relationship between the input impedance and load impedance, 
as given by Zah in Eq. 9.68, emerges as L\ and L2 each become infinitely 
large and, at the same time, the coefficient of coupling approaches unity: 

a>2M2 

Ri + joL, + 
o>2M2 

(/¾ + jcoL2 + ZL)' 
(9.68) 



Transformers wound on ferromagnetic cores can approach this condition. 
Even though such transformers are nonlinear, we can obtain some useful 
information by constructing an ideal model that ignores the nonlinearities. 

To show how Z a b changes when k = 1 and L\ and L2 approach infin
ity, we first introduce the notation 

Z 2 2 = R2 + R L + KoL2 + XL) = R22 + jX22 

and then rear range Eq . 9.68: 

to2M2R72 . ( <o2M2X22 
Z a | , = Ri -\—5 Y

 + 1 1 oi^\ 2 2~ 
«*22 "̂  ^ 2 2 ^ -**22 "•" -^-22 

= R,b + jX.Ar (9.69) 

A t this point , we mus t be careful with the coefficient of ;* in E q . 9.69 
because , as L\ and L2 approach infinity, this coefficient is the difference 
be tween two large quanti t ies . Thus, before let t ing L] and L2 increase, we 
write the coefficient as 

where we recognize tha t , when k = 1, M2 = L^L2. Put t ing the t e rm mul
tiplying wLy over a c o m m o n d e n o m i n a t o r gives 

(R\y + OiUXV + X}\ 
Xab = coLx — , - L , . (9.71) ab l \ Rl2 + X\2 J ' 

Factoring o»L2 ou t of the n u m e r a t o r and d e n o m i n a t o r of E q . 9.71 yields 

L , XL + (R2
22 + Xl)lo>L2 

X.xb = — = r. 9.72 
L2 (R22/<oL2)

2 +[\ + (XJwL2)]
2 

As k approaches 1,0, the ratio L]/L2 approaches the constant value of 
(N1/N1)2, which follows from Eqs. 6.54 and 6.55. The reason is that, as the 
coupling becomes extremely tight, the two permeances 57̂  and SP2 become 
equal. Equation 9.72 then reduces to 

^ = (¾)2¾. (9.73) 

as Lj -* 00, L2 —> 00, and k —• 1.0. 
The same reasoning leads to simplification of the reflected resistance 

in Eq . 9.69: 

urM2R->2 L . / iV,V 

Applying the results given by Eqs. 9.73 and 9.74 to Eq. 9.69 yields 

Zah = * , + ( ^ ) 2 ¾ + ( ^ ) 2 ( « L + / ¾ . (9.75) 

C o m p a r e this result with the result in Eq . 9.68. H e r e we see that when the 
coefficient of coupling approaches unity and the self-inductances of the 
coupled coils approach infinity, the t ransformer reflects the secondary 
winding resistance and the load impedance to the pr imary side by a scaling 
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jcoM 

j(oLA j(oL2 

IN, 
v, 

(a) 

jcoM 

jcoL2 

\N-> 

(b) 

Figure 9.41 A The circuits used to verify the volts-
per-turn and ampere-turn relationships for an ideal 
transformer. 

factor equal to the turns ratio (M/A^) squared. Hence we may describe the 
terminal behavior of the ideal transformer in terms of two characteristics. 
First, the magnitude of the volts per turn is the same for each coil, or 

ft N2 
(9.76) 

Second, the magnitude of the ampere-turns is the same for each coil, or 

i, MI = My L J i V l (9.77) 

We are forced to use magnitude signs in Eqs. 9.76 and 9.77, because we 
have not yet established reference polarities for the currents and voltages; 
we discuss the removal of the magnitude signs shortly. 

Figure 9.41 shows two lossless (R^ = R2 = 0) magnetically coupled 
coils. We use Fig. 9.41 to validate Eqs. 9.76 and 9.77. In Fig. 9.41(a), coil 2 is 
open; in Fig. 9.41(b), coil 2 is shorted. Although we carry out the following 
analysis in terms of sinusoidal steady-state operation, the results also 
apply to instantaneous values of v and L 

Determining the Voltage and Current Ratios 
Note in Fig. 9.41(a) that the voltage at the terminals of the open-circuit 
coil is entirely the result of the current in coil 1; therefore 

The current in coil 1 is 

From Eqs. 9.78 and 9.79, 

V2 = ja>Ml\. 

jcoL] 

(9.78) 

(9.79) 

(9.80) 

For unity coupling, the mutual inductance equals VL]L2, so Eq. 9.80 
becomes 

V, = (9.81) 

For unity coupling, the flux linking coil 1 is the same as the flux linking 
coil 2, so we need only one permeance to describe the self-inductance of 
each coil. Thus Eq. 9.81 becomes 

V, = 
/V?SP 

A^ 
V] (9.82) 

or 

Voltage relationship for an ideal 
transformer • 

N2 

(9.83) 

Summing the voltages around the shorted coil of Fig. 9.41(b) yields 

0 = -j(x)M\{ + jcoL2l2, (9.84) 
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from which, for k = 1, 

II 

h M 
u 

VUL2 

L2 
(9.85) 

Equation 9.85 is equivalent to 

I , ^ i - l2N2. (9.86) -4 Current relationship for an ideal 
transformer 

Figure 9.42 shows the graphic symbol for an ideal transformer. The 
vertical lines in the symbol represent the layers of magnetic material from 
which ferromagnetic cores are often made. Thus, the symbol reminds us 
that coils wound on a ferromagnetic core behave very much like an ideal 
transformer. 

There are several reasons for this. The ferromagnetic material creates 
a space with high permeance. Thus most of the magnetic flux is trapped 
inside the core material, establishing tight magnetic coupling between 
coils that share the same core. High permeance also means high self-
inductance, because L = N2V. Finally, ferromagnetically coupled coils 
efficiently transfer power from one coil to the other. Efficiencies in excess 
of 95% are common, so neglecting losses is not a crippling approximation 
for many applications. 

Determining the Polarity of the Voltage 
and Current Ratios 
We now turn to the removal of the magnitude signs from Eqs. 9.76 and 
9.77. Note that magnitude signs did not show up in the derivations of 
Eqs. 9.83 and 9.86. We did not need them there because we had established 
reference polarities for voltages and reference directions for currents. In 
addition, we knew the magnetic polarity dots of the two coupled coils. 

The rules for assigning the proper algebraic sign to Eqs. 9.76 and 9.77 
are as follows: 

If the coil voltages V! and V2 are both positive or negative at the dot-
marked terminal, use a plus sign in Eq. 9.76. Otherwise, use a nega
tive sign. 

If the coil currents I] and I2 are both directed into or out of the dot-
marked terminal, use a minus sign in Eq. 9.77. Otherwise, use a 
plus sign. 

The four circuits shown in Fig. 9.43 illustrate these rules. 

A", • N, 

Ideal 

Figure 9.42 • The graphic symbol for an ideal 

transformer. 

A Dot convention for ideal transformers 

+ • JV, N2\ • + 
\ 

V, I 
> 

Ideal 

vi = v_2 
/V, /V2" 

Ni\i = ~N2l2 

(a) 

I2 V2 

+ • yv, N2\ + 
f 

V, I II, V, 

Ideal I • 

W,I, = N2l2 

(b) 

+ • 

V, I,) 
J 

|N, N2\ • + 

Ideal 

V, V2 

/V, N2 

A^I, = M,I2 

(c) 

l/V, N2\ 

V t I, 

>' 
I, V2 

Ideal 

V ] = _V_2 

Ni N2 

A7,I, = -N2l2 

Figure 9.43 • Circuits that show the proper algebraic signs for relating the terminal voltages and currents of an ideal transformer. 
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AT,-

v, 

= 500 N2 = 

•1 
i 

J Ideal L 
(a) 

2500 
+ 

V2 

-

+ n i: 5 nr^-

Ideal 

(b) 

V, 

+ ni/5 :irr^ 
V, 

Ideal 

(c) 

Figure 9.44 • Three ways to show that the turns ratio 
of an ideal transformer is 5. 

The ratio of the turns on the two windings is an important parameter 
of the ideal transformer. The turns ratio is defined as either N]/N2 or 
M/N,; both ratios appear in various writings. In this text, we use a to 
denote the ratio N2/N], or 

a = (9.87) 

Figure 9.44 shows three ways to represent the turns ratio of an ideal 
transformer. Figure 9.44(a) shows the number of turns in each coil explic
itly. Figure 9.44(b) shows that the ratio Ni/N] is 5 to 1, and Fig. 9.44(c) 
shows that the ratio ./V2//V, is 1 to | . 

Example 9.14 illustrates the analysis of a circuit containing an ideal 
transformer. 

Example 9.14 Analyzing an Ideal Transformer Circuit in the Frequency Domain 

The load impedance connected to the secondary 
winding of the ideal transformer in Fig. 9.45 consists of 
a 237.5 mil resistor in series with a 125 /xH inductor. 

If the sinusoidal voltage source (-yg) is generat
ing the voltage 2500 cos 400/ V, find the steady-
state expressions for: (a) /,; (b) V\; (c) /2; and (d) v2. 

0.25 ft 5mH 237.5 mft 

O 
10:1 

Ideal 

; 125 yaH 

Figure 9.45 • The circuit for Example 9.14. 

Solution 

a) We begin by constructing the phasor domain 
equivalent circuit. The voltage source becomes 
2500/0° V; the 5 mH inductor converts to an 
impedance of /2 D; and the 125 fxH inductor 
converts to an impedance of/0.05 ft. The phasor 
domain equivalent circuit is shown in Fig. 9.46. 

It follows directly from Fig. 9.46 that 

2500/0° = (0.25 + /2)1] + V,, 

and 

V, = 10V2 = 10[(0.2375 + /0.05)I2]. 

Because 

I2 = 101, 

we have 

Vi = 10(0.2375 +/0.05)101! 

= (23.75 + /5)1,. 

0.25 II /2 ft 
AAA, / - Y V W -

0.2375 ft 

- I , -vw 

/ T N 2500/0! 

0 1 1 0 : 1 / 0 - v v ^ ~ 

V2 /0.05 ft; 

Ideal 

Figure 9.46 A Phasor domain circuit for Example 9.14. 

Therefore 

2500 / 0 ° = (24 + /7 )1 , , 

or 
I, = 100/-16.26° A. 

Thus the steady-state expression for i1 is 

/, = 100cos(400r - 16.26°) A. 

b) V, = 2500/0° - (100 / - 16 .26" )(0.25 + /2) 

= 2500 - 80 - /185 

= 2420 - /185 = 2427.06/-4.37° V, 

Hence 

v] = 2427.06 cos (400r - 4.37°) V. 

c) I2 = 101, = 1000/-16.26° A. 

Therefore 

i2 = 1000 cos (400f - 16.26°) A. 

d) V2 = 0.1V, = 242.71 / -4 .37° V, 

giving 

y2 = 242.71 cos (400/ - 4.37°) V. 
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The Use of an Ideal Transformer for Impedance Matching 
Ideal transformers can also be used to raise or lower the impedance level 
of a load.Tlie circuit shown in Fig. 9.47 illustrates this.The impedance seen 
by the practical voltage source (Vv in series with Zv) is Vi/Ij. The voltage 
and current at the terminals of the load impedance (V2 and I2) are related 
to V] and Ij by the transformer turns ratio; thus 

and 

v, = - , 

I, = a\2. 

Therefore the impedance seen by the practical source is 

Z I N J — _ — - T 
1 Y> 

'IN 
Ii a2 h 

but the ratio V2/I2 is the load impedance ZL, so Eq. 9.90 becomes 

(9.88) 

(9.89) 

(9.90) 

1 :a 

deal 

• + 

— 0 — 

zL 

Figure 9.47 A Using an ideal transformer to couple a 
load to a source. 

7 IN lZL. (9.91) 

Thus, the ideal transformer's secondary coil reflects the load impedance 
back to the primary coil, with the scaling factor \/a~. 

Note that the ideal transformer changes the magnitude of ZL but does 
not affect its phase angle. Whether Z)N is greater or less than ZL depends 
on the turns ratio a. 

The ideal transformer —or its practical counterpart, the ferromag
netic core transformer—can be used to match the magnitude of ZL to 
the magnitude of Z v We will discuss why this may be desirable in 
Chapter 10. 

^ A S S E S S M E N T P R O B L E M 

Objective 5—Be able to analyze circuits with ideal transformers 

9.15 The source voltage in the phasor domain circuit 
in the accompanying figure is 25 / 0 ° kV. Find 
the amplitude and phase angle of V2

 a n d ^2-

Answer: V2 = 1868.15 /142.39° V; 

I2 = 125 /216.87° A. 

NOTE: Also try Chapter Problem 9.83. 

'•© 

4f t 
^ 7 1 2 5 : 1 

V, 

Ideal 

-/14.4 ft 

As we shall see, ideal transformers are used to increase or decrease 
voltages from a source to a load. Thus, ideal transformers are used widely 
in the electric utility industry, where it is desirable to decrease, or step 
down, the voltage level at the power line to safer residential voltage levels. 
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9.12 Phasor Diagrams 

2 / 1 5 0 ° ^ - ^ 

8/-170° 

s^-150t. 

-170*-
5 

30° 
i 
/ 

-45° 

/-45° 

10/30° 

Figure 9.48 A A graphic representation of phasors. 

Figure 9.49 A The complex number 
-7 - /3 = 7.62 /-156.80°. 

When we are using the phasor method to analyze the steady-state sinu
soidal operation of a circuit, a diagram of the phasor currents and voltages 
may give further insight into the behavior of the circuit. A phasor diagram 
shows the magnitude and phase angle of each phasor quantity in the 
complex-number plane. Phase angles are measured counterclockwise from 
the positive real axis, and magnitudes are measured from the origin of the 
axes. For example, Fig. 9.48 shows the phasor quantities 10/30° , 12 /150% 
5 / - 4 5 ° , and 8 / - 1 7 0 ° . 

Constructing phasor diagrams of circuit quantities generally involves 
both currents and voltages. As a result, two different magnitude scales are 
necessary, one for currents and one for voltages. The ability to visualize a pha
sor quantity on the complex-number plane can be useful when you are check
ing pocket calculator calculations. The typical pocket calculator doesn't offer 
a printout of the data entered. But when the calculated angle is displayed, you 
can compare it to your mental image as a check on whether you keyed in the 
appropriate values. For example, suppose that you are to compute the polar 
form of - 7 - / 3 . Without making any calculations, you should anticipate a 
magnitude greater than 7 and an angle in the third quadrant that is more neg
ative than —135° or less positive than 225°, as illustrated in Fig. 9.49. 

Examples 9.15 and 9.16 illustrate the construction and use of phasor 
diagrams. We use such diagrams in subsequent chapters whenever they 
give additional insight into the steady-state sinusoidal operation of the cir
cuit under investigation. Problem 9.84 shows how a phasor diagram can 
help explain the operation of a phase-shifting circuit. 

Example 9.15 Using Phasor Diagrams to Analyze a Circuit 

For the circuit in Fig. 9.50, use a phasor diagram to 
find the value of R that will cause the current 
through that resistor, iR, to lag the source current, („ 
by 45° when <o = 5 krad/s. 

h = vm/v_ \Vm /90° , 
-//(5000)(800 X 10~6) 

and the current phasor for the resistor is given by 

I 
V,„ / 0 y 

= ^ / 0 ° . 
R R z — 

Figure 9.50 A The circuit for Example 9.15. 

Solution 
By Kirchhoff s current law, the sum of the currents 
lR, lL, and I c must equal the source current I5. If we 
assume that the phase angle of the voltage V,„ is 
zero, we can draw the current phasors for each of 
the components. The current phasor for the induc
tor is given by 

These phasors are shown in Fig. 9.51. The phasor 
diagram also shows the source current phasor, 
sketched as a dotted line, which must be the sum of 
the current phasors of the three circuit components 
and must be at an angle that is 45 ° more positive than 
the current phasor for the resistor. As you can see, 
summing the phasors makes an isosceles triangle, so 
the length of the current phasor for the resistor must 
equal 3V,„. Therefore, the value of the resistor is | Cl. 

Ic = /4V> 

1/ = 
vm / o £ 

/(5000)(0.2 X 10~3) 
V,n / - 90° , 

h--nvm» 

whereas the current phasor for the capacitor is 
given by 

> 
/ 

A 

h = VJR 

Figure 9.51 A The phasor diagram for the currents in Fig. 9.50. 
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Example 9.16 Using Phasor Diagrams to Analyze Capadtive Loading Effects 

The circuit in Fig. 9.52 has a load consisting of the 
parallel combination of the resistor and inductor. 
Use phasor diagrams to explore the effect of 
adding a capacitor across the terminals of the load 
on the amplitude of Vs if we adjust \ s so that the 
amplitude of VL remains constant. Utility compa
nies use this technique to control the voltage drop 
on their lines. 

R? 

Figure 9.52 • The circuit for Example 9.16. 

For convenience, we place this phasor on the pos
itive real axis. 

b) We know that Ia is in phase with VL and that its 
magnitude is |VL|/#2- (On the phasor diagram, 
the magnitude scale for the current phasors is 
independent of the magnitude scale for the volt
age phasors.) 

c) We know that I b lags behind VL by 90° and that 
its magnitude is |VL|/wL2. 

d) The line current I is equal to the sum of Ia and Ib. 

e) The voltage drop across Ry is in phase with the 
line current, and the voltage drop across jo)L] 
leads the line current by 90°. 

f) The source voltage is the sum of the load voltage 
and the drop along the line; that is, Vs = VL 

+ (Rx + jcoL{)\. 

Solution 

We begin by assuming zero capacitance across the 
load. After constructing the phasor diagram for the 
zero-capacitance case, we can add the capacitor and 
study its effect on the amplitude of Y,, holding the 
amplitude of VL constant. Figure 9.53 shows the fre
quency-domain equivalent of the circuit shown in 
Fig. 9.52. We added the phasor branch currents I, Ia, 
and I b to Fig. 9.53 to aid discussion. 

rY-v-v>__—» a 

- — V , 

VL R2i\h J<oL2i\lu 

-• * 
Figure 9.53 • The frequency-domain equivalent of the circuit 
in Fig. 9.52. 

Figure 9.54 shows the stepwise evolution of 
the phasor diagram. Keep in mind that we are not 
interested in specific phasor values and positions 
in this example, but rather in the general effect of 
adding a capacitor across the terminals of the 
load. Thus, we want to develop the relative posi
tions of the phasors before and after the capacitor 
has been added. 

Relating the phasor diagram to the circuit 
shown in Fig. 9.53 reveals the following points: 

a) Because we are holding the amplitude of the load 
voltage constant, we choose VL as our reference. 

Figure 9.54 • The step-by-step evolution of the phasor 
diagram for the circuit in Fig. 9.53. 

Note that the completed phasor diagram shown in 
step 6 of Fig. 9.54 clearly shows the amplitude and phase 
angle relationships among all the currents and voltages 
in Fig. 9.53. 

Now add the capacitor branch shown in Fig. 9.55. We 
are holding VL constant, so we construct the phasor dia
gram for the circuit in Fig. 9.55 following the same steps 
as those in Fig. 9.54, except that, in step 4, we add the 
capacitor current Ic to the diagram. In so doing, Ic leads 
VL by 90°, with its magnitude being |VLwC|. Figure 9.56 
shows the effect of Ic on the line current: Both the magni
tude and phase angle of the line current I change with 
changes in the magnitude of Ic. As I changes, so do the 
magnitude and phase angle of the voltage drop along the 
line. As the drop along the line changes, the magnitude 
and phase angle of V? change. The phasor diagram shown 
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in Fig. 9.57 depicts these observations. The dotted 
phasors represent the pertinent currents and volt
ages before the addition of the capacitor. 

Thus, comparing the dotted phasors of I, RJL, 
ja>L-[l, and Vv with their solid counterparts clearly 
shows the effect of adding C to the circuit. In par
ticular, note that this reduces the amplitude of the 
source voltage and still maintains the amplitude of 
the load voltage. Practically, this result means that, 
as the load increases (i.e., as Ia and Ih increase), we 
can add capacitors to the system (i.e., increase Ic) 
so that under heavy load conditions we can main
tain VL without increasing the amplitude of the 
source voltage. 

Figure 9.56 • The effect of the capacitor current I c on the line 
current I. 

Figure 9.55 • The addition of a capacitor to the circuit shown 
in Fig. 9.53. 

Figure 9.57 A The effect of adding a load-shunting capacitor to 
the circuit shown in Fig. 9.53 if VL is held constant. 

NOTE: Assess your understanding of this material by trying Chapter Problems 9.84 and 9.85. 

Practical Perspective 

A Household Distribution Circuit 
Let us return to the household distribution circuit introduced at the begin
ning of the chapter. We will modify the circuit slightly by adding resistance 
to each conductor on the secondary side of the transformer to simulate more 
accurately the residential wiring conductors. The modified circuit is shown 
in Fig. 9.58. In Problem 9.88 you will calculate the six branch currents on 
the secondary side of the distribution transformer and then show how to 
calculate the current in the primary winding. 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 

Problems 9.88 and 9.89. 

— h 

13.2/0! 
kV 

• + 
1(1 

-AAA-

• + 

120/0! l | 2 0 O 
_ v 2 n h 

AW 

[3 

-.— r, 
120/0! j i40 0 

-VW * 

10 nf iii 

Figure 9.58 • Distribution circuit. 
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The general equation for a sinusoidal source is 

v = Vmcos(a)t + 4>) (voltage source), 

or 

i = Im cos(a»r + (j>) (current source), 

where Vm (or Im) is the maximum amplitude, a> is the 
frequency, and <f) is the phase angle. (See page 308.) 

The frequency, a>, of a sinusoidal response is the same as 
the frequency of the sinusoidal source driving the circuit. 
The amplitude and phase angle of the response are usu
ally different from those of the source. (See page 311.) 

The best way to find the steady-state voltages and cur
rents in a circuit driven by sinusoidal sources is to per
form the analysis in the frequency domain. The following 
mathematical transforms allow us to move between the 
time and frequency domains. 

• The phasor transform (from the time domain to the 
frequency domain): 

V = Vme^ = &{Vmcos(tot + <£)}. 

• The inverse phasor transform (from the frequency 
domain to the time domain): 

(See pages 312-313.) 

When working with sinusoidally varying signals, 
remember that voltage leads current by 90° at the ter
minals of an inductor, and current leads voltage by 90° 
at the terminals of a capacitor. (See pages 317-320.) 

Impedance (Z) plays the same role in the frequency 
domain as resistance, inductance, and capacitance play 
in the time domain. Specifically, the relationship 
between phasor current and phasor voltage for resis
tors, inductors, and capacitors is 

V = 21, 

where the reference direction for I obeys the passive 
sign convention. The reciprocal of impedance is 
admittance (Y), so another way to express the current-
voltage relationship for resistors, inductors, and capaci
tors in the frequency domain is 

v = i/y. 
(See pages 320 and 324.) 

All of the circuit analysis techniques developed in 
Chapters 2-4 for resistive circuits also apply to sinu
soidal steady-state circuits in the frequency domain. 
These techniques include KVL, KCL, series, and paral
lel combinations of impedances, voltage and current 
division, node voltage and mesh current methods, 
source transformations and Thevenin and Norton 
equivalents. 

The two-winding linear transformer is a coupling device 
made up of two coils wound on the same nonmagnetic 
core. Reflected impedance is the impedance of the sec
ondary circuit as seen from the terminals of the primary 
circuit or vice versa. The reflected impedance of a linear 
transformer seen from the primary side is the conjugate 
of the self-impedance of the secondary circuit scaled by 
the factor (a)M/\Z22\)

2. (See pages 335 and 336.) 

The two-winding ideal transformer is a linear trans
former with the following special properties: perfect 
coupling (k = 1), infinite self-inductance in each coil 
(Z-! = L2 = oo), and lossless coils (R{ = R2 = 0). The 
circuit behavior is governed by the turns ratio a = N2/N]_. 
In particular, the volts per turn is the same for each 
winding, or 

Afc* 

and the ampere turns are the same for each winding, or 

JVili = ± N2l2-

(See page 338.) 

TABLE 9.3 Impedance and Related Values 

Element Impedance (Z) 

Resistor R (resistance) 

Capacitor ;(—l/a»C) 

Inductor jwL 

Reactance 

- 1/wC 

coL 

Admittance (Y) 

G (conductance) 

j(oC 

}{-\/a>L) 

Susceptance 

-1/coL 



348 Sinusoidal Steady-State Analysis 

Problems 

Section 9.1 

9.1 Consider the sinusoidal voltage 

v(t) = 80 cos (lOOOirt - 30°) V. 

a) What is the maximum amplitude of the voltage? 

b) What is the frequency in hertz? 

c) What is the frequency in radians per second? 

d) What is the phase angle in radians? 

e) What is the phase angle in degrees? 

f) What is the period in milliseconds? 

g) What is the first time after t = 0 that v = 80 V? 

h) The sinusoidal function is shifted 2/3 ms to the 
left along the time axis. What is the expression 
for v(t)l 

i) What is the minimum number of milliseconds 
that the function must be shifted to the right if 
the expression for v(t) is 80 sin 100()7r/ V? 

j) What is the minimum number of milliseconds 
that the function must be shifted to the left if the 
expression for v(t) is 80 cos IOOO77-? V? 

9.2 At t = — 2 ms, a sinusoidal voltage is known to be 
zero and going positive. The voltage is next zero at 
t = 8 ms. It is also known that the voltage is 80.9 V 
at t = 0. 

a) What is the frequency of v in hertz? 

b) What is the expression for vl 

9.3 A sinusoidal current is zero at t = — 625/xs and 
increasing at a rate of 800077 A/s. The maximum 
amplitude of the current is 20 A. 

a) What is the frequency of i in radians per second? 

b) What is the expression for /? 

9.4 A sinusoidal voltage is given by the expression 

v = 10 cos (3769.911 - 53.13°) V. 

Find (a) / in hertz; (b) T in milliseconds; (c) Vm; 
(d) v(0); (e) <£ in degrees and radians; (f) the smallest 
positive value of t at which v = 0; and (g) the small
est positive value of t at which dv/dt = 0. 

9.5 In a single graph, sketch v = 100 cos (cot + 4>) ver
sus cot for 4> = -60°, -30° , 0°, 30°, and 60°. 

a) State whether the voltage function is shifting to 
the right or left as <f> becomes more positive. 

b) What is the direction of shift if 4> changes from 
0to30°? 

9.6 Show that 

/ ' 

9.7 The rms value of the sinusoidal voltage supplied to 
the convenience outlet of a home in Scotland is 
240 V. What is the maximum value of the voltage 
at the outlet? 

9.8 Find the rms value of the half-wave rectified sinu
soidal voltage shown. 

Figure P9.8 

K„,sin^r£,0 t« 7/2 

37/2 

Section 9.2 

Vj, cos2(wr -I- (j>)dt = 
VlT 

9.9 The voltage applied to the circuit shown in Fig. 9.5 
at t = 0 is 20 cos (800* + 25°) V. The circuit resist
ance is 80 fl and the initial current in the 75 mH 
inductor is zero. 

a) Find i(t) for t > 0. 

b) Write the expressions for the transient and 
steady-state components of i(t). 

c) Find the numerical value of i after the switch has 
been closed for 1.875 ms. 

d) What are the maximum amplitude, frequency 
(in radians per second), and phase angle of the 
steady-state current? 

e) By how many degrees are the voltage and the 
steady-state current out of phase? 

9.10 a) Verify that Eq. 9.9 is the solution of Eq. 9.8. This 
can be done by substituting Eq. 9.9 into the left-
hand side of Eq. 9.8 and then noting that it 
equals the right-hand side for all values of t > 0. 
At t = 0, Eq. 9.9 should reduce to the initial 
value of the current. 

b) Because the transient component vanishes as 
time elapses and because our solution must sat
isfy the differential equation for all values of /, 
the steady-state component, by itself, must also 
satisfy the differential equation. Verify this 
observation by showing that the steady-state 
component of Eq. 9.9 satisfies Eq. 9.8. 

Sections 9.3-9.4 

9.11 Use the concept of the phasor to combine the fol
lowing sinusoidal functions into a single trigono
metric expression: 

a) y = 50 cos(500/ + 60°) + 100 cos(500* - 30°), 

b) y = 200 cos(377/ + 50°) - 100 sin(377/ + 150°), 
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c) y = 80 cos(100f + 30°) - 100 sin(100f - 135°) 
+ 50 cos(100r - 90°), and 

d) v = 250 cos oit + 250 cos(wr + 120°) 
+ 250 cos(o* - 120°). 

9.12 The expressions for the steady-state voltage and 
current at the terminals of the circuit seen in 
Fig. P9.12 are 

vg = 300 cos (5000^ + 78°) V, 

ig = 6sin(50007rf + 123°) A 

a) What is the impedance seen by the source? 

b) By how many microseconds is the current out of 
phase with the voltage? 

Figure P9.12 

1» Circuit 

9.13 A 80 kHz sinusoidal voltage has zero phase angle 
and a maximum amplitude of 25 mV. When this 
voltage is applied across the terminals of a capaci
tor, the resulting steady-state current has a maxi
mum amplitude of 628.32 /xA. 

a) What is the frequency of the current in radians 
per second? 

b) What is the phase angle of the current? 

c) What is the capacitive reactance of the capacitor? 

d) What is the capacitance of the capacitor in 
microfarads? 

e) What is the impedance of the capacitor? 

9.14 A 400 Hz sinusoidal voltage with a maximum 
amplitude of 100 V at t = 0 is applied across the 
terminals of an inductor. The maximum amplitude 
of the steady-state current in the inductor is 20 A. 

a) What is the frequency of the inductor current? 

b) If the phase angle of the voltage is zero, what is 
the phase angle of the current? 

c) What is the inductive reactance of the inductor? 

d) What is the inductance of the inductor in 
millihenrys? 

e) What is the impedance of the inductor? 

Sections 9.5 and 9.6 

9.15 A 40 H resistor, a 5 mH inductor, and a 1.25/xF 
PSPICE capacitor are connected in series. The series-connected 

elements are energized by a sinusoidal voltage source 
whose voltage is 600 cos (8000^ + 20°)V. 

a) Draw the frequency-domain equivalent circuit. 

b) Reference the current in the direction of the 
voltage rise across the source, and find the pha-
sor current. 

c) Find the steady-state expression for i(t). 

9.16 A 10 O resistor and a 5 /xF capacitor are connected 
PSPICE in parallel. This parallel combination is also in par-

1 allel with the series combination of an 8 O resistor 
and a 300 /xH inductor. These three parallel 
branches are driven by a sinusoidal current source 
whose current is 922 cos(20,000r + 30°) A. 

a) Draw the frequency-domain equivalent circuit. 

b) Reference the voltage across the current source 
as a rise in the direction of the source current, 
and find the phasor voltage. 

c) Find the steady-state expression for v{t). 

9.17 a) Show that, at a given frequency w, the circuits in 
Fig. P9.17(a) and (b) will have the same imped
ance between the terminals a,b if 

2 J 2 

/e, -
a>zLjR2 

R\ + co2L2
2 

U 
Rl^i 

R\ + (o2L\ 

b) Find the values of resistance and inductance that 
when connected in series will have the same 
impedance at 4 krad/s as that of a 5 kH resistor 
connected in parallel with a 1.25 H inductor. 

Figure P9.17 

'a 

Ri \U 
L, 

(a) (b) 

9.18 a) Show that at a given frequency eo, the circuits in 
Fig. P9.17(a) and (b) will have the same imped
ance between the terminals a,b if 

Ro = 
R] + a?L\ 

u = 
R\ + o)2L\ 

2 f 

(Hint: The two circuits will have the same 
impedance if they have the same admittance.) 

b) Find the values of resistance and inductance that 
when connected in parallel will have the same 
impedance at 1 krad/s as an 8 kft resistor con
nected in series with a 4 H inductor. 
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9.19 a) Show that at a given frequency to, the circuits in 
Fig. P9.19(a) and (b) will have the same imped
ance between the terminals a,b if 

/?i = 

Q = 

R2 

1 + o?R\c\ 

1 + arRJCJ 

w2RJC2 

b) Find the values of resistance and capacitance 
that when connected in series will have the same 
impedance at 40 krad/s as that of a 1000 ft resis
tor connected in parallel with a 50 nF capacitor. 

Figure P9.19 

'a 

A', 

c,; 
c, 

(a) 

9.20 a) Show that at a given frequency QJ, the circuits in 
Fig 9.19(a) and (b) will have the same imped
ance between the terminals a,b if 

R2 

C\ 

1 + (D2R]C\ 

orR{C
2 

1 + io2R]C\ 

(Hint: The two circuits will have the same 
impedance if they have the same admittance.) 

b) Find the values of resistance and capacitance that 
when connected in parallel will give the same 
impedance at 50 krad/s as that of a 1 kft resistor 
connected in series with a capacitance of 40 nF. 

9.21 a) Using component values from Appendix H, 
combine at least one resistor, inductor, and 
capacitor in series to create an impedance of 
300 - /400 ft at a frequency of 10,000 rad/s. 

b) At what frequency does the circuit from part (a) 
have an impedance that is purely resistive? 

9.22 a) Using component values from Appendix H, 
combine at least one resistor and one inductor 
in parallel to create an impedance of 
40 + /20 ft at a frequency of 5000 rad/s. (Hint-
Use the results of Problem 9.18.) 

b) Using component values from Appendix H, 
combine at least one resistor and one capacitor 
in parallel to create an impedance of 
40 - /20 ft at a frequency of 5000 rad/s. (Hint: 
Use the result of Problem 9.20.) 

9.23 a) Using component values from Appendix H, find 
a single capacitor or a network of capacitors 
that, when combined in parallel with the RL cir
cuit from Problem 9.22(a), gives an equivalent 
impedance that is purely resistive at a frequency 
of 5000 rad/s. 

b) Using component values from Appendix H, find 
a single inductor or a network of inductors that, 
when combined in parallel with the RC circuit 
from Problem 9.22(b), gives an equivalent 
impedance that is purely resistive at a frequency 
of 5000 rad/s. 

9.24 Three branches having impedances of 3 + /4 O, 
16 - /12 ft, and - / 4 ft, respectively, are connected 
in parallel. What are the equivalent (a) admittance, 
(b) conductance, and (c) susceptance of the parallel 
connection in millisiemens? (d) If the parallel 
branches are excited from a sinusoidal current 
source where i = 8 cos w/ A, what is the maximum 
amplitude of the current in the purely capacitive 
branch? 

9.25 a) For the circuit shown in Fig. P9.25, find the fre-
PSPICE quency (in radians per second) at which the 

impedance Zab is purely resistive, 

b) Find the value of Za b at the frequency of (a). 

Figure P9.25 

160/tH 
a« TVYV^. 

25 nF 

9.26 Find the admittance K,b in the circuit seen in 
Fig. P9.26. Express K(lb in both polar and rectangu
lar form. Give the value of Yab in millisiemens. 

Figure P9.26 
-/12.8 ft 

a* 

>V 
6 ft -{/12 ft 

5f t |/10 ft 

13.6 ft 
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9.27 Find the impedance Zab in the circuit seen in 9.31 Find the steady-state expression for /„(/) in the cir-
Fig. P9.27. Express Za b in both polar and rectangular PSPICE c u i t in Fig. P9.31 if vs = 100 sin 50/ mV. 
form. MULTISIM 

Figure P9.27 

1 Q 
a« 'vw-

Zau 

-/8 n 

40 n 

:10O 

^ -/20 n 

!/20 0 

Figure P9.31 

412 240 mH 
--VW o r w x . 

2.5 mF 

9.32 Find the steady-state expression for v(> in the circuit 
of Fig. P9.32 if ig = 500 cos 2000/ m A. 

9.28 The circuit shown in Fig. P9.28 is operating in the 
sinusoidal steady state. Find the value of co if 

i(} = 40 sin (a)/ + 21.87°) mA. 

vg = 40cos(o>/ - 15°) V. 

Figure P9.28 

600 tt 3.2 H 
^ Y Y Y V 

2.5 /xF 

9.29 The circuit in Fig. P9.29 is operating in the sinu-
PSPICE soidal steady state. Find the steady-state expression 

M"LTISIM f o r V w ( f ) i f u = 40 cos 50,000/ V. 

Figure P9.29 

1/u.F 

30 n vAl.2mU 

Figure P9.32 

<0 
120 a 

12.5/tF 

40 a 
+ 

60 mH iv. 

9.33 The phasor current Ia in the circuit shown in 
PSPICE Fig. P9.33 is 2 /0 ° A . 

lumsiM 
a) Find Ib, Ic, and Vg. 

b) If a) = 800 rad/s, write the expressions for ib(t), 
/c(/), and vM). 

Figure P9.33 

120 n 

"4 
- /40 a -

6 +/3.5 AI © 

9.30 a) For the circuit shown in Fig. P9.30, find the steady-
PSPICE state expression for v() if /„ = 2 cos (16 X 10^/) A. 

MULTISIM 

b) By how many nanoseconds does va lag /',,? 

Figure P9.30 

9.34 The circuit in Fig. P9.34 is operating in the sinusoidal 
PSPICE steady state. Find v0(t) if /,(/) = 3 cos 200/ mA. 

MULTISIM 

Figure P9.34 

6ft r^ 
.©J : 22 n ^ 

i i 

"12.5mFj2mH : 

i • 1 

:5 n 

i 

+ 

vjt) 

• 
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9.35 Find the value of Z in the circuit seen in Fig. P9.35 
if Vg = 100 - /50 V, Ig = 30 + /20 A, and 
\i = 140 + /30 V. 

Figure P9.35 

7, 

20 a 12 a /16 a 
-A/W 

/5 ft Vj 

9.39 The frequency of the sinusoidal voltage source in 
PSPICE the circuit in Fig. P9.39 is adjusted until the current 

"1ULTISIM • • • i ; .«_ 

ia is in phase with vg. 
a) Find the frequency in hertz. 
b) Find the steady-state expression for ig (at the 

frequency found in [a]) if vg = 30 cos wt V. 

9.36 Find Ib and Z in the circuit shown in Fig. P9.36 if 
VJJ = 2 5 / ( T V and Ia = 5 /90° A. 

Figure P9.36 

••© 

!/3 a 

in 
- /2 ft 

-/5 n 

4n 

K 

^ -/3 n 

9.37 Find Zab for the circuit shown in Fig P9.37. 

Figure P9.37 

PSPICE 

MULTISIM 

- / i n 

9.38 a) The frequency of the source voltage in the circuit 
in Fig. P9.38 is adjusted until ig is in phase with 
Vr What is the value of co in radians per second? 

b) If vg = 20 cos a)t V (where a> is the frequency 
found in [a]), what is the steady-state expression 
for vnl 

PSPICE 

MULTISIM 

Figure P9.38 

500 n 
{1? 

\ 500 mH v„ 11 kn 

Figure P9.39 

(50/3) k i l 1.2 kn 
>vw-

200 mH 

9.40 The circuit shown in Fig. P9.40 is operating in the 
PSPICE sinusoidal steady state. The capacitor is adjusted 

' until the current L is in phase with the sinusoidal 
voltage Vg-. 

a) Specify the capacitance in microfarads if 
Vg = 80 cos 5000f V. 

b) Give the steady-state expression for L when C 
has the value found in (a). 

Figure P9.40 

800 mH 

9.41 a) The source voltage in the circuit in Fig. P9.41 is 
Vg - 50 cos 50,000f V. Find the values of L such 
that ig is in phase with vg when the circuit is 
operating in the steady state. 

b) For the values of L found in (a), find the steady-
state expressions for ig. 

Figure P9.41 

5nF 

10 kn 

9.42 The frequency of the sinusoidal current source in 
PSPICE the circuit in Fig. P9.42 is adjusted until va is in 

mTISIM phase with ir 

a) What is the value of a) in radians per second? 

b) If ig = 2.5 cos oit mA (where to is the frequency 
found in [a]), what is the steady-state expression 
for u,? 
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Figure P9.42 

50 nF 

Section 9.7 

9.43 The device in Fig. P9.43 is represented in the fre
quency domain by a Nor ton equivalent. When a 
resistor having an impedance of 5 kft is connected 
across the device, the value of V0 is 5 — /15 V. 
When a capacitor having an impedance of - / 3 kft 
is connected across the device, the value of I() is 
4.5 - / 6 mA. Find the Norton current I N and the 
Nor ton impedance Z N . 

Figure P9.43 

I A f + 

Device 

9.44 The sinusoidal voltage source in the circuit 
in Fig. P9.44 is developing a voltage equal to 
247.49 cos (lOOOf+ 45°) V. 

a) Find the Thevenin voltage with respect to the 
terminals a,b. 

b) Find the Thevenin impedance with respect to 
the terminals a,b. 

c) Draw the Thevenin equivalent. 

Figure P9.44 

< D 

100 mH 

iioon 

JlOOmH 

( 

^ 1 0 A i F 

» o b 

9.45 Use source transformations to find the Thevenin 
equivalent circuit with respect to the terminals a,b 
for the circuit shown in Fig. P9.45. 

Figure P9.45 

240/0° V 

/60 ft 

36 a 

9.46 Use source transformations to find the Nor ton 
equivalent circuit with respect to the terminals a,b 
for the circuit shown in Fie. P9.46. 

Figure P9.46 

/60 ft 

4/0! A f \ 50 O 

30 ft 
- A M / * 

-/100 ft 

9.47 Find the Thevenin equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.47. 

Figure P9.47 

/4 0 

4 ft: 

4 ft: 

l f t 
•AAA-

60/0° V 

x 

4ft 

4ft 

-/4 ft 
- •b 

9.48 Find the Thevenin equivalent circuit with respect to 
the terminals a,b of the circuit shown in Fig. P9.48. 

Figure P9.48 

2504)° V 

20 ft /10 ft 

9.49 Find the Nor ton equivalent with respect to termi
nals a,b in the circuit of Fig. P9.49. 

Figure P9.49 

6½ 

1 ( ) / -45°A( f ) 2 f t | / l f t 

IK 

9.50 Find Z a b in the circuit shown in Fig. P9.50 when the 
circuit is operating at a frequency of 100 krad/s . 

Figure P9.50 

400 nF 5 i4 

600 u,H /'A 130 ft 
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9.51 Find the Thevenin impedance seen looking into the 
terminals a,b of the circuit in Fig. P9.51 if the fre
quency of operation is (25/TT) kHz. 

Figure P9.51 
2.5 nF 

am— 
2.4 kfl 

>s 

39/A 5nF 

:9on 
:3.3 kO 

9.52 Find the Norton equivalent circuit with respect to 
the terminals a,b for the circuit shown in Fig. P9.52 
whenVy = 5/0° V. 

9.53 The circuit shown in Fig. P9.53 is operating at a fre
quency of 10 rad/s. Assume a is real and lies 
between -10 and +10, that is, -10 < a < 10. 

a) Find the value of a so that the Thevenin imped
ance looking into the terminals a,b is purely 
resistive. 

b) What is the value of the Thevenin impedance for 
the a found in (a)? 

c) Can a be adjusted so that the Thevenin 
impedance equals 500 — /500 O? If so, what is 
the value of a? 

d) For what values of a will the Thevenin imped
ance be inductive? 

Figure P9.53 
100/uF 

a«-

»A S1 kfl '«% 

Section 9.8 

9.54 Use the node-voltage method to find the steady-
PSPICE state expression for v()(t) in the circuit in Fig. P9.54 if 

MULTISIM 

% = 20cos(2000r - 36.87°) V, 

Figure P9.54 

1 mH 

9.55 Use the node-voltage method to find \(> in the cir
cuit in Fig. P9.55. 

Figure P9.55 

240/0° V 

/ion /io a 

50 n 

+ 
v., 30 il 

9.56 Use the node-voltage method to find the phasor 
voltage V« in the circuit shown in Fig. P9.56. 

Figure P9.56 

-/4 n 

-/812 
+ V„ 

1211 
-'VW-

5/Q°A( f /4 0 I., \(Z) 2 0 / 9 0°V 

9.57 Use the node voltage method to find the steady-state 
PSPICE expressions for the branch currents /a, ib, and /c in the 

MULTISIM circuit seen in Fig. P9.57 if v& = 50sinl0fVV and 
Vb = 25 cos (106/ + 90°) V. 

Figure P9.57 

i ?"» 
100 nF 

1/ 
K 

lOfxH 

i 

lion 

i 

IO a 

1 ^vb 

vg2 = 50sin(2000r - 16.26°) V. 
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9.58 Use the node-vol tage me thod to find Vf) and I„ in the 
circuit seen in Fig. P9.58. 

Figure P9.58 

Figure P9.63 

f )6+yl3 mA | 5 0 O ( 

9.59 Use the node-voltage me thod to find the phasor 
voltage V„ in the circuit shown in Fig. P9.59. Express 
the voltage in both polar and rectangular form. 

Figure P9.59 

10+/10 

Section 9.9 

9.60 Use the mesh-current me thod to find the steady-
state expression for va(t) in the circuit in Fig. P9.54. 

9.61 Use the mesh-current method to find the steady-
state expression for i(){t) in the circuit in Fig. P9.61 if 

va = 60 cos 40,000/ V, 

vh = 90 sin (40,000* + 180°) V. 

Figure P9.61 

25 fiF 

9.62 Use the mesh-current me thod to find the phasor 
current lg in the circuit in Fig. P9.56. 

9.63 Use the mesh-current me thod to find the branch 
currents I.„ I h , I c , and I d in the circuit shown in 
Fig. P9.63. 

i dJc A 

5 a 
v̂w-

-/1 n / i n 

1U/0°V **J i l n 15/0° V 

9.64 Use the mesh-current me thod to find the steady-
PSPICE s t a t e expression for va in the circuit seen in 

« " » " Fig< p9 . 6 4 if v e q u a | s \ 3 0 C Os 10,000/ V. 

Figure P9.64 

5mH 

*© 
40 a 

30iA 

+ 

100 O 5 »„ 

Sections 9.5-9.9 

9.65 Use the concept of current division to find the 
PSPICE s teady-state expression for i(> in the circuit in 

Mum™ pig. P9.65 if/^ = 125 cos 12,500* m A . 

Figure P9.65 

9.66 Use the concept of voltage division to find the 
PSPICE s teady-state expression for v()(t) in the circuit in 

™LTISIM F i g p 9 6 6 i f v = 7 5 c o s 20,000/ V. 

Figure P9.66 

12 kO 
—VA>-

3.125 nF 
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9.67 The op amp in the circuit seen in Fig. P9.67 is ideal. 
PSPICE Find the steady-state expression for v(>(t) when 

- =2cos l ( /Y V 

Figure P9.67 

too kn 

40 kO 

9.68 The op amp in the circuit in Fig. P9.68 is ideal. 

MULTISIM
 a ) ^n <^ ^ e s t eady-state expression for v0(t). 

b) How large can the amplitude of vg be before the 
amplifier saturates? 

Figure P9.68 

vg = 25 cos 50,000* V 

9.69 The sinusoidal voltage source in the circuit shown in 
PSPICE pig P9.69 is generating the voltage v„ = 4 cos 200r V. 

MULTISIM . . 1 1 , - 1 i 

If the op amp is ideal, what is the steady-state expres
sion for v0(t)1 

Figure P9.69 

10 kO 

20 kQ 20 kH 
-f VW 

<b :250 nF 33 ka 

9.70 The 250 nF capacitor in the circuit seen in Fig. P9.69 
PSPICE is replaced with a variable capacitor. The capacitor 

MULTISIM -s acjjUSTec] Uxitil the output voltage leads the input 
voltage by 135°. 

a) Find the value of C in microfarads. 

b) Write the steady-state expression for v()(t) when 
C has the value found in (a). 

9.71 The operational amplifier in the circuit shown in 
PSPICE Fig. P9.71 is ideal. The voltage of the ideal sinu-

MULTISIM • , 1 . i r » i r\f\* t / 

soida 1 source is vg = 30 cos 10°t V. 
a) How small can Ca be before the steady-state 

output voltage no longer has a pure sinusoidal 
waveform? 

b) For the value of C0 found in (a), write the 
steady-state expression for va. 

Figure P9.71 

10 nF 

loo a 

loo a 

9.72 a) Find the input impedance Zab for the circuit in 
Fig. P9.72. Express Zab as a function of Z and K 
where K = (R2/R\). 

b) If Z is a pure capacitive element, what is the 
capacitance seen looking into the terminals a,b? 

Figure P9.72 

9.73 For the circuit in Fig. P9.73 suppose 

vt = 20 cos(2000f - 36.87°) V 

v2 = 10cos(5000/ + 16.26°) V 

a) What circuit analysis technique must be used to 
find the steady-state expression for vv(t)1 

b) Find the steady-state expression for vC)(t). 
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Figure P9.73 

l m H 
/ Y Y Y V 

100 |xF 

If 
10 a 

9.74 For the circuit in Fig. P9.61, suppose 

v.d = 5 cos 80,000/ V 

vb = -2 .5 cos 320,000/ V. 

b) Find the coefficient of coupling. 

c) Find the energy stored in the magnetically cou
pled coils at t = 1007T /xs and t = 200-7T ^s. 

Figure P9.77 

30 a 

a) What circuit analysis technique must be used to 
find the steady-state expression for j„(r)? 

b) Find the steady-state expression for /0( /)? 

9.78 For the circuit in Fig. P9.78, find the Thevenin 
equivalent with respect to the terminals c,d. 

Section 9.10 

9.75 A series combinat ion of a 300 O resistor and a 
100 m H inductor is connected to a sinusoidal volt
age source by a linear transformer. The source is 
operat ing at a frequency of 1 k rad / s . A t this fre
quency, the internal impedance of the source is 
100 + /13.74 CI. The rms voltage at the terminals of 
the source is 50 V when it is not loaded. The param
eters of the linear t ransformer are R\ = 41.68 O, 
L{ = 180 m H , R2 = 500 ft, L2 = 500 m H , and 
M = 270 m H . 

a) What is the value of the impedance reflected 
into the primary? 

b) What is the value of the impedance seen from 
the terminals of the practical source? 

9.76 The sinusoidal voltage source in the circuit seen in 
PSPICE Fig. P9.76 is operat ing at a frequency of 200 krad/s. 

LTISIM ^ e c o e f f} c j e t l t 0 f coupling is adjusted until the 
peak ampli tude of ix is maximum. 
a) What is the value of kl 

b) What is the peak ampl i tude of /j if 
vg = 560 cos(2 X 1 0 ¾ V ? 

Figure P9.76 

150 n so a loo a 2oo a 
•—vw—i 

12.5 nF 

9.77 a) Find the steady-state expressions for the cur
rents ig and iL in the circuit in Fig. P9.77 when PSPICE 

MU LTISIM 
vg = 70 cos 5000/ V. 

Figure P9.78 

425/0° 

45 a 
-WV-

V (rms) 

9.79 The value of k in the circuit in Fig. P9.79 is adjusted 
so that Z a b is purely resistive when a> = 4 k rad / s . 
Find Zab. 

Figure P9.79 

a»-
20 a 

^VW-

12.5 mH !8mH 

5 a 
-WW 

12.5 /JLF 

Section 9.11 

9.80 At first glance, it may appear from Eq. 9.69 that an 
inductive load could make the reactance seen look
ing into the primary terminals (i.e., Xah) look capac-
itive. Intuitively, we know this is impossible. Show 
that X)b can never be negative if XL is an inductive 
reactance. 

9.81 a) Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.81 on the 
next page is given by the expression 

<ab 
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b) Show that if the polarity terminals of either one 
of the coils is reversed, 

-ab 

Figure P9.81 

a« 

Z, 

/V, 

A'\ Z, 

9.82 a) Show that the impedance seen looking into the 
terminals a,b in the circuit in Fig. P9.82 is given 
by the expression 

Zab -
ZL 

1 + 
N-, 

b) Show that if the polarity terminal of either one 
of the coils is reversed that 

'ab 
1 - ^ 

Figure P9.82 

/V, 

Zab" 

b * 

AT,: 

infinity. The amplitude and phase angle of the 
source voltage are held constant as Rx varies. 

Figure P9.84 

>\ = V,n c o s U)' 

^wv 

9.83 Find the impedance Z a b in the circuit in Fig. P9.83 if 
ZL = 8 0 / 6 0 ' H . 

R, 

9.85 The parameters in the circuit shown in Fig. 9.53 are 
/?, = 0.1 il,o)Lx = 0.8 ft,fl2 = 24 il,(oL2 = 32 ft, 
and VL = 240 + / 0 V. 

a) Calculate the phasor voltage Vs. 

b) Connect a capacitor in parallel with the inductor, 
hold VL constant, and adjust the capacitor until 
the magnitude of I is a minimum. What is the 
capacitive reactance? What is the value of Vv? 

c) Find the value of the capacitive reactance that 
keeps the magnitude of I as small as possible 
and that at the same time makes 

lYvl = |V/J = 240 V. 

9.86 a) For the circuit shown in Fig. P9.86, compute Vv 

and V/. 

b) Construct a phasor diagram showing the rela
tionship between Vs, V/, and the load voltage of 
2 4 0 / 0 ° V. 

c) Repeat parts (a) and (b), given that the load 
voltage remains constant at 240 / 0 ° V, when a 
capacitive reactance of - 5 Cl is connected 
across the load terminals. 

Figure P9.86 

+ Vj_ 

+ 0.1 Q~ /0.8 Q + 

v , 240/0° v i s a 

Figure P9.83 

a« 

1/6 n -pft;f; 

b « -

8:1 

Ideal 

• 10:1 

Ideal 

Z 

Section 9.12 

9.84 Show by using a phasor diagram what happens to 
PSPICE the magnitude and phase angle of the voltage v„ in 

MULTISIM t h e c i r c u i t i n F i g p 9 8 4 a s R^ j s y a r i c d f r o m z e r o t Q 

Sections 9.1-9.12 

9.87 You may have the opportunity as an engineering 
graduate to serve as an expert witness in lawsuits 
involving either personal injury or property damage. 
As an example of the type of problem on which you 
may be asked to give an opinion, consider the follow
ing event. At the end of a day of fieldwork, a farmer 
returns to his farmstead, checks his hog confinement 
building, and finds to his dismay that the hogs are 
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dead. The problem is traced to a blown fuse that 
caused a 240 V fan motor to stop. The loss of ventila
tion led to the suffocation of the livestock. The inter
rupted fuse is located in the main switch that 
connects the farmstead to the electrical service. 
Before the insurance company settles the claim, it 
wants to know if the electric circuit supplying the 
farmstead functioned properly. The lawyers for the 
insurance company are puzzled because the farmer's 
wife, who was in the house on the day of the accident 
convalescing from minor surgery, was able to watch 
TV during the afternoon. Furthermore, when she 
went to the kitchen to start preparing the evening 
meal, the electric clock indicated the correct time. The 
lawyers have hired you to explain (1) why the electric 
clock in the kitchen and the television set in the living 
room continued to operate after the fuse in the main 
switch blew and (2) why the second fuse in the main 
switch didn't blow after the fan motor stalled. After 
ascertaining the loads on the three-wire distribu
tion circuit prior to the interruption of fuse A, you 
are able to construct the circuit model shown in 
Fig. P9.87. The impedances of the line conductors 
and the neutral conductor are assumed negligible. 

a) Calculate the branch currents I t , I2, I3, I4, I5, 
and I6 prior to the interruption of fuse A. 

b) Calculate the branch currents after the interrup
tion of fuse A. Assume the stalled fan motor 
behaves as a short circuit. 

c) Explain why the clock and television set were 
not affected by the momentary short circuit that 
interrupted fuse A. 

d) Assume the fan motor is equipped with a ther
mal cutout designed to interrupt the motor cir
cuit if the motor current becomes excessive. 
Would you expect the thermal cutout to oper
ate? Explain. 

e) Explain why fuse B is not interrupted when the 
fan motor stalls. 

Figure P9.87 
Fuse A (100 A) 

120. 
V 'FQ 

Momentary ' 
short 
circuit X 
interrupts 
fuse A 

120 
V FQ 

-*\fi-

9.88 a) Calculate the branch currents I]-I<s in the cir-
pRAcncAL cuit in Fie. 9.58. 

PERSPECTIVE 0 

b) Find the primary current Ip. 

9.89 Suppose the 40 ft resistance in the distribution cir-
pRAcncAL cuit in Fie. 9.58 is replaced bv a 20 ft resistance. 

PERSPECTIVE r 

a) Recalculate the branch current in the 2 (1 
resistor, I2. 

b) Recalculate the primary current, Ip. 

c) On the basis of your answers, is it desirable 
to have the resistance of the two 120 V loads 
be equal? 

9.90 A residential wiring circuit is shown in Fig. P9.90. In 
PRACTICAL this model, the resistor Ri, is used to model a 250 V 

PERSPECTIVE 

appliance (such as an electric range), and the resis
tors R] and R2 are used to model 125 V appliances 
(such as a lamp, toaster, and iron). The branches 
carrying ^ and I2 are modeling what electricians 
refer to as the hot conductors in the circuit, and the 
branch carrying \„ is modeling the neutral conduc
tor. Our purpose in analyzing the circuit is to show 
the importance of the neutral conductor in the sat
isfactory operation of the circuit. You are to choose 
the method for analyzing the circuit. 
a) Show that ln is zero if R^ = R2. 

b) Show that V! = V2 if Ri = R2. 

c) Open the neutral branch and calculate Vi and V2 

if R} = 40 ft, R2 = 400 ft, and R3 = 8 ft. 

d) Close the neutral branch and repeat (c). 

e) On the basis of your calculations, explain why 
the neutral conductor is never fused in such a 
manner that it could open while the hot conduc
tors are energized. 

Figure P9.90 
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/0.03 (1 
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— L + 
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—-WV 1 - ^ 0 ^ •-

9.91 a) Find the primary current Ip for (c) and (d) in 
P™ nw„r PRACTICAL Problem 9.90. 
K m m o a n PERSPECTIVE 

Fuse B( 100 A) 
b) Do your answers make sense in terms of known 

circuit behavior? 
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^ C H A P T E R O B J E C T I V E S 

1 Understand the following ac power concepts, 
their relationships to one another, and how to 
calculate them in a circuit: 

Instantaneous power; 

Average (real) power; 

Reactive power; 

Complex power; and 

Power factor. 

Understand the condition for maximum real 
power delivered to a load in an ac circuit and be 
able to calculate the load impedance required to 
deliver maximum real power to the load. 

Be able to calculate all forms of ac power in 
ac circuits with linear transformers and in 
ac circuits with ideal transformers. 

360 

Sinusoidal Steady-State 
Power Calculations 
Power engineering has evolved into one of the important sub-

disciplines within electrical engineering. The range of problems 

dealing with the delivery of energy to do work is considerable, 

from determining the power rating within which an appliance 

operates safely and efficiently, to designing the vast array of gen

erators, transformers, and wires that provide electric energy to 

household and industrial consumers. 

Nearly all electric energy is supplied in the form of sinusoidal 

voltages and currents. Thus, after our Chapter 9 discussion of 

sinusoidal circuits, this is the logical place to consider sinusoidal 

steady-state power calculations. We are primarily interested in 

the average power delivered to or supplied from a pair of termi

nals as a result of sinusoidal voltages and currents. Other meas

ures, such as reactive power, complex power, and apparent 

power, will also be presented. The concept of the rms value of a 

sinusoid, briefly introduced in Chapter 9, is particularly pertinent 

to power calculations. 

We begin and end this chapter with two concepts that should 

be very familiar to you from previous chapters: the basic equa

tion for power (Section 10.1) and maximum power transfer 

(Section 10.6). In between, we discuss the general processes for 

analyzing power, which will be familiar from your studies in 

Chapters 1 and 4, although some additional mathematical tech

niques are required here to deal with sinusoidal, rather than dc, 

signals. 
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Practical Perspective 
Heating Appliances 

In Chapter 9 we calculated the steady-state voltages and cur
rents in electric circuits driven by sinusoidal sources. In this 
chapter we consider power in such circuits. The techniques we 
develop are useful for analyzing many of the electrical devices 
we encounter daily, because sinusoidal sources are the pre
dominant means of providing electric power in our homes, 
schools, and businesses. 

One common class of electrical devices is heaters, which 
transform electric energy into thermal energy. Examples include 
electric stoves and ovens, toasters, irons, electric water 
heaters, space heaters, electric clothes dryers, and hair dryers. 
One of the critical design concerns in a heater is power con
sumption. Power is important for two reasons: The more power 

a heater uses, the more it costs to operate, and the more heat 
i t can produce. 

Many electric heaters have different power settings corre
sponding to the amount of heat the device supplies. You may 
wonder just how these settings result in different amounts of 
heat output. The Practical Perspective example at the end of 
this chapter examines the design of a handheld hair dryer 
with three operating settings (see the accompanying figure). 

You will see how the design provides for three different 
power levels, which correspond to three different levels of 
heat output. 

Heater tube 

Fan and motor 

Hot air 

361 
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10.1 Instantaneous Power 
l 

—*" 
+ 
V 

Figure 10.1 A The black box representation of a circuit 
used for calculating power. 

We begin our investigation of sinusoidal power calculations with the 
familiar circuit in Fig. 10.1. Here, v and /' are steady-state sinusoidal signals. 
Using the passive sign convention, the power at any instant of time is 

VI. (10.1) 

This is instantaneous power. Remember that if the reference direction of 
the current is in the direction of the voltage rise, Eq. 10.1 must be written 
with a minus sign. Instantaneous power is measured in watts when the 
voltage is in volts and the current is in amperes. First, we write expressions 
for v and i; 

v = V„, cos (cot + 0j,), 

i — I„, cos {ait -I- 0,), 

(10.2) 

(10.3) 

where 0,, is the voltage phase angle, and 0-, is the current phase angle. 
We are operating in the sinusoidal steady state, so we may choose any 

convenient reference for zero time. Engineers designing systems that 
transfer large blocks of power have found it convenient to use a zero time 
corresponding to the instant the current is passing through a positive max
imum. This reference system requires a shift of both the voltage and cur
rent by 0,-. Thus Eqs. 10.2 and 10.3 become 

v = Vm cos (ait + 0,, - 0,), 

i = 1,,, cos cot. 

(10.4) 

(10.5) 

When we substitute Eqs. 10.4 and 10.5 into Eq. 10.1, the expression for the 
instantaneous power becomes 

p = VmIm cos {cot + 0V - 0j) cos cot. (10.6) 

We could use Eq. 10.6 directly to find the average power; however, by sim
ply applying a couple of trigonometric identities, we can put Eq. 10.6 into 
a much more informative form. 

We begin with the trigonometric identity1 

1 
cos a cos /3 = — cos (a /3) + - c o s ( a + /3) 

to expand Eq. 10.6; letting a = cot + 0,, — 0, and fS = cot gives 

p = —— cos (6V - 0,) + —r— cos {loot + 0„ - 0,-). (10.7) 

Now use the trigonometric identity 

cos (a + /3) = cos a cos /3 — sin a sin (3 

See entry 8 in Appendix F. 



to expand the second term on the right-hand side of Eq. 10.7, which gives 

y 171*111 /n n \ , r 111*111 / / , ., \ * 

p = —— cos (6V - 6-) H — cos (0,, - 0,) cos 2(ot 

V I 
- - ^ - sin (0V - 6j) sin 2u>t. (10.8) 

Figure 10.2 depicts a representative relationship among v, i, and p, 
based on the assumptions 0.,, - 60° and 6-, = 0°. You can see that the fre
quency of the instantaneous power is twice the frequency of the voltage or 
current. This observation also follows directly from the second two terms 
on the right-hand side of Eq. 10.8. Therefore, the instantaneous power 
goes through two complete cycles for every cycle of either the voltage or 
the current. Also note that the instantaneous power may be negative for a 
portion of each cycle, even if the network between the terminals is passive. 
In a completely passive network, negative power implies that energy 
stored in the inductors or capacitors is now being extracted. The fact that 
the instantaneous power varies with time in the sinusoidal steady-state 
operation of a circuit explains why some motor-driven appliances (such as 
refrigerators) experience vibration and require resilient motor mountings 
to prevent excessive vibration. 

We are now ready to use Eq. 10.8 to find the average power at the ter
minals of the circuit represented by Fig. 10.1 and, at the same time, intro
duce the concept of reactive power. 

Figure 10.2 • Instantaneous power, voltage, and current versus vt for 
steady-state sinusoidal operation. 

10.2 Average and Reactive Power 
We begin by noting that Eq. 10.8 has three terms, which we can rewrite as 
follows: 

p = P + Pcos2wt - Qs'm2a)t, (10.9) 
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where 

Average (real) power • P = 
V I 

cos (0V - et), (10.10) 

Reactive power • Q = 
V I 

•s info -0 , - ) - (10.11) 

P is called the average power, and Q is called the reactive power. Average 
power is sometimes called real power, because it describes the power in a 
circuit that is transformed from electric to nonelectric energy. Although 
the two terms are interchangeable, we primarily use the term average 
power in this text. 

It is easy to see why P is called the average power. The average power 
associated with sinusoidal signals is the average of the instantaneous 
power over one period, or, in equation form, 

>-i 
h+T 

pdt. (10.12) 

where T is the period of the sinusoidal function. The limits on Eq. 10.12 
imply that we can initiate the integration process at any convenient time t{) 

but that we must terminate the integration exactly one period later. (We 
could integrate over nT periods, where n is an integer, provided we multi
ply the integral by \fnT.) 

We could find the average power by substituting Eq. 10.9 directly into 
Eq. 10.12 and then performing the integration. But note that the average 
value of/? is given by the first term on the right-hand side of Eq. 10.9, 
because the integral of both cos 2cot and sin 2eot over one period is zero. 
Thus the average power is given in Eq. 10.10. 

We can develop a better understanding of all the terms in Eq. 10.9 and 
the relationships among them by examining the power in circuits that are 
purely resistive, purely inductive, or purely capacitive. 

0.01 0.015 
Time (s) 

0.025 

Figure 10.3 • Instantaneous real power and average 
power for a purely resistive circuit. 

Power for Purely Resistive Circuits 

If the circuit between the terminals is purely resistive, the voltage and cur
rent are in phase, which means that $v = 0,. Equation 10.9 then reduces to 

p = P + P cos 2oot. (10.13) 

The instantaneous power expressed in Eq. 10.13 is referred to as the 
instantaneous real power. Figure 10.3 shows a graph of Eq. 10.13 for a 
representative purely resistive circuit, assuming co = 377 rad/s. By defini
tion, the average power, P, is the average of/; over one period. Thus it is 
easy to see just by looking at the graph that P = 1 for this circuit. Note 
from Eq. 10.13 that the instantaneous real power can never be negative, 
which is also shown in Fig. 10.3. In other words, power cannot be extracted 
from a purely resistive network. Rather, all the electric energy is dissi
pated in the form of thermal energy. 

Power for Purely Inductive Circuits 
If the circuit between the terminals is purely inductive, the voltage and 
current are out of phase by precisely 90°. In particular, the current lags the 
voltage by 90° (that is, 6-, = $v - 9 0 ' ) ; therefore 6,, - 6-, = +90°. The 
expression for the instantaneous power then reduces to 

-Q sin 2(ot. (10.14) 
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In a purely inductive circuit, the average power is zero. Therefore no 
transformation of energy from electric to nonelectric form takes place. 
The instantaneous power at the terminals in a purely inductive circuit is 
continually exchanged between the circuit and the source driving the cir
cuit, at a frequency of 2co. In other words, when p is positive, energy is 
being stored in the magnetic fields associated with the inductive elements, 
and when p is negative, energy is being extracted from the magnetic fields. 

A measure of the power associated with purely inductive circuits is 
the reactive power Q.The name reactive power comes from the character
ization of an inductor as a reactive element; its impedance is purely reac
tive. Note that average power P and reactive power Q carry the same 
dimension.To distinguish between average and reactive power, we use the 
units watt (W) for average power and var (volt-amp reactive, or VAR) for 
reactive power. Figure 10.4 plots the instantaneous power for a represen
tative purely inductive circuit, assuming u> = 311 rad/s and Q = 1 VAR. 

Power for Purely Capacitive Circuits 

If the circuit between the terminals is purely capacitive, the voltage and 
current are precisely 90° out of phase. In this case, the current leads the 
voltage by 90° (that is, Bt = 6V + 90°); thus, 0V - 0,- = -90°. The expres
sion for the instantaneous power then becomes 

p = —Qsm2(ot. (10.15) 

Again, the average power is zero, so there is no transformation of energy 
from electric to nonelectric form. In a purely capacitive circuit, the power 
is continually exchanged between the source driving the circuit and the 
electric field associated with the capacitive elements. Figure 10.5 plots the 
instantaneous power for a representative purely capacitive circuit, assum
ing (o = 377 rad/s and Q = - 1 VAR. 

Note that the decision to use the current as the reference leads to Q 
being positive for inductors (that is, $v — 0,: = 90° and negative for capac
itors (that is, 6V - 0, = -90°. Power engineers recognize this difference in 
the algebraic sign of Q by saying that inductors demand (or absorb) mag
netizing vars, and capacitors furnish (or deliver) magnetizing vars.We say 
more about this convention later. 

o 
Q, Q (VAR) 

§ 0 0.005 0.01 0.015 0.02 0.025 
| Time (s) 

Figure 10.4 • Instantaneous real power, average 
power, and reactive power for a purely inductive circuit. 

a 0 0.005 0.01 0.015 0.02 0.025 
Time (s) 

Figure 10.5 • Instantaneous real power and average 
power for a purely capacitive circuit. 

The Power Factor 

The angle 6V - 0, plays a role in the computation of both average and 
reactive power and is referred to as the power factor angle. The cosine of 
this angle is called the power factor, abbreviated pf, and the sine of this 
angle is called the reactive factor, abbreviated rf. Thus 

pf = cos (0,, - 0,), (10.16) -4 Power factor 

rf = sin (0,, - 0/). (10.17) 

Knowing the value of the power factor does not tell you the value of the 
power factor angle, because cos (0,, - 0() = cos (0, - 0„). To completely 
describe this angle, we use the descriptive phrases lagging power factor and 
leading power factor. Lagging power factor implies that current lags volt
age—hence an inductive load. Leading power factor implies that current 
leads voltage—hence a capacitive load. Both the power factor and the reac
tive factor are convenient quantities to use in describing electrical loads. 

Example 10.1 illustrates the interpretation of P and Q on the basis of 
a numerical calculation. 
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Example 10.1 Calculating Average and Reactive Power 

a) Calculate the average power and the reactive 
power at the terminals of the network shown in 
Fig. 10.6 if 

v = 100 cos (tat + 15") V, 

i = 4sin(W - 15°) A. 

b) State whether the network inside the box is 
absorbing or delivering average power. 

c) State whether the network inside the box is 
absorbing or supplying magnetizing vars. 

'-*• 
+ 
V 

Figure 10.6 A A pair of terminals used for calculating power. 

Solution 

a) Because i is expressed in terms of the sine func
tion, the first step in the calculation for P and Q 
is to rewrite i as a cosine function: 

i = 4cos(o>f - 105°) A. 

We now calculate P and Q directly from 
Eqs. 10.10 and 10.11. Thus 

P = -(100)(4) cos [15 - (-105)] = -100 W, 

Q = -100(4) sin [15 - (-105)] = 173.21 VAR. 

b) Note from Fig. 10.6 the use of the passive sign 
convention. Because of this, the negative value 
of -100 W means that the network inside the 
box is delivering average power to the terminals. 

c) The passive sign convention means that, because 
Q is positive, the network inside the box is 
absorbing magnetizing vars at its terminals. 

^ A S S E S S M E N T PR0BLE 

Objective 1—Understand ac power concepts, their relationships to one another, and how to calcuate them in a circuit 

10.1 For each of the following sets of voltage and 
current, calculate the real and reactive power 
in the line between networks A and B in the 
circuit shown. In each case, state whether the 
power flow is from A to B or vice versa. Also 
state whether magnetizing vars are being trans
ferred from A to B or vice versa. 

a) v = 100 cos (at - 45°) V; 
i = 20cos(wr + 15°) A. 

b) v = 100 cos (cot - 45°) V; 
i = 20cos(&rf + 165°) A. 

c) v = 100 cos (at - 45°) V; 
i = 20 cos (w* - 105°) A. 

d) V = 100 cos at V; 
i = 20 cos (art + 120°) A. 

A 

i 

—^-
+ 
V 

B 

Answer: ( a ) P 
Q 

500 W 
-866.03 VAR 

(b) P = -866.03 W 
Q = 500 VAR 

(c) P = 500 W 
Q = 866.03 VAR 

(d) P = -500 W 
Q = -866.03 VAR 

A to B), 
B to A); 

B to A), 
A to B); 

A to B), 
A t o B ) ; 

B t o A ) , 
B t o A ) . 

10.2 Compute the power factor and the reactive fac
tor for the network inside the box in Fig. 10.6, 
whose voltage and current are described in 
Example 10.1. 

Hint: Use -i to calculate the power and reac
tive factors. 

Answer: pf = 0.5 leading; rf = -0.866. 

NOTE: Also try Chapter Problem 10.1, 
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Appliance Ratings 

Average power is used to quantify the power needs of household appliances. 
The average power rating and estimated annual kilowatt-hour consumption 
of some common appliances are presented in Table 10.1. The energy con
sumption values are obtained by estimating the number of hours annually 
that the appliances are in use. For example, a coffeemaker has an estimated 
annual consumption of 140 kWh and an average power consumption during 
operation of 1.2 kW. Therefore a coffeemaker is assumed to be in operation 
140/1.2, or 116.67, hours per year, or approximately 19 minutes per day. 

Example 10.2 uses Table 10.1 to determine whether four common 
appliances can all be in operation without exceeding the current-carrying 
capacity of the household. 

| Making Power 

The branch circuit supplying the 

Calculations Involving Household Appliances 

: outlets in a typical Solution 
home kitchen is wired with #12 conductor and is 
protected by either a 20 A fuse or a 20 A circuit 
breaker. Assume that the following 120 V appli
ances are in operation at the same time: a cof-
feemaker, egg cooker, frying pan, and toaster. Will 
the circuit be interrupted by the protective device? 

From Table 10.1, the total average power demanded 

by the four appliances is 
P = 1200 + 516 + 1196 4- 146 

The total current in the pro 

4058 
e f r " 120 ' 

= 4058 W. 

ective device is 

33.82 A. 

Yes, the protective device will interrupt the circuit. 

TABLE 10.1 Annual Energy Requirements of Electric Household Appliances 

Appliance 

Food preparation 

Coffeemaker 

Dishwasher 

Egg cooker 

Frying pan 

Mixer 

Oven, microwave (only) 

Range, with oven 

Toaster 

Laundry 

Clothes dryer 

Washing machine, automatic 

Water heater 

Quick recovery type 

Comfort conditioning 

Air conditioner (room) 

Dehumidifier 

Fan (circulating) 

Heater (portable) 

Average 
Wattage 

1,200 

1,201 

516 

1,196 

127 

1,450 

12,200 

1,146 

4,856 

512 

2,475 

4,474 

860 

257 

88 

1,322 

NOTE: Assess your understanding of this 

Est. kWh 
Consumed 
Annually3 

140 

165 

14 

100 

2 

190 

596 

39 

993 

103 

4,219 

4,811 

860b 

377 

43 

176 

Appliance 

Health and beauty 

Hair dryer 

Shaver 

Sunlamp 

Home entertainment 

Radio 

Television, color, tube type 

Solid-state type 

Housewares 

Clock 

Vacuum cleaner 

a) Based on normal usage. When using 
such factors as the size of the specific 

Average 
Wattage 

600 

15 

279 

71 

240 

145 

2 

630 

hese figure 
appliance, I 

Est. kWh 
Consumed 
Annually3 

25 

0.5 

16 

86 

528 

320 

17 

46 

; for projections. 
he geographical 

area of use, and individual usage should be taken into considera
tion. Note that the wattages are not additive, since all units are 
normally not in operation at the same time. 

b) Based on 1000 hours of operation pe r year. This "igure will vary 
widely depending on the area and the specific size of the unit. See 
EEI-Pub #76-2, "Air Conditioning Usage Study," for an estimate 
for your location. 

Source: Edison Electric Institute. 

material by trying Chapter Problem J0.2. 
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K, „cos (tot + 6r) | R 

Figure 10.7 • A sinusoidal voltage applied to the 
terminals of a resistor. 

10.3 The rms Value and Power 
Calculations 

In introducing the rms value of a sinusoidal voltage (or current) in 
Section 9.1, we mentioned that it would play an important role in power 
calculations. We can now discuss this role. 

Assume that a sinusoidal voltage is applied to the terminals of a resis
tor, as shown in Fig. 10.7, and that we want to determine the average 
power delivered to the resistor. From Eq. 10.12, 

P = TL -R dt 

h+T 
Vl1cos2(cot + $v)dt (10.18) 

Comparing Eq. 10.18 with Eq. 9.5 reveals that the average power deliv
ered to R is simply the rms value of the voltage squared divided by R, or 

R 
(10.19) 

If the resistor is carrying a sinusoidal current, say, I,,, cos (cot + <£,-), the 
average power delivered to the resistor is 

P = IlnJt. (10.20) 

The rms value is also referred to as the effective value of the sinu
soidal voltage (or current). The rms value has an interesting property: 
Given an equivalent resistive load, R, and an equivalent time period, T, 
the rms value of a sinusoidal source delivers the same energy to R as does 
a dc source of the same value. For example, a dc source of 100 V delivers 
the same energy in T seconds that a sinusoidal source of 100 Vnns delivers, 
assuming equivalent load resistances (see Problem 10.12). Figure 10.8 
demonstrates this equivalence. Energywise, the effect of the two sources 
is identical. This has led to the term effective value being used inter
changeably with rms value. 

The average power given by Eq. 10.10 and the reactive power given 
by Eq. 10.11 can be written in terms of effective values: 

V I 
P = cos (0V - 0,-) 

V I 
= —•=—7= cos (0,, - Bs) 

V2 V2 K ' 
= K-ff'eff cos (fl„ - 0 , . ) ; (10.21) 

lOOV(rms) R Vs= 100V(dc) R 

Figure 10.8 A The effective value of v, (100 V rms) delivers the 
same power to R as the dc voltage Vs (100 V dc). 
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and, by similar manipulation, 

Q = VcffIcffsm($v-ed. (10.22) 

The effective value of the sinusoidal signal in power calculations is so 
widely used that voltage and current ratings of circuits and equipment 
involved in power utilization are given in terms of rms values. For exam
ple, the voltage rating of residential electric wiring is often 240 V/120 V 
service. These voltage levels are the rms values of the sinusoidal voltages 
supplied by the utility company, which provides power at two voltage lev
els to accommodate low-voltage appliances (such as televisions) and 
higher voltage appliances (such as electric ranges). Appliances such as 
electric lamps, irons, and toasters all carry rms ratings on their nameplates. 
For example, a 120 V, 100 W lamp has a resistance of 1202/100, or 144 ft, 
and draws an rms current of 120/144, or 0.833 A. The peak value of the 
lamp current is 0.833 V2~, or 1.18 A. 

The phasor transform of a sinusoidal function may also be expressed 
in terms of the rms value. The magnitude of the rms phasor is equal to the 
rms value of the sinusoidal function. If a phasor is based on the rms value, 
we indicate this by either an explicit statement, a parenthetical "rms" adja
cent to the phasor quantity, or the subscript "eff," as in Eq. 10.21. 

In Example 10.3, we illustrate the use of rms values for calculating power. 

Example 10.3 Determining Average Power Delivered to a Resistor by Sinusoidal Voltage 

a) A sinusoidal voltage having a maximum ampli
tude of 625 V is applied to the terminals of a 
50 fl resistor. Find the average power delivered 
to the resistor. 

b) Repeat (a) by first finding the current in the 
resistor. 

Solution 

a) The rms value of the sinusoidal voltage is 
625/V2, or approximately 441.94 V. From 

Eq. 10.19, the average power delivered to the 
50 Cl resistor is 

P = 
(441.94)2 

50 
= 3906.25 W. 

b) The maximum amplitude of the current in the 
resistor is 625/50, or 12.5 A. The rms value of 
the current is 12.5/V2, or approximately 
8.84 A. Hence the average power delivered to 
the resistor is 

P = (8.84)250 = 3906.25 W. 

i /ASSESSMENT PROBLEM 

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them in a drcuit 

10.3 The periodic triangular current in Example 9.4, 
repeated here, has a peak value of 180 mA. 
Find the average power that this current deliv
ers to a 5 kQ, resistor. 

Answer: 54 W. 

NOTE: Also try Chapter Problem 10.15. 
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10.4 Complex Power 

Complex power • 

TABLE 10.2 Three Power Quantities and 
Their Units 

Quantity 

Complex power 

Average power 

Reactive power 

Units 

volt-amps 

watts 

var 

|.V| - apparent power 

reactive power 

P - average power 

Figure 10.9 • A power triangle. 

Before proceeding to the various methods of calculating real and reactive 
power in circuits operating in the sinusoidal steady state, we need to intro
duce and define complex power. Complex power is the complex sum of 
real power and reactive power, or 

S = P + jQ. (10.23) 

As you will see, we can compute the complex power directly from the volt
age and current phasors for a circuit. Equation 10.23 can then be used to 
compute the average power and the reactive power, because P = !R {S} 
and<2 = 3{S} . 

Dimensionally, complex power is the same as average or reactive 
power. However, to distinguish complex power from either average or 
reactive power, we use the units volt-amps (VA).Thus we use volt-amps for 
complex power, watts for average power, and vars for reactive power, as 
summarized in Table 10.2. 

Another advantage of using complex power is the geometric interpre
tation it provides. When working with Eq. 10.23, think of P, Q, and \S\ as 
the sides of a right triangle, as shown in Fig. 10.9. It is easy to show that the 
angle 6 in the power triangle is the power factor angle 0I} — 0,. For the 
right triangle shown in Fig. 10.9, 

Q 
tan0 = | . (10.24) 

But from the definitions of P and Q (Eqs. [10.10] and [10.11 J, respectively), 

Q _ (VmIJ2)sm(dv-dd 

P (Vmlm/2)cos(0v-ed 

tan (0V - 0,-). (10.25) 

Therefore, 0 = 0V - 0,-. The geometric relations for a right triangle mean 
also that the four power triangle dimensions (the three sides and the 
power factor angle) can be determined if any two of the four are known. 

The magnitude of complex power is referred to as apparent power. 
Specifically, 

Apparent power • \S\ = 2 P2 + Q2 (10.26) 

Apparent power, like complex power, is measured in volt-amps. The 
apparent power, or volt-amp, requirement of a device designed to convert 
electric energy to a nonelectric form is more important than the average 
power requirement. Although the average power represents the useful 
output of the energy-converting device, the apparent power represents the 
volt-amp capacity required to supply the average power. As you can see 
from the power triangle in Fig. 10.9, unless the power factor angle is 0° 
(that is, the device is purely resistive, pf = 1, and Q = 0), the volt-amp 
capacity required by the device is larger than the average power used by 
the device. As we will see in Example 10.6, it makes sense to operate 
devices at a power factor close to 1. 

Many useful appliances (such as refrigerators, fans, air conditioners, 
fluorescent lighting fixtures, and washing machines) and most industrial 
loads operate at a lagging power factor. The power factor of these loads 
sometimes is corrected either by adding a capacitor to the device itself or 
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by connecting capacitors across the line feeding the load; the latter 
method is often used for large industrial loads. Many of the Chapter 
Problems give you a chance to make some calculations that correct a lag
ging power factor load and improve the operation of a circuit. 

Example 10.4 uses a power triangle to calculate several quantities 
associated with an electrical load. 

Example 10.4 Calculating Complex Power 

An electrical load operates at 240 V rms. The load 
absorbs an average power of 8 kW at a lagging 
power factor of 0.8. 

a) Calculate the complex power of the load. 

b) Calculate the impedance of the load. 

Solution 

a) The power factor is described as lagging, so we 
know that the load is inductive and that the 
algebraic sign of the reactive power is positive. 
From the power triangle shown in Fig. 10.10, 

P = \S\ cos 0, 

Q = \S\ sin 0. 

cos 0 - 0.8, sin 0 = 0.6. Now, because 
Therefore 

Q = 

SkW 

cos0 

10 sine 

0.8 

6 kVAR, 

= lOkVA, 

and 

5 = 8 + /6 kVA. 

b) From the computation of the complex power of 
the load, we see that P = 8 kW. Using Eq. 10.21, 

= K>ff4ffcos(0t; 

= (240)/eff(0.8) 

= 8000 W. 

0i) 

Solving for /efr, 

/cff = 41.67 A. 

We already know the angle of the load imped
ance, because it is the power factor angle: 

0 = cos-1(0-8) = 36.87°. 

We also know that 0 is positive because the 
power factor is lagging, indicating an inductive 
load. We compute the magnitude of the load 
impedance from its definition as the ratio of the 
magnitude of the voltage to the magnitude of 
the current: 

\Z\ = 
lK-a-1 
l/effl 

240 
41.67 

5.76. 

Hence, 

Z = 5.76 /36.87° D, = 4.608 + y'3.456 O. 

Figure 10.10 • A power triangle. 

10.5 Power Calculations 
We are now ready to develop additional equations that can be used to cal
culate real, reactive, and complex power. We begin by combining Eqs. 10.10, 
10.11, and 10.23 to get 

VI VI 
S = ~Y~cos (0V - 6,) + j—^—sm(ev - $i) 

V I 
r in1 m [cos ( 0 , , - 0i) + ; sin (0,, - 0,)] 

i gge f f l r t t o \vmIm/{6n - 9d. (10.27) 
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If we use the effective values of the sinusoidal voltage and current, 
Eq. 10.27 becomes 

S = K f f W ( 0 , ~ 0/). (10.28) 

Equations 10.27 and 10.28 are important relationships in power calcula
tions because they show that if the phasor current and voltage are known at 
a pair of terminals, the complex power associated with that pair of terminals 
is either one half the product of the voltage and the conjugate of the cur
rent, or the product of the rms phasor voltage and the conjugate of the rms 
phasor current. We can show this for the rms phasor voltage and current in 
Fig. 10.11 as follows: 

= Veaeie>-Iciie-!9> 

Complex powers = \cfil*^ (10.29) 

Note that left = h&eJ$i follows from Euler's identity and the trigonomet
ric identities cos(—0) = cos(fl) and s in( -0) = — sin (#): 

I^e* - /cff cos (Si) + //effsin (-0,-) 

= /eff cos (0/) - jlei{ sin (6i) 

= Ifo 

The same derivation technique could be applied to Eq. 10.27 to yield 

S = -VI*. (10.30) 

Both Eqs. 10.29 and 10.30 are based on the passive sign convention. If the 
current reference is in the direction of the voltage rise across the termi
nals, we insert a minus sign on the right-hand side of each equation. 

To illustrate the use of Eq. 10.30 in a power calculation, let's use the 
same circuit that we used in Example 10.1. Expressed in terms of the pha
sor representation of the terminal voltage and current, 

V = 100 /15° V, 

I = 4 / - 1 0 5 ° A. 

Therefore 

S = -(100 /15°)(4 / + 105°) = 200 /120° 

•ell 
• * -

4-

Vt.ff 

. 

Circuit 

Figure 10.11 • The phasor voltage and current associ
ated with a pair of terminals. 

= - 1 0 0 + /173.21 VA. 
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Once we calculate the complex power, we can read off both the real and 
reactive powers, because S = P + jQ. Thus 

P = -100 W, 

Q = 173.21 VAR. 

The interpretations of the algebraic signs on P and Q are identical to those 
given in the solution of Example 10.1. 

let 

+ 
v c f f 

— 

z 
1 

Figure 10.12 A The general circuit of Fig. 10.11 
replaced with an equivalent impedance. 

Vcff = Zltf. (10.31) 

Substituting Eq. 10.31 into Eq. 10.29 yields 

S - ZIefrIe[f 

= Heff|2Z 

= |Ieff|
2(fl + IX) 

= HeffPi? + /|Icff|
2X = P + jQ, (10.32) 

from which 

P = lleffl2^ = \l\fr (10.33) 

Q = Ihd2* = \l\X- (10.34) 

In Eq. 10.34, X is the reactance of either the equivalent inductance or 
equivalent capacitance of the circuit. Recall from our earlier discussion of 
reactance that it is positive for inductive circuits and negative for capaci-
tive circuits. 

A second useful variation of Eq. 10.29 comes from replacing the cur
rent with the voltage divided by the impedance: 

S = V e f f ( ^ y = ^ = P + jQ- (10.35) 

Alternate Forms for Complex Power 
Equations 10.29 and 10.30 have several useful variations. Here, we use the 
rms value form of the equations, because rms values are the most common 
type of representation for voltages and currents in power computations. 

The first variation of Eq. 10.29 is to replace the voltage with the prod
uct of the current times the impedance. In other words, we can always rep
resent the circuit inside the box of Fig. 10.11 by an equivalent impedance, 
as shown in Fig. 10.12. Then, 

file:///l/fr
file:///l/X-
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Note that if Z is a pure resistive element 

P = 

and if Z is a pure reactive element, 

Q = 

R ' 

|Veff|
2 

(10.36) 

X 
(10.37) 

In Eq. 10.37, X is positive for an inductor and negative for a capacitor. 
The following examples demonstrate various power calculations in 

circuits operating in the sinusoidal steady state. 

Example 10.5 Calculating Average and Reactive Power 

In the circuit shown in Fig. 10.13, a load having an 
impedance of 39 + /26 O is fed from a voltage 
source through a line having an impedance of 
1 + /4 O. The effective, or rms, value of the source 
voltage is 250 V. 

a) Calculate the load current IL and voltage VL. 

b) Calculate the average and reactive power deliv
ered to the load. 

c) Calculate the average and reactive power deliv
ered to the line. 

d) Calculate the average and reactive power sup
plied by the source. 

Thus the load is absorbing an average power of 
975 W and a reactive power of 650 VAR. 

in /4 a 
J T Y Y \ »_ 

6 D 250/0° 
V(rms) 

Line Source 

Figure 10.13 • The circuit for Example 10.5. 

3912 

I I 

/26 ft; 

Load 

Solution 

a) The line and load impedances are in series across 
the voltage source, so the load current equals the 
voltage divided by the total impedance, or 

I, 
250 / 0 ° 

40 + /30 
= 4 - /3 = 5 / -36 .87° A (rms). 

Because the voltage is given in terms of its 
rms value, the current also is rms. The load volt
age is the product of the load current and load 
impedance: 

VL = (39 + /26)1 L = 234 - / 1 3 

= 234.36 / - 3 . 1 8 ° V (rms). 

b) The average and reactive power delivered to the 
load can be computed using Eq. 10.29. Therefore 

S = \Jl = (234 - / 1 3 ) ( 4 + / 3 ) 

= 975 + /650 VA. 

c) The average and reactive power delivered to the 
line are most easily calculated from Eqs. 10.33 
and 10.34 because the line current is known. Thus 

P = (5)2(1) = 25 W, 

Q = (5)2(4) = 100 VAR. 

Note that the reactive power associated with the 
line is positive because the line reactance is 
inductive. 

d) One way to calculate the average and reactive 
power delivered by the source is to add the com
plex power delivered to the line to that delivered 
to the load, or 

S = 25 + /100 + 975 + /650 

= 1000 + / 7 5 0 V A . 

The complex power at the source can also be cal
culated from Eq. 10.29: 

Ss = -250IL-
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The minus sign is inserted in Eq. 10.29 whenever 
the current reference is in the direction of a volt
age rise. Thus 

5, = -250(4 + /3) = -(1000 4- /750) VA. 

The minus sign implies that both average power 
and magnetizing reactive power are being deliv
ered by the source. Note that this result agrees 
with the previous calculation of 5, as it must, 
because the source must furnish all the average 
and reactive power absorbed by the line and load. 

Example 10.6 Calculating Power in Parallel Loads 

The two loads in the circuit shown in Fig. 10.14 can 
be described as follows: Load 1 absorbs an average 
power of 8 kW at a leading power factor of 0.8. Load 
2 absorbs 20 kVA at a lagging power factor of 0.6. 

0.05 n 
• V W -
+ 

/0.50 a 

v, 250/0° 
V (rms) I., L 

Figure 10.14 • The circuit for Example 10.6. 

a) Determine the power factor of the two loads in 
parallel. 

b) Determine the apparent power required to sup
ply the loads, the magnitude of the current, Iv, 
and the average power loss in the transmission 
line. 

c) Given that the frequency of the source is 60 Hz, 
compute the value of the capacitor that would 
correct the power factor to 1 if placed in parallel 
with the two loads. Recompute the values in (b) 
for the load with the corrected power factor. 

Solution 

a) All voltage and current phasors in this problem 
are assumed to represent effective values. Note 
from the circuit diagram in Fig. 10.14 that 
Iv = l{ + I2. The total complex power absorbed 
by the two loads is 

S = (250)i; 

= (250)(1, + I2)8 

= (250)1^ + (250)I2 

= sx + s2. 

We can sum the complex powers geometrically, 
using the power triangles for each load, as shown 
in Fig. 10.15. By hypothesis, 

8000(.6) 

= 8000 - /6000 VA, 

S2 = 20,000(.6) + /20,000(.8) 

= 12,000 +/16,000 VA. 

-36.87° 
16kVAR 

10 kVAR 

Figure 10.15 • (a) The power triangle for load 1. (b) The 
power triangle for load 2. (c) The sum of the power triangles. 

It follows that 

S = 20,000 + /10,000 VA, 

and 

, 20,000 + /10,000 

Therefore 

Iv = 80 - /40 = 89.44 / -26 .57° A. 

Thus the power factor of the combined load is 

pf = cos(0 + 26.57°) = 0.8944 lagging. 

The power factor of the two loads in parallel is 
lagging because the net reactive power is positive. 

b) The apparent power which must be supplied to 
these loads is 

\S\ = |20 + /10| = 22.36 kVA. 

The magnitude of the current that supplies this 
apparent power is 

II.sl = 180 - j40| = 89.44 A. 
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The average power lost in the line results from 
the current flowing through the line resistance: 

* U = | IJ 2* = (89.44)2(0.05) = 400 W 

Note that the power supplied totals 20,000 + 400 
= 20,400 W, even though the loads require a 
total of only 20,000 W. 

c) As we can see from the power triangle in 
Fig. 10.15(c), we can correct the power factor to 1 
if we place a capacitor in parallel with the existing 
loads such that the capacitor supplies 10 kVAR 
of magnetizing reactive power. The value of the 
capacitor is calculated as follows. First, find the 
capacitive reactance from Eq. 10.37: 

X = ivy2 

Q 

(250)2 

-10,000 

the power factor is 1, the apparent power and 
the average power are the same, as seen from the 
power triangle in Fig. 10.16(c). Therefore, the 
apparent power once the power factor has been 
corrected is 

\S\ = P = 20 kVA. 

The magnitude of the current that supplies this 
apparent power is 

20,000 

250 
= 80 A. 

The average power lost in the line is thus 
reduced to 

Pimc = \h\2R = (80)2(0.05) = 320 W. 

Now, the power supplied totals 20,000 + 320 
= 20,320 W. Note that the addition of the capaci
tor has reduced the line loss from 400 W to 320 W. 

= -6.25 a. 

Recall that the reactive impedance of a capacitor 
is -l/o)C, and w = 2TT(60) = 376.99 rad/s, if 
the source frequency is 60 Hz. Thus, 

C = 
- 1 - 1 

o)X (376.99)(-6.25) 
424.4 ^F . 

The addition of the capacitor as the third load is 
represented in geometric form as the sum of the 
two power triangles shown in Fig. 10.16. When 

22.36 k V A ^ ~ -

^ ^ t 
20 kW 

(a) 

lOkVAR + 

20 kW 

(c) 

- lOkVAR 

(b) 

Figure 10.16 A (a) The sum of the power triangles for loads 1 
and 2. (b) The power triangle for a 424.4 t̂F capacitor at 60 Hz. 
(c) The sum of the power triangles in (a) and (b). 

Example 10.7 Balancing Power Delivered with Power Absorbed in an ac Circuit 

a) Calculate the total average and reactive power 
delivered to each impedance in the circuit shown 
in Fig. 10.17. 

b) Calculate the average and reactive powers asso
ciated with each source in the circuit. 

c) Verify that the average power delivered equals 
the average power absorbed, and that the magnet
izing reactive power delivered equals the magnet
izing reactive power absorbed. 

'VW orv-v-> 

i a /20 + 

1 nn 

-/16 n ; 

+ v 
•—wv 

in 

| . , 

/3 0 

39 I t 

V s = 150/0°V 

V, = (78 - /104) V Ij = ( -26 - /52) A 

V2 = (72 + /104) V lv = ( - 2 + /6) A 

V3 = (150 - /130) V I2 = ( -24 - /58) A 

Figure 10.17 A The circuit, with solution, for Example 10.7. 
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Solution 

a) The complex power delivered to the (1 + /2) ft 
impedance is 

Si = |v , I I = /», + /Qi 

= ̂ (78 - /104)(-26 + /52) 

= -(3380 + /6760) 

= 1690 +/3380 V A. 

Thus this impedance is absorbing an average 
power of 1690 W and a reactive power of 
3380 VAR. The complex power delivered to the 
(12 - /16) ft impedance is 

S2 = 2V2^ = Pi + jQi 

= -(72 + /104)(-2 - /6) 

= 240 - /320 VA. 

Therefore the impedance in the vertical branch 
is absorbing 240 W and delivering 320 VAR. The 
complex power delivered to the (I + /3) ft 
impedance is 

S3 = ~V3IS = P3 + jQ3 

= -(150 - /130)(-24 + /58) 

= 1970 + /5910 V A. 

This impedance is absorbing 1970 W and 
5910 VAR. 

b) The complex power associated with the inde
pendent voltage source is 

ss = -|v,ii = ps + / a 

= -^(150)(-26 + /52) 

= 1950 - /3900 VA. 

Note that the independent voltage source is 
absorbing an average power of 1950 W and 
delivering 3900 VAR. The complex power asso
ciated with the current-controlled voltage 
source is 

Sx = |(39Ir)(I|) = Px + jQx 

= | ( - 7 8 + /234)(-24 + /58) 

= -5850 - /5070 VA. 

Both average power and magnetizing reactive 
power are being delivered by the dependent 
source. 

c) The total power absorbed by the passive imped
ances and the independent voltage source is 

Absorbed = P\ + Pi + i>3 + A = 5 8 5 0 W . 

The dependent voltage source is the only circuit 
element delivering average power. Thus 

delivered = 5850 W . 

Magnetizing reactive power is being absorbed 
by the two horizontal branches. Thus 

^absorbed = Q\ + Qi = 9290 V A R . 

Magnetizing reactive power is being delivered 
by the independent voltage source, the capacitor 
in the vertical impedance branch, and the 
dependent voltage source. Therefore 

Qdelivered = 9290 V A R . 



378 Sinusoidal Steady-State Power Calculations 

I/ASSESSMENT PROBLEMS 

Objective 1—Understand ac power concepts, their relationships to one another, and how to calculate them in a circuit 

10.4 The load impedance in the circuit shown is 
shunted by a capacitor having a capacitive reac
tance of -52 0,. Calculate: 

a) the rms phasors VL and IL, 

b) the average power and magnetizing reactive 
power absorbed by the (39 + /26) £1 load 
impedance, 

c) the average power and magnetizing reactive 
power absorbed by the (1 + /4) O line 
impedance, 

d) the average power and magnetizing reactive 
power delivered by the source, and 

e) the magnetizing reactive power delivered by 
the shunting capacitor. 

l a 
•AW-

/4 0 
- T T T A . 

O250/0! 
V(rms) 

+ 

V,. 

39 n 

./26 a 

Source Line— —***- Load 

(c) 23.52 W, 94.09 VAR; 

(d) 1152.62 W, -376.36 VAR; 

(e) 1223.18 VAR. 

10.5 The rms voltage at the terminals of a load is 
250 V The load is absorbing an average power 
of 40 kW and delivering a magnetizing reactive 
power of 30 kVAR. Derive two equivalent 
impedance models of the load. 

Answer: 1 H in series with 0.75 Q, of capacitive 
reactance; 1.5625 H in parallel with 2.083 H 
of capacitive reactance. 

10.6 Find the phasor voltage Ys (rms) in the circuit 
shown if loads Lx and L2 are absorbing 15 kVA 
at 0.6 pf lagging and 6 kVA at 0.8 pf leading, 
respectively. Express Vv in polar form. 

Answer: (a) 252.20 / - 4 . 5 4 ° V (rms), 
5.38 / -38 .23° A (rms); 

(b) 1129.09 W, 752.73 VAR; 

NOTE: Also try Chapter Problems 10.18,10.26, and 10.27. 

/ 1 0 

+ 

( _ " ) 20070° V (rms) 

—n— 

I <2 vs 

Answer: 251.64 /15.91° V. 

10.6 Maximum Power Transfer 

a»-
Generalized linear 
network operating 
in the sinusoidal 
steady state 

b« 

Figure 10.18 • A circuit describing maximum power 
transfer. 

Recall from Chapter 4 that certain systems—for example, those that trans
mit information via electric signals—depend on being able to transfer a 
maximum amount of power from the source to the load. We now reexam
ine maximum power transfer in the context of a sinusoidal steady-state 
network, beginning with Fig. 10.18. We must determine the load imped
ance Z L that results in the delivery of maximum average power to termi
nals a and b. Any linear network may be viewed from the terminals of the 
load in terms of a Thevenin equivalent circuit. Thus the task reduces to 
finding the value of Z L that results in maximum average power delivered 
to Z L in the circuit shown in Fig. 10.19. 

For maximum average power transfer, Z L must equal the conjugate of 
the Thevenin impedance; that is, 

Condition for maximum average power 
transfer • ZT = Z Th' (10.38) 
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We derive Eq. 10.38 by a straightforward application of elementary calcu
lus. We begin by expressing ZTh and Z L in rectangular form: 

ZT h - i?Th + jXTh, (10.39) 

ZL = RL + jXL, (10.40) 

In both Eqs. 10.39 and 10.40, the reactance term carries its own algebraic 
sign—positive for inductance and negative for capacitance. Because we 
are making an average-power calculation, we assume that the amplitude 
of the Thevenin voltage is expressed in terms of its rms value. We also use 
the Thevenin voltage as the reference phasor. Then, from Fig. 10.19, the 
rms value of the load current I is 

I = *"rh 

(R-i-h + RL) + j(xTh + xLy 
(10.41) 

Figure 10.19 • The circuit shown in Fig. 10.18, with 
the network replaced by its Thevenin equivalent. 

The average power delivered to the load is 

P = HI2/*,, (10.42) 

Substituting Eq. 10.41 into Eq. 10.42 yields 

P = 
|vTh|X 

(RTh + RL)2 + (XTh + XL)2 
(10.43) 

When working with Eq. 10.43, always remember that Vrh, i?Th, and XTh 

are fixed quantities, whereas RL and XL are independent variables. 
Therefore, to maximize P, we must find the values of /?L and XL where 
dP/3RL and dP/BXh are both zero. From Eq. 10.43, 

dP -\\Th\22RL(XL + XTh) 

dXL [(RL + RTh)2 + (XL + XTh)2}2' 
(10.44) 

*P_ = IVlhPK^L + ^Th)2 + (XL + *Th)2 - 2RL(RL + *Th)] 
dRL [(RL + RTh)2 + (XL + XTh)2]2 

From Eq. 10.44, dP/dXL is zero when 

(10.45) 

X, = -X riv (10.46) 

From Eq. 10.45,3P/dRL is zero when 

RL = VWh + (*L + xThy (10.47) 

Note that when we combine Eq. 10.46 with Eq. 10.47, both derivatives are 
zero when Z L = Z j h . 
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The Maximum Average Power Absorbed 

The maximum average power that can be delivered to ZL when it is set 
equal to the conjugate of ZTh is calculated directly from the circuit in 
Fig. 10.19. When ZL = Zjh , the rms load current is VTh/2JRL, and the max
imum average power delivered to the load is 

P = 
1 max 4Rr 

1 ghj 
4 R, 

(10.48) 

If the Thevenin voltage is expressed in terms of its maximum amplitude 
rather than its rms amplitude, Eq. 10.48 becomes 

1VJ, 
8 RL 

(10.49) 

Maximum Power Transfer When Z is Restricted 

Maximum average power can be delivered to ZL only if ZL can be set 
equal to the conjugate of ZTh. There are situations in which this is not pos
sible. First, RL and XL may be restricted to a limited range of values. In 
this situation, the optimum condition for RL and XL is to adjust XL as 
near to -XTh as possible and then adjust RL as close to 
VRjh + (XL + XTh)

2 as possible (see Example 10.9). 
A second type of restriction occurs when the magnitude of ZL can be 

varied but its phase angle cannot. Under this restriction, the greatest 
amount of power is transferred to the load when the magnitude of ZL is 
set equal to the magnitude of ZTh; that is, when 

\ZL\ = |ZnJ. (10.50) 

The proof of Eq. 10.50 is left to you as Problem 10.40. 
For purely resistive networks, maximum power transfer occurs when 

the load resistance equals the Thevenin resistance. Note that we first 
derived this result in the introduction to maximum power transfer in 
Chapter 4. 

Examples 10.8-10.11 illustrate the problem of obtaining maximum 
power transfer in the situations just discussed. 

Example 10.8 Determining Maximum Power Transfer without Load Restrictions 

a) For the circuit shown in Fig. 10.20, determine the 
impedance ZL that results in maximum average 
power transferred to ZL. 

b) What is the maximum average power transferred 
to the load impedance determined in (a)? 

Solution 

a) We begin by determining the Thevenin equiva
lent with respect to the load terminals a, b. After 
two source transformations involving the 20 V 
source, the 5 fl resistor, and the 20 il resistor, we 

simplify the circuit shown in Fig. 10.20 to the one 
shown in Fig. 10.21. Then, 

VTh = 
16 /0° 

"Th (-/6) 
4 + /3 - /6 

= 19.2 /-53.13° = 11.52 - /15.36 V. 

Figure 10.20 • The circuit for Example 10.8. 
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Figure 10.21 • A simplification of Fig. 10.20 by source 
transformations. 

which we replaced the original network with its 
Tlievenin equivalent. From Fig. 10.22, the rms magni
tude of the load current I is 

19.2/V2 

'•« = im = U785 A' 
The average power delivered to the load is 

We find the Thevenin impedance by deactivat
ing the independent source and calculating the 
impedance seen looking into the terminals a 
and b. Thus, 

zTh = ( 7 y 6 ) ( ! + J ? =5-7 6 - /i-68 a -
Th 4 + /3 - /6 J 

m~n -/1.6811 
5.76 ft , / a 

19.2/-53.13Y + 
V 

It 
5.76 0 

4-/1.68 0-

For maximum average power transfer, the load 
impedance must be the conjugate of ZTh, so 

Z L = 5.76 + /1.68 ft. 

b) We calculate the maximum average power deliv
ered to ZL from the circuit shown in Fig. 10.22, in 

Figure 10.22 A The circuit shown in Fig. 10.20, with the 
original network replaced by its Thevenin equivalent. 

P = I2
cU(5.76) = 8 W . 

Example 10.9 Determining Maximum Power Transfer with Load Impedance Restriction 

a) For the circuit shown in Fig. 10.23, what value of 
ZL results in maximum average power transfer to 
ZL? What is the maximum power in milliwatts? 

b) Assume that the load resistance can be varied 
between 0 and 4000 ft and that the capacitive 
reactance of the load can be varied between 
0 and -2000 ft. What settings of RL and XL 

transfer the most average power to the load? 
What is the maximum average power that can be 
transferred under these restrictions? 

Solution 

a) If there are no restrictions on RL and XL, the 
load impedance is set equal to the conjugate of 
the output or the Thevenin impedance. Therefore 
we set 

RL = 3000 ft and XL = -4000 ft, 

or 

3000 a /4000 a 
-vw 

10 
V (rms 

Figure 10.23 • The circuit for Examples 10.9 and 10.10. 

Because the source voltage is given in terms of its 
rms value, the average power delivered to ZL is 

1 102 25 
P = 4 3000 = T m W = 8 3 3 m W -

b) Because RL and XL are restricted, we first set XL 

as close to -4000 ft as possible; thus 
Xj = -2000 ft. Next, we set RL as close to 
vRjh + (XL + XTh)

2 as possible.Thus 

ZL = 3000 - /4000 ft. RL = V30002 + (-2000 + 4000)2 = 3605.55 ft. 
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Now, because RL can be varied from 0 to 4000 ft, 
we can set RL to 3605.55 ft. Therefore, the load 
impedance is adjusted to a value of 

ZL = 3605.55 - /2000 ft. 

With Z L set at this value, the value of the load 
current is 

10 / 0 ° 
leff 6605.55 + /2000 

1.4489 / -16 .85° mA. 

The average power delivered to the load is 

P = (1.4489 X Kr3)2(3605.55) = 7.57 mW. 

This quantity is the maximum power that we can 
deliver to a load, given the restrictions on RL 

and XL. Note that this is less than the power that 
can be delivered if there are no restrictions; in 
(a) we found that we can deliver 8.33 mW. 

Example 10.10 Finding Maximum Power Transfer with Impedance Angle Restrictions 

A load impedance having a constant phase angle of 
-36.87° is connected across the load terminals a and 
b in the circuit shown in Fig. 10.23. The magnitude of 
ZL is varied until the average power delivered is the 
most possible under the given restriction. 

a) Specify ZL in rectangular form. 

b) Calculate the average power delivered to ZL. 

Solution 

a) From Eq. 10.50, we know that the magnitude of 
Z L must equal the magnitude of ZTh. Therefore 

\ZL\ = |ZThl = 13000 + /4000| = 5000 ft. 

Now, as we know that the phase angle of ZL is 
-36.87°, we have 

ZL = 5000 / -36 .87° = 4000 - /3000 ft. 

b) With ZL set equal to 4000 - /3000 ft, the load 
current is 

10 
!eff = ^ ^ ^7^ = 1-4142 / - 8 . 1 3 ° mA, 

611 7000 + /1000 L 

and the average power delivered to the load is 

P = (1.4142 X 10"3)2(4000) = 8mW. 

This quantity is the maximum power that can be 
delivered by this circuit to a load impedance 
whose angle is constant at —36.87°. Again, this 
quantity is less than the maximum power that can 
be delivered if there are no restrictions on ZL. 

^ A S S E S S M E N T P R O B L E M 

Objective 2—Understand the condition for maximum real power delivered to a load in an ac circuit 

10.7 The source current in the circuit shown is 3.6 mH 
3cos5000r A. 

a) What impedance should be connected 
across terminals a,b for maximum average 
power transfer? 

b) What is the average power transferred to 
the impedance in (a)? 

c) Assume that the load is restricted to pure 
resistance. What size resistor connected 
across a,b will result in the maximum aver
age power transferred? 

d) What is the average power transferred to 
the resistor in (c)? 

Answer: (a) 20 - /10 ft; 

(b)18W; 

(c) 22.36 ft; 

(d) 17.00 W. 

4H 

NOTE: Also try Chapter Problems 10.44,10.47, and 10.48. 
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Example 10.11 Finding Maximum Power Transfer in a Circuit with an Ideal Transformer 

The variable resistor in the circuit in Fig. 10.24 is 
adjusted until maximum average power is delivered 
to RL. 

a) What is the value of RL in ohms? 

b) What is the maximum average power (in watts) 
delivered to R{1 

60O ideal a 
^ ^ T l 4:1 

O840/Q! 
V (rms) r*L 

20 n 

Figure 10.24 • The circuit for Example 10.11. 

Solution 

a) We first find the Thevenin equivalent with 
respect to the terminals of RL. The circuit for 
determining the open circuit voltage in shown in 
Fig. 10.25. The variables V], V2, l\, and I2 have 
been added to expedite the discussion. 

60 n 
-VA— 

<• a 

I, + 

«~Ii 

840/0!^+ 
V (rms) 

4:1 

Ideal 

- •a 

V2 

rh 

20 n 

»b 
Figure 10.25 A The circuit used to find the Thevenin voltage. 

First we note the ideal transformer imposes the 
following constraints on the variables Vj, V2, Ii, and I2: 

V2 = Jv,. I, = -\h. 

The open circuit value of I? is zero, hence I] is 
zero. It follows that 

Vi = 840 /QP_ v , V2 = 210 / 0 ° V . 

From Fig. 10.25 we note that \ r h is the negative 
of V2, hence 

VTh = -210 / 0 ° V. 

The circuit shown in Fig. 10.26 is used to deter
mine the short circuit current. Viewing l{ and I2 

as mesh currents, the two mesh equations are 

840 / 0 ° = goij - 20I2 + \ h 

0 = 20I2 - 201! + V2. 

60(1 

I, + k V' I 
840Z0°/ + \ 
r(rms)W 

4 
- I ' 

1 

c v2 

Ideal ] • + 

( 

:20O 

i II 

Figure 10.26 • The circuit used to calculate the short circuit 
current. 

When these two mesh current equations are com
bined with the constraint equations we get 

840 / ( F = -40I 2 + Vj, 

Vi 
0 = 25I2 + - i . 

4 

Solving for the short circuit value of I2 yields 

I2 = - 6 A. 

Therefore the Thevenin resistance is 

-210 
RTh -

- 6 
= 35 n . 
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Maximum power will be delivered to RL when 
RL equals 35 ft. 

b) The maximum power delivered to RL is most 
easily determined using theThevenin equivalent. 
From the circuit shown in Fig. 10.27 we have 

210/0°/-
V(rms")U 35 O 

P = 
1 max 

-210 

70 
(35) = 315 W. Figure 10.27 • The Thevenin equivalent loaded for maximum 

power transfer. 

^ A S S E S S M E N T PROBLEMS 

Objective 3—Be able to calculate all forms of ac power in ac circuits with linear transformers and ideal 
transformers 

10.8 Find the average power delivered to the 
100 Q resistor in the circuit shown if 
vg = 660 cos 5000r V. 

10 mH 

100 ft 

Answer: 612.5 W. 

10.9 a) Find the average power delivered to the 
400 fl resistor in the circuit shown if 
vt = 248 cos 10,000f V. 

b) Find the average power delivered to the 
375 H resistor. 

c) Find the power developed by the ideal volt
age source. Check your result by showing the 
power absorbed equals the power developed. 

NOTE: Also try Chapter Problems 10.64 and 10.65. 

40 mH 50 mH lOOmH 
— l ' Y W ^ — 

:37512 400 O 

Answer: (a) 50 W; 

(b)49.2W; 

(c) 99.2 W, 50 + 49.2 = 99.2 W. 

10.10 Solve Example 10.11 if the polarity dot on the 
coil connected to terminal a is at the top. 

Answer: (a) 15 Q,; 

(b) 735 W. 

10.11 Solve Example 10.11 if the voltage source is 
reduced to 146 / 0 ° V rms and the turns ratio is 
reversed to 1:4. 

Answer: (a) 1460 H; 

(b)58.4W. 

Practical Perspective 
Heating Appliances 
A handheld hair dryer contains a heating element, which is just a resistor 
heated by the sinusoidal current passing through it, and a fan that blows 
the warm air surrounding the resistor out the front of the unit. This is 
shown schematically in Fig. 10.28. The heater tube in this figure is a resis
tor made of coiled nichrome wire. Nichrome is an alloy of iron, chromium, 
and nickel. Two properties make i t ideal for use in heaters. First, i t is more 
resistive than most other metals, so less material is required to achieve the 
needed resistance. This allows the heater to be very compact. Second, 
unlike many other metals, nichrome does not oxidize when heated red hot in 
air. Thus the heater element lasts a long time. 

A circuit diagram for the hair dryer controls is shown in Fig. 10.29. This 
is the only part of the hair dryer circuit that gives you control over the heat 

Heater tube 

Hot air 4 
Controls 

Fan and motor 

Power cord 

Figure 10.28 • Schematic representation of a 
handheld hair dryer. 
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• 1 Thermal fuse 

; xfc R^ < R-> 

f t T t 
OFF L M H 

Figure 10.29 A A circuit diagram for the hair dryer 

controls. 

\ Thermal fuse 

" * is? "1 5 ft 2 

t t t t 
OFF L M H 

(a) 

R\ >R2 

Figure 10.30 • (a) The circuit in Fig. 10.29 redrawn 
for the LOW switch setting, (b) A simplified equiva
lent circuit for (a). 

setting. The rest of the circuit provides power to the fan motor and is not of 
interest here. The coiled wire that comprises the heater tube has a connec
tion partway along the coil, dividing the coil into two pieces. We model this 
in Fig. 10.29 with two series resistors, R^ and R2. The controls to turn the 
dryer on and select the heat setting use a four-position switch in which two 
pairs of terminals in the circuit will be shorted together by a pair of sliding 
metal bars. The position of the switch determines which pairs of terminals 
are shorted together. The metal bars are connected by an insulator, so there 
is no conduction path between the pairs of shorted terminals. 

The circuit in Fig. 10.29 contains a thermal fuse. This is a protective 
device that normally acts like a short circuit. But if the temperature near 
the heater becomes dangerously high, the thermal fuse becomes an open 
circuit, discontinuing the flow of current and reducing the risk of fire or 
injury. The thermal fuse provides protection in case the motor fails or the 
airflow becomes blocked. While the design of the protection system is not 
part of this example, i t is important to point out that safety analysis is an 
essential part of an electrical engineer's work. 

Now that we have modeled the controls for the hair dryer, let's deter
mine the circuit components that are present for the three switch settings. 
To begin, the circuit in Fig. 10.29 is redrawn in Fig. 10.30(a) for the LOW 
switch setting. The open-circuited wires have been removed for clarity. A 
simplified equivalent circuit is shown in Fig. 10.30(b). A similar pair of fig
ures is shown for the MEDIUM setting (Fig. 10.31) and the HIGH setting 
(Fig. 10.32). Note from these figures that at the LOW setting, the voltage 
source sees the resistors R± and R2 in series; at the MEDIUM setting, the volt
age source sees only the R2 resistor; and at the HIGH setting, the voltage 
source sees the resistors in parallel. 

Thermal fuse 

• • • • • 
/¾ 

t t t t 
OFF L M H 

(a) 

ft, 

(b) 

Figure 10.31 • (a) The circuit in Fig. 10.29 redrawn 
for the MEDIUM switch setting, (b) A simplified equiv
alent circuit for (a). 

Thermal fuse 

v • • • 11 

I * * * IJ_ ft, R2 

t t t t 
OFFL M H 

(a) 

ft, ft? 

(b) 

Figure 10.32 A (a) The circuit in Fig. 10.29 redrawn 
for the HIGH switch setting, (b) A simplified equiva
lent circuit for (a). 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 

Problems 10.66-10.68. 
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Summary 

• Instantaneous power is the product of the instanta
neous terminal voltage and current, or p = ±vi. The 
positive sign is used when the reference direction for 
the current is from the positive to the negative refer
ence polarity of the voltage. The frequency of the 
instantaneous power is twice the frequency of the volt
age (or current). (See page 362.) 

• Average power is the average value of the instanta
neous power over one period. It is the power converted 
from electric to nonelectric form and vice versa. This 
conversion is the reason that average power is also 
referred to as real power. Average power, with the pas
sive sign convention, is expressed as 

= Kff4ff cos(0w - (9,). 

(See page 364.) 

• Reactive power is the electric power exchanged 
between the magnetic field of an inductor and the 
source that drives it or between the electric field of a 
capacitor and the source that drives it. Reactive 
power is never converted to nonelectric power. 
Reactive power, with the passive sign convention, is 
expressed as 

Q = -V„,Imsin(dv-di) 

= Vc[iIctism(6v - 0,). 

Both average power and reactive power can be 
expressed in terms of either peak (Vm, lm) or effective 
(V f̂, 4u) current and voltage. Effective values are 
widely used in both household and industrial applica
tions. Effective value and rms value are interchangeable 
terms for the same value. (See page 364.) 

• The power factor is the cosine of the phase angle 
between the voltage and the current: 

pf = cos(0,,, - 0,). 

The terms lagging and leading added to the description 
of the power factor indicate whether the current is lag
ging or leading the voltage and thus whether the load is 
inductive or capacitive. (See page 365.) 

• The reactive factor is the sine of the phase angle 
between the voltage and the current: 

rf = sin(0v - 0,). 

(See page 365.) 

• Complex power is the complex sum of the real and reac
tive powers, or 

S = P + jQ 

= \w = ve£fi*rf 

_ /2 7 _ Yh. 

(See page 370.) 

• Apparent power is the magnitude of the complex power: 

\S\ = VP2 + Q2. 

(See page 370.) 

• The watt is used as the unit for both instantaneous and 
real power. The var (volt amp reactive, or VAR) is used 
as the unit for reactive power. The volt-amp (VA) is 
used as the unit for complex and apparent power. (See 
page 370.) 

• Maximum power transfer occurs in circuits operating in 
the sinusoidal steady state when the load impedance is 
the conjugate of the Thevenin impedance as viewed from 
the terminals of the load impedance. (See page 378.) 
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Problems 

Sections 10.1-10.2 

10.1 The following sets of values for v and i pertain to 
the circuit seen in Fig. 10.1. For each set of values, 
calculate P and Q and state whether the circuit 
inside the box is absorbing or delivering (1) average 
power and (2) magnetizing vars. 

a) v = lOOcos(o)/ + 50°) V, 
i = 10cos(w/ + 15°) A. 

b) v = 40cos(wf - 15°) V, 
i = 20cos(tuf + 60 ) A. 

c) v = 400cos(wr + 30°) V, 
i = 10sin(&rf + 240°) A. 

d) v = 200sin(a>/ + 25()c) V, 
/ = 5cos(W + 40°) A. 

10.2 a) A university student is drying her hair with a hair 
dryer while sitting under a sunlamp and watching 
a basketball game on a color tube-type television. 
At the same time, her roommate is vacuuming 
the rug in their air-conditioned bedroom. If all 
these appliances are supplied from a 120 V 
branch circuit protected by a 15 A circuit breaker, 
will the breaker interrupt the game? 

b) Will the student be able to watch television if 
she turns off the sunlamp and her roommate 
turns off the vacuum cleaner? 

10.3 Show that the maximum value of the instantaneous 
power given by Eq. 10.9 is P + yP2 + Q2 and that 
the minimum value is P - VP2 + Q2. 

10.4 A load consisting of a 480 Q resistor in parallel 
with a (5/9) /xF capacitor is connected across the 
terminals of a sinusoidal voltage source v„, where 
vg = 240 cos 5000f V. 

a) What is the peak value of the instantaneous 
power delivered by the source? 

b) What is the peak value of the instantaneous 
power absorbed by the source? 

c) What is the average power delivered to the load? 

d) What is the reactive power delivered to the load? 

e) Does the load absorb or generate magnetiz
ing vars? 

f) What is the power factor of the load? 

g) What is the reactive factor of the load? 

10.5 Find the average power delivered by the ideal 
PSPICE current source in the circuit in Fig. PI0.5 if 

.ULTISIM (. = 4 c o s 5 ( ) 0 0 / m A 

Figure P10.5 

500 ft 
-VW— 

1000 ft 
—-W/— 

160nF 100 mH 

10.6 Find the average power dissipated in the 30 O 
PSPICE resistor in the circuit seen in Fig. PI0.6 if 

«™ . =6 c o s 20,000/A. 

Figure P10.6 

30 /A o 1.25 ^F 

is I < 0.5 mH 30 ft 

10.7 The op amp in the circuit shown in Fig. P10.7 is 
PSPKE ideal. Calculate the average power delivered to the 

«ULTISIM 1 m r e s i s t o r w h e n Vg = c o s 1 0 0 0 , v 

Figure P10.7 

100 nF 

500 nF 

lkft 

10.8 a) Calculate the real and reactive power associated 
with each circuit element in the circuit in 
Fig. P9.59. 

b) Verify that the average power generated equals 
the average power absorbed. 

c) Verify that the magnetizing vars generated 
equal the magnetizing vars absorbed. 

10.9 Repeat Problem 10.8 for the circuit shown in 
Fig.P9.61. 
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10.10 The load impedance in Fig. PIO.IO absorbs 2500 W 
and generates 5000 magnetizing vars. The sinu
soidal voltage source develops 7500 W. 

a) Find the values of inductive line reactance that 
will satisfy these constraints. 

b) For each value of line reactance found in (a), 
show that the magnetizing vars developed 
equals the magnetizing vars absorbed. 

Figure PIO.IO 

i 20 a jxn 
-f -VW rm-y j_ 

Source ~Y*— Load 

Section 10.3 

10.11 a) A personal computer with a monitor and key
board requires 40 W at 115 V (rms). Calculate 
the rms value of the current carried by its 
power cord. 

b) A laser printer for the personal computer in 
(a) is rated at 90 W at 115 V (rms). If this printer 
is plugged into the same wall outlet as the com
puter, what is the rms value of the current drawn 
from the outlet? 

10.12 A dc voltage equal to Vt\c V is applied to a resistor of 
R il. A sinusoidal voltage equal to vs V is also 
applied to a resistor of R Cl. Show that the dc volt
age will deliver the same amount of energy in T sec
onds (where T is the period of the sinusoidal 
voltage) as the sinusoidal voltage provided Kdc 

equals the rms value of vs. (Hint: Equate the two 
expressions for the energy delivered to the resistor.) 

10.13 Find the rms value of the periodic current shown in 
Fig. P10.13. 

Figure P10.13 

1(A) 

20 

10.14 The periodic current shown in Fig. P10.13 dissipates 
an average power of 1280 W in a resistor. What is 
the value of the resistor? 

10.15 a) Find the rms value of the periodic voltage shown 
inFig.P10.15. 

b) If this voltage is applied to the terminals of a 
411 resistor, what is the average power dissi
pated in the resistor? 

Figure P10.15 

tfc(V)" 

20 

10 

10 

- 2 0 -

•elc. 

25 50 75 100 125 150 175 200 /(/AS) 

Sections 10.4-10.5 

10.16 The voltage \g in the frequency-domain circuit 
shown in Fig. P10.18 is 240/O^V (rms). 

a) Find the average and reactive power for the 
voltage source. 

b) Is the voltage source absorbing or delivering 
average power? 

c) Is the voltage source absorbing or delivering 
magnetizing vars? 

d) Find the average and reactive powers associated 
with each impedance branch in the circuit. 

e) Check the balance between delivered and 
absorbed average power. 

f) Check the balance between delivered and 
absorbed magnetizing vars. 

Figure P10.16 

20 40 60 80 100 t (ms) 

12.5 n is n 
• A W -

-/25 n 1/20X1 
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10.17 Find the average power, the reactive power, and the 
pspicE apparent power absorbed by the load in the circuit 

MULTISIM i n F i g p i ( U 7 i f . e q u a l s 4 0 C Q S 5 0 0 0 f m A 

Figure P10.17 

5kH 
- - W \ > — i 

2H 20 nF 

Load 

10.18 a) Find the average power, the reactive power, and 
PSPICE the apparent power supplied by the voltage 

MULTISIM source in the circuit in Fig. PI 0.18 if 
vv = 40 cos 10¾ V. 

b) Check your answer 

d̂ev = Scabs' 

c) Check your answer 

Qdev = 2J Sabs-

ill (a) by showing 

in (a) by showing 

Figure P10.18 

40 fl 

25 nF 80yLiH 

60 n 

10.19 Two 480 V (rms) loads are connected in parallel. The 
two loads draw a total average power of 40,800 W at 
a power factor of 0.8 lagging. One of the loads draws 
20 kVA at a power factor of 0.96 leading. What is the 
power factor of the other load? 

10.20 a) Find VL (rms) and 0 for the circuit in Fig. P10.20 
if the load absorbs 2500 VA at a lagging power 
factor of 0.8. 

b) Construct a phasor diagram of each solution 
obtained in (a). 

The voltage at the terminals of the loads is 
2500V2 cos 1207rf V. 

a) Find the rms value of the source voltage. 

b) By how many microseconds is the load voltage 
out of phase with the source voltage? 

c) Does the load voltage lead or lag the source 
voltage? 

Figure P10.21 

0.05 a /0.5 a 
-• 

o.05 a yo.5 a 

1—•— 
+ 
vL 

•> • — 

—o— 

L 1 

—u— 

L2 

10.22 The three loads in the circuit seen in Fig. PI0.22 are 
described as follows: Load 1 is absorbing 7.5 kW 
and 2500 VAR; load 2 is absorbing 10 kVA at a 
0.28 pf lead; load 3 is a 12.5 H resistor in parallel 
with an inductor that has a reactance of 50 fi. 

a) Calculate the average power and the magnetiz
ing reactive power delivered by each source if 
Vgi = \g2 = 250/0^ V (rms). 

b) Check your calculations by showing your results 
are consistent with the requirements 

Ê dev = 2f l abs 

SGicv - 2<2 abs* 

Figure P10.22 

L, 

u 

Figure P10.20 

i a 
© VW 
+ 

25O£0! V (rms) 

• 

/2 a 
+ 

V,/0f Load 

10.21 The two loads shown in Fig. PI0.21 can be described 
as follows: Load 1 absorbs an average power of 
60 kW and delivers 70 kVAR magnetizing reactive 
power; load 2 has an impedance of 24 -+• /7 . 

10.23 Suppose the circuit shown in Fig. PI 0.22 represents 
a residential distribution circuit in which the imped
ances of the service conductors are negligible and 
Vgl = \ s 2 = 120/0^ V (rms). The three loads in 
the circuit are Lx (a coffee maker and a frying pan); 
L2 (a room air conditioner, a hairdryer, and a tube-
type television set); and L3 (a quick recovery water 
heater and a range with an oven). Assume that all 
these appliances are in operation at the same time. 
The service conductors are protected with 100 A 
circuit breakers. Will the service to this residence be 
interrupted? Explain. 
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10.24 The three loads in the circuit shown in Fig. PI0.24 
are $\ = 5 + /1.25 kVA, S2 = 6.25 + /2.5 kVA, 
and 53 = 8 + /0 kVA. 

a) Calculate the complex power associated with 
each voltage source, V^ and Vg2. 

b) Verify that the total real and reactive power 
delivered by the sources equals the total real 
and reactive power absorbed by the network. 

Figure P10.24 

0.05 H 
AMr— 

0.15 (2 
/yW— 

0.05 ft 
^Wv— 

125/0°V(rms) 

125ZQ!V(rras) 

S3 

10.27 Three loads are connected in parallel across a 250 V 
(rms) line, as shown in Fig. P10.27. Load 1 absorbs 
16 kW and 18 kVAR. Load 2 absorbs 10 kVA at 0.6 pf 
lead. Load 3 absorbs 8 kW at unity power factor. 

a) Find the impedance that is equivalent to the 
three parallel loads. 

b) Find the power factor of the equivalent load as 
seen from the line's input terminals. 

Figure P10.27 

• < 
+ 

250 V (rms) 

• 

> <> 

1 

— < > — 

2 
— 

— < > — 

3 

10.25 The three parallel loads in the circuit shown in 
Fig. PI0.25 can be described as follows: Load 1 is 
absorbing an average power of 7.5 kW and 9 kVAR 
of magnetizing vars; load 2 is absorbing an average 
power of 2.1 kW and generating 1.8 kVAR of mag
netizing reactive power; load 3 consists of a 48 ft 
resistor in parallel with an inductive reactance of 
19.2 ft. Find the rms magnitude and the phase angle 
of V,, if V„ = 480/(T V (rms). 

Figure P10.25 

/0.5 ft 
/ Y V W 

u 

10.26 The three loads in the circuit in Fig. PI 0.26 can be 
described as follows: Load 1 is a 240 ft resistor in 
series with an inductive reactance of 70 ft; load 2 is 
a capacitive reactance of 120 ft in series with a 
160 ft resistor; and load 3 is a 30 ft resistor in series 
with a capacitive reactance of 40 ft. The frequency 
of the voltage source is 60 Hz. 

a) Give the power factor and reactive factor of 
each load. 

b) Give the power factor and reactive factor of the 
composite load seen by the voltage source. 

Figure PI0.26 

Load 1 Load 2 Load 3 

10.28 The three loads in Problem 10.27 are fed from a line 
having a series impedance 0.01 + /0.08 ft, as 
shown in Fig. PI0.28. 

a) Calculate the rms value of the voltage (V5) at the 
sending end of the line. 

b) Calculate the average and reactive powers asso
ciated with the line impedance. 

c) Calculate the average and reactive powers at the 
sending end of the line. 

d) Calculate the efficiency (17) of the line if the effi
ciency is defined as 

V = (^load/^sending end) X 1M). 

Figure P10.28 

0.01 n /0.08 n 

+ 

v, 
• 

^ T r±. 
Li 

—n— 

L2 

—(•— 

L* 250.0° 
V (rms) 

10.29 a) Find the average power dissipated in the line in 
Fig. P10.29. 

b) Find the capacitive reactance that when con
nected in parallel with the load will make the 
load look purely resistive. 

c) What is the equivalent impedance of the load 
in (b)? 

d) Find the average power dissipated in the line 
when the capacitive reactance is connected 
across the load. 

e) Express the power loss in (d) as a percentage of 
the power loss found in (a). 
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Figure P10.29 

465 
V (rms n s ) W 

412 
-WW 

/3 ft 
- T Y Y W 

120 ft 

/90 ft 

Source *•}<•- Line •*+*- Load 

10.30 

10.31 

The steady-state voltage drop between the load and 
the sending end of the line seen in Fig. PI0.30 is 
excessive. A capacitor is placed in parallel with the 
200 kVA load and is adjusted until the steady-state 
voltage at the sending end of the line has the same 
magnitude as the voltage at the load end, that is, 
6400 V (rms). The 200 kVA load is operating at a 
power factor of 0.6 lag. Calculate the size of the 
capacitor in microfarads if the circuit is operating at 
60 Hz. In selecting the capacitor, keep in mind the 
need to keep the power loss in the line at a reason
able level. 

Figure P10.30 

4ft 
-Wv 

/24 ft 

+ 
V, 64()().0° V (rms) 

200 kVA 
0.6 
lag 

Consider the circuit described in Problem 9.75. 

a) What is the rms magnitude of the voltage across 
the load impedance? 

b) What percentage of the average power devel
oped by the practical source is delivered to the 
load impedance? 

10.32 A factory has an electrical load of 1600 kW at a lag
ging power factor of 0.8. An additional variable 
power factor load is to be added to the factory. The 
new load will add 320 kW to the real power load of 
the factory. The power factor of the added load is to 
be adjusted so that the overall power factor of the 
factory is 0.96 lagging. 

a) Specify the reactive power associated with the 
added load. 

b) Does the added load absorb or deliver magnet
izing vars? 

c) What is the power factor of the additional load? 

d) Assume that the voltage at the input to the fac
tory is 2400 V (rms). What is the rms magnitude 

of the current into the factory before the vari
able power factor load is added? 

e) What is the rms magnitude of the current into 
the factory after the variable power factor load 
has been added? 

10.33 Assume the factory described in Problem 10.32 is fed 
from a line having an impedance of 0.05 + /0.4 ft. 
The voltage at the factory is maintained at 
2400 V (rms). 

a) Find the average power loss in the line before 
and after the load is added. 

b) Find the magnitude of the voltage at the sending 
end of the line before and after the load is added. 

10.34 A group of small appliances on a 60 Hz system 
requires 20 kVA at 0.85 pf lagging when operated at 
125 V (rms). The impedance of the feeder supplying 
the appliances is 0.01 + /0.08 0,. The voltage at the 
load end of the feeder is 125 V (rms). 

a) What is the rms magnitude of the voltage at the 
source end of the feeder? 

b) What is the average power loss in the feeder? 

c) What size capacitor (in microfarads) across the 
load end of the feeder is needed to improve the 
load power factor to unity? 

d) After the capacitor is installed, what is the rms 
magnitude of the voltage at the source end of 
the feeder if the load voltage is maintained at 
125 V (rms)? 

e) What is the average power loss in the feeder 
for (d)? 

10.35 a) Find the six branch currents Ia - If in the circuit 
in Fig. PI 0.35. 

b) Find the complex power in each branch of the 
circuit. 

c) Check your calculations by verifying that the 
average power developed equals the average 
power dissipated. 

d) Check your calculations by verifying that the 
magnetizing vars generated equal the magnetiz
ing vars absorbed. 

Figure P10.35 

lft - I c 

/I ft ^...-/1 ft-

10/0! 
V (rms) 

I, 

°T' 

. /2 ft 

-/1 ft 1 ft 
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10.36 a) Find the average power delivered to the 8 ft 
resistor in the circuit in Fig. P10.36. 

b) Find the average power developed by the ideal 
sinusoidal voltage source. 

c) FindZab . 

d) Show that the average power developed equals 
the average power dissipated. 

Figure P10.36 

/6 ft 

272/0! / + 
V (rms) ^ -

10.39 a) Find the average power delivered by the sinu
soidal current source in the circuit of Fig. PI0.39. 

b) Find the average power delivered to the 20 ft 
resistor. 

Figure P10.39 

5/0° A 
(rms) © :60ft1 

4:1 

Ideal 
:40ft 

:20ft 

10.37 a) Find the average power dissipated in each resis
tor in the circuit in Fig. PI0.37. 

b) Check your answer by showing that the total 
power developed equals the total power 
absorbed. 

Figure P10.37 

15ft 

O100/0! 
V (rms) 

/50 ft 

1400 Turns 

lft 
-WV-

100 Turns -j2 ft 

10.38 The sinusoidal voltage source in the circuit in 
Fig. P10.38 is developing an rms voltage of 2000 V. 
The 4 ft load in the circuit is absorbing four times 
as much average power as the 25 ft load. The two 
loads are matched to the sinusoidal source that has 
an internal impedance of 500/0° kft. 

a) Specify the numerical values of a^ and a2. 

b) Calculate the power delivered to the 25 ft load. 

c) Calculate the rms value of the voltage across the 
4 ft resistor. 

Figure P10.38 

500 ft: 

2000/0° / + 
V ( r m s ) U 

ffi':l 

Ideal | 

a2:l 

Ideal 

:25ft 

:4ft 

Section 10.6 

10.40 Prove that if only the magnitude of the load 
impedance can be varied, most average power is 
transferred to the load when |ZL| = |ZTiJ. (Hint: In 
deriving the expression for the average load 
power, write the load impedance (ZL) in the form 
ZL = |ZL| cos 6 + j\ZL\ sin 6, and note that only 
|ZL| is variable.) 

10.41 For the frequency-domain circuit in Fig. PI0.41, 
calculate: 
a) the rms magnitude of V(). 

b) the average power dissipated in the 9 ft resistor. 

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to 
the 9 ft load resistor. 

Figure P10.41 

180/0! / + 
V ( r m s ) U 

3ft 
•vw-

/4 ft 

/3ftx 

^ j /9 ft v<> i 9 ft 

10.42 The 9f t resistor in the circuit in Fig. PI 0.41 is 
replaced with a variable impedance Za. Assume Z(> 

is adjusted for maximum average power transfer 
to Z0. 

a) What is the maximum average power that can 
be delivered to ZJl 

b) What is the average power developed by the 
ideal voltage source when maximum average 
power is delivered to Z01 

c) Choose single components from Appendix H to 
form an impedance that dissipates average 
power closest to the value in part (a). Assume 
the source frequency is 60 Hz. 
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10.43 Suppose an impedance equal to the conjugate of 
the Thevenin impedance is connected to the termi
nals c,d of the circuit shown in Fig. P9.78. 

a) Find the average power developed by the sinu
soidal voltage source. 

b) What percentage of the power developed by the 
source is lost in the linear transformer? 

10.44 a) Determine the load impedance for the circuit 
shown in Fig. PI0.44 that will result in maximum 
average power being transferred to the load if 
a) = 5 krad/s. 

b) Determine the maximum average power 
delivered to the load from part (a) if vg = 
80 cos 5000f V. 

c) Repeat part (a) when ZL. consists of two com
ponents from Appendix H whose values yield a 
maximum average power closest to the value 
calculated in part (b). 

Figure P10.44 

8mH 
A T Y V 

5/ttF 

-1(-
40 O 

10.45 The phasor voltage Vab in the circuit shown in 
Fig. P10.45 is 240/fT V (rms) when no external load 
is connected to the terminals a,b.When a load having 
an impedance of 90 - /30 fl is connected across a,b, 
the value of Vab is 115.2 - /86.4 V (rms). 

a) Find the impedance that should be connected 
across a,b for maximum average power transfer. 

b) Find the maximum average power transferred to 
the load of (a). 

c) Construct the impedance of part (a) using com
ponents from Appendix H if the source fre
quency is 60 Hz. 

Figure P10.45 

A circuit 
operating in 
the sinusoidal 
steady , 
state 

a«-
+ 

b) What percentage of the total power developed 
in the circuit is delivered to ZL? 

Figure P10.46 

2512 / i o n 

A 100/(TV (rms) / [/3 ft 

10.47 The peak amplitude of the sinusoidal voltage 
PSPICE source in the circuit shown in Fig. P10.47 is 180 V, 

MULTISIM a n d i t s f r e q u e r i Cy j s 5000 rad/s. The load resistor 
can be varied from 0 to 4000 ft, and the load capac
itor can be varied from 0.1 ^ F to 0.5 /xF. 

a) Calculate the average power delivered to the 
load when R0 = 2000 ft and C0 = 0.2 /iF. 

b) Determine the settings of R0 and C0 that will 
result in the most average power being trans
ferred to R0. 

c) What is the most average power in (b)? Is it 
greater than the power in (a)? 

d) If there are no constraints on R() and Ca, what is 
the maximum average power that can be deliv
ered to a load? 

e) What are the values of R0 and Ca for the condi
tion of (d)? 

f) Is the average power calculated in (d) larger 
than that calculated in (c)? 

Figure P10.47 

6kft 

10.48 a) Assume that R6 in Fig. P10.47 can be varied 
PSPICE between 0 and 10 kXl. Repeat (b) and (c) of 

MULTISIH p r o b i e m 10.47. 

b) Is the new average power calculated in (a) 
greater than that found in Problem 10.47(a)? 

c) Is the new average power calculated in (a) less 
than that found in 10.47(d)? 

10.46 The load impedance ZL for the circuit shown in 
Fig. PI 0.46 is adjusted until maximum average 
power is delivered to ZL. 

a) Find the maximum average power delivered 
to ZL. 

10.49 The variable resistor in the circuit shown in 
Fig. P10.49 is adjusted until the average power it 
absorbs is maximum. 

a) FindR. 

b) Find the maximum average power. 
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c) Find a resistor in Appendix H that would have 
the most average power delivered to it. 

Figure P10.49 

6ft -/18X1 20 O J60 n 

10.50 The variable resistor R() in the circuit shown in 
Fig. P10.50 is adjusted until maximum average 
power is delivered to Ra. 

a) What is the value of R() in ohms? 

b) Calculate the average power delivered to Rt}. 

c) If Ra is replaced with a variable impedance Z0% 

what is the maximum average power that can be 
delivered to Z„? 

d) In (c), what percentage of the circuit's devel
oped power is delivered to the load Zal 

Figure P10.50 

100/0! V (rms) 

10.51 The values of the parameters in the circuit shown 
in Fig. P10.51 are Lt = 8mH; L2 = 2mH; 
k = 0.75; Rg = 1 O; and RL = 7 0 . If 
vs = 54 V2 cos 1000* V, find 

a) the rms magnitude of vQ 

b) the average power delivered to RL 

c) the percentage of the average power generated 
by the ideal voltage source that is delivered to RL. 

Figure P10.51 

10.52 Assume the coefficient of coupling in the circuit in 
Fig. PI0.51 is adjustable. 

a) Find the value of k that makes va equal to zero. 

b) Find the power developed by the source when k 
has the value found in (a). 

10.53 Assume the load resistor (RL) in the circuit in 
Fig. PI0.51 is adjustable. 

a) What value of RL will result in the maximum 
average power being transferred to RjJI 

b) What is the value of the maximum power 
transferred? 

10.54 The sending-end voltage in the circuit seen in 
Fig. PI0.54 is adjusted so that the rms value of the 
load voltage is always 4000 V. The variable capaci
tor is adjusted until the average power dissipated in 
the line resistance is minimum. 

a) If the frequency of the sinusoidal source is 
60 Hz, what is the value of the capacitance in 
microfarads? 

b) If the capacitor is removed from the circuit, 
what percentage increase in the magnitude of V, 
is necessary to maintain 4000 V at the load? 

c) If the capacitor is removed from the circuit, 
what is the percentage increase in line loss? 

Figure P10.54 

1.25 a /10 O 

10.55 Find the impedance seen by the ideal voltage source 
in the circuit in Fig. PI 0.55 when Z() is adjusted for 
maximum average power transfer to Z0. 

/ i n 

Figure P10.55 

10/0! 
V (rms) 

10.56 The impedance ZL in the circuit in Fig. P10.56 is 
adjusted for maximum average power transfer to 
ZL- The internal impedance of the sinusoidal volt
age source is 4 + /7 O. 

a) What is the maximum average power delivered 
toZ L ? 

b) What percentage of the average power delivered 
to the linear transformer is delivered to ZL? 
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Figure P10.56 

4 n P& i 12 a . i n r i 11 n 
L«—1—w 1 / l u l l .—<wv-

120/0°/+N 
V(rms) W /5 f t ; /23 ft 

Source — -L Transformer ,^_ L o a d 

10.57 a) Find the steady-state expression for the currents 
PSPICE 

MULTISIM 
/g and iL in the circuit in Fig. PI 0.57 when 
vg = 200 cos 10,000; V. 

b) Find the coefficient of coupling. 

c) Find the energy stored in the magnetically cou
pled coils at t - 50TT /xs and t = 100-77 /is. 

d) Find the power delivered to the 15 H resistor. 

e) If the 15X1 resistor is replaced by a variable 
resistor i?L, what value of RL will yield maxi
mum average power transfer to i?L? 

f) What is the maximum average power in (e)? 

g) Assume the 15 H resistor is replaced by a vari
able impedance ZL. What value of ZL will result 
in maximum average power transfer to ZL? 

h) What is the maximum average power in (g)? 

Figure P10.57 

0.5 mH 

lmH 

0 

15 ft 

10.58 The sinusoidal voltage source in the circuit in 
Fig. P10.58 is operating at a frequency of 20 krad/s. 
The variable capacitive reactance in the circuit is 
adjusted until the average power delivered to the 
100 H resistor is as large as possible. 

a) Find the value of C in microfarads. 

b) When C has the value found in (a), what is the 
average power delivered to the 100 H resistor? 

c) Replace the 100 11 resistor with a variable resis
tor R(). Specify the value of R() so that maximum 
average power is delivered to Ra. 

d) What is the maximum average power that can 
be delivered to R,,? 

Figure P10.58 

15 ar A(r%Uj2iHl} Vl0il 

• 1-5 L 

Ideal 

100 Q 

10.59 a) Find the turns ratio NJN2 for the ideal trans
former in the circuit in Fig. PI0.59 so that 
maximum average power is delivered to the 
400 a load. 

b) Find the average power delivered to the 
400 a load. 

c) Find the voltage \ { . 

d) What percentage of the power developed by the 
ideal current source is delivered to the 400 11 
resistor? 

Figure P10.59 

2.25/0°( * 
mA (rms) ^ 

10.60 Tlie load impedance ZL in the circuit in Fig. P10.60 
is adjusted until maximum average power is trans
ferred to ZL. 

a) Specify the value of Z L if N\ = 3600 turns and 
N2 = 600 turns. 

b) Specify the values of IL and VL when ZL is 
absorbing maximum average power. 

Figure P10.60 

50ft 7400 ft 

24 
V( rms) \-J 

/V, 

:N, v, ZL 

10.61 a) If TVi equals 1000 turns, how many turns should 
be placed on the N2 winding of the ideal trans
former in the circuit seen in Fig. P10.61 so that 
maximum average power is delivered to the 
6800 11 load? 

b) Find the average power delivered to the 6800 H 
resistor. 

c) What percentage of the average power deliv
ered by the ideal voltage source is dissipated in 
the linear transformer? 
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Figure P10.61 
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40 ft 
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6800 ft 

10.65 The ideal transformer connected to the 10 ft load 
in Problem 10.64 is replaced with an ideal trans
former that has a turns ratio of a:\. 

a) What value of a results in maximum average 
power being delivered to the 10 ft resistor? 

b) What is the maximum average power? 

10.62 The variable load resistor RL in the circuit shown in 
PSPICE Fig. PI0.62 is adjusted for maximum average power 

MULTISIM transfer to i?L. 

a) Find the maximum average power. 

b) What percentage of the average power developed 
by the ideal voltage source is delivered to RL 

when RL is absorbing maximum average power? 

c) Test your solution by showing that the power 
developed by the ideal voltage source equals the 
power dissipated in the circuit. 

Figure P10.62 

80 ft 20 ft 40 ft 
1 1:2 i 

500/0° f + 
V (rms) 360 ft 

10.63 Repea t Problem 10.62 for the circuit shown in 
PSPICE Fig. P10.63. 

MULTISIM 

Figure P10.63 

40/0! f + 
V(vms)\-

10.64 Find the average power delivered to the 10 ft resis
tor in the circuit of Fig. P10.64. 

Figure P10.64 

2.5 ft al : 2 0 1 - 7 | 3 0 : 1 1 

( i i 
\ ) \ 

Ideal I • [ideal] 

10ft 

Sections 10.1-10.6 

10.66 The hair dryer in the Practical Perspective uses a 

piwrecnvi 6 0 H z s m u s o i d a l voltage of 120 V (rms). The heater 
e lement must dissipate 250 W at the LOW setting, 
500 W at the MEDIUM setting, and 1000 W at the 

HIGH setting. 

a) Find the value for resistor R2 using the specifica
tion for the MEDIUM setting, using Fig. 10.31. 

b) Find the value for resistor Ri using the specifica
tion for the LOW setting, using the results from 
part (a) and Fig. 10.30. 

c) Is the specification for the HIGH setting satisfied? 

10.67 As seen in Problem 10.66, only two independent 
PRACTICAL power specifications can be made when two resis-

PERSPECTIVE * r 

PSPICE tors make up the healing element of the hair dryer. 
a) Show that the expression for the HIGH power 

rating (PH) is 

PH = 
Pi 

PA pr 

where PM = the MEDIUM power rating and 
PL = the LOW power rating. 

b) If PL = 250 W and PM = 750 W, what must the 
HIGH power rating be? 

10.68 Specify the values of R\ and R2 in the hair dryer cir-
pRAcncAt c u i t in Fig. 10.29 if the low power rating is 240 W 

PERSPECTIVE b r 0 

PSPICE and the high power rating is 1000 W Assume the 
MULTISIM supply voltage is 120 V (rms). (Hint: Work 

Problem 10.67 first.) 

10.69 If a third resistor is added to the hair dryer circuit in 
PRACTICAL Fig. 10.29, it is possible to design to three independ-

PSPICE ent power specifications. If the resistor R$ is added 
MULTISIM j n s e r i e s w i t h the Thermal fuse, then the correspon

ding LOW, MEDIUM, and HIGH power circuit dia
grams are as shown in Fig. P10.69. If the three 



Problems 397 

power settings are 600 W, 900 W, and 1200 W, 
respectively, when connected to a 120 V (rms) sup
ply, what resistor values should be used? 

Figure P10.69 

LOW MEDIUM HIGH 

10.70 You have been given the job of redesigning the hair 
PRACTICAL dryer described in Problem 10.66 for use in 
'ERSPECTIVE J 

DESIGN England. The standard supply voltage in England is 
PROBLEM ± M. -mf i~J f 

PSPICE 220 V (rms). What resistor values will you use in 
MULTISIM your design to meet the same power specifications? 

10.71 Repeat Problem 10.68 using single resistor values 
from Appendix H. Calculate the resulting low, 
medium, and high power ratings. 

10.72 Repeat Problem 10.70 using single resistor values 
from Appendix H. Calculate the resulting low, 
medium, and high power ratings. 
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Balanced 

Three-Phase Circuits 
Generating, transmitting, distributing, and using large blocks 
of electric power is accomplished with three-phase circuits. The 

comprehensive analysis of such systems is a field of study in its 

own right; we cannot hope to cover it in a single chapter. 

Fortunately, an understanding of only the steady-state sinusoidal 

behavior of balanced three-phase circuits is sufficient for engi

neers who do not specialize in power systems. We define what we 

mean by a balanced circuit later in the discussion. The same cir

cuit analysis techniques discussed in earlier chapters can be 

applied to either unbalanced or balanced three-phase circuits. 

Here we use these familiar techniques to develop several short

cuts to the analysis of balanced three-phase circuits. 

For economic reasons, three-phase systems are usually 

designed to operate in the balanced state. Thus, in this introduc

tory treatment, we can justify considering only balanced circuits. 

The analysis of unbalanced three-phase circuits, which you will 

encounter if you study electric power in later courses, relies heav

ily on an understanding of balanced circuits. 

The basic structure of a three-phase system consists of volt

age sources connected to loads by means of transformers and 

transmission lines. To analyze such a circuit, we can reduce it to a 

voltage source connected to a load via a line. The omission of the 

transformer simplifies the discussion without jeopardizing a basic 

understanding of the calculations involved. Figure 11.1 on 

page 400 shows a basic circuit. A defining characteristic of a bal

anced three-phase circuit is that it contains a set of balanced 

three-phase voltages at its source. We begin by considering these 

voltages, and then we move to the voltage and current relation

ships for the Y-Y and Y-A circuits. After considering voltage and 

current in such circuits, we conclude with sections on power and 

power measurement. 



Practical Perspective 
Transmission and Distribution of Electric Power 
In this chapter we introduce circuits that are designed to 
handle large blocks of electric power. These are the circuits 
that are used to transport electric power from the generating 
plants to both industrial and residential customers. We intro
duced the typical residential customer circuit as used in the 
United States as the design perspective in Chapter 9. Now we 
introduce the type of circuit used to deliver electric power to 
an entire residential subdivision. 

One of the constraints imposed on the design and oper
ation of an electric utility is the requirement that the utility 
maintain the rms voltage level at the customer's premises. 
Whether lightly loaded, as at 3:00 am, or heavily loaded, as 
at midaftemoon on a hot, humid day, the utility is obligated 
to supply the same rms voltage. Recall from Chapter 10 that 
a capacitor can be thought of as a source of magnetizing 
vars. Therefore, one technique for maintaining voltage levels 
on a utility system is to place capacitors at strategic loca
tions in the distribution network. The idea behind this tech
nique is to use the capacitors to supply magnetizing vars 

close to the loads requiring them, as opposed to sending 
them over the lines from the generator. We shall illustrate 
this concept after we have introduced the analysis of bal
anced three-phase circuits. 

399 



400 Balanced Three-Phase Circuits 

Three-phase 

Three-phase 

voltage • 
source 

line 

/ \ 

\ 
Three-phase 

load 

Figure 11.1 • A basic three-phase circuit. 

11.1 Balanced Three-Phase Voltages 
A set of balanced three-phase voltages consists of three sinusoidal volt
ages that have identical amplitudes and frequencies but are out of phase 
with each other by exactly 120°. Standard practice is to refer to the three 
phases as a, b, and c, and to use the a-phase as the reference phase. The 
three voltages are referred to as the a-phase voltage, the b-phase voltage, 
and the c-phase voltage. 

Only two possible phase relationships can exist between the a-phase 
voltage and the b- and c-phase voltages. One possibility is for the b-phase 
voltage to lag the a-phase voltage by 120°, in which case the c-phase volt
age must lead the a-phase voltage by 120°. This phase relationship is 
known as the abc (or positive) phase sequence. The only other possibility 
is for the b-phase voltage to lead the a-phase voltage by 120°, in which 
case the c-phase voltage must lag the a-phase voltage by 120°. This phase 
relationship is known as the acb (or negative) phase sequence. In phasor 
notation, the two possible sets of balanced phase voltages are 

Vh = V I M / - 1 2 0 ' 

vc = ym/+120- (11.1) 

and 

vm/o\ 
Vh = 1/,,,/ + 120°, 

Vc = ^ , , , / - 1 2 0 ° . (11.2) 

Equations 11.1 are for the abc, or positive, sequence. Equations 11.2 
are for the acb, or negative, sequence. Figure 11.2 shows the phasor dia
grams of the voltage sets in Eqs. 11.1 and 11.2. The phase sequence is 
the clockwise order of the subscripts around the diagram from Va. The 
fact that a three-phase circuit can have one of two phase sequences 
must be taken into account whenever two such circuits operate in par
allel. The circuits can operate in parallel only if they have the same 
phase sequence. 

Another important characteristic of a set of balanced three-phase 
voltages is that the sum of the voltages is zero. Thus, from either Eqs. 11.1 
or Eqs. 11.2, 

Figure 11.2 A Phasor diagrams of a balanced set of 
three-phase voltages, (a) The abc (positive) sequence, 
(b) The acb (negative) sequence. 

Vfl + V„ + Vr = 0. (11.3) 

Because the sum of the phasor voltages is zero, the sum of the instanta
neous voltages also is zero; that is, 

v& + vh + vc = 0. (11.4) 

Now that we know the nature of a balanced set of three-phase volt
ages, we can state the first of the analytical shortcuts alluded to in the 
introduction to this chapter: If we know the phase sequence and 



one voltage in the set, we know the entire set. Thus for a balanced three-
phase system, we can focus on determining the voltage (or current) in one 
phase, because once we know one phase quantity, we know the others. 

NOTE: Assess your understanding of three-phase voltages by trying 
Chapter Problems 11.2 and 11.3. 
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11.2 Three-Phase Voltage Sources 
A three-phase voltage source is a generator with three separate wind
ings distributed around the periphery of the stator. Each winding com
prises one phase of the generator. The rotor of the generator is an 
electromagnet driven at synchronous speed by a prime mover, such as a 
steam or gas turbine. Rotation of the electromagnet induces a sinusoidal 
voltage in each winding. The phase windings are designed so that the 
sinusoidal voltages induced in them are equal in amplitude and out of 
phase with each other by 120°. The phase windings are stationary with 
respect to the rotating electromagnet, so the frequency of the voltage 
induced in each winding is the same. Figure 11.3 shows a sketch of a two-
pole three-phase source. 

There are two ways of interconnecting the separate phase windings to 
form a three-phase source: in either a wye (Y) or a delta (A) configura
tion. Figure 11.4 shows both, with ideal voltage sources used to model the 
phase windings of the three-phase generator. The common terminal in the 
Y-connected source, labeled n in Fig. 11.4(a), is called the neutral terminal 
of the source. The neutral terminal may or may not be available for exter
nal connections. 

Sometimes, the impedance of each phase winding is so small (com
pared with other impedances in the circuit) that we need not account for it 
in modeling the generator; the model consists solely of ideal voltage 
sources, as in Fig. 11.4. However, if the impedance of each phase winding is 
not negligible, we place the winding impedance in series with an ideal 
sinusoidal voltage source. All windings on the machine are of the same 
construction, so we assume the winding impedances to be identical. The 
winding impedance of a three-phase generator is inductive. Figure 11.5 
shows a model of such a machine, in which is the winding resistance, and 
Xw is the inductive reactance of the winding. 

Because three-phase sources and loads can be either Y-connected 
or A-connected, the basic circuit in Fig. 11.1 represents four different 
configurations: 

Source 

Y 

Y 

A 

A 

Load 

Y 

A 

Y 

A 

We begin by analyzing the Y-Y circuit. The remaining three arrangements 
can be reduced to a Y-Y equivalent circuit, so analysis of the Y-Y circuit is 
the key to solving all balanced three-phase arrangements. We then illus
trate the reduction of the Y-A arrangement and leave the analysis of the 
A-Y and A-A arrangements to you in the Problems. 

Axis of 
a-phase 
winding 

Axis of 
c-phasc 
windine 

\ 
Axis of 
b-phase 
winding 

Stator 

Figure 11.3 A A sketch of a three-phase voltage source. 

Figure 11.4 A The two basic connections of an ideal 
three-phase source, (a) A Y-connected source, 
(b) A A-connected source. 



402 Balanced Three-Phase Circuits 

R, 

.Ifiw R,r 

jxw 
ivb fX* 

R,r 

^vw- JXW 

JXu 

(a) (b) 

Figure 11.5 • A model of a three-phase source with winding impedance: (a) a Y-connected source; and 
(b) a A-connected source. 

11.3 Analysis of the Wye-Wye Circuit 
Figure 11.6 illustrates a general Y-Y circuit, in which we included a fourth 
conductor that connects the source neutral to the load neutral. A fourth 
conductor is possible only in the Y-Y arrangement. (More about this 
later.) For convenience, we transformed the Y connections into "tipped-
over tees." In Fig. 11.6, Zga, Zgb, and Zgc represent the internal impedance 
associated with each phase winding of the voltage generator; Z l a , Z l b , and 
Z l c represent the impedance of the lines connecting a phase of the source 
to a phase of the load; Z0 is the impedance of the neutral conductor con
necting the source neutral to the load neutral; and Z A , Z B , and ZQ repre
sent the impedance of each phase of the load. 

We can describe this circuit with a single node-voltage equation. 
Using the source neutral as the reference node and letting VN denote the 
node voltage between the nodes N and n, we find that the node-voltage 
equation is 

Z0 
+ 

V N - V a 

Z A + Z i a
 + -¾ 

b'n 

Zn + Z I I , + Z lb 
+ 

'gb 

VN ~ Ve'n 

Zc + Z l c + ZfiC 
= 0. 

(11.5) 

v • 
' a n 

V • * c n 

v 

1 t 
C T 

7 

6̂-
) Vb-n 

Zgb 

a 

I.. 

n 

b 

c 

Zia 

z„ 

Zib 

Zlc 

A 

laA 

N 

i t ; c 

Z B 

Z A 

Z c 

Figure 11.6 • A three-phase Y-Y system. 
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This is the general equation for any circuit of the Y-Y configuration 
depicted in Fig. 11.6. But we can simplify Eq. 11.5 significantly if we now 
consider the formal definition of a balanced three-phase circuit. Such a 
circuit satisfies the following criteria: 

1. The voltage sources form a set of balanced three-phase voltages. 
In Fig. 11,6, this means that Va-n, Vb<n, and Vc<n are a set of bal
anced three-phase voltages. 

2. The impedance of each phase of the voltage source is the same. In 
Fig. 11.6, this means that Zga = Zg b = Zgc. 

3. The impedance of each line (or phase) conductor is the same. In 
Fig. 11.6, this means that Zi a = Z ^ = Z\c. 

4. The impedance of each phase of the load is the same. In Fig. 11.6, 
this means that ZA = ZB = ZQ. 

There is no restriction on the impedance of a neutral conductor; its 
value has no effect on whether the system is balanced. 

If the circuit in Fig. 11.6 is balanced, we may rewrite Eq. 11.5 as 

< Conditions for a balanced three-phase 
circuit 

1 ^ + 
A) 

• arT\ l * IVn I * r 
(11.6) 

where 

Z& - Z A + Z l a + Zga - ZB + Z]b + Zgb — Z c + Z l c + Z gc-

The right-hand side of Eq. 11.6 is zero, because by hypothesis the numera
tor is a set of balanced three-phase voltages and Z^ is not zero. The only 
value of VN that satisfies Eq. 11.6 is zero. Therefore, for a balanced three-
phase circuit, 

VM = 0. (11.7) 

Equation 11.7 is extremely important. If VN is zero, there is no differ
ence in potential between the source neutral, n, and the load neutral, N; 
consequently, the current in the neutral conductor is zero. Hence we may 
either remove the neutral conductor from a balanced Y-Y configuration 
(It, = 0) or replace it with a perfect short circuit between the nodes n and 
N (VN = 0). Both equivalents are convenient to use when modeling bal
anced three-phase circuits. 

We now turn to the effect that balanced conditions have on the three 
line currents. With reference to Fig. 11.6, when the system is balanced, the 
three line currents are 

f 
laA 

h\i 

I 

V a ' n " 

Z A + Z l a 

v„„ -
ZB + Z\b 

v c - n -

v N 
+ zga 

VN 

+ zgb 

VN 
»cC 

Z<i> 

\w b'n 

Vc<n 

%C + Z\c + Zee Z„ 

(11.8) 

(11.9) 

(11.10) 

We see that the three line currents form a balanced set of three-phase cur
rents; that is, the current in each line is equal in amplitude and frequency 
and is 120° out of phase with the other two line currents. Thus, if we calcu
late the current IaA and we know the phase sequence, we have a shortcut 
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Figure 11.7 A A single-phase equivalent circuit. 

N 

for finding IbB and IcC. This procedure parallels the shortcut used to find 
the b- and c-phase source voltages from the a-phase source voltage. 

We can use Eq. 11.8 to construct an equivalent circuit for the a-phase 
of the balanced Y-Y circuit. From this equation, the current in the a-phase 
conductor line is simply the voltage generated in the a-phase winding of 
the generator divided by the total impedance in the a-phase of the circuit. 
Thus Eq. 11.8 describes the simple circuit shown in Fig. 11.7, in which the 
neutral conductor has been replaced by a perfect short circuit. The circuit 
in Fig. 11.7 is referred to as the single-phase equivalent circuit of a bal
anced three-phase circuit. Because of the established relationships 
between phases, once we solve this circuit, we can easily write down the 
voltages and currents in the other two phases. Thus, drawing a single-
phase equivalent circuit is an important first step in analyzing a three-
phase circuit. 

A word of caution here. The current in the neutral conductor in 
Fig. 11.7 is IaA, which is not the same as the current in the neutral conduc
tor of the balanced three-phase circuit, which is 

I, L A + IhR + I, la A bB IcC- (11.11) 

+ - f -

VAB 

' - . -? + 
T 

+ 
VBC 

- . + 

VAN 

VCN 

ZB 

ZA 

-
— 

i N 

Zc 

Figure 11.8 A Line-to-line and line-to-neutral voltages. 

Thus the circuit shown in Fig. 11.7 gives the correct value of the line cur
rent but only the a-phase component of the neutral current. Whenever 
this single-phase equivalent circuit is applicable, the line currents form 
a balanced three-phase set, and the right-hand side of Eq. 11.11 sums 
to zero. 

Once we know the line current in Fig. 11.7, calculating any voltages of 
interest is relatively simple. Of particular interest is the relationship 
between the line-to-line voltages and the line-to-neutral voltages. We 
establish this relationship at the load terminals, but our observations also 
apply at the source terminals. The line-to-line voltages at the load termi
nals can be seen in Fig. 11.8. They are VAB, VBC, and VCA> where the dou
ble subscript notation indicates a voltage drop from the first-named node 
to the second. (Because we are interested in the balanced state, we have 
omitted the neutral conductor from Fig. 11.8.) 

The line-to-neutral voltages are VAN, VBN, and VCN. We can now 
describe the line-to-line voltages in terms of the line-to-neutral voltages, 
using Kirchhoff s voltage law: 

AB AN VBN, (11.12) 

BC VRN V C N , (11.13) 

CA 'CN AN- (11.14) 

To show the relationship between the line-to-line voltages and the 
line-to-neutral voltages, we assume a positive, or abc, sequence. Using the 
line-to-neutral voltage of the a-phase as the reference, 

VAN = V * / 0 1 , 

BN V A / - 1 2 0 - , 

VCN = v , /+ i2o ; 

(11.15) 

(11.16) 

(11.17) 
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where V^ represents the magnitude of the line-to-neutral voltage. 
Substituting Eqs. 11.15-11.17 into Eqs. 11.12-11.14, respectively, yields 

AB 

BC 

Vs / 0 ° - ^ / - 1 2 0 ° = V3V,h /30° , (11.18) 

V* / - 1 2 0 ° - V* /120° = s/Wj, / - 9 0 ° , (11.19) 

YCA = J^/12GT - ^ / 0 £ = V3>< 6 /150°. (11.20) 

Equations 11.18-11.20 reveal that 

1. The magnitude of the line-to-line voltage is V3 times the magni
tude of the line-to-neutral voltage. 

2. The line-to-line voltages form a balanced three-phase set of voltages. 

3. The set of line-to-line voltages leads the set of line-to-neutral volt
ages by 30°. 

We leave to you the demonstration that for a negative sequence, the only 
change is that the set of line-to-line voltages lags the set of line-to-neutral 
voltages by 30°. The phasor diagrams shown in Fig. 11.9 summarize these 
observations. Here, again, is a shortcut in the analysis of a balanced sys
tem: If you know the line-to-neutral voltage at some point in the circuit, 
you can easily determine the line-to-line voltage at the same point and 
vice versa. 

We now pause to elaborate on terminology. Line voltage refers to the 
voltage across any pair of lines; phase voltage refers to the voltage across 
a single phase. Line current refers to the current in a single line; phase 
current refers to current in a single phase. Observe that in a A connec
tion, line voltage and phase voltage are identical, and in a Y connection, 
line current and phase current are identical. 

Because three-phase systems are designed to handle large blocks of 
electric power, all voltage and current specifications are given as rms val
ues. When voltage ratings are given, they refer specifically to the rating of 
the line voltage. Thus when a three-phase transmission line is rated at 
345 kV, the nominal value of the rms line-to-line voltage is 345,000 V. In 
this chapter we express all voltages and currents as rms values. 

Finally, the Greek letter phi (<f>) is widely used in the literature to 
denote a per-phase quantity. Thus V^„ I,/(, Z^, P^ and Q^ are interpreted 
as voltage/phase, current/phase, impedance/phase, power/phase, and 
reactive power/phase, respectively. 

Example 11.1 shows how to use the observations made so far to solve 
a balanced three-phase Y-Y circuit. 

Figure 11.9 A Phasor diagrams showing the relation
ship between line-to-tine and line-to-neutral voltages in 
a balanced system, (a) The abc sequence, (b) The acb 
sequence. 

Example 11.1 Analyzing a Wye-Wye Circuit 

A balanced three-phase Y-connected generator 
with positive sequence has an impedance of 
0.2 + y'0.5 il/4 and an internal voltage of 120 V/<f>. 
The generator feeds a balanced three-phase 
Y-connected load having an impedance of 
39 + /28 fl/4>. The impedance of the line connect
ing the generator to the load is 0.8 + /1,5 (l/4>. The 
a-phase internal voltage of the generator is speci
fied as the reference phasor. 

a) Construct the a-phase equivalent circuit of 
the system. 

b) Calculate the three line currents IaA, IbB, and IcC. 

c) Calculate the three phase voltages at the load. 
VAN, VBN< and VCN. 

d) Calculate the line voltages VAB, V1}C> and \CA at 
the terminals of the load. 
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e) Calculate the phase voltages at the terminals of 
the generator, Van, Vbn, and Vcn. 

f) Calculate the line voltages Vab, Vbc, and Vca at 
the terminals of the generator. 

g) Repeat (a)-(f) for a negative phase sequence. 

Solution 

a) Figure 11.10 shows the single-phase equivalent 
circuit. 

b) The a-phase line current is 

120 /0° 
L A = <= 

dA (0.2 + 0.8 + 39) + /(0.5 + 1.5 + 28) 

120 / 0 ° 
40 + /30 

= 2 .4/ -36.87° A. 

a' 0.2(2 /0-5 O a o.8(2 /1-50 A 
f 'VW ^VYY>_ 

' . i A 

© 120/0° V Van 

39 n 

1/28(1 

Figure 11.10 A The single-phase equivalent circuit for 
Example 11.1. 

For a positive phase sequence, 

IbB = 2.4 / -156.87° A, 

IcC = 2.4 /83.13° A. 

c) The phase voltage at the A terminal of the load is 

VAN = (39 + /28)(2.4/-36.87°) 

= 115.22/-1.19° V. 

For a positive phase sequence, 

VBN = 115.22/-121.19° V, 

VCN = 115.22/118.81° V. 

d) For a positive phase sequence, the line voltages 
lead the phase voltages by 30°; thus 

VAB = ( V 3 / 3 0 ° ) V A N 

= 199.58 /28.81° V, 

VBC = 199.58/-91.19° V, 

VCA = 199.58 /148.81° V. 

e) The phase voltage at the a terminal of the source is 

Van = 120 - (0.2 + /0.5)(2.4/-36.87°) 

= 120 - 1.29/31.33° 

= 118.90 - / 0 . 6 7 

= 118.90/-0.32° V. 

For a positive phase sequence, 

Vbn = 118.90/-120.32° V, 

Vcn = 118.90/119.68° V. 

f) The line voltages at the source terminals are 

Vab = (V5/30")V an 

- 205.94 /29.68° V, 

Vbc = 205.94 / -90 .32° V, 

Vca = 205.94/149.68° V. 

g) Changing the phase sequence has no effect on 
the single-phase equivalent circuit. The three line 
currents are 

IaA = 2.4 / -36 .87° A, 

I,,B = 2.4 /83.13° A, 

IcC = 2.4/-156.87° A. 

The phase voltages at the load are 

VAN = 115.22/-1.19° V, 

VBN = 115.22/118.81° V, 

VCN = 115.22/-121.19° V. 

For a negative phase sequence, the line voltages 
lag the phase voltages by 30°: 

VAB = ( V 3 / - 3 0 ° ) V A N 

- 199.58 / -31 .19° V, 

VBC = 199.58 /88.81° V, 

VCA = 199.58/-151.19° V. 

The phase voltages at the terminals of the gener
ator are 

Van - 118.90/-0.32° V, 

Vbll = 118.90/119.68° V, 

Vcn = 118.90/-120.32° V. 

The line voltages at the terminals of the genera
tor are 

Vab = ( V 3 / - 3 0 ° ) V a n 

= 205.94/-30.32° V, 

Vbc = 205.94 /89.68° V, 

V,,, = 205.94/-150.32° V. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 1—Know how to analyze a balanced, three-phase wye-wye circuit 

11.1 The voltage from A to N in a balanced three-
phase circuit is 240 /—30° V. If the phase 
sequence is positive, what is the value of VBC? 

Answer: 415.69/ -120 

11.2 

V. 

The c-phase voltage of a balanced three-phase 
Y-connected system is 450 / - 2 5 ° V. If the 
phase sequence is negative, what is the value 
ofVAB? 

Answer: 779.42 /65° V. 

11.3 The phase voltage at the terminals of a bal
anced three-phase Y-connected load is 2400 V. 
The load has an impedance of 16 + /12 il/cp 
and is fed from a line having an impedance of 
0.10 + /0.80 Cl/cj). The Y-connected source at 
the sending end of the line has a phase 

NOTE: Also try Chapter Problems 11.7, 11.9, and 11.11. 

sequence of acb and an internal impedance of 
0.02 -I- /0.16 n/<£. Use the a-phase voltage at 
the load as the reference and calculate (a) the 
line currents IaA, IbB, and IcC; (b) the line volt
ages at the source, Vab, Vbc, and Vca; and (c) the 
internal phase-to-neutral voltages at the source, 
Va<n, Vb-n, and Vc-n. 

Answer: (a) IaA = 120 / -36 .87° A, 
IbB = 120 /83.13° A, and 
IcC = 120/-156.87° A; 

(b) Vab = 4275.02 / -28 .38° V, 
Vbc = 4275.02 /91.62° V, and 
Vca = 4275.02 /-148.38° V; 

(c) Va.n = 2482.05 /1.93° V, 
Vb-n = 2482.05 /121.93° V, and 
Vc'n = 2482.05/-118.07° V. 

11.4 Analysis of the Wye-Delta Circuit 
If the load in a three-phase circuit is connected in a delta, it can be trans
formed into a wye by using the delta-to-wye transformation discussed in 
Section 9.6. When the load is balanced, the impedance of each leg of the 
wye is one third the impedance of each leg of the delta, or 

Relationship between three-phase 
delta-connected and wye-connected 
-4 impedance 

z - ~± 3 (11.21) 

which follows directly from Eqs. 9.51-9.53. After the A load has been 
replaced by its Y equivalent, the a-phase can be modeled by the single-
phase equivalent circuit shown in Fig. 11.11. 

We use this circuit to calculate the line currents, and we then use the 
line currents to find the currents in each leg of the original A load. The 
relationship between the line currents and the currents in each leg of the 
delta can be derived using the circuit shown in Fig. 11.12. 

When a load (or source) is connected in a delta, the current in each leg 
of the delta is the phase current, and the voltage across each leg is the 
phase voltage. Figure 11.12 shows that, in the A configuration, the phase 
voltage is identical to the line voltage. 

To demonstrate the relationship between the phase currents and line 
currents, we assume a positive phase sequence and let A/> represent the 
magnitude of the phase current. Then 

AB cr 
Ipc = / A / - H O " . 

l r A = At/120". 

Va-n 

Zga 
a 

Zu 

c 
A 

zA 

N 

Figure 11.11 A A single-phase equivalent circuit. 

(11.22) 

(11.23) Figure 11.12 • A circuit used to establish the 
relationship between line currents and phase currents in 

(11-24) a balanced A load. 
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Figure 11.13 • Phasor diagrams showing the 
relationship between line currents and phase currents in 
a A-connected load, (a) The positive sequence, (b) The 
negative sequence. 

In writing these equations, we arbitrarily selected IA B as the reference 
phasor. 

We can write the line currents in terms of the phase currents by direct 
application of Kirchhoff s current law: 

IaA =
 IAB ~ ICA 

= IA/Q° -U/120* 

= V3I4 / - 3 0 ° , 

IbB =
 IBC

 - IAB 

= U / - 1 2 0 ° - U. 

= ^ / ^ , / - 1 5 0 % 

(11.25) 

(11.26) 

IcC _ IcA ~~ IBC 

= / , , /120° - / ^ / - 1 2 0 ° 

= y/3IA /90° . (11.27) 

Comparing Eqs. 11.25-11.27 with Eqs. 11.22-11.24 reveals that the magni
tude of the line currents is V3 times the magnitude of the phase currents 
and that the set of line currents lags the set of phase currents by 30°. 

We leave to you to verify that, for a negative phase sequence, the line 
currents are V3 times larger than the phase currents and lead the phase 
currents by 30°. Thus, we have a shortcut for calculating line currents from 
phase currents (or vice versa) for a balanced three-phase A-connected 
load. Figure 11.13 summarizes this shortcut graphically. Example 11.2 
illustrates the calculations involved in analyzing a balanced three-phase 
circuit having a Y-connected source and a A-connected load. 

Example 11.2 Analyzing a Wye-Delta Circuit 

The Y-connected source in Example 11.1 feeds a 
A-connected load through a distribution line hav
ing an impedance of 0.3 + /0.9 Q,/4>. The load 
impedance is 118.5 + /85.8 Cl/4>. Use the a-phase 
internal voltage of the generator as the reference. 

a) Construct a single-phase equivalent circuit of the 
three-phase system. 

b) Calculate the line currents I a A , Ib B , and IcC. 

c) Calculate the phase voltages at the load terminals. 

d) Calculate the phase currents of the load. 

e) Calculate the line voltages at the source terminals. 

Solution 

a) Figure 11.14 shows the single-phase equivalent 
circuit. The load impedance of the Y equivalent is 

118.5 + /85.8 
= 39.5 + /28.6 ft/0. 

a' 0.212 /0.511 a 0.3 ft /0.9 0 A 

C_J 120/0° 

39.5 ft 

/28.6 ft 

N 

Figure 11.14 • The single-phase equivalent circuit for 
Example 11.2. 

b) The a-phase line current is 

120 /C 
IaA = (0.2 + 0.3 + 39.5) + /(0.5 + 0.9 + 28.6) 

120/0° 
rr ~ - = 2.4 / -36 .87° A. 
40 + /30 z 
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Hence 

IbB = 2.4/-156.87° A, 

IcC = 2.4 /83.13° A. 

c) Because the load is A connected, the phase volt
ages are the same as the line voltages. To calcu
late the line voltages, we first calculate VAN: 

VAN = (39.5 + /28.6)(2.4/-36.87°) 

= 117.04/-0.96° V. 

Because the phase sequence is positive, the line 
voltage VAB *S 

VAB = ( V 5 / 3 0 ' ) V A N 

= 202.72 /29.04° V. 

Therefore 

VBC = 202.72 / -90.96° V, 

VCA = 202.72 /149.04° V. 

d) The phase currents of the load may be calculated 
directly from the line currents: 

lAB 
1 

V3 
/30' aA 

= 1.39/-6.87° A. 

Once we know IAB, we also know the other load 
phase currents: 

IBC = 1.39/-126.87° A, 

ICA = 1.39/113.13° A. 

Note that we can check the calculation of IAB by 
using the previously calculated V A B ar>d the 
impedance of the A-connected load; that is, 

VA B _ 202.72/29.04° 
I A B ~" ~ Z ^ ' 118.5 +/85.8 

= 1.39/-6.87° A. 

e) To calculate the line voltage at the terminals of 
the source, we first calculate Van. Figure 11.14 
shows that Van is the voltage drop across the line 
impedance plus the load impedance, so 

Van = (39.8 + /29.5)(2.4/-36.87°) 

= 118.90/-0.32° V. 

The line voltage Vab is 

Vab = (V3~/30°)Van, 

or 

Vab = 205.94 /29.68° V. 

Therefore 

Vbc = 205.94/-90.32° V, 

Vca = 205.94/149.68° V. 

^ASSESSMENT PROBLEMS 

Objective 2—Know how to analyze a balanced, three-phase wye-delta connected circuit 

11.4 The current ICA in a balanced three-phase 
A-connected load is 8 /—15° A. If the phase 
sequence is positive, what is the value of IcC? 

Answer: 13 .86/ -45° A. 

11.5 A balanced three-phase A-connected load is 
fed from a balanced three-phase circuit. The 
reference for the b-phase line current is toward 
the load. The value of the current in the 
b-phase is 12 /65° A. If the phase sequence is 
negative, what is the value of I A B ? 

Answer: 6.93 / - 8 5 ° A. 

11.6 The line voltage V A B at the terminals of a bal
anced three-phase A-connected load is 
4160 / 0 ° V. The line current IaA is 
69 .28 / -10° A. 

a) Calculate the per-phase impedance of the 
load if the phase sequence is positive. 

b) Repeat (a) for a negative phase sequence. 

Answer: (a) 104 / - 2 0 ° H; 

(b) 104/+40° a . 

11.7 The line voltage at the terminals of a balanced 
A-connected load is 110 V. Each phase of the 
load consists of a 3.667 II resistor in parallel with 
a 2.75 Cl inductive impedance. What is the mag
nitude of the current in the line feeding the load? 

Answer: 86.60 A. 

NOTE: Also try Chapter Problems 11.12,11.13, and 11.16. 
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IaA 

%B 
* • 

Ice' 

B + 
vBN 

^B 

zA 

— 

C 

i Ts 
» i\ 

Zc 

Figure 11.15 • A balanced Y load used to introduce 
average power calculations in three-phase circuits. 

11.5 Power Calculations in Balanced 
Three-Phase Circuits 

So far, we have limited our analysis of balanced three-phase circuits to 
determining currents and voltages. We now discuss three-phase power 
calculations. We begin by considering the average power delivered to a 
balanced Y-connected load. 

Average Power in a Balanced Wye Load 
Figure 11.15 shows a Y-connected load, along with its pertinent currents and 
voltages. We calculate the average power associated with any one phase by 
using the techniques introduced in Chapter 10. With Eq. 10.21 as a starting 
point, we express the average power associated with the a-phase as 

^A = | V A N | | I a A | c o s ( t 9 v A - M , (11.28) 

where 8„A and 0,A denote the phase angles of VAN and IuA, respectively. 
Using the notation introduced in Eq. 11.28, we can find the power associ
ated with the b- and c-phases: 

Pa = |VBNl|IbBl«>s(0vB-0/B); 

Pc = !V C N | | I c C | cos(f \ c -0 ; C ) . 

(11.29) 

(11.30) 

In Eqs. 11.28-11.30, all phasor currents and voltages are written in terms 
of the rms value of the sinusoidal function they represent. 

In a balanced three-phase system, the magnitude of each line-to-neutral 
voltage is the same, as is the magnitude of each phase current. The argu
ment of the cosine functions is also the same for all three phases. We 
emphasize these observations by introducing the following notation: 

and 

Vd, = |VA N | = |VBNI = IVCNI, (11.31) 

(11.32) 

(11.33) 

Moreover, for a balanced system, the power delivered to each phase of the 
load is the same, so 

PA = PB = PC = P* = V ^ cos ^ , (11.34) 

where P^ represents the average power per phase. 
The total average power delivered to the balanced Y-connected load 

is simply three times the power per phase, or 

PT = 3P4) = 3V<hI(!)cosO (11.35) 

Expressing the total power in terms of the rms magnitudes of the line volt
age and current is also desirable. If we let VL and IL represent the rms 
magnitudes of the line voltage and current, respectively, we can modify 
Eq. 11.35 as follows: 

Total real power in a balanced 
three-phase load • 

3 ( ^ ) / L C ° ! 4> 

V 3 V L / L c o s ^ . (11.36) 
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In deriving Eq. 11.36, we recognized that, for a balanced Y-connected 
load, the magnitude of the phase voltage is the magnitude of the line volt
age divided by V5, and that the magnitude of the line current is equal to 
the magnitude of the phase current. When using Eq. 11.36 to calculate the 
total power delivered to the load, remember that 0$ is the phase angle 
between the phase voltage and current. 

Complex Power in a Balanced Wye Load 
We can also calculate the reactive power and complex power associated 
with any one phase of a Y-connected load by using the techniques intro
duced in Chapter 10. For a balanced load, the expressions for the reactive 
power are 

2r = 3Q^ = V3VL/Lsin^. 

(11.37) 

(11.38) 

Equation 10.29 is the basis for expressing the complex power associated 
with any phase. For a balanced load, 

S<t> - ^AN^aA _ ^BNlbB ~ VCNIcC v; (11.39) 

where V^ and 1̂ , represent a phase voltage and current taken from the 
same phase. Thus, in general, 

(11.40) 

(11.41) 

< Total reactive power in a balanced 
three-phase load 

-4 Total complex power in a balanced three-
phase load 

Power Calculations in a Balanced Delta Load 
If the load is A-connected, the calculation of power—reactive or complex-
is basically the same as that for a Y-connected load. Figure 11.16 shows a 
A-connected load, along with its pertinent currents and voltages. The 
power associated with each phase is 

^ A = |VABI|IAB|COS(0V A B - 0/AB), 

PB = |VBCI|IBC|C°S(0VBC " 0'-BC)» 

^ c = | V C A I | I C A | C O S ( 0 V C A - 0 ( C A ) . 

For a balanced load, 

|V A B | = IVBCI = IVCAI = V * 

HABI = IIBCI = IICAI = / * 

0<AB = #t>BC ~ /̂BC = «̂CA e vAB rCA = 0., 

and 

PA = PB = Pc = Pd> = K ^ c o s ^ . 

Note that Eq. 11.48 is the same as Eq. 11.34. Thus, in a balanced load, 
regardless of whether it is Y- or A-connected, the average power per phase 
is equal to the product of the rms magnitude of the phase voltage, the rms 
magnitude of the phase current, and the cosine of the angle between the 
phase voltage and current. 

B L ZA V,-CA 

(11.42) 

(11.43) 

(11.44) V M 

(11.45) 
Figure 11.16 • A A-connected load used to discuss 

(11.46) power calculations. 

(11.47) 

(11.48) 



The total power delivered to a balanced A-connected load is 

P r = 3 ^ = 3 1 ^ cos 0* 

= V3VL /Lcos0*. (11-49) 

Note that Eq. 11.49 is the same as Eq. 11.36. The expressions for reactive 
power and complex power also have the same form as those developed for 
the Y load: 

Q^ = V4>Ilf>sme4>; (11.50) 

Qr = 3Q* = 3VV 0 sin $+; (11.51) 

S<i> = P<i> + jQ^> = V ^ l J ; (11.52) 

ST = 3Slb = V3VLIL/$£. (11.53) 

Instantaneous Power in Three-Phase Circuits 
Although we are primarily interested in average, reactive, and complex 
power calculations, the computation of the total instantaneous power is 
also important. In a balanced three-phase circuit, this power has an inter
esting property: It is invariant with time! Thus the torque developed at the 
shaft of a three-phase motor is constant, which in turn means less vibra
tion in machinery powered by three-phase motors. 

Let the instantaneous line-to-neutral voltage vAN be the reference, 
and, as before, 0^ is the phase angle 0„A — 0/A. Then, for a positive phase 
sequence, the instantaneous power in each phase is 

PA = vANiaA = VmIm cos art cos (a>t - 04), 

PB = VBNA>B = V,„Im cos (art - 120°) cos (a>t - 0 , / , - 120°), 

Pc = UCN'CC = VinImcos(a)t + 120°) cos (art - 0 ^ , + 120°), 

where Vm and Im represent the maximum amplitude of the phase voltage 
and line current, respectively. The total instantaneous power is the sum of 
the instantaneous phase powers, which reduces to 1.5V mIm cos 9^, that is, 

PT = PA + PB + Pc = 1.5VlfI/mcos00. 

Note this result is consistent with Eq. 11.35 since Vm = V2~V'$ and 
Im = V2/^ (see Problem 11.26). 

Examples 11.3-11.5 illustrate power calculations in balanced three-
phase circuits. 

V3 cos0rf 
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Example 11.3 Calculating Power in a Three-Phase Wye-Wye Circuit 

a) Calculate the average power per phase delivered 
to the Y-connected load of Example 11.1. 

b) Calculate the total average power delivered to 
the load. 

c) Calculate the total average power lost in the line. 

d) Calculate the total average power lost in the 
generator. 

e) Calculate the total number of magnetizing vars 
absorbed by the load. 

f) Calculate the total complex power delivered by 
the source. 

Solution 

a) From Example 11.1, V^ = 115.22 V, I4 = 2.4 A, 
and 0^ = -1.19 - (-36.87) = 35.68°. Therefore 

?$ = (115.22)(2.4) cos 35.68' 

= 224.64 W. 

The power per phase may also be calculated 
from l\R^ or 

P+ = (2.4)2(39) = 224.64 W. 

b) The total average power delivered to the load is 
pT = 3 / ^ = 673.92 W. We calculated the line 
voltage in Example 11.1, so we may also use 
Eq. 11.36: 

PT = V3(199.58)(2.4) cos 35.68° 

= 673.92 W. 

c) The total power lost in the line is 

PVme = 3(2.4)2(0.8) = 13.824 W. 

d) The total internal power lost in the generator is 

gen 
3(2.4)2(0.2) = 3.456 W. 

c) The total number of magnetizing vars absorbed 
by the load is 

QT = V5( 199.58)(2.4) sin 35.68° 

= 483.84 VAR. 

f) The total complex power associated with the 
source is 

ST = 3St = -3(120)(2.4) /36.87° 

= -691.20 - /518.40 VA. 

The minus sign indicates that the internal power 
and magnetizing reactive power are being deliv
ered to the circuit. We check this result by calcu
lating the total and reactive power absorbed by 
the circuit: 

P = 673.92 + 13.824 + 3.456 

= 691.20 W (check), 

Q = 483.84 + 3(2.4)2(1.5) + 3(2.4)2(0.5) 

= 483.84 + 25.92 + 8.64 

= 518.40 VAR(check). 

Example 11.4 Calculating Power in a Three-Phase Wye-Delta Circuit 

a) Calculate the total complex power delivered to 
the A-connected load of Example 11.2. 

b) What percentage of the average power at the 
sending end of the line is delivered to the load? 

Solution 

a) Using the a-phase values from the solution of 
Example 11.2, we obtain 

V^ = VAB = 202.72 /29.04° V, 

Ia = IAB = 1 3 9 / - 6 . 8 7 a A . 

Using Eqs. 11.52 and 11.53, we have 

ST = 3(202.72 /29.04° )(1.39 /6.87°) 

= 682.56 + /494.21 VA. 

b) The total power at the sending end of the distri
bution line equals the total power delivered to 
the load plus the total power lost in the line; 
therefore 

/»input = 682.56 + 3(2.4)2(0.3) 

= 687.74 W. 

The percentage of the average power reaching 
the load is 682.56/687.74, or 99.25%. Nearly 
100% of the average power at the input is 
delivered to the load because the impedance of 
the line is quite small compared to the load 
impedance. 
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Example 11.5 Calculating Three-Phase Power with an Unspecified Load 

A balanced three-phase load requires 480 kW at a 
lagging power factor of 0.8. The load is fed from a 
line having an impedance of 0.005 + /0.025 0/<£. 
The line voltage at the terminals of the load is 600 V. 

a) Construct a single-phase equivalent circuit of 
the system. 

b) Calculate the magnitude of the line current. 

c) Calculate the magnitude of the line voltage at 
the sending end of the line. 

d) Calculate the power factor at the sending end of 
the line. 

Solution 

a) Figure 11.17 shows the single-phase equivalent 
circuit. We arbitrarily selected the line-to-neutral 
voltage at the load as the reference. 

0.005 n /0.025 n 
a • 'VW— —<'Y '̂Y-^ 9 A 

+ 
fa* 

•— 

"C 600 
+ 

— « »N 

160 kW at 0.8 lag 

Figure 11.17 • The single-phase equivalent circuit for 
Example 11.5. 

b) The line current I*A is given by 

600 

V3 
IaA = (160 + /120)103, 

or 

IaA = 577.35 /36.87° A. 

Therefore, IaA = 577.35 / -36 .87° A. The mag
nitude of the line current is the magnitude of IaA: 

IL = 577.35 A. 

We obtain an alternative solution for IL from 
the expression 

pr 

h. 

= V3VLILcosBp 

= V3(600)/L(0.8) 

= 480,000 W; 

480,000 
V3(600)(0.8) 

1000 
V3 

= 577.35 A. 

c) To calculate the magnitude of the line voltage at 
the sending end, we first calculate Van. From 
Fig. 11.17, 

Vn AN 

600 

+ Z,l (HA 

-z= + (0.005 + /0.025)(577.35/-36.87°) 

= 357.51 /1.57° V. 

Thus 

VL = V3|V :J 

= 619.23 V. 

d) The power factor at the sending end of the line 
is the cosine of the phase angle between Van 

and IaA: 

pf = cos [1.57° - (-36.87°)] 

= cos 38.44° 

= 0.783 lagging. 

An alternative method for calculating the power 
factor is to first calculate the complex power at 
the sending end of the line: 

S(b = (160 + /12())103 + (577.35)2(0.005 + /0.025) 

= 161.67 +/128.33 kVA 

= 206.41 /38.44° kVA. 

The power factor is 

pf = cos 38.44° 

= 0.783 lagging. 

Finally, if we calculate the total complex power 
at the sending end, after first calculating the 
magnitude of the line current, we may use this 
value to calculate VL. That is, 

V3VJL = 3(206.41) x 103, 

3(206.41) X 103 

Vi = 
V3(577.35) ' 

= 619.23 V. 
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^ A S S E S S M E N T PROBLEMS 

Objective 3—Be able to calculate power (average, reactive, and complex) in any three-phase circuit 

11.8 The three-phase average power rating of the 
central processing unit (CPU) on a mainframe 
digital computer is 22,659 W. The three-phase 
line supplying the computer has a line voltage 
rating of 208 V (rms). The line current is 73.8 A 
(rms).The computer absorbs magnetizing VARs. 

a) Calculate the total magnetizing reactive 
power absorbed by the CPU. 

b) Calculate the power factor. 

Answer: (a) 13,909.50 VAR; 

(b) 0.852 lagging. 

NOTE: Also try Chapter Problems 11.22 and 11.24. 

11.9 The complex power associated with each phase 
of a balanced load is 144 + /192 kVA. The line 
voltage at the terminals of the load is 2450 V. 

a) What is the magnitude of the line current 
feeding the load? 

b) The load is delta connected, and the imped
ance of each phase consists of a resistance in 
parallel with a reactance. Calculate R and X. 

c) The load is wye connected, and the imped
ance of each phase consists of a resistance in 
series with a reactance. Calculate R and X. 

Answer: (a) 169.67 A; 

(b)R = 41.68 ft, X = 31.26 ft; 

(c) R = 5 ft, X = 6.67 ft. 

11.6 Measuring Average Power 
in Three-Phase Circuits 

The basic instrument used to measure power in three-phase circuits is the 
electrodynamometer wattmeter. It contains two coils. One coil, called the 
current coil, is stationary and is designed to carry a current proportional to 
the load current. The second coil, called the potential coil, is movable and 
carries a current proportional to the load voltage. The important features 
of the wattmeter are shown in Fig. 11.18. 

The average deflection of the pointer attached to the movable coil is 
proportional to the product of the effective value of the current in the cur
rent coil, the effective value of the voltage impressed on the potential coil, 
and the cosine of the phase angle between the voltage and current. The 
direction in which the pointer deflects depends on the instantaneous polar
ity of the current-coil current and the potential-coil voltage.Therefore each 
coil has one terminal with a polarity mark —usually a plus sign—but some
times the double polarity mark ± is used. The wattmeter deflects upscale 
when (1) the polarity-marked terminal of the current coil is toward the 
source, and (2) the polarity-marked terminal of the potential coil is con
nected to the same line in which the current coil has been inserted. 

The Two-Wattmeter Method 

Consider a general network inside a box to which power is supplied by 
n conducting lines. Such a system is shown in Fig. 11.19. 

If we wish to measure the total power at the terminals of the box, we 
need to know n — 1 currents and voltages. This follows because if we 
choose one terminal as a reference, there are only n - 1 independent 
voltages. Likewise, only n — 1 independent currents can exist in the n con
ductors entering the box. Thus the total power is the sum of n — 1 product 
terms; that is, p = vxi\ + v2t2 + • • • + t>fl_rL_j. 

Watt 
scale 

Current-coil 
terminals 

Potential-coil 
terminals Pointer 

Figure 11.18 • The key features of the 
electrodynamometer wattmeter. 
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Applying this general observation, we can see that for a three-
conductor circuit, whether balanced or not, we need only two wattmeters 
to measure the total power. For a four-conductor circuit, we need three 
wattmeters if the three-phase circuit is unbalanced, but only two 
wattmeters if it is balanced, because in the latter case there is no current in 
the neutral line. Thus, only two wattmeters are needed to measure the 
total average power in any balanced three-phase system. 

The two-wattmeter method reduces to determining the magnitude 
and algebraic sign of the average power indicated by each wattmeter. We 
can describe the basic problem in terms of the circuit shown in Fig. 11.20, 
where the two wattmeters are indicated by the shaded boxes and labeled 
W\ and W2. The coil notations cc and pc stand for current coil and poten
tial coil, respectively. We have elected to insert the current coils of the 
wattmeters in lines aA and cC. Thus, line bB is the reference line for the 
two potential coils. The load is connected as a wye, and the per-phase load 
impedance is designated as Z^ = \Z\ /jh This is a general representation, 
as any A-connected load can be represented by its Y equivalent; further
more, for the balanced case, the impedance angle 0 is unaffected by the 
A-to-Y transformation. 

We now develop general equations for the readings of the two 
wattmeters. We assume that the current drawn by the potential coil of the 
wattmeter is negligible compared with the line current measured by the cur
rent coil. We further assume that the loads can be modeled by passive circuit 
elements so that the phase angle of the load impedance (0 in Fig. 11.20) lies 
between -90° (pure capacitance) and +90" (pure inductance). Finally, we 
assume a positive phase sequence. 

From our introductory discussion of the average deflection of the 
wattmeter, we can see that wattmeter 1 will respond to the product of 
|VAJJ|, |IaA^ a n d the cosine of the angle between V A B a n d IaA- M w e denote 
this wattmeter reading as Wh we can write 

Wi - IVABIPUCOS*, 

= VIA cos 0X. (11.54) 

It follows that 

W2 = |VCBI|ICC|COS02 

= VJLCOS02. (11.55) 

In Eq. 11.54,0] is the phase angle between VAB and IaA, and in Eq. 11.55, 
02 is the phase angle between VCB and Ic(> 

To calculate Wj and W2, we express 0] and 02 in terms of the imped
ance angle 0, which is also the same as the phase angle between the phase 
voltage and current. For a positive phase sequence, 

0} = 0 + 30° = 0^ + 30°, (11.56) 

02 = 0 - 30° = 0$ - 30°. (11.57) 

The derivation of Eqs. 11.56 and 11.57 is left as an exercise (see 
Problem 11.34). When we substitute Eqs. 11.56 and 11.57 into Eqs. 11.54 
and 11.55, respectively, we get 

Wi = K L / L cos (^ + 30°), (11.58) 

W2 = KL /LCOS(0A - 30°). (11.59) 

ht 
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General 
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Figure 11.19 • A general circuit whose power is 
supplied by n conductors. 
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Figure 11.20 • A circuit used to analyze the 
two-wattmeter method of measuring average power 
delivered to a balanced load. 
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(11.60) 

To find the total power, we add W] and W2; thus 

pT = W] + W2 = 2 V L / L C O S ^ C O S 3 0 " 

= V 3 V L / L C O S ^ , 

which is the expression for the total power in a three-phase circuit. 
Therefore we have confirmed that the sum of the two wattmeter readings 
yields the total average power. 

A closer look at Eqs. 11.58 and 11.59 reveals the following about the 
readings of the two wattmeters: 

1. If the power factor is greater than 0.5, both wattmeters read positive. 

2. If the power factor equals 0.5, one wattmeter reads zero. 
3. If the power factor is less than 0.5, one wattmeter reads negative. 

4. Reversing the phase sequence will interchange the readings on the 
two wattmeters. 

These observations are illustrated in the following example and in 
Problems 11.41-11.51. 

| Computing Wattmeter Readi 

Calculate the reading of each wattmeter in 
circuit in Fig. 11.20 if the phase voltage at 
load is 120 V and (a) Z+ = 8• + ; 
(b) Z 0 = 8 - ;6 ft; (c) Z^ = 5 + ;5 V3 12; 
(d) Zs = 10 / - 7 5 ° ft. (e) Verify for (a)-(d) 
the sum of the wattmeter readings equals the 
power delivered to the load. 

Solution 

a) Z(b = 10 /36.87° ft, VL = 120 V3V, and 
/ L = 120/10 = 12 A. 

W] = (120V3~)(12) cos (36.87° + 30°) 

= 979.75 W, 

W2 = (120 V3)(12) cos (36.87° - 30°) 

= 2476.25 W. 

b) Z& = 10 / -36 .87° ft, VL = 120V^ V, and 
/ L = 120/10 = 12 A. 

Wi = (120V3)(12) cos (-36.87° + 30°) 

= 2476.25 W, 

W2 = (120V3)(12) cos (-36.87° - 30°) 

= 979.75 W. 

ngs in 

the 
the 

6 ft; 
and 
that 
total 

Three-Phase Circuits 

c) Z^ = 5(1 + jV3) = 10 /60° O, VL = 120V3 V, 
a n d / L = 12 A. 

Wi = (120V5)(12) cos (60° + 30°) = 0, 

W2 = (120 V3)(12) cos (60° - 30°) 

= 2160 W. 

d) Z4> = 10 / - 7 5 ° ft, VL = 12QV3" V, and 
/ L = 12 A. 

Wi = (120V3)(12)cos(-75° + 30°) = 1763.63 W, 

W2 = (120V5)(12) cos (-75° - 30°) = -645.53 W. 

e) P r(a) = 3(12)2(8) - 3456 W, 

W} +W2 = 979.75 + 2476.25 

= 3456 W, 

P r(b) = P r(a) = 3456 W, 

Wi + W2 = 2476.25 + 979.75 

= 3456 W, 

/V(c) = 3(12)2(5) = 2160 W, 

Wt + W2 = 0 + 2160 

= 2160W, 

P r(d) = 3(12)2(2.5882) = 1118.10 W, 

Wi + W2 = 1763.63 - 645.53 

= 1118.10W. 

NOTE: Assess your understanding of the two-wattmeter method by trying Chapter Problems 11.43 and 11.44. 
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Figure 11.21 A A substation connected to a power 
plant via a three-phase line. 
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Figure 11.22 • A single phase equivalent circuit for 
the system in Fig. 11.21. 

Practical Perspective 
Transmission and Distribution of Electric Power 

At the start of this chapter we pointed out the obligation utilities have to 
maintain the rms voltage level at their customer's premises. Although the 
acceptable deviation from a nominal level may vary among different utilities 
we will assume for purposes of discussion that an allowable tolerance is 
± 5.8%. Thus a nominal rms voltage of 120 V could range from 113 to 
127 V. We also pointed out that capacitors strategically located on the sys
tem could be used to support voltage levels. 

The circuit shown in Fig. 11.21 represents a substation on a Midwestern 
municipal system. We will assume the system is balanced, the line-to-line 
voltage at the substation is 13.8 kV, the phase impedance of the distribu
tion line is 0.6 + /4.811, and the load at the substation at 3 PM on a hot, 
humid day in July is 3.6 M W and 3.6 magnetizing M V A R . 

Using the line-to-neutral voltage at the substation as a reference, the 
single-phase equivalent circuit for the system in Fig. 11.21 is shown in 
Fig. 11.22. The line current can be calculated from the expression for the 
complex power at the substation. Thus, 

13,800 

V3 
I*A = (1.2 + /1.2)10* 

I t follows that 

or 

I*A = 150.61 + /150.61 A 

I a A = 150.61 - /150.61 A. 

The line-to-neutral voltage at the generating plant is 

13,800 

V3 '0° + (0.6 + /4.8)(150.61 - /150.61) 

= 8780.74 + /632.58 

= 8803.50/4.12° V. 

Therefore the magnitude of the line voltage at the generating plant is 

|Vab| = V3(8803.50) = 15,248.11V. 

We are assuming the utility is required to keep the voltage level within 
± 5.8% of the nominal value. This means the magnitude of the line-to-line 
voltage at the power plant should not exceed 14.6 kV nor be less than 
13 kV. Therefore, the magnitude of the line voltage at the generating plant 
could cause problems for customers. 

When the magnetizing vars are supplied by a capacitor bank connected 
to the substation bus, the line current I a A becomes 

IaA = 150.61 + /0 A. 
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Therefore the voltage at the generating plant necessary to maintain a line-
to-line voltage of 13,800 V at the substation is 

13,800 
Van = - ^ - /O: + (0-6 + /4.8)(150.61 + /0) 

= 8057.80 + /722.94 

= 8090.17/5.13° V. 

Hence 

|Vab| = V3(8090.17) = 14,012.58 V. 

This voltage level falls within the allowable range of 13 kV to 14.6 kV. 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 
Problems 11.52(a)-(b) and 11.53, 11.56, and 11.57. 

Summary 

• When analyzing balanced three-phase circuits, the first 
step is to transform any A connections into Y connections, 
so that the overall circuit is of the Y-Y configuration. (See 
page 402.) 

• A single-phase equivalent circuit is used to calculate the 
line current and the phase voltage in one phase of the 
Y-Y structure. The a-phase is normally chosen for this 
purpose. (See page 404.) 

• Once we know the line current and phase voltage in the 
a-phase equivalent circuit, we can take analytical short
cuts to find any current or voltage in a balanced three-
phase circuit, based on the following facts: 

• The b- and c-phase currents and voltages are identi
cal to the a-phase current and voltage except for a 
120° shift in phase. In a positive-sequence circuit, the 
b-phase quantity lags the a-phase quantity by 120°, 
and the c-phase quantity leads the a-phase quantity 
by 120°. For a negative sequence circuit, phases b and 
c are interchanged with respect to phase a. 

• The set of line voltages is out of phase with the set of 
phase voltages by ±30°. The plus or minus sign corre
sponds to positive and negative sequence, respectively. 

• In a Y-Y circuit the magnitude of a line voltage is 
V3 times the magnitude of a phase voltage. 

• The set of line currents is out of phase with the set of 
phase currents in A-connected sources and loads by 
T30°. The minus or plus sign corresponds to positive 
and negative sequence, respectively. 

• The magnitude of a line current is V3 times the mag
nitude of a phase current in a A-connected source 
or load, 

(See pages 404-405 and 407-408.) 

• The techniques for calculating per-phase average 
power, reactive power, and complex power are identical 
to those introduced in Chapter 10. (See page 410.) 

• The total real, reactive, and complex power can be deter
mined either by multiplying the corresponding per phase 
quantity by 3 or by using the expressions based on line 
current and line voltage, as given by Eqs. 11.36,11.38, and 
11.41. (See pages 410 and 411.) 

• The total instantaneous power in a balanced three-phase 
circuit is constant and equals 1.5 times the average 
power per phase. (See page 412.) 

• A wattmeter measures the average power delivered to a 
load by using a current coil connected in series with 
the load and a potential coil connected in parallel 
with the load. (See page 415.) 

• The total average power in a balanced three-phase cir
cuit can be measured by summing the readings of two 
wattmeters connected in two different phases of the 
circuit. (See page 415.) 
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Problems 

AH phasor voltages in the following Problems are stated in 
terms of the rms value. 

Section 11.1 

11.1 Verify that Eq. 11.3 is true for either Eq. 11.1 or 
Eq.11.2. 

11.2 What is the phase sequence of each of the following 
sets of voltages? 

a) ya = 208 cos (OJ? + 27°) V, 

^ = 208 cos (cot + 147°) V, 

vc = 208 cos (cot - 93°) V. 

b) v.a = 4160 cos (cot - 18°) V, 

vb = 4160 cos (cot - 138°) V, 

?;c = 4160 cos (cot + 102°) V. 

11.3 For each set of voltages, state whether or not the volt-
PSPICE ages form a balanced three-phase set. If the set is bal

anced, state whether the phase sequence is positive or 
negative. If the set is not balanced, explain why. 

a) va = 139 cos 377? V, 

vb = 139 cos (377? + 120°) V, 

vc = 139 cos (377? - 120°) V. 

b) v.d = 381 cos 377? V, 

vb = 381 cos (377? + 240°) V, 

vc = 381 cos (377? + 120°) V. 

c) va = 2771 sin (377? - 30°) V, 

vb = 2771 cos 377? V, 

vc = 2771 sin (377? + 210°) V. 

d) vA = 170 sin (cot + 30°) V, 

vb = -170 cos cot V, 

vc = 170 cos (cot + 60°) V. 

e) va = 339 cos cot V, 

% = 339 cos (cot + 120) V, 

vc = 393 cos (cot - 120°) V. 

f) v.A = 3983 sin (cot + 50°) V, 

vb = 3983 cos (cot - 160°) V, 

vc = 3983 cos (cot + 70°) V. 

Section 11.2 

11.4 Refer to the circuit in Fig. 11.5(b). Assume that there 
are no external connections to the terminals a,b,c. 
Assume further that the three windings are from a 
balanced three-phase generator. How much current 
will circulate in the A-connected generator? 

Section 11.3 

11.5 A balanced three-phase circuit has the following 
characteristics: 
• Y-Y connected; 
• The line voltage at the source, Vab, is 

240 V3~/90° V; 
• The phase sequence is negative; 
• The line impedance is 4 -I- /5 £l/<f>', 
• The load impedance is 76 + /55 ft/cf). 

a) Draw the single phase equivalent circuit for the 
a-phase. 

b) Calculated the line current in the a-phase. 

c) Calculated the line voltage at the load in the 
a-phase. 

11.6 Find the rms value of I„ in the unbalanced three-
phase circuit seen in Fig. PI 1.6. 

Figure PI 1.6 
0.1 n /0.8ft a 0.4 ft /3.2 ft A 59.5 ft /76 ft 
->WV »****"¥"> 0 /yy*^ ( V Y Y > 0 ' W W 

0.1ft /0.8 ft b 0.4 ft /3.2 ft B 39.5 ft /26 ft 
- • "VS/V rrvY> 9 V W — 

M ^ 240/-240/-120° V 
0.1ft /0.8 ft c 0.4 ft /3.2 ft C 19.5 ft / l i f t 

-• /vW «^w> » VW rvw>_ 

N 
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11.7 The time-domain expressions for three line-to-neutral 
voltages at the terminals of a Y-connected load are 

vAN = 7620 cos (W + 30°) V, 

vm = 7620 cos (a)t + 150°) V, 

'»CN = 7620 cos (cot - 90") V. 
What are the time-domain expressions for the three 
line-to-line voltages vAii, I>BO and VQA? 

11.8 a) Is the circuit in Fig. PI 1.8 a balanced or unbal-
PSPICE anced three-phase system? Explain. 

MULTISIM 

b) Find I„. 

Figure PI 1.8 

^2()0 /0!V 

11.9 The magnitude of the line voltage at the terminals 
of a balanced Y-connected load is 6600 V. The load 
impedance is 240 - /70 0/<£. The load is fed from a 
line that has an impedance of 0.5 + /4 0/(£. 

a) What is the magnitude of the line current? 
b) What is the magnitude of the line voltage at 

the source? 

11.10 a) Find I„ in the circuit in Fig. PI 1.10. 
PSPICE b) FindVAN. 

c) FindVAB . 
d) Is the circuit a balanced or unbalanced three-

phase system? 

11.11 The magnitude of the phase voltage of an ideal 
balanced three-phase Y-connected source is 
125 V. The source is connected to a balanced 
Y-connected load by a distribution line that has an 
impedance of 0.1 + /0.8 Cl/<j). The load impedance 
is 19.9 + /14.2 Cl/4>. The phase sequence of the 
source is acb. Use the a-phase voltage of the 
source as the reference. Specify the magnitude and 
phase angle of the following quantities: (a) the 
three line currents, (b) the three line voltages at 
the source, (c) the three phase voltages at the load, 
and (d) the three line voltages at the load. 

Section 11.4 

11.12 A balanced, three-phase circuit is characterized as 
follows: 
• Y-A connected; 
• Source voltage in the c-phase is 2 0 / - 9 0 ° V; 
• Source phase sequence is abc; 
• Line impedance is 1 + /3 CL/<f>; 
• Load impedance is 117 — /99 12/(/). 

a) Draw the single phase equivalent for the a-phase. 

b) Calculate the a-phase line current. 

c) Calculate the a-phase line voltage for the three-
phase load. 

11.13 An acb sequence balanced three-phase Y-connected 
source supplies power to a balanced, three-phase A-
connected load with an impedance of 12 + /9 fl/4>. 
The source voltage in the b-phase is 240 / -50° V. 
The line impedance is 1 + /1 fl/4>. Draw the single 
phase equivalent circuit for the a-phase and use it 
to find the current in the a-phase of the load. 

11.14 A balanced A-connected load has an impedance of 
864 — /252 Q,/(f). The load is fed through a line hav
ing an impedance of 0.5 4- /4 Q/<f). The phase volt
age at the terminals of the load is 69 kV. The phase 
sequence is positive. Use VA B as the reference. 

a) Calculate the three phase currents of the load. 

b) Calculate the three line currents. 

c) Calculate the three line voltages at the sending 
end of the line. 

Figure P11.10 
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11.15 A balanced Y-connected load having an imped
ance of 72 + /21 Cl/(f) is connected in parallel with 
a balanced A-connected load having an imped
ance of 150/0° Q,/<f>. The paralleled loads are fed 
from a line having an impedance of /1 0/4>. The 
magnitude of the line-to-neutral voltage of the Y-
load is 7650 V. 

a) Calculate the magnitude of the current in the 
line feeding the loads. 

b) Calculate the magnitude of the phase current in 
the A-connected load. 

c) Calculate the magnitude of the phase current in 
the Y-connected load. 

d) Calculate the magnitude of the line voltage at 
the sending end of the line. 

11.16 In a balanced three-phase system, the source is a bal
anced Y with an abc phase sequence and a line voltage 
Vab = 208/50° V. The load is a balanced Y in paral
lel with a balanced A.The phase impedance of the Y is 
4 + /3 il/cf) and the phase impedance of the A is 
3 - /9 0./4). The line impedance is 1.4 -I- /0.8 Oj4>. 
Draw the single phase equivalent circuit and use it to 
calculate the line voltage at the load in the a-phase. 

11.17 The impedance Z in the balanced three-phase cir
cuit in Fig. PI 1.17 is 100 - /75 O. Find 

a) IAB> I B O and ICA, 

b) IaA* \ ^ and IcC, 

c) Iba, Icb, and Iac. 

Figure P11.17 

13.2/-120° kV 

11.18 For the circuit shown in Fig. PI 1.18, find 
PSPKE a) the phase currents IAB, IRC, and ICA 

MULTISIM / r ^ ° OK- Kl^ 

b) the line currents IaA, IbB, and FcC 

when Z, = 2.4 - /0.7 ft, Z2 = 8 + /6 Q, and 
Z3 = 20 + /0 ft. 

Figure P11.18 
a A 

480/-120° V 

11.19 A three-phase A-connected generator has an inter
nal impedance of 9 -(- /90 mft/<jf>. When the load is 
removed from the generator, the magnitude of the 
terminal voltage is 13,800 V. The generator feeds a 
A-connected load through a transmission line with 
an impedance of 20 + /180 mft /$ . The per-phase 
impedance of the load is 7.056 + /3.417 ft. 

a) Construct a single-phase equivalent circuit. 

b) Calculate the magnitude of the line current. 

c) Calculate the magnitude of the line voltage at 
the terminals of the load. 

d) Calculate the magnitude of the line voltage at 
the terminals of the source. 

e) Calculate the magnitude of the phase current in 
the load. 

f) Calculate the magnitude of the phase current in 
the source. 

11.20 A balanced three-phase A-connected source is 
shown in Fig. PI 1.20. 

a) Find the Y-connected equivalent circuit. 

b) Show that the Y-connected equivalent circuit 
delivers the same open-circuit voltage as the 
original A-connected source. 

c) Apply an external short circuit to the terminals 
A, B, and C. Use the A-connected source to find 
the three line currents IaA, IbB, and IcC. 

d) Repeat (c) but use the Y-equivalent source to 
find the three line currents. 

Figure PI 1.20 

• A 

2.7 O 

/13.511 

4156/-120° V 

• C 

11.21 The A-connected source of Problem 11.20 is con
nected to a Y-connected load by means of a bal
anced three-phase distribution line. The load 
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impedance is 1910-/636 fl/<f). and the line imped
ance is 9.1 + /71.5(2/0. 

a) Construct a single-phase equivalent circuit of 
the system. 

b) Determine the magnitude of the line voltage at 
the terminals of the load. 

c) Determine the magnitude of the phase current 
in the A-source. 

d) Determine the magnitude of the line voltage at 
the terminals of the source. 

11.27 The three pieces of computer equipment described 
below are installed as part of a computation center. 
Each piece of equipment is a balanced three-phase 
load rated at 208 V. Calculate (a) the magnitude of 
the line current supplying these three devices and 
(b) the power factor of the combined load. 
• Hard Drive: 4.864 kW at 0.79 pf lag 
• CD/DVD drive: 17.636 kVA at 0.96 pf lag 
. CPU: line current 73.8 A, 13.853 kVAR 

11.28 Calculate the complex power in each phase of the 
unbalanced load in Problem 11.18. 

Section 11.5 

11.22 In a balanced three-phase system, the source 
has an abc sequence, is Y-connected, and 
Van = 120/20° V. The source feeds two loads, both 
of which are Y-connected. The impedance of load 1 
is 8 + /6 il/cf). The complex power for the a-phase 
of load 2 is 600/36° VA. Find the total complex 
power supplied by the source. 

11.23 A balanced three-phase source is supplying 60 kVA 
at 0.6 lagging to two balanced Y-connected parallel 
loads. The distribution line connecting the source to 
the load has negligible impedance. Load 1 is purely 
resistive and absorbs 30 kW. Find the per-phase 
impedance of Load 2 if the line voltage is 120 V5 V 
and the impedance components are in series. 

11.24 A three-phase positive sequence Y-connected 
source supplies 14 kVA with a power factor of 0.75 
lagging to a parallel combination of a Y-connected 
load and a A-connected load. The Y-connected load 
uses 9 kVA at a power factor of 0.6 lagging and has 
an a-phase current of 10 / -30° A. 

a) Find the complex power per phase of the 
A-connected load. 

b) Find the magnitude of the line voltage. 

11.29 A balanced three-phase distribution line has an 
impedance of 1 + /8 fl/</>. This line is used to sup
ply three balanced three-phase loads that are con
nected in parallel. The three loads are 
L! = 120 kVA at 0.96 pf lead, L2 = 180 kVA at 
0.80 pf lag, and L3 = 100.8 kW and 15.6 kVAR 
(magnetizing). The magnitude of the line voltage at 
the terminals of the loads is 2400 V3 V. 

a) What is the magnitude of the line voltage at the 
sending end of the line? 

b) What is the percent efficiency of the distribution 
line with respect to average power? 

11.30 The line-to-neutral voltage at the terminals of the 
balanced three-phase load in the circuit shown in 
Fig. PI 1.30 is 1200 V. At this voltage, the load is 
absorbing 500 kVA at 0.96 pf lag. 

a) Use VAN as the reference and express Ina in 
polar form. 

b) Calculate the complex power associated with 
the ideal three-phase source. 

c) Check that the total average power delivered 
equals the total average power absorbed. 

d) Check that the total magnetizing reactive power 
delivered equals the total magnetizing reactive 
power absorbed. 

11.25 The total apparent power supplied in a balanced, 
three-phase Y-A system is 4800 VA. The line volt
age is 240 V. If the line impedance is negligible and 
the power factor angle of the load is -50°, deter
mine the impedance of the load. 

11.26 Show that the total instantaneous power in a bal
anced three-phase circuit is constant and equal to 
1,5VmIm cos 0$, where Vm and Im represent the 
maximum amplitudes of the phase voltage and 
phase current, respectively. 

Figure PI 1.30 
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11.31 a) Find the rms magnitude and the phase angle of 
ICA in the circuit shown in Fig. PI 1.31. 

b) What percent of the average power delivered by 
the three-phase source is dissipated in the three-
phase load? 

Figure PI 1.31 
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11.32 At full load, a commercially available 100 hp, three-
phase induction motor operates at an efficiency of 
97% and a power factor of 0.88 lag. The motor is sup
plied from a three-phase outlet with a line-voltage 
rating of 208 V. 

a) What is the magnitude of the line current drawn 
from the 208 V outlet? (1 hp = 746 W.) 

b) Calculate the reactive power supplied to 
the motor. 

11.33 Three balanced three-phase loads are connected in 
parallel. Load 1 is Y-connected with an impedance 
of 400 + /300 ft/0; load 2 is A-connected with an 
impedance of 2400 - /1800 ft/<£; and load 3 is 
172.8 + /2203.2 kVA. The loads are fed from a dis
tribution line with an impedance of 2 + /16 fl/cj). 
The magnitude of the line-to-neutral voltage at the 
load end of the line is 24 V3 kV. 

a) Calculate the total complex power at the send
ing end of the line. 

b) What percentage of the average power at the 
sending end of the line is delivered to the loads? 

11.34 A three-phase line has an impedance of 
0.1 + /0.8 Cl/(f). The line feeds two balanced 
three-phase loads connected in parallel. The first 
load is absorbing a total of 630 kW and absorbing 
840 kVAR magnetizing vars. The second load 
is Y-connected and has an impedance of 
15.36 - /4.48 0,/4>. The line-to-neutral voltage at 
the load end of the line is 4000 V. What is the 
magnitude of the line voltage at the source end of 
the line? 

11.35 A balanced three-phase load absorbs 96 kVA at a 
lagging power factor of 0.8 when the line voltage at 
the terminals of the load is 480 V. Find four equiva
lent circuits that can be used to model this load. 

11.36 The total power delivered to a balanced three-
phase load when operating at a line voltage of 
2400 V3 V is 720 kW at a lagging power factor of 
0.8. The impedance of the distribution line sup
plying the load is 0.8 + /6.4 Q,/<fi. Under these 
operating conditions, the drop in the magnitude 
of the line voltage between the sending end and 
the load end of the line is excessive. To compen
sate, a bank of A-connected capacitors is placed 
in parallel with the load. The capacitor bank is 
designed to furnish 576 kVAR of magnetizing 
reactive power when operated at a line voltage 
of 2400 V3 V. 

a) What is the magnitude of the voltage at the 
sending end of the line when the load is operat
ing at a line voltage of 2400 V3 V and the capac
itor bank is disconnected? 

b) Repeat (a) with the capacitor bank connected. 

c) What is the average power efficiency of the line 
in (a)? 

d) What is the average power efficiency in (b)? 

e) If the system is operating at a frequency of 60 Hz, 
what is the size of each capacitor in microfarads? 

11.37 A balanced bank of delta-connected capacitors is 
connected in parallel with the load described in 
Assessment Problem 11.9. The effect is to place a 
capacitor in parallel with the load in each phase. 
The line voltage at the terminals of the load thus 
remains at 2450 V. The circuit is operating at a fre
quency of 60 Hz.The capacitors are adjusted so that 
the magnitude of the line current feeding the paral
lel combination of the load and capacitor bank is at 
its minimum. 

a) What is the size of each capacitor in microfarads? 

b) Repeat (a) for wye-connected capacitors. 

c) What is the magnitude of the line current? 

11.38 A balanced three-phase source is supplying 150 kVA 
at 0.8 pf lead to two balanced Y-connected parallel 
loads. The distribution line connecting the source to 
the load has negligible impedance. The power associ
ated with load 1 is 30 + /30 kVA. 

a) Determine the types of components and their 
impedances in each phase of load 2 if the line 
voltage is 2500 V3 V and the impedance compo
nents are in series. 

b) Repeat (a) with the impedance components in 
parallel. 
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11.39 The output of the balanced positive-sequence 
three-phase source in Fig. PI 1.39 is 41.6 kVA at a 
lagging power factor of 0.707. The line voltage at 
the source is 240 V. 

a) Find the magnitude of the line voltage at the load. 

b) Find the total complex power at the terminals of 
the load. 

Figure P11.39 
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11.43 The two wattmeters in Fig. 11.20 can be used to 
compute the total reactive power of the load. 

a) Prove this statement by showing that 
V3(W2 - Wj) = V 3 V L / L s i i i V 

b) Compute the total reactive power from the 
wattmeter readings for each of the loads in 
Example 11.6. Check your computations by cal
culating the total reactive power directly from 
the given voltage and impedance. 

11.44 The two-wattmeter method is used to measure the 
power at the load end of the line in Example 11.1. 
Calculate the reading of each wattmeter. 

11.45 The wattmeters in the circuit in Fig. 11.20 read as 
follows: Wx = 40,823.09 W, and W2 = 103,176.91 W. 
The magnitude of the line voltage is 2400 V5 V. 
The phase sequence is positive. Find Z^. 

Section 11.6 

11.40 Derive Eqs. 11.56 and 11.57. 

11.41 In the balanced three-phase circuit shown in 
Fig. PI 1.41, the current coil of the wattmeter is con
nected in line aA, and the potential coil of the 
wattmeter is connected across lines b and c. Show 
that the wattmeter reading multiplied by V3 equals 
the total reactive power associated with the load. 
The phase sequence is positive. 

Figure PI 1.41 

11.46 a) Calculate the reading of each wattmeter in the 
circuit shown in Fig. PI 1.46. The value of Z^ is 
4 0 / - 3 0 ° a. 

b) Verify that the sum of the wattmeter readings 
equals the total average power delivered to the 
A-connected load. 

Figure PI 1.46 
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11.42 The line-to-neutral voltage in the circuit in 
Fig. PI 1.41 is 680 V, the phase sequence is positive, 
and the load impedance is 16 - j 12 0 / $ . 

a) Calculate the wattmeter reading. 

b) Calculate the total reactive power associated 
with the load. 

11.47 The two-wattmeter method is used to measure 
the power delivered to the unbalanced load in 
Problem 11.18. The current coil of wattmeter 1 is 
placed in line aA and that of wattmeter 2 is 
placed in line bB. 

a) Calculate the reading of wattmeter 1. 

b) Calculate the reading of wattmeter 2. 

c) Show that the sum of the two wattmeter read
ings equals the total power delivered to the 
unbalanced load. 
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11.48 a) Calculate the reading of each wattmeter in the 
circuit shown in Fig. PI 1.48 when Z = 
13.44 + /46.0811. 

b) Check that the sum of the two wattmeter read
ings equals the total power delivered to the load. 

c) Check that V3(Wl - W2) equals the total mag
netizing vars delivered to the load. 

Figure PI 1.48 

11.49 a) Calculate the complex power associated with 
each phase of the balanced load in 
Problem 11.17. 

b) If the two-wattmeter method is used to measure 
the average power delivered to the load, specify 
the reading of each meter. 

11.50 a) Find the reading of each wattmeter in the circuit 
shown in Fig. PI 1.50 if ZA = 20 / 3 0 " ft, 
ZB = 60 /<T ft, and Z c = 40 / -3 ( ) ° ft. 

b) Show that the sum of the wattmeter readings 
equals the total average power delivered to the 
unbalanced three-phase load. 

Figure P11.50 

11.51 The balanced three-phase load shown in Fig. PI 1.51 
is fed from a balanced, positive-sequence, three-
phase Y-connected source. The impedance of the 
line connecting the source to the load is negligible. 
The line-to-neutral voltage of the source is 7200 V. 

a) Find the reading of the wattmeter in watts. 

b) Explain how you would connect a second 
wattmeter in the circuit so that the two 
wattmeters would measure the total power. 

c) Calculate the reading of the second wattmeter. 

d) Verify that the sum of the two wattmeter read
ings equals the total average power delivered to 
the load. 

Figure P11.51 

Sections 11.1-11.6 

11.52 Refer to the Practical Perspective example: 

PERSPECTIVE a) Construct a power triangle for the substation 
load before the capacitors are connected to 
the bus. 

b) Repeat (a) after the capacitors are connected to 
the bus. 

c) Using the line-to-neutral voltage at the substa
tion as a reference, construct a phasor diagram 
that depicts the relationship between VAN and 
Van before the capacitors are added. 

d) Assume a positive phase sequence and construct 
a phasor diagram that depicts the relationship 
between VAB and Vab. 

11.53 Refer to the Practical Perspective example. Assume 
PRACTICAL the frequency of the utilitv is 60 Hz. 

PERSPECTIVE 1 J 

a) What is the /xF rating of each capacitor if the 
capacitors are delta-connected? 

b) What is the /xF rating of each capacitor if the 
capacitors are wye-connected? 

11.54 Choose a single capacitor from Appendix H that is 
closest to the /xF rating of the delta-connected 
capacitor from Problem 11.53(a). 

a) How much reactive power will a capacitor bank 
using this new value supply? 

b) What line-to-line voltage at the generating plant 
will be required when this new capacitor bank is 
connected to the substation bus? 

11.55 Choose a single capacitor from Appendix H that is 
closest to the /iF rating of the wye-connected 
capacitor from Problem 11.53(b). 

a) How much reactive power will a capacitor bank 
using this new value supply? 

b) What line-to-line voltage at the generating plant 
will be required when this new capacitor bank is 
connected to the substation bus? 
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11.56 In the Practical Perspective example, what happens 
PRACTICAL to the voltage level at the generating plant if the 

substation is maintained at 13.8 kV, the substation 
load is removed, and the added capacitor bank 
remains connected? 

11.57 In the Practical Perspective example, calculate the 
'ERSPECTWE

 t o t a l n n e ' o s s m kW before and after the capacitors 
are connected to the substation bus. 

11.58 Assume the load on the substation bus in the 
>ERSP"C™E P ractical Perspective example drops to 240 kW and 

600 magnetizing kVAR. Also assume the capacitors 
remain connected to the substation. 
a) What is the magnitude of the line-to-line volt

age at the generating plant that is required to 
maintain a line-to-line voltage of 13.8 kV at the 
substation? 

b) Will this power plant voltage level cause prob
lems for other customers? 

11.59 Assume in Problem 11.58 that when the load drops 
S a m t o 2 4 0 k W a n d 6 0 0 m a g n e t iz ing kVAR the capaci

tor bank at the substation is disconnected. Also 
assume that the line-to-line voltage at the substa
tion is maintained at 13.8 kV. 

a) What is the magnitude of the line-to-line voltage 
at the generating plant? 

b) Is the voltage level found in (a) within the 
acceptable range of variation? 

c) What is the total line loss in kW when the capac
itors stay on line after the load drops to 
240 + /600 kVA? 

d) What is the total line loss in kW when the capac
itors are removed after the load drops to 
240 + /600 kVA? 

e) Based on your calculations, would you recom
mend disconnecting the capacitors after the load 
drops to 240 + /600 kVA? Explain. 
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• CHAPTER O B J E C T I V E S 

1 Be able to calculate the Laplace transform of a 
function using the definition of Laplace 
transform, the Laplace transform table, and/or a 
table of operational transforms. 

2 Be able to calculate the inverse Laplace 
transform using partial fraction expansion and 
the Laplace transform table. 

3 Understand and know how to use the initial 
value theorem and the final value theorem. 
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Introduction to the 
Laplace Transform 
We now introduce a powerful analytical technique that is 
widely used to study the behavior of linear, lumped-parameter 
circuits. The method is based on the Laplace transform, which we 
define mathematically in Section 12.1. Before doing so, we need 
to explain why another analytical technique is needed. First, we 
wish to consider the transient behavior of circuits whose describ
ing equations consist of more than a single node-voltage or mesh-
current differential equation. In other words, we want to consider 
multiple-node and multiple-mesh circuits that are described by 
sets of linear differential equations. 

Second, we wish to determine the transient response of cir
cuits whose signal sources vary in ways more complicated than 
the simple dc level jumps considered in Chapters 7 and 8. Third, 
we can use the Laplace transform to introduce the concept of the 
transfer function as a tool for analyzing the steady-state sinu
soidal response of a circuit when the frequency of the sinusoidal 
source is varied. We discuss the transfer function in Chapter 13. 
Finally, we wish to relate, in a systematic fashion, the time-
domain behavior of a circuit to its frequency-domain behavior. 
Using the Laplace transform will provide a broader understand
ing of circuit functions. 

In this chapter, we introduce the Laplace transform, discuss 
its pertinent characteristics, and present a systematic method for 
transforming from the frequency domain to the time domain. 
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Practical Perspective 
Transient Effects 

As we learned in Chapter 9, power delivered from electrical 
wall outlets in the U.S. can be modeled as a sinusoidal volt
age or current source, where the frequency of the sinusoid is 
60 Hz. The phasor concepts introduced in Chapter 9 allowed 
us to analyze the steady-state response of a circuit to a sinu
soidal source. 

I t is often important to pay attention to the complete 
response of a circuit to a sinusoidal source. Remember that the 
complete response has two parts—the steady-state response 
that takes the same form as the input to the circuit, and the 
transient response that decays to zero as time progresses. 
When the source for a circuit is modeled as a 60 Hz sinusoid, 
the steady-state response is also a 60 Hz sinusoid whose mag
nitude and phase angle can be calculated using phasor circuit 
analysis. The transient response depends on the components 
that make up the circuit, the values of those components, and 
the way the components are interconnected. The voltage and 
current for every component in a circuit is the sum of a tran
sient part and a steady-state part, once the source is switched 
into the circuit. 

While the transient part of the voltage and current even
tually decays to zero, initially this transient part, when added 
to the steady-state part, may exceed the voltage or current 
rating of the circuit component. This is why i t is important to 
be able to determine the complete response of a circuit. The 
Laplace transform techniques introduced in this chapter can 
be used to find the complete response of a circuit to a sinu
soidal source. 

Consider the RLC circuit shown below, comprised of 
components from Appendix H and powered by a 60 Hz sinu
soidal source. As detailed in Appendix H, the 10 mH induc
tor has a current rating of 40 mA. The amplitude of the 
sinusoidal source has been chosen so that this rating is met 
in the steady state (see Problem 12.54). Once we have pre
sented the Laplace transform method, we will be able to 
determine whether or not this current rating is exceeded 
when the source is first switched on and both the transient 
and steady-state components of the inductor current are 
active. 

429 
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12.1 Definition of the Laplace 
Transform 

The Laplace transform of a function is given by the expression 

2(/(0} = / f(tyr*dtt (12.1) 
Laplace transform • Jo 

where the symbol i£{/(f)} is read "the Laplace transform of/(f)." 
The Laplace transform o f / ( 0 is also denoted F(s)\ that is, 

F(s) = <£{/(f)}. (12.2) 

This notation emphasizes that when the integral in Eq. 12.1 has been evalu
ated, the resulting expression is a function of s. In our applications, t repre
sents the time domain, and, because the exponent of e in the integral of 
Eq. 12.1 must be dimensionless, s must have the dimension of reciprocal time, 
or frequency. The Laplace transform transforms the problem from the time 
domain to the frequency domain. After obtaining the frequency-domain 
expression for the unknown, we inverse-transform it back to the time domain. 

If the idea behind the Laplace transform seems foreign, consider 
another familiar mathematical transform. Logarithms are used to change a 
multiplication or division problem, such as A = BC, into a simpler addition 
or subtraction problem: log A = log BC = log B + log C. Antilogs are 
used to carry out the inverse process. The phasor is another transform; as we 
know from Chapter 9, it converts a sinusoidal signal into a complex number 
for easier, algebraic computation of circuit values. After determining the 
phasor value of a signal, we transform it back to its time-domain expression. 
Both of these examples point out the essential feature of mathematical 
transforms: They are designed to create a new domain to make the mathe
matical manipulations easier. After finding the unknown in the new domain, 
we inverse-transform it back to the original domain. In circuit analysis, we 
use the Laplace transform to transform a set of integrodifferential equations 
from the time domain to a set of algebraic equations in the frequency 
domain. We therefore simplify the solution for an unknown quantity to the 
manipulation of a set of algebraic equations. 

Before we illustrate some of the important properties of the Laplace 
transform, some general comments are in order. First, note that the inte
gral in Eq. 12.1 is improper because the upper limit is infinite. Thus we are 
confronted immediately with the question of whether the integral con
verges. In other words, does a given /(f) have a Laplace transform? 
Obviously, the functions of primary interest in engineering analysis have 
Laplace transforms; otherwise we would not be interested in the trans
form. In linear circuit analysis, we excite circuits with sources that have 
Laplace transforms. Excitation functions such as tl or e'\ which do not 
have Laplace transforms, are of no interest here. 

Second, because the lower limit on the integral is zero, the Laplace 
transform ignores /(f) for negative values of f. Put another way, F(s) is 
determined by the behavior of/(f) only for positive values of f.To empha
size that the lower limit is zero, Eq. 12.1 is frequently referred to as the 
one-sided, or unilateral, Laplace transform. In the two-sided, or bilateral, 
Laplace transform, the lower limit is - c o . We do not use the bilateral 
form here; hence F(s) is understood to be the one-sided transform. 

Another point regarding the lower limit concerns the situation when 
f(t) has a discontinuity at the origin. If/(f) is continuous at the origin —as, 
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for example, in Fig. 12.1(a)—/(0) is not ambiguous. However, i f /( /) has a 
finite discontinuity at the origin—as, for example, in Fig. 12.1(b)—the 
question arises as to whether the Laplace transform integral should 
include or exclude the discontinuity. In other words, should we make the 
lower limit 0~ and include the discontinuity, or should we exclude the dis
continuity by making the lower limit 0+? (We use the notation Q~ and 0+ to 
denote values of t just to the left and right of the origin, respectively.) 
Actually, we may choose either as long as we are consistent. For reasons to 
be explained later, we choose (T as the lower limit. 

Because we are using 0" as the lower limit, we note immediately that 
the integration from (T to 0+ is zero. The only exception is when the dis
continuity at the origin is an impulse function, a situation we discuss in 
Section 12.3. The important point now is that the two functions shown in 
Fig. 12.1 have the same unilateral Laplace transform because there is no 
impulse function at the origin. 

The one-sided Laplace transform ignores f(t) for t < (T. What hap
pens prior to (T is accounted for by the initial conditions. Thus we use the 
Laplace transform to predict the response to a disturbance that occurs 
after initial conditions have been established. 

In the discussion that follows, we divide the Laplace transforms into 
two types: functional transforms and operational transforms. A functional 
transform is the Laplace transform of a specific function, such as sin cat, t, 
e~at, and so on. An operational transform defines a general mathematical 
property of the Laplace transform, such as finding the transform of the 
derivative of /(f). Before considering functional and operational trans
forms, however, we need to introduce the step and impulse functions. 

/(0 

1.0 

0.1 < 0 

0 
(b) 

Figure 12.1 A A continuous and discontinuous function 
at the origin, (a) f(t) is continuous at the origin, 
(b) / ( / ) is discontinuous at the origin. 

12.2 The Step Function 
We may encounter functions that have a discontinuity, or jump, at the ori
gin. For example, we know from earlier discussions of transient behavior 
that switching operations create abrupt changes in currents and voltages. 
We accommodate these discontinuities mathematically by introducing the 
step and impulse functions. 

Figure 12.2 illustrates the step function. It is zero for t < O.The sym
bol for the step function is Ku{t). Thus, the mathematical definition of the 
step function is 

Ku(t) = 0, t < 0, 

Ku(t) = K, t> 0. (12.3) 

If K is 1, the function defined by Eq. 12.3 is the unit step. 
The step function is not defined ait = 0. In situations where we need to 

define the transition between 0" and 0+, we assume that it is linear and that 

fit) 

K 

0 

Figure 12.2 A The step function. 

Ku(Q) = 0.5K. (12.4) 

As before, 0 and 0+ represent symmetric points arbitrarily close to the 
left and right of the origin. Figure 12.3 illustrates the linear transition from 
0" to 0+. 

A discontinuity may occur at some time other than t = 0; for exam
ple, in sequential switching. A step that occurs at t = a is expressed as 
Ku(t - rt).Thus 

Ku(t - a) = 0, t < a, 

Ku(t - a) = K% t > a. (12.5) 

fit) 

K 

0.5 K V> 

0~ 0+ 

Figure 12.3 A The linear approximation to the step 
function. 



432 Introduction to the Laplace Transform 

/(0 

K 

Figure 12.4 • A step function occurring at t = a 
when a > 0. 

/(0 

£ 

0 

Figure 12.5 • A step function Ku(o - t) for a > 0. 

If a > 0, the step occurs to the right of the origin, and if a < 0, the step 
occurs to the left of the origin. Figure 12.4 illustrates Eq. 12.5. Note that 
the step function is 0 when the argument t - a is negative, and it is K 
when the argument is positive. 

A step function equal to K for t < a is written as Ku(a - t). Thus 

Ku(a - t) = K, t < rt, 

Ku(a - t) = 0, t > a. (12.6) 

The discontinuity is to the left of the origin when a < 0. Equation 12.6 is 
shown in Fig. 12.5. 

One application of the step function is to use it to write the mathe
matical expression for a function that is nonzero for a finite duration but is 
defined for all positive time. One example useful in circuit analysis is a 
finite-width pulse, which we can create by adding two step functions. The 
function K[u(t - 1 ) - u(t - 3)] has the value K for 1 < t < 3 and the 
value 0 everywhere else, so it is a finite-width pulse of height K initiated at 
t = 1 and terminated at t = 3. In defining this pulse using step functions, 
it is helpful to think of the step function u(t — 1) as "turning on" the con
stant value K at t = 1, and the step function —u(t - 3) as "turning off" the 
constant value K at t = 3. We use step functions to turn on and turn off 
linear functions at desired times in Example 12.1. 

Example 12.1 Using Step Functions to Represent a Function of Finite Duration 

Use step functions to write an expression for the 
function illustrated in Fig. 12.6. 

Figure 12.6 • The function for Example 12.1. 

Solution 

The function shown in Fig. 12.6 is made up of linear 
segments with break points at 0,1,3, and 4 s.To con
struct this function, we must add and subtract linear 
functions of the proper slope. We use the step func
tion to initiate and terminate these linear segments 
at the proper times. In other words, we use the step 
function to turn on and turn off a straight line with 
the following equations: +2/, on at t = 0, off at 
t = 1; - 2 / + 4, on at t = 1, off at t = 3; and 

+2t - 8, on at t = 3, off at t = 4. These straight 
line segments and their equations are shown in 
Fig. 12.7. The expression for f(t) is 

/ ( / ) = 2t[u(t) - u(t - 1)] + ( - 2 / + 4)[u(t - 1) 

- u(t - 3)] + (2f - 8)[u(t - 3 ) - u(t - 4)]. 
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Figure 12.7 • Definition of the three line segments turned 
on and off with step functions to form the function shown 
in Fig. 12.6. 

NOTE: Assess your understanding of step functions by trying Chapter Problems 12.2 and 12.3. 
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12.3 The Impulse Function 
When we have a finite discontinuity in a function, such as that illustrated 
in Fig. 12.1(b), the derivative of the function is not defined at the point of 
the discontinuity. The concept of an impulse function1 enables us to define 
the derivative at a discontinuity, and thus to define the Laplace transform 
of that derivative. An impulse is a signal of infinite amplitude and zero 
duration. Such signals don't exist in nature, but some circuit signals come 
very close to approximating this definition, so we find a mathematical 
model of an impulse useful. Impulsive voltages and currents occur in cir
cuit analysis either because of a switching operation or because the circuit 
is excited by an impulsive source. We will analyze these situations in 
Chapter 13, but here we focus on defining the impulse function generally. 

To define the derivative of a function at a discontinuity, we first assume 
that the function varies linearly across the discontinuity, as shown in 
Fig. 12.8, where we observe that as e —> 0, an abrupt discontinuity occurs at 
the origin. When we differentiate the function, the derivative between —e 
and +e is constant at a value of l/2e. For t > e, the derivative is -ae~a^'~e\ 
Figure 12.9 shows these observations graphically. As e approaches zero, the 
value of f'(t) between ±e approaches infinity. At the same time, the dura
tion of this large value is approaching zero. Furthermore, the area under 
/ ' ( 0 between ±e remains constant as e —» 0. In this example, the area is 
unity. As e approaches zero, we say that the function between ±e 
approaches a unit impulse function, denoted 8(t). Thus the derivative of/(f) 
at the origin approaches a unit impulse function as e approaches zero, or 

Figure 12.8 • A magnified view of the discontinuity in 
Fig. 12.1(b), assuming a linear transition between - e 
and +e. 

/'(0 

Figure 12.9 • The derivative of the function shown 

in Fig. 12.8. 

/ ' ( 0 ) - » 5 ( 0 a s e - * 0 . 

If the area under the impulse function curve is other than unity, the 
impulse function is denoted K8(t), where K is the area. K is often referred 
to as the strength of the impulse function. 

To summarize, an impulse function is created from a variable-parameter 
function whose parameter approaches zero. The variable-parameter func
tion must exhibit the following three characteristics as the parameter 
approaches zero: 

1. The amplitude approaches infinity. 

2. The duration of the function approaches zero. 

3. The area under the variable-parameter function is constant as the 
parameter changes. 

Many different variable-parameter functions have the aforementioned 
characteristics. In Fig. 12.8, we used a linear function /(f) = 0.5f/e + 0.5. 
Another example of a variable-parameter function is the expo
nential function: 

/M = Y/m- (12.7) 

As e approaches zero, the function becomes infinite at the origin and at the 
same time decays to zero in an infinitesimal length of time. Figure 12.10 Figure 12.10 • A variable-parameter function used to 
illustrates the character of /(f) as e —> 0. To show that an impulse function generate an impulse function. 

The impulse function is also known as the Dirac delta function. 



434 Introduction to the Laplace Transform 

is created as e —* 0, we must also show that the area under the function is 
independent of e. Thus, 

Area = / — e'ledt + / —e'^dt 
,2e J{) 2e 

(12.8) 

_ K . til 
~ 2e '1/e 

K K 
' 2 + 2 

0 K 
+ — 

= K, 

which tells us that the area under the curve is constant and equal to K units. 
Therefore, as e -> 0, f(t) -» #8(0-

Mathematically, the impulse function is defined 

r K8{t)dt = K\ (12.9) 

8(0 = 0, r * 0. (12.10) 

/(0 

(*) 

K8(t) K8(t - a) 

0 

Figure 12.11 • A graphic representation of the impulse 
/ f 5(0 and KS(t - a). 

Equation 12.9 states that the area under the impulse function is constant. 
This area represents the strength of the impulse. Equation 12.10 states 
that the impulse is zero everywhere except at t — 0. An impulse that 
occurs at t = a is denoted K8(t — a). 

The graphic symbol for the impulse function is an arrow. The strength 
of the impulse is given parenthetically next to the head of the arrow. 
Figure 12.11 shows the impulses K8(t) and K8(t - a). 

An important property of the impulse function is the sitting property, 
which is expressed as 

f(t)8(t - a)dt = f(a), (12.11) 

where the function / ( 0 is assumed to be continuous at t = a; that is, at the 
location of the impulse. Equation 12.11 shows that the impulse function 
sifts out everything except the value of / ( 0 at f = «. The validity of 
Eq. 12.11 follows from noting that 8(t - a) is zero everywhere except at 
t = «, and hence the integral can be written 

I = f(t)S(t -a)dt = f(t)8(t - a)dt. (12.12) 

But because / ( 0 is continuous at a, it takes on the value f(a) ast^>a, so 

/ = f(a)8(t - a)dt = f(a) / 8(t - a)dt 

(12.13) 

We use the sifting property of the impulse function to find its Laplace 
transform: 

?£{8(t)} -- I 8{t)e-sldt= 8{t)dt = U (12.14) 
hv JO" 

which is an important Laplace transform pair that we make good use of in 
circuit analysis. 
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We can also define the derivatives of the impulse function and the 
Laplace transform of these derivatives. We discuss the first derivative, 
along with its transform and then state the result for the higher-order 
derivatives. 

The function illustrated in Fig. 12.12(a) generates an impulse function 
as €—»0. Figure 12.12(b) shows the derivative of this impulse-generating 
function, which is defined as the derivative of the impulse [S'(t)] as e —* 0. 
The derivative of the impulse function sometimes is referred to as a 
moment function, or unit doublet. 

To find the Laplace transform of 8'(t), we simply apply the defining 
integral to the function shown in Fig. 12.12(b) and, after integrating, let 
e ^ O . Then 

L{8'(t)\ lim 

= lim 

~^fstdt + 
€ 6 

— \e*dt 

se I „—$e e"e + e 
6 - 0 se* 

= lim 
sese _ se-se 

r 
i 
i 
i 

-e 0 

»/«2 

w 
1/e2 

el 
I 
1 

o 2es 

(b) 

Figure 12.12 A The first derivative of the impulse 
function, (a) The impulse-generating function used to 
define the first derivative of the impulse, (b) The first 
derivative of the impulse-generating function that 
approaches 8'(t) as e —»0. 

= lim 
e-»0 

sV + s2e~S€ 

2s 

= s. (12.15) 

In deriving Eq. 12.15, we had to use l'Hopital's rule twice to evaluate the 
indeterminate form 0/0. 

Higher-order derivatives may be generated in a manner similar to 
that used to generate the first derivative (see Problem 12.6), and the defin
ing integral may then be used to find its Laplace transform. For the nth 
derivative of the impulse function, we find that its Laplace transform sim
ply is s"; that is, 

£{#">(/)} = sn. (12.16) 

Finally, an impulse function can be thought of as a derivative of a step 
function; that is, 

5(0-
du(t) 

dt 
(12.17) 

Figure 12.13 presents the graphic interpretation of Eq. 12.17. The function 
shown in Fig. 12.13(a) approaches a unit step function as e —> 0. The func
tion shown in Fig. 12.13(b)—the derivative of the function in 
Fig. 12.13(a)—approaches a unit impulse as e —*• 0. 

The impulse function is an extremely useful concept in circuit analy
sis, and we say more about it in the following chapters. We introduced the 
concept here so that we can include discontinuities at the origin in our def
inition of the Laplace transform. 

NOTE: Assess your understanding of the impulse function by trying 
Chapter Problems 12.7,12.9, and 12.10. 

fit) 

1.0 

/ 
-e () 

A 
i 

e 

(a) 

1 
2e 

-e 0 e 

(b) 

Figure 12.13 • The impulse function as the derivative 
of the step function: (a) f(t) - » u(t) as e - * 0; and 
(b)/'(/)->fi(0ase-»0. 
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12.4 Functional Transforms 
A functional transform is simply the Laplace transform of a specified 
function of t. Because we are limiting our introduction to the unilat
eral, or one-sided, Laplace transform, we define all functions to be zero 
for t < (T. 

We derived one functional transform pair in Section 12.3, where 
we showed that the Laplace transform of the unit impulse function 
equals 1; (see Eq. 12.14). A second illustration is the unit step function 
of Fig. 12.13(a), where 

fit) 

1.0 r-

(U<() 

/ > ( ) 

0 

Figure 12.14 • A decaying exponential function. 

fit) 

-1 .0 -

Figure 12.15 • A sinusoidal function for / > 0. 

%{u{t)} f{t)e'sl dt = 
o-

\e~xtdt 

e 

-s 0" 

(12.18) 

Equation 12.18 shows that the Laplace transform of the unit step function 
is \/s. 

Tlie Laplace transform of the decaying exponential function shown in 
Fig. 12.14 is 

%{e '} = [ e-a'e~s'dt = I 
Jo+ Jo o' s + a 

(12.19) 

In deriving Eqs. 12.18 and 12.19, we used the fact that integration across 
the discontinuity at the origin is zero. 

A third illustration of finding a functional transform is the sinusoidal 
function shown in Fig. 12.15. The expression for / ( / ) for t > 0~ is sin cot; 
hence the Laplace transform is 

,Se{sinwf} (sin oot)e sl dt 

Jot — p-)(ot\ 

~ -=7-— Y* dt 
2J J 

dt 

1 1 1 

2/ V s — jco s + /ft) 

(X) 

s2 + co2' 
(12.20) 

Table 12.1 gives an abbreviated list of Laplace transform pairs. It 
includes the functions of most interest in an introductory course on cir
cuit applications. 
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TABLE 12.1 An Abbreviated List of Laplace Transform Pairs 

Type 

(impulse) 

(step) 

(ramp) 

(exponential) 

(sine) 

(cosine) 

(clamped ramp) 

(damped sine) 

(damped cosine) 

jit) u> o-) 

3(0 

u(t) 

t 

t~* 

sin to/ 

COS cot 

te-"' 

e~at sin cot 

e~tU cos cot 

F(s) 

1 

1 

$ 

1 

.92 

1 

s + a 

CO 

s2 + co2 

s 

s2 + co2 

1 

(s + a)2 

CO 

(s + a)2 + co2 

s + a 

(s + a)2 + a2 

t/ASSESSMENT PROBLEM 

Objective 1—Be able to calculate the Laplace transform of a function using the definition of Laplace transform 

12.1 Use the defining integral to Answer: (a) s/(s2 - /32); 
a) find the Laplace transform of cosh /3?; 
b) find the Laplace transform of sinh pt. (b) p/(s2 - /32). 

NOTE: Also try Chapter Problem 12.17. 

12.5 Operational Transforms 
Operational transforms indicate how mathematical operations performed 
on either f(t) or F{s) are converted into the opposite domain. The opera
tions of primary interest are (1) multiplication by a constant; (2) addition 
(subtraction); (3) differentiation; (4) integration; (5) translation in the time 
domain; (6) translation in the frequency domain; and (7) scale changing. 

Multiplication by a Constant 

From the defining integral, if 

then 

${Kf(t)} = KF(s). (12.21) 

Thus, multiplication of /(f) by a constant corresponds to multiplying F(s) 
by the same constant. 



Addition (Subtraction) 
Addition (subtraction) in the time domain translates into addition (sub
traction) in the frequency domain. Thus if 

2{/i(0) = Fib), 

2{ / 2 (0} = F2(s), 

then 

2{/3<0} = F&s), 

•*{/l(0 + /2(0 - / 3 (0} = Fi(5) + F2(S) - Fa(*), (12.22) 

which is derived by simply substituting the algebraic sum of time-domain 
functions into the defining integral. 

Differentiation 
Differentiation in the time domain corresponds to multiplying F(s) by s 
and then subtracting the initial value of /(f)—that is, / ( 0 - ) — from 
this product: 

x\«f-} = *<,) - /(0-). (12.23) 

which is obtained directly from the definition of the Laplace transform, or 

:¾ 
df(t) 

dt 
df(t) 

dt 
e^'dt. (12.24) 

We evaluate the integral in Eq. 12.24 by integrating by parts. Letting 
it = e~st and dv = [df(t)fdt] dt yields 

*{f7-<™ f{t)(-ur*dt). (12.25) 

Because we are assuming that f(t) is Laplace transformable, the evalua
tion of e~stf(t) at / = 00 is zero. Therefore the right-hand side of Eq. 12.25 
reduces to 

/ (0-) + s / f(t)e-«dt = sF(s) - / (0- ) . 

This observation completes the derivation of Eq. 12.23. It is an important 
result because it states that differentiation in the time domain reduces to 
an algebraic operation in the s domain. 

We determine the Laplace transform of higher-order derivatives by 
using Eq. 12.23 as the starting point. For example, to find the Laplace 
transform of the second derivative of /(f), we first let 

g(t) dt 
(12.26) 



Now we use Eq. 12.23 to write 

G(s) = sF(s) - /(()-). (12.27) 

But because 

dm _ d2f(t) 
dt dt2 

we write 

f£ 
( dt ) { dt2 sG(s) - g(Q-). (12.28) 

Combining Eqs. 12.26,12.27, and 12.28 gives 

,\m-,m-sn01-^l (12.29) 

We find the Laplace transform of the nth derivative by successively 
applying the preceding process, which leads to the general result 

d'm 
dt 

%Y^r = s"F(s) - s"-lf(Q-) - s „-2<t/(0~) 
dt 

,,-,^7(0-) _ _ rfw-7(Q") 
dt2 dt"-

(12.30) 

Integration 

Integration in the time domain corresponds to dividing by s in the s domain. 
As before, we establish the relationship by the defining integral: 

I / f(x)dx f(x)dx e~sldt. (12.31) 

We evaluate the integral on the right-hand side of Eq. 12.31 by integrating 
by parts, first letting 

u = f(x)dx. 

Then 

dv = e sldt. 

du = f(t)dt, 

v = 



The integration-by-parts formula yields 

%\jj(x)dx\-- -st 
0 0 >-st 

+ I —f(t)dt. (12.32) 
U" J(r s 

The first term on the right-hand side of Eq. 12.32 is zero at both the upper 
and lower limits. The evaluation at the lower limit obviously is zero, 
whereas the evaluation at the upper limit is zero because we are assuming 
that /(f) has a Laplace transform. The second term on the right-hand side 
of Eq. 12.32 is F(s)/s; therefore 

' i £ / ( * ) < * * } « ^ , (12.33) 

which reveals that the operation of integration in the time domain is trans
formed to the algebraic operation of multiplying by \/s in the s domain. 
Equation 12.33 and Eq. 12.30 form the basis of the earlier statement that 
the Laplace transform translates a set of integrodifferential equations into 
a set of algebraic equations. 

Translation in the Time Domain 

If we start with any function f{t)u{t), we can represent the same function, 
translated in time by the constant a, as f{t — a)u{t — a).2 Translation in 
the time domain corresponds to multiplication by an exponential in the 
frequency domain. Thus 

# { / ( / - a)u(t - a)} = e~"sF(s), a > 0. (12.34) 

For example, knowing that 

%{tu{t)} = - r , 
s 

Eq. 12.34 permits writing the Laplace transform of (t - a)u{t - a) 
directly: 

i£{(f - a)u{t - a)} = -
s 

as 

2~* 

The proof of Eq. 12.34 follows from the defining integral: 

/.CO 

£{(t - a)u{t - a)} = I u{t - a)f(t - a)e~st dt 
Jo 

f(t - a)e~stdt. (12.35) 

In writing Eq. 12.35, we took advantage of u(t - a) = 1 for t > a. Now 
we change the variable of integration. Specifically, we let x = t — a. Then 

2 Note that throughout we multiply any arbitrary function /(f) by the unit step function u(t) 
to ensure that the resulting function is defined for all positive time. 



JC = 0 when t = a, x = oo when t = oo and dx = dt. Thus we write the 
integral in Eq. 12.35 as 

/.OO 

5£{/(r - a)u{i - a)} = / f(x)e~s{x+a) dx 
Jo 

- <TV" / f(x)e~sxdx 
./o 

which is what we set out to prove. 

Translation in the Frequency Domain 
Translation in the frequency domain corresponds to multiplication by an 
exponential in the time domain: 

%{e~mf{t)} = F(s + a), (12.36) 

which follows from the defining integral. The derivation of Eq. 12.36 is left 
to Problem 12.13. 

We may use the relationship in Eq. 12.36 to derive new transform 
pairs. Thus, knowing that 

${cosa)t} = — r , 
s" + or 

we use Eq. 12.36 to deduce that 

s + a 
${e-1" coscot} 

(s + a)2 + 

Scale Changing 
The scale-change property gives the relationship between f(t) and F(s) 
when the time variable is multiplied by a positive constant: 

£{f(at)\ =-F\-), a> 0, (12.37) 
a \aj 

the derivation of which is left to Problem 12.16. The scale-change property 
is particularly useful in experimental work, especially where time-scale 
changes are made to facilitate building a model of a system. 

We use Eq. 12.37 to formulate new transform pairs. Thus, knowing that 

£{cos /} = ^ ~ 1 J .v2 + 1 

we deduce from Eq. 12.37 that 

1 s/a> 
.Sejcoswf} 

{s/ojf + 1 s2 + a)2 

Table 12.2 gives an abbreviated list of operational transforms. 
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TABLE 12.2 An Abbreviated List of Operational Transforms 

Operation /(f) 

Multiplication by a constant 

Addition/subtraction 

First derivative (time) 

Second derivative (time) 

nth derivative (time) 

Time integral 

Translation in time 

Translation in frequency 

Scale changing 

First derivative (s) 

nth derivative (s) 

s integral 

Kfit) 

/ , ( 0 + / 2 (0 - hit) + 

df(t) 

dt 

d2f(Q 

dt2 

d"f(t) 
dt" 

f{x)dx 

f(t - a)u(t - a), a > 0 

e-a!f(t) 

f(at), a > 0 

//(0 

'7(0 

/(0 

m 
KF(s) 

F^v) + /sCv) - F,(s)+--

sF(s) - / (0-) 

<W~) s*F(s) - 5 / (01 -
dt 

snF(s) - s"-lf(0') - sn 

, , - , dfjOl 

,df(Q-) 

dt 

dr 

F(s} 

s 

e~"*F(s) 

F(s + a) 

M1 
a \a dFjs) 

ds 

(-1) 
d"F(s) 

I)" , .. -
ds" 

F(u) du 

d"-]f(Q-) 

dt"'1 

I /ASSESSMENT PROBLEM 

Objective 1—Be able to calculate the Laplace transform of a function using the Laplace transform table or a table of 
operational transforms 

12.2 Use the appropriate operational transform 
from Table 12.2 to find the Laplace transform 
of each function: 

a) r V " ; 

b) ^-(e-alsinh/3t); 
at 

c) t cos cot. 

NOTE: Also try Chapter Problems 11.14 and 11.22. 

Answer: (a) 

(b) 

(c) 

(s + a ) 3 ' 

(s + a)2- / 3 2 ' 

2 2 s — co-

is1 + coz) 2\2* 

Figure 12.16 • A parallel RLC circuit. 

12.6 Applying the Laplace Transform 
We now illustrate how to use the Laplace transform to solve the ordinary 
integrodifferential equations that describe the behavior of lumped-
parameter circuits. Consider the circuit shown in Fig. 12.16. We assume 
that no initial energy is stored in the circuit at the instant when the switch, 
which is shorting the dc current source, is opened. The problem is to find 
the time-domain expression for v(/) when t 2= 0. 



We begin by writing the integrodifferential equation that v(t) must 
satisfy. We need only a single node-voltage equation to describe the cir
cuit. Summing the currents away from the top node in the circuit gener
ates the equation: 

v(t) 1 / ' dv(t) 

R + IJ V(x)dX + C d T = /dc"(°- (1238) 

Note that in writing Eq. 12.38, we indicated the opening of the switch in 
the step jump of the source current from zero to /dc. 

After deriving the integrodifferential equations (in this example, just 
one), we transform the equations to the s domain. We will not go through 
the steps of the transformation in detail, because in Chapter 13 we will dis
cover how to bypass them and generate the ^-domain equations directly. 
Briefly though, we use three operational transforms and one functional 
transform on Eq. 12.38 to obtain 

^R~ + 1 ^ + C[SV{S) " V{°~)] = /dc(j) (1239) 

an algebraic equation in which V(s) is the unknown variable. We are 
assuming that the circuit parameters R, L, and C, as well as the source cur
rent /jc are known; the initial voltage on the capacitor u(0~) is zero 
because the initial energy stored in the circuit is zero. Thus we have 
reduced the problem to solving an algebraic equation. 

Next we solve the algebraic equations (again, just one in this case) for 
the unknowns. Solving Eq. 12.39 for V(s) gives 

yj 1 + 1 + sC) m & 
v \R SL ) S 

hdC 
Vis) = -i • . (12.40) w s2 + (l/RC)s + (1/LC) 

To find v{t) we must inverse-transform the expression for V(s). We 
denote this inverse operation 

v(t) = %~l{V(s)}. (12.41) 

The next step in the analysis is to find the inverse transform of the 
.y-domain expression; this is the subject of Section 12.7. In that section 
we also present a final, critical step: checking the validity of the result
ing time-domain expression. The need for such checking is not unique 
to the Laplace transform; conscientious and prudent engineers always 
test any derived solution to be sure it makes sense in terms of known 
system behavior. 

Simplifying the notation now is advantageous. We do so by dropping 
the parenthetical t in time-domain expressions and the parenthetical s in 
frequency-domain expressions. We use lowercase letters for all time-domain 



variables, and we represent the corresponding .v-domain variables with 
uppercase letters. Thus 

f£{v} = V or v = %~1{V}, 

%{i} = I or i = %-]{!}, 

3i{f] =F or f**<Tl{F}9 

and so on. 

NOTE: Assess your understanding of this material by trying Chapter 
Problem 12.26. 

12 J Inverse Transforms 
The expression for V(s) in Eq. 12.40 is a rational function of s; that is, one 
that can be expressed in the form of a ratio of two polynomials in s such 
that no nonintegral powers of 5 appear in the polynomials. In fact, for lin
ear, lumped-parameter circuits whose component values are constant, the 
s-domain expressions for the unknown voltages and currents are always 
rational functions of s. (You may verify this observation by working 
Problems 12.28-12.31.) If we can inverse-transform rational functions of s, 
we can solve for the time-domain expressions for the voltages and cur
rents. The purpose of this section is to present a straight-forward and sys
tematic technique for finding the inverse transform of a rational function. 

In general, we need to find the inverse transform of a function that 
has the form 

F(s) = £&) =
 a»s" + ^ - 1 - ^ 1 + - + ^ +go 

D(s) bms»> + bm-lS
m-1 +-+b]S + bQ' 

The coefficients a and b are real constants, and the exponents m and n are 
positive integers. The ratio N(s)/D(s) is called a proper rational function 
if m > n, and an improper rational function if m ^ n. Only a proper 
rational function can be expanded as a sum of partial fractions. This 
restriction poses no problem, as we show at the end of this section. 

Partial Fraction Expansion: Proper Rational Functions 
A proper rational function is expanded into a sum of partial fractions by 
writing a term or a series of terms for each root of D(s). Thus D(s) must 
be in factored form before we can make a partial fraction expansion. For 
each distinct root of D(s), a single term appears in the sum of partial frac
tions. For each multiple root of D(s) of multiplicity r, the expansion con
tains r terms. For example, in the rational function 

s + 6 
s(s + 3)(s + l ) 2 ' 

the denominator has four roots. Two of these roots are distinct—namely, 
at s = 0 and s = —3. A multiple root of multiplicity 2 occurs at s = — 1. 
Thus the partial fraction expansion of this function takes the form 

s + 6 Kx K2 X3 K4 

s(s + 3)(s + 1)2 s s + 3 (s + 1)2 s + 1 



The key to the partial fraction technique for finding inverse transforms 
lies in recognizing the f(t) corresponding to each term in the sum of par
tial fractions. From Table 12.1 you should be able to verify that 

if -, l s + 6 

s(s + 3)(. + 1)2. 

(Kl + K2e~* + K3te~' + K4e~' )u(t). (12.44) 

All that remains is to establish a technique for determining the coeffi
cients (K], K2, K3,...) generated by making a partial fraction expansion. 
There are four general forms this problem can take. Specifically, the roots 
of D(s) are either (1) real and distinct; (2) complex and distinct; (3) real 
and repeated; or (4) complex and repeated. Before we consider each situ
ation in turn, a few general comments are in order. 

We used the identity sign = in Eq. 12.43 to emphasize that expanding 
a rational function into a sum of partial fractions establishes an identical 
equation. Thus both sides of the equation must be the same for all values 
of the variable 5. Also, the identity relationship must hold when both sides 
are subjected to the same mathematical operation. These characteristics 
are pertinent to determining the coefficients, as we will see. 

Be sure to verify that the rational function is proper. This check is 
important because nothing in the procedure for finding the various K$ will 
alert you to nonsense results if the rational function is improper. We pres
ent a procedure for checking the Ks, but you can avoid wasted effort by 
forming the habit of asking yourself, "Is F(s) a proper rational function?" 

Partial Fraction Expansion: Distinct Real Roots of D(s) 
We first consider determining the coefficients in a partial fraction expan
sion when all the roots of D(s) are real and distinct. To find a K associated 
with a term that arises because of a distinct root of D(s), we multiply both 
sides of the identity by a factor equal to the denominator beneath the 
desired K. Then when we evaluate both sides of the identity at the root cor
responding to the multiplying factor, the right-hand side is always the 
desired K, and the left-hand side is always its numerical value. For example, 

96(5 + 5)(s + 12) Ki K2 K3 

F(s) = — = — + — + —. 
v J 5(5 + 8)(s + 6) s s + 8 s + 6 

(12.45) 

To find the value of Ku we multiply both sides by s and then evaluate both 
sides at s = 0: 

96(5 + 5)(5 + 12) 

(5 + 8)(5 + 6) 

K2s 

s=omKl + s + S + 
K3s 

i = 0 5 + 6 5 = 0 

or 

96(5)(12) 

8(6) 
= K{ = 120. (12.46) 

To find the value of K2, we multiply both sides by s + 8 and then evaluate 
both sides at s = - 8 : 

96(5 + 5)(5 + 12) 

s(s + 6) s = -<S 

Kx(s + 8) 
+ Kn + 

.5=-8 

K3(s + 8) 

(5 + 6) .v=-S 
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or 

Then K3 is 

96(-3)(4) 

( -8 ) ( -2 ) 
K? = -72 . (12.47) 

96(5 + 5)(5 + 12) 

s(s + 8) 
K3 = 48. (12.48) 

From Eq. 12.45 and the K values obtained, 

96(5 + 5)(5 + 12) 

s(s + 8)(5 + 6) 

120 
+ 

48 72 
5 + 6 5 + 8 

[12.49) 

At this point, testing the result to protect against computational errors is a 
good idea. As we already mentioned, a partial fraction expansion creates 
an identity; thus both sides of Eq. 12.49 must be the same for all s values. 
The choice of test values is completely open; hence we choose values that 
are easy to verify. For example, in Eq. 12.49, testing at either - 5 or -12 is 
attractive because in both cases the left-hand side reduces to zero. 
Choosing - 5 yields 

120 48 72 
•24 + 48 - 24 = 0, 

whereas testing -12 gives 

120 48 72 n „ ,„ n 

+ —: = - 1 0 - 8 + 18 = 0. 12 - 6 - 4 

Now confident that the numerical values of the various K$ are correct, we 
proceed to find the inverse transform: 

%-
, )96(5 + 5)(5 + 12) 

s(s + 8)(5 + 6) 
(120 + 48e"6' - 72eT8')"(0- (12.50) 

i /ASSESSMENT PROBLEMS 

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace 
transform table 

12.3 F ind / (0 if 

652 + 265 + 26 
('V) ~ ( 5 + 1)(5 + 2)(5 + 3)* 

Answer: f(t) = (3e'1 + 2e'2' + e~^)u(t). 

12A Find/(f) if 

752 + 635 + 134 
( 5 ) ~ (5 + 3)(5 + 4) (5+ 5)* 

Answer: / ( 0 = (4<T3' + 6e~41 - 3e"5/)»(0-

NOTE: Also try Chapter Problems 12.40(a) and (b). 



Partial Fraction Expansion: Distinct Complex 
Roots of D(s) 
The only difference between finding the coefficients associated with dis
tinct complex roots and finding those associated with distinct real roots is 
that the algebra in the former involves complex numbers. We illustrate by 
expanding the rational function: 

F(s) = 
100(5 + 3) 

(s + 6)(52 + 6s + 25) 
(12.51) 

We begin by noting that F(s) is a proper rational function. Next we must 
find the roots of the quadratic term s2 + 6s + 25: 

s2 + 6s + 25 = (s + 3 - j4)(s + 3 + /4). (12.52) 

With the denominator in factored form, we proceed as before: 

100(5 + 3) = 

(s + 6)(s2 + 6s + 25) ~~ 

/v, 
+ 

K? 
+ 

K, 

s + 6 s + 3 - /4 .v + 3 + /4 

To find Ku K2, and K3, we use the same process as before: 

K, = 
100(5 + 3) 

s2 + 6s + 25 , = -6 

100(-3) 

25 
-12 , 

(12.53) 

(12.54) 

K7 = 
100(5 + 3) 

(s + 6)(5 + 3 + /4) 

100(/4) 

,=-3+/-. ~ (3 + /4)(/8) 

= 6 - / 8 = l0e~j5Uy, (12.55) 

K, = 
100(5 + 3) 

(5 + 6)(5 + 3 - /4) 

100(-/4) 

-3-,4 ~ (3 - /4)(- /8) 

Then 

= 6 + / 8 = 10e'5313 

100(5 + 3) 12 10/-53.13° 

(5 + 6)(52 + 65 + 25) 5 + 6 5 + 3 - /4 

(12.56) 

+ 
10/53.13° 

s + 3 + /4 
(12.57) 

Again, we need to make some observations. First, in physically realiz
able circuits, complex roots always appear in conjugate pairs. Second, the 
coefficients associated with these conjugate pairs are themselves conju
gates. Note, for example, that /<C3 (Eq. 12.56) is the conjugate of K2 



(Eq. 12.55). Thus for complex conjugate roots, you actually need to calcu
late only half the coefficients. 

Before inverse-transforming Eq. 12.57, we check the partial fraction 
expansion numerically. Testing at —3 is attractive because the left-hand 
side reduces to zero at this value: 

-12 10/-53.13° 10/53.13° 

/4 /4 

= - 4 + 2.5 /36.87° + 2.5 /-36.87° 

= -4 + 2.0 + /1.5 + 2.0 - /1.5 = 0. 

We now proceed to in verse-transform Eq. 12.57: 

J 100(5 + 3) 1 = & + ^-/53.13^-(3-/4), 
\{s + 6)(52 + 6̂  + 25)] v 

+ 10e'53-,3V(3+'4)')«(*)• (12.58) 

In general, having the function in the time domain contain imaginary com
ponents is undesirable. Fortunately, because the terms involving imaginary 
components always come in conjugate pairs, we can eliminate the imagi
nary components simply by adding the pairs: 

10e-j53A3e-O-j4)t + 1 0 e /53.13 V ( 3 + / 4 ) r 

= 10e--VX4'_53LV) + e**-5"3'*) 

= 20cT3'cos(4r - 53.13°), (12.59) 

which enables us to simplify Eq. 12.58: 

100(5 + 3) 

(5 + 6)(5^ + 65 + 25) 

= [-12fT6' + 20e"3'cos(4r - 53.13°)]u(f). (12.60) 

Because distinct complex roots appear frequently in lumped-parameter 
linear circuit analysis, we need to summarize these results with a new 
transform pair. Whenever D(s) contains distinct complex roots—that is, 
factors of the form (5 + a - //3)(5 + a + //3)-a pair of terms of the form 

K K* , 
+ TZ (12.61) 5 + a - //3 5 + a + //3 

appears in the partial fraction expansion, where the partial fraction coeffi
cient is, in general, a complex number. In polar form, 

K = \K\e'e = 1*1/0°, (12.62) 



12.7 Inverse Transforms 

where \K\ denotes the magnitude of the complex coefficient.Then 

K* = \K\e~j0 = \K\/-0°. (12.63) 

The complex conjugate pair in Eq. 12.61 always inverse-transforms as 

K K* 1 
sr1 

- + 

s + a - jB s + a + jB J 

= 2|K|<r°"cos(j3f + 0). 

(12.64) 

In applying Eq. 12.64 it is important to note that K is defined as the coeffi
cient associated with the denominator term s + a — jB, and K" is defined 
as the coefficient associated with the denominator s + a + yj8. 

/ " A S S E S S M E N T PROBLE 

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace 
transform table 

12.5 Find /(f) if 

F(s) = 1Q(*2 + 1 1 9 ) 
(s + 5)(s2 + 10s + 169)' 

NOTE: Also try Chapter Problems 12.40(c) and (d). 

Answer: /(f) = (lOe-* - 8.33c"5' sin 12f)«(f). 

Partial Fraction Expansion: Repeated Real Roots of D(s) 

To find the coefficients associated with the terms generated by a multiple 
root of multiplicity r, we multiply both sides of the identity by the multiple 
root raised to its rth power. We find the K appearing over the factor raised 
to the rth power by evaluating both sides of the identity at the multiple root. 
To find the remaining (r — 1) coefficients, we differentiate both sides of the 
identity (r — 1) times. At the end of each differentiation, we evaluate both 
sides of the identity at the multiple root. The right-hand side is always the 
desired K, and the left-hand side is always its numerical value. For example. 

100(5 + 25) Kl 

+ 
Ki K, KA 

s(s + 5f s (s + 5)3 (s + 5)2 

We find Kx as previously described; that is, 

S + 5 

K: = 
100(5' + 25) 

(s + 5)3 
s=() 

100(25) 

125 
20. 

(12.65) 

(12.66) 

To find Ko, we multiply both sides by (s + 5)J and then evaluate both 
sides at - 5 : 

100(5 + 25) K.is + 5)3 

+ K2 + K3(s + 5 ) U - 5 

+ K4(s + 5)2 

100(20) 

s—5 

(12.67) 

(-5) 
Ki X 0 + K2 + K3 X 0 + K4 X 0 

= Ko = -400. (12.68) 



To find K?, we first must multiply both sides of Eq. 12.65 by (s + 5)3. Next 
we differentiate both sides once with respect to s and then evaluate at 
s = - 5 : 

d 
ds 

10Q(s + 25) 

s 
L_ _ 

d 

v=_5 ds 

+ 

Ki(s + 5)3 

s 

&**" 

s=-5 

+ -[K3(s + 5)L=_5 

+ — [K4(s + 5)2],=_5, (12.69) 

100 
s - (s + 25) 

= K3 = -100. (12.70) 

To find K4 we first multiply both sides of Eq. 12.65 by (s + 5)3. Next 
we differentiate both sides twice with respect to s and then evaluate both 
sides at s = —5. After simplifying the first derivative, the second deriva
tive becomes 

nd 
100— 

as 

25] 

s- _ ,,=-5 ds 

\s + 5f{2s-S) 
.v=-5 

+ 0 + J^3l*=-5 + j-sl
2K*(S + 5)]*=-5< 

or 

- 4 0 = 2K4. (12.71) 

Solving Eq. 12.71 for K4 gives 

K4 = -20 . (12.72) 

Then 

IOOQT + 25) _ 20 400 100 20 

s(s + 5)3 " .v ' (.v + 5)3 (s + 5)2 s + 5' 
(12.73) 

At this point we can check our expansion by testing both sides of 
Eq. 12.73 at s = - 2 5 . Noting both sides of Eq. 12.73 equal zero when 
s = —25 gives us confidence in the correctness of the partial fraction 
expansion. The inverse transform of Eq. 12.73 yields 

/100(5 + 25) 

1 s(s + 5)3 

= [20 - 200t2e~5t - lOOte'*1 - 20e~5']w(f). (12.74) 
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I / 'ASSESSMENT PROBLEM 

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace 
transform table 

12.6 F ind / (0 if 

(4s2 + Is + 1) 

s(s + 1) 

NOTE: Also try Chapter Problems 12.41(a), (b), and (d). 

Answer: fit) = (1 + 2te~' + 3<Tr)"(0-

Partial Fraction Expansion: Repeated Complex 
Roots of D(s) 

We handle repeated complex roots in the same way that we did repeated 
real roots; the only difference is that the algebra involves complex num
bers. Recall that complex roots always appear in conjugate pairs and that 
the coefficients associated with a conjugate pair are also conjugates, so 
that only half the Ks need to be evaluated. For example, 

F(s) = 
768 

(s2 + 65 + 25):' 

After factoring the denominator polynomial, we write 

768 
F(s) 

(s + 3 - jA)\s + 3 + /4)2 

(12.75) 

K> 
+ 

K, 

(s + 3 - /4)2 s + 3 - /4 

+ 
K\ 

+ 
K\ 

(s + 3 + /4)2 s + 3 + /4 
(12.76) 

Now we need to evaluate only K{ and K2, because K\ and K\ are conju
gate values. The value of K{ is 

K, = 
768 

(s + 3 + /4)2 

768 

s=-3+j4 

(;8): -12 . 

The value of K2 is 

Ki = 
els 

768 

(5 + 3 + /4) 

2(768) 

s=-3+/4 

(s + 3 + /4)3 

2(768) 

" (/8)3 

= - / 3 = 3 / - 9 0 ° . 

s=—3+/4 

(12.77) 

(12.78) 



From Eqs. 12.77 and 12.78, 

K\ = - 12 , (12.79) 

K2 = /3 = 3 /90° . (12.80) 

We now group the partial fraction expansion by conjugate terms to obtain 

F(s) = 
12 -12 

.(.V + 3 - / 4 ) 2 ( . + 3 + , 4 ) 2 

3 /~9(T 3 /90° 

s + 3 - /4 s + 3 + /4 
(12.81) 

We now write the inverse transform of F(s): 

f(t) = [-24f£T3feos4f + 6c~3'cos(4/ - 90°)]u(f). (12.82) 

Note that if F(s) has a real root a of multiplicity /• in its denominator, 
the term in a partial fraction expansion is of the form 

A' 

(s + a)r 

The inverse transform of this term is 

We-* 
(s + ayj ( r - 1 ) ! 

«(')• (12.83) 

If F(s) has a complex root of a + //3 of multiplicity r in its denominator, 
the term in partial fraction expansion is the conjugate pair 

K 
+ 

K 
(s + a - jp)r (s + a+ j{3)r 

The inverse transform of this pair is 

K K* 
2T1 

(s + a - y/3)' (.v + a + j(3)r 

2\K\t r 1 

(r - 1)! 
e~°" co$((3t + 6) u{t). (12.84) 

Equations 12.83 and 12.84 are the key to being able to inverse-transform 
any partial fraction expansion by inspection. One further note regarding 
these two equations: In most circuit analysis problems, r is seldom greater 
than 2. Therefore, the inverse transform of a rational function can be han
dled with four transform pairs. Table 12.3 lists these pairs. 



12.7 Inverse Transforms 

TABLE 12.3 Four Useful Transform Pairs 

Pair 
Number 

1 

2 

3 

4 

Nature of 
Roots 

Distinct real 

Repeated real 

Distinct complex 

Repeated complex 

F(s) f{() 

K 
s 

<* 

s 

+ a 

K 

+ a)2 

K 

+ a -

K 

7/3 
+ -

s 

i 

+ 
K 
a 

K* 

(s + a - jpf (s + a + jpy 

Ke-atu{t) 

Kte-"'u(t) 

2|/<|e_a'cos(/3r + d)u(t) 

2t\K\e-al cos ((3t + $)u(t) 

Note: In pairs 1 and 2, K is a real quantity, whereas in pairs 3 and 4. K is the complex quantity | K | /0 . 

^/ASSESSMENT PROBLEM 

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace 
transform table 

12.7 Find f(t) if Answer: f(t) = (-20te~21 cos t + 20e"2f sin t)u(t). 

F{s) = 40 
W (s2 + As + 5)2 

NOTE: Also try Chapter Problem 12.41(e). 

Partial Fraction Expansion: Improper Rational Functions 
We conclude the discussion of partial fraction expansions by returning 
to an observation made at the beginning of this section, namely, that 
improper rational functions pose no serious problem in finding inverse 
transforms. An improper rational function can always be expanded into 
a polynomial plus a proper rational function. The polynomial is then 
inverse-transformed into impulse functions and derivatives of impulse 
functions. The proper rational function is inverse-transformed by the 
techniques outlined in this section. To illustrate the procedure, we use 
the function 

, , s4 + 13.v3 + 66^2 + 200* + 300 

s + 9s + 20 

Dividing the denominator into the numerator until the remainder is a 
proper rational function gives 

•» . ^ 305 + 100 
F(s) = s2 + 4.v + 10 + (12.86) 

s + 9s + 20 

where the term (30s + 100)/(s2 + 9s + 20) is the remainder. 
Next we expand the proper rational function into a sum of 

partial fractions: 

30* + 100 305 + 100 - 2 0 50 
+ - . (12.87) s2 + 95 + 20 (s + 4)(5 + 5) 5 + 4 5 + 5 



454 Introduction to the Laplace Transform 

Substituting Eq. 12.87 into Eq. 12.86 yields 

7 ,« 20 50 
F(s) = s2 + 4s + 10 - - + .v + 4 s + 5" 

Now we can inverse-transform Eq. 12.88 by inspection. Hence 

, , , d28(t) d8(t) 

- (2()e-41 - 5Qe~5t)u(t). 

(12.88) 

(12.89) 

^ A S S E S S M E N T P R O B L E M S 

Objective 2—Be able to calculate the inverse Laplace transform using partial fraction expansion and the Laplace 
transform table 

12.8 F ind / (0 if 

(5s2 + 29s + 32) 
F(s) = 

(s + 2)(5 + 4) 

Answer: / ( 0 = 58(0 ~ (3e"2/ - 2<T4/>/(0-

NOTE: Also try Chapter Problem 12.42(c). 

12.9 F ind / (0 if 

(253 + 852 + 25 - 4) 
F(s) 

(s2 + 5s + 4) 

Answer: / ( 0 = 2 
£/5(Q -4 / . - 25(0 + 4e~4tu(t) 

12.8 Poles and Zeros of F(s) 
The rational function of Eq. 12.42 also may be expressed as the ratio of 
two factored polynomials. In other words, we may write F(s) as 

F(s) 
K(s + Zi)(s + z2)---{s + za) 

(12.90) 
(s + pt)(s + p2) • • • (s + pM) ' 

where K is the constant ajbm. For example, we may also write the function 

852 + 1205 + 400 

as 

F(s) 

F(s) 

2sA + 2053 + 7052 + 1005 + 48 

8(52 + 155 + 50) 

2(54 + 1053 + 3552 + 505 + 24) 

4(5 + 5)(5 + 10) 

(5 + 1)(5 + 2)(5 + 3)(5 + 4 ) ' 
(12.91) 

The roots of the denominator polynomial, that is, -pi, -p2, ~p$,..., 
-/?„,, are called the poles of F(s); they are the values of s at which F(s) 
becomes infinitely large. In the function described by Eq. 12.91, the poles 
of F(s) are - 1 , - 2 , - 3 , and - 4 . 

The roots of the numerator polynomial, that is, — Z[, ~z2, ~z^ . . . , 
-z„ , are called the zeros of F(s); they are the values of s at which F(s) 
becomes zero. In the function described by Eq. 12.91, the zeros of F(s) 
are - 5 and -10 . 
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In what follows, you may find that being able to visualize the poles 
and zeros of F(s) as points on a complex s plane is helpful. A complex 
plane is needed because the roots of the polynomials may be complex. In 
the complex s plane, we use the horizontal axis to plot the real values of s 
and the vertical axis to plot the imaginary values of .v. 

As an example of plotting the poles and zeros of F(s), consider 
the function 

F(s) 
10(.y + 5)(s + 3 - j4)(s + 3 + /4) 

s(s + 10)(s + 6 - J8){s + 6 + /8) 
(12.92) 

The poles of F(s) are at 0, - 1 0 , - 6 4- /8 , and - 6 — y'8. The zeros are at - 5 , 
- 3 + /4, and - 3 — ;4. Figure 12.17 shows the poles and zeros plotted on 
the s plane, where X?s represent poles and O's represent zeros. 

Note that the poles and zeros for Eq. 12.90 are located in the finite s 
plane. F(s) can also have either an rth-order pole or an rth-order zero at 
infinity. For example, the function described by Eq. 12.91 has a second-
order zero at infinity, because for large values of s the function reduces to 
4/s2, and F(s) = 0 when .v = oo. In this text, we are interested in the poles 
and zeros located in the finite s plane. Therefore, when we refer to the 
poles and zeros of a rational function of s, we are referring to the finite 
poles and zeros. 

s plane 
- 6 + /8 >f 

I I I I I I I I M l I I 

-10 r° i 
i 
e — 

- 3 - / 4 

- 3 + ; 4 _ 5 
p _ _ 
I 

< t i ' i \y\ 11 

— 5 

- 6 - / 8 X- h 

Figure 12.17 A Plotting poles and zeros on the s plane. 

12.9 Initial- and Final-Value Theorems 
The initial- and final-value theorems are useful because they enable us to 
determine from F(s) the behavior of / ( 0 at 0 and oo. Hence we can check 
the initial and final values of / ( / ) to see if they conform with known circuit 
behavior, before actually finding the inverse transform of F(s). 

The initial-value theorem states that 

lim / ( 0 = lim sF(s), (12.93) ^1 Initial value theorem 

and the final-value theorem states that 

lim / ( 0 = lim sF(s). (12.94) ^ Final value theorem 

The initial-value theorem is based on the assumption that / ( 0 contains no 
impulse functions. In Eq. 12.94, we must add the restriction that the theo
rem is valid only if the poles of F(s), except for a first-order pole at the 
origin, lie in the left half of the s plane. 

To prove Eq. 12.93, we start with the operational transform of the 
first derivative: 

Now we take the limit as s —» oo: 

^ / . -
dt 

e'srdt. (12.95) 

lim [sF(s) - / (0 - ) ] = lim •s'dt. (12.96) 



Observe that the right-hand side of Eq. 12.96 may be written as 

lim / -j-e"dt + / -^e~st dt . 
* - ° ° \ Mr dt Jit dt J 

As s —* co, (df/dt)e~st —> 0; hence the second integral vanishes in the limit. 
The first integral reduces to / (0+) - /(0~), which is independent of s. Thus 
the right-hand side of Eq. 12.96 becomes 

lim / %e-udt = / (0+) - / (0- ) . (12.97) 

Because / ( 0 - ) is independent of s, the left-hand side of Eq. 12.96 may 
be written 

lim[5F(j) - /(0^)1 = Iim[sF(s)] - / ( 0 - ) . (12.98) 

From Eqs. 12.97 and 12.98, 

l imsF(s) = / ( 0 + ) = l im/(/) , 

which completes the proof of the initial-value theorem. 
The proof of the final-value theorem also starts with Eq. 12.95. Here 

we take the limit as s —> 0: 

l i m [ ^ ) - /(0-)] = Km(y_ Yte~St(lt)- (12-99) 

The integration is with respect to t and the limit operation is with respect 
to s, so the right-hand side of Eq. 12.99 reduces to 

limf / -j-e'^dt) = / -f dt. (12.100) 

Because the upper limit on the integral is infinite, this integral may also be 
written as a limit process: 

df f'df 
---dt = lim / -r-dy, (12.101) 

0- dt ,^oc JQ-dy • 

where we use y as the symbol of integration to avoid confusion with the 
upper limit on the integral. Carrying out the integration process yields 

lim [/(0 - /(0-)] = lim [/(f)] - / (0-) . (12.102) 

Substituting Eq. 12.102 into Eq. 12.99 gives 

lim[^(5')] - / (0-) = lim [/(0] - / (0- ) . (12.103) 
s—*\) t—*cc 

Because / (0 - ) cancels, Eq. 12.103 reduces to the final-value theorem, namely, 

limA'F(s) = l i m / ( 0 -

The final-value theorem is useful only if / ( ° ° ) exists.This condition is true 
only if all the poles of F(s), except for a simple pole at the origin, lie in the 
left half of the s plane. 



12.9 Initial- and Final-Value Theorems 

The Application of Initial- and Final-Value Theorems 
To illustrate the application of the initial- and final-value theorems, we 
apply them to a function we used to illustrate partial fraction expan
sions. Consider the transform pair given by Eq. 12.60. The initial-value 
theorem gives 

100s2[l + (3/s)] 
Jim sF(s) = lim - : =— = 0, 

s^oo v ' s-*™s\\ + (6/s))[l + (6/.9) + (25/52)] 

lim / ( 0 = [-12 + 20cos(-53.13°)](l) = - 1 2 + 12 = 0. 

The final-value theorem gives 

lQOsjs + 3) 

• o i—o (s + 6)(5:2 + 6s + 25) 
lim sF(s) = lim — ^ w 2 7777T = »̂ 

lim f{t) = lim[-12e~6r + 20e_3'cos(4f - 53.13°)]w(f) = 0. 
t—>00 /—»00 

In applying the theorems to Eq. 12.60, we already had the time-domain 
expression and were merely testing our understanding. But the real value of 
the initial- and final-value theorems lies in being able to test the .s-domain 
expressions before working out the inverse transform. For example, con
sider the expression for V(s) given by Eq. 12.40. Although we cannot calcu
late v(t) until the circuit parameters are specified, we can check to see if 
V(s) predicts the correct values of v(0+) and ?;(oo). We know from the 
statement of the problem that generated V(s) that v(0+) is zero. We also 
know that v(oo) must be zero because the ideal inductor is a perfect short 
circuit across the dc current source. Finally, we know that the poles of V(s) 
must lie in the left half of the s plane because R, L, and C are positive con
stants. Hence the poles of sV(s) also lie in the left half of the s plane. 

Applying the initial-value theorem yields 

lim sV(s) = lim 
s(Idc/Q 

s-+°os2[\ + \/(RCs) + \/{LCs2)] 

Applying the final-value theorem gives 

s(hc/C) 
lim sV(s) = lim ̂ : = 0. 
5-o , - o 5

2 + (s/RC) + (1/LC) 

The derived expression for V(s) correctly predicts the initial and final val
ues of v(t). 

/ "ASSESSMENT PROBLEM 

Objective 3—Understand and know how to use the initial value theorem and the final value theorem 

12.10 Use the initial- and final-value theorems to find Answer: 7,0; 4,1; and 0,0. 
the initial and final values of f(t) in Assessment 
Problems 12.4,12.6, and 12.7. 

NOTE: Also try Chapter Problem 12.50. 
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Practical Perspective 
Transient Effects 
The circuit introduced in the Practical Perspective at the beginning of the 
chapter is repeated in Fig. 12.18 with the switch closed and the chosen 
sinusoidal source. 

10mH m » F 

cosl2(hrfV( £15 a 

Figure 12.18 A A series RLC circuit with a 60 Hz 
sinusoidal source. 

We use the Laplace methods to determine the complete response of the 
inductor current, 4 ( 0 - TO begin, use KVL to sum the voltages drops around 
the circuit, in the clockwise direction: 

15iL(t) + 0 . 0 1 - ¾ ^ + - r / iL(x)dx = cosUOTrt (12.104) 
at 100 X 10 \ / o 

Now we take the Laplace transform of Eq. 12.104, using Tables 12.1 and 12.2: 

15/L(5) + 0.01s/L(5) + 1 0 4 - ^ = -= / -r (12.105) 

Next, rearrange the terms in Eq. 12.105 to get an expression for IL(s): 

100s2 

Ids) = 7- -rrz r-T (12.106) 
[52 + 15005 + 106][52 + (120TT2)] 

Note that the expression for 4 ( ^ ) has two complex conjugate pairs of 
poles, so the partial fraction expansion of IL(s) will have four terms: 

L ( ^ = (5 + 750 - /661.44) + (5 + 750 + /661.44) + (5 - /120TT) + (5 + ;120TT) (12.107) 

Determine the values of K\ and K2* 

IOO52 

KY = 

K7 = 

5 + 7505 + /661.44] [52 + (120TT)2] 

IOO52 

= 0.07357Z-97.890 

5=-750+/661.44 

[52 + 15005 + 106][5 + /120V] 

(12.108) 

= 0.018345 Z 56.61° 
s=/120w 

Finally, we can use Table 12.3 to calculate the inverse Laplace transform of 
Eq. 12.107 to give 4 ( / ) : 

4 ( 0 = 147.14*T750' cos(661.44f - 97.89°) + 36.69 COS(120TT? + 56.61°) mA (12.109) 

The first term of Eq. 12.109 is the transient response, which will decay to 
essentially zero in about 7 ms. The second term of Eq. 12.109 is the steady-
state response, which has the same frequency as the 60 Hz sinusoidal source 
and will persist so long as this source is connected in the circuit. Note that 
the amplitude of the steady-state response is 36.69 mA, which is less than 
the 40 mA current rating of the inductor. But the transient response has an 
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initial amplitude of 147.14 mA, far greater than the 40 mA current rating. 
Calculate the value of the inductor current at t — 0: 

i£(0) = 147.14(l)cos(-97.89°) + 36.69 cos(56.61°) = -6.21/xA 

Clearly, the transient part of the response does not cause the inductor current to 
exceed its rating initially. But we need a plot of the complete response to deter
mine whether or not the current rating is ever exceeded, as shown in Fig. 12.19. 
The plot suggests we check the value of the inductor current at 1 ms: 
;L(0.001) = 147.14e_0J5 cos(-59.82°) + 36.69 cos(78.21°) = 42.6 m A 

Thus, the current rating is exceeded in the inductor, at least momentarily. I f 
we determine that we never want to exceed the current rating, we should 
reduce the magnitude of the sinusoidal source. This example illustrates the 
importance of considering the complete response of a circuit to a sinusoidal 
input, even if we are satisfied with the steady-state response. 

^ ( m A ) 5 0 1 

Figure 12.19 A Plot of the inductor current for the circuit in Fig. 12.18. 

NOTE: Access your understanding of the Practical Perspective by trying Chapter 
Problems 12.55 and 12.56. 

Summary 

K is the strength of the impulse; if K = 1, K8(t) is the 
unit impulse function. (See page 433.) 

A functional transform is the Laplace transform of a 
specific function. Important functional transform pairs 
are summarized in Table 12.1. (See page 436.) 

Operational transforms define the general mathematical 
properties of the Laplace transform. Important opera
tional transform pairs are summarized in Table 12.2. 
(See page 437.) 

In linear lumped-parameter circuits, F(s) is a rational 
function of s. (See page 444.) 

If F(s) is a proper rational function, the inverse trans
form is found by a partial fraction expansion. (See 
page 444.) 

If F(s) is an improper rational function, it can be inverse-
transformed by first expanding it into a sum of a poly
nomial and a proper rational function. (See page 453.) 

• The Laplace transform is a tool for converting time-
domain equations into frequency-domain equations, 
according to the following general definition: 

/, CO 

.£{/<>)}= / f(t)e-stdt = F(sl 
Jo 

where f(t) is the time-domain expression, and F(s) is 
the frequency-domain expression. (See page 430.) 

• The step function Ku(t) describes a function that expe
riences a discontinuity from one constant level to 
another at some point in time. K is the magnitude of the 
jump; if K = 1, Ku(t) is the unit step function. (See 
page 431.) 

• The impulse function K8(t) is defined 

/

OO 

K8{t)dt = # , 
CO 

8{t) = 0, t ^ 0. 
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F(s) can be expressed as the ratio of two factored poly
nomials. The roots of the denominator are called poles 
and are plotted as Xs on the complex s plane. The roots 
of the numerator are called zeros and are plotted as Os 
on the complex s plane. (See page 454.) 

The initial-value theorem states that 

lim / ( / ) = lim sF(s). 
I—»0 s—>oo 

The theorem assumes that / ( 0 contains no impulse 
functions. (See page 455.) 

The final-value theorem states that 

l i m / ( 0 = KmsF(s). 
/—•oo .?—»0 + 

The theorem is valid only if the poles of F(s), except for 
a first-order pole at the origin, lie in the left half of the 5 
plane. (See page 455.) 

The initial- and final-value theorems allow us to predict 
the initial and final values of / ( 0 from an s-domain 
expression. (See page 457.) 

Problems 

Section 12.2 12.3 Use step functions to write the expression for each 
function shown in Fig. P12.3. 

12.1 Make a sketch of / ( 0 for - 1 0 s < / < 30 s when 
/ ( 0 is given by the following expression: 

/ ( 0 = (10/ + 100)w(* + 1 0 ) - (10/ + 5Q)u(t + 5) 
+ (50 - I0t)u(t - 5) 
- (150 - \0t)u(t - 15) + (10/ - 250)M(/ - 25) 

- (10/ - 300)w(/ - 30) 

12.2 Use step functions to write the expression for each 
of the functions shown in Fig. P12.2. 

Figure P12.2 

~"2\ 
1 

- 2 

8 -

1 / 
- 1 / 

f 9 
O 

1 
1 

1 
2 

1 
3 

r(s) 

Figure P12.3 

/(0 

(b) 

fit) 

20 

/(s) 

(c) 

(b) 

12.4 Step functions can be used to define a window func
tion. Thus u(t - 1 ) - u(t - 4) defines a window 
1 unit high and 3 units wide located on the time axis 
between 1 and 4. 
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A function / ( / ) is defined as follows: 

/(0 = o, t < o 

= -20/, 0 < / < 1 s 

= -20, 

7T 
20 cos—/, 

2 

= 100 - 20? 

= 0, 

1 s < / < 2s 

2 s < / < 4 s: 

4s < / < 5 s 

5 s < / < oo. 

a) Sketch / ( 0 over the interval - 1 s < / < 6 s. 

b) Use the concept of the window function to write 
an expression for / ( / ) . 

Section 12,3 

12.5 Explain why the following function generates an 
impulse function as e —> 0: 

/(0 
C/TT 

e2 + /2 ' 
— oo < f < oo. 

12.6 The triangular pulses shown in Fig. P12.6 are equiv
alent to the rectangular pulses in Fig. 12.12(b), 
because they both enclose the same area (1/e) and 
they both approach infinity proportional to 1/e2 as 
e —> 0. Use this triangular-pulse representation for 
S'(0 to find the Laplace transform of 8"(t). 

Figure P12.6 

12.7 a) Find the area under the function shown in 

Fig. 12.12(a). 

b) What is the duration of the function when e = 0? 

c) What is the magnitude of/(0) when e = 0? 

12.8 In Section 12.3, we used the sifting property of the 
impulse function to show that 56(5(0} = 1« Show 

that we can obtain the same result by finding the 
Laplace transform of the rectangular pulse that 
exists between ±e in Fig. 12.9 and then finding 
the limit of this transform as e —* 0. 

12.9 Evaluate the following integrals: 

a) / = / (t* + 2)[5(/) + 85(/ - 1)] dt. 

b) / = I t2[8(t) + 5(/ + 1.5) + 5(/ - 3)] dt. 

12.10 Find / ( / ) if 

/(0 = :1 

and 

/ ( 0 = ^ - / F(<o)e'tada>, 
2-7T ./_oo 

4 + jw 
F(to) = ^-;—^7r5(a>). 

12.11 Show that 

9 + ja> 

#{S ( '0(0} = s". 

12.12 a) Show that 

Q 

f(t)8'(t - a)dt = - / ' ( « ) • 

(Hint: Integrate by parts.) 

b) Use the formula in (a) to show that 

5£{5'(/)} = s. 

Sections 12.4-12.5 

12.13 Show that 

2 { « r * / ( 0 } = F{s + a). 

12.14 a) Find ,% {— sin cot}. 

b) Find %\-f cos (at}. 

d7, 

c) Find <£<—=t*u(t) 
1 dt3 

d) Check the results of parts (a), (b), and (c) by first 
differentiating and then transforming. 
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12.15 a) Find the Laplace transform of 

x dx 

by first integrating and then transforming. 

b) Check the result obtained in (a) by using the 
operational transform given by Eq. 12.33. 

12.16 Show that 

X{f(at)} = -F[-

12.17 Find the Laplace transform of each of the following 
functions: 

a) f{t) = te-°'i 

b) / ( 0 = sinw/; 

c) f{t) = sin (out + 0): 

d) / ( 0 - r; 

e) fit) = cosh(r -t- 0)-

(Hint: See Assessment Problem 12.1.) 

12.18 Find the Laplace transform (when e—*•()) of the 
derivative of the exponential function illustrated in 
Fig. 12.8, using each of the following two methods: 

a) First differentiate the function and then find the 
transform of the resulting function. 

b) Use the operational transform given by Eq. 12.23. 

12.19 Find the Laplace transform of each of the following 
functions: 

a) f{t) = 40e~8('~3)«<f - 3). 

b) fit) = (5/ - 10)[«(f - 2 ) - u(t - 4)] 
+ (30 - 5/)[«(/ - 4 ) - u(i - 8)] 
+ (5/ - 50)[u(t - 8) - u(t - 10)]. 

12.20 a) Find the Laplace transform of te~'". 

b) Use the operational transform given by Eq. 12.23 
d 

to find the Laplace transform of — (te l"). 
dt 

c) Check your result in part (b) by first differenti
ating and then transforming the resulting 
expression. 

12.21 a) Find the Laplace transform of the function illus
trated in Fig. PI 2.21. 

b) Find the Laplace transform of the first deriva
tive of the function illustrated in Fig. P12.21. 

c) Find the Laplace transform of the second deriv
ative of the function illustrated in Fig. P12.21. 

Figure P12.21 

/(0 

12.22 a) Findi£<J / , 

b) Check the results of (a) by first integrating and 
then transforming. 

12.23 a) Given that F(s) = £ { / ( 0 ) , show that 

dF(s) 

ds 
X{tf(t)}. 

b) Show that 

dn F(s\ 
( - i r - ^ j r •= 2{/y<r)}. 

c) Use the result of (b) to find 56{r5}, %{t sin fit}, 
and &{t e~* cosh t}. 

12.24 a) Show that if F(s) = .2{/(f)}, and {/(0//} is 
Laplace-transformable, then 

F(u)du = % /(0 

(Hint: Use the defining integral to write 

F(u)du = 
OO / / ,00 

fit)e~tadt du 

and then reverse the order of integration.) 

b) Start with the result obtained in Problem 12.23(c) 
for 5£{/sin/3r} and use the operational trans
form given in (a) of this problem to find 
% {sin (3t}. 
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12.25 Find the Laplace transform for (a) and (b). 

b) f(t) e ox cos cox dx. 

c) Verify the results obtained in (a) and (b) by first 
carrying out the indicated mathematical opera
tion and then finding the Laplace transform. 

Section 12.6 

12.26 In the circuit shown in Fig. 12.16, the dc current 
source is replaced with a sinusoidal source that 
delivers a current of 1.2 cos t A. The circuit compo
nents are R — 1 fl, C = 625 mF, and L = 1.6 H. 
Find the numerical expression for V(s). 

12.27 There is no energy stored in the circuit shown in 
Fig. P12.27 at the time the switch is opened. 

a) Derive the integrodifferential equations that 
govern the behavior of the node voltages v, 
and v2. 

b) Show that 

Vi(s) 

Figure P12.27 

slg{s) 

C[s2 + (R/L)s + (1/LC)] 

R 

c 

12.28 The switch in the circuit in Fig. P12.28 has been 
open for a long time. At t = 0, the switch closes. 

a) Derive the integrodifferential equation that 
governs the behavior of the voltage va for t > 0. 

b) Show that 

Vois) = 

c) Show that 

lo(s) 

V6c/RC 

s2 + {l/RQs + (1/LC) 

VJRLC 

s[s2 + {l/RQs + (1/LC)] 

Figure P12.28 

A R 
-'WV-

/ = 0 

del L j / ( , v, 

12.29 The switch in the circuit in Fig. PI2.29 has been in 
position a for a long time. At t = 0 , the switch 
moves instantaneously to position b. 

a) Derive the integrodifferential equation that gov
erns the behavior of the voltage va for t > 0+ . 

b) Show that 

VQ{s) = 

Figure PI2.29 

V6c[s + {RID] 
[s2 + (R/L)s + (1/LC)] 

12.30 There is no energy stored in the circuit shown in 
Fig. PI2.30 at the time the switch is opened. 

a) Derive the integrodifferential equation that 
governs the behavior of the voltage va. 

b) Show that 

kc/C 
Kit) = -

sz + {\/RC)s + (1/LC) 

c) Show that 

U*) = -
si dc 

s1 + (1/RQs + (1/LC) 

Figure P12.30 

C 

12.31 The switch in the circuit in Fig. PI2.31 has been in 
position a for a long time. At t = 0, the switch 
moves instantaneously to position b. 

a) Derive the integrodifferential equation that gov
erns the behavior of the current L for t > 0+. 

b) Show that 

lois) = Ti 
Idc[s + {l/RQ] 

[s2 + {l/RQs + (1/LC)] 

Figure P12.31 

IK 
C L 
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PSPICE 
HULTISIM 

12.32 a) Write the two simultaneous differential equa
tions that describe the circuit shown in Fig. P12.32 
in terms of the mesh currents i] and /2. 

b) Laplace-transform the equations derived in (a). 
Assume that the initial energy stored in the cir
cuit is zero. 

c) Solve the equations in (b) for ^(s) and /2(^)-

Figure P12.32 

60 n 

12.40 Find fit) for each of the following functions: 

Section 12.7 

12.33 Find v(t) in Problem 12.26. 

12.34 The circuit parameters in the circuit in Fig. P12.27 
"«« are R = 2500 H; L = 500 mH; and C = 0.5 fiF. If 

M ™ /,(0 = 15 mA, find tfc(f). 

12.35 The circuit parameters in the circuit in Fig. PI2.28 
pspicE are R = 5 kft; L = 200 mH; and C = 100 nF. If Vdc 

MULTISIM • o r -t T r- 1 

is 35 V, find 

a) vt)(t) for t > 0 

b) i0{t) for t > 0 

12.36 The circuit parameters in the circuit in Fig. PI 2.29 
are R = 250 H, L = 50 mH, and C = 5 fxF. If 
Vdc = 48 V, find v0(t) for t > 0. 

a) 

b) 

,A L) 

d) 

Fis) = 

Fis) = 

Fis) = 

Fis) = 

8.r + 37s + 32 
is + 1)(5 + 2)is + 4 ) ' 

1353 + 134A-2 + 392s + 288 

sis + 2)is2 + 10s + 24) 

20s2 + 16s + 12 

(s + l)(s2 + 2s + 5) ' 

250(s + 7)(s + 14) 
/ 7 1 1 A I C(\\ ' sis£ + Us + 50) 

12.41 Find fit) for each of the following functions. 

a) 

b) 

rA c) 

d) 

F(s) = 

Fis) = 

Fis) = 

Fis) = 

100 

s\s + 5)' 

50(s + 5) 

sis + 1)2 " 

100(s + 3) 

s2is2 + 6s + 10) 

5(s + 2)2 

s(s + l ) 3 ' 

400 

sis2 + 4s + 5)' 

12.42 Find fit) for each of the following functions. 

12.37 The circuit parameters in the circuit seen in 
.55?.. Fig. P12.30 have the following values: R = 1 kfl, 

MULTISIM L = n 5 H c = 2 ^ F ? a n d 7 ^ = 3 Q m A 

a) Find v0(t) for t > 0. 

b) Find i0(t) for t > 0. 

c) Does your solution for /,,(0 make sense when 
t = 0? Explain. 

12.38 The circuit parameters in the circuit in Fig. PI2.31 
PS"", are R = 500 O, L = 250 mH, and C = 250 nF. If 

MULTISIM ^ = 5 m A ^ f i n d . ^ for t > 0 

12.39 Use the results from Problem 12.32 and the circuit 
shown in Fig P12.32 to 

a) Find ix(t) and /2(r). 

b) Find /1(00) and /2(°°). 

c) Do the solutions for /j and /2 make sense? 
Explain. 

a) 

b) 

c) 

Fis) = 

Fis) = 

Fis) = 

5s2 + 38s + 80 

s2 + 6s + 8 

10s2 + 512s + 7186 

s2 + 48s + 625 

s3 + 5s2 - 50s - 100 

s2 + 15s + 50 

12.43 Find / ( 0 for each of the following functions. 

a) Fis) = 

b) Fis) = 

100(5 + 1) 

s\s2 + 2s + 5)' 

500 

5(5 + 5)3" 
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c) F(s) = 

d) F(s) = 

40(s + 2) 

s(s + 1)3 

(s + 5)2 

s(s + 1)4 

12.44 Derive the transform pair given by Eq. 12.64. 

12.45 a) Derive the transform pair given by Eq. 12.83. 

b) Derive the transform pair given by Eq. 12.84. 

12.50 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.40. 

12.51 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.41. 

12.52 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.42. 

12.53 Apply the initial- and final-value theorems to each 
transform pair in Problem 12.43. 

Sections 12.8-12.9 

12.46 a) Use the initial-value theorem to find the initial 
value of v in Problem 12.26. 

b) Can the final-value theorem be used to find the 
steady-state value of v'l Why? 

12.47 Use the initial- and final-value theorems to check 
the initial and final values of the current and volt
age in Problem 12.28. 

12.48 Use the initial- and final-value theorems to check 
the initial and final values of the current and volt
age in Problem 12.30. 

12.49 Use the initial- and final-value theorems to check 
the initial and final values of the current in 
Problem 12.31. 

Sections 12.1-12.9 

12.54 a) Use phasor circuit analysis techniques from 
Chapter 9 to determine the steady-state expres
sion for the inductor current in Fig. 12.18. 

b) How does your result in part (a) compare to the 
complete response as given in Eq. 12.109? 

12.55 Find the maximum magnitude of the sinusoidal 
source in Fig. 12.18 such that the complete response 
of the inductor current does not exceed the 40 mA 
current rating at t = 1 ms. 

12.56 Suppose the input to the circuit in Fig 12.18 is a 
damped ramp of the form Kte~100tV. Find the 
largest value of K such that the inductor current 
does not exceed the 40 mA current rating. 
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1 Be able to transform a circuit into the s domain 
using Laplace transforms; be sure you 
understand how to represent the initial 
conditions on energy-storage elements in the 
5 domain. 

2 Know how to analyze a circuit in the s-domain 
and be able to transform an s-domain solution 
back to the time domain. 

3 Understand the definition and significance of 
the transfer function and be able to calculate 
the transfer function for a circuit using 
s-domain techniques. 

4 Know how to use a circuit's transfer function to 
calculate the circuit's unit impulse response, its 
unit step response, and its steady-state 
response to a sinusoidal input. 

The Laplace Transform 
in Circuit Analysis 
The Laplace transform has two characteristics that make it an 

attractive tool in circuit analysis. First, it transforms a set of linear 

constant-coefficient differential equations into a set of linear 

polynomial equations, which are easier to manipulate. Second, it 

automatically introduces into the polynomial equations the initial 

values of the current and voltage variables. Thus, initial condi

tions are an inherent part of the transform process. (This con

trasts with the classical approach to the solution of differential 

equations, in which initial conditions are considered when the 

unknown coefficients are evaluated.) 

We begin this chapter by showing how we can skip the step of 

writing time-domain integrodifferential equations and transform

ing them into the s domain. In Section 13.1, we'll develop the 

s-domain circuit models for resistors, inductors, and capacitors so 

that we can write s-domain equations for all circuits directly. 

Section 13.2 reviews Ohm's and Kirchhoff's laws in the context of 

the s domain. After establishing these fundamentals, we apply the 

Laplace transform method to a variety of circuit problems in 

Section 13.3. 

Analytical and simplification techniques first introduced with 

resistive circuits—such as mesh-current and node-voltage methods 

and source transformations—can be used in the s domain as well. 

After solving for the circuit response in the s domain, we inverse 

transform back to the time domain, using partial fraction expansion 

(as demonstrated in the preceding chapter). As before, checking the 

final time-domain equations in terms of the initial conditions and 

final values is an important step in the solution process. 

The s-domain descriptions of circuit input and output lead us, 

in Section 13.4, to the concept of the transfer function. The trans

fer function for a particular circuit is the ratio of the Laplace 

transform of its output to the Laplace transform of its input. In 

Chapters 14 and 15, we'll examine the design uses of the transfer 

function, but here we focus on its use as an analytical tool. We 

continue this chapter with a look at the role of partial fraction 

466 



Practical Perspective 
Surge Suppressors 
With the advent of home-based personal computers, modems, 
fax machines, and other sensitive electronic equipment, i t is 
necessary to provide protection from voltage surges that can 
occur in a household circuit due to switching. A commer
cially available surge suppressor is shown in the accompany
ing figure. 

How can flipping a switch to turn on a light or turn off a 
hair dryer cause a voltage surge? At the end of this chapter, 
we will answer that question using Laplace transform tech
niques to analyze a circuit. We will illustrate how a voltage 
surge can be created by switching off a resistive load in a cir
cuit operating in the sinusoidal steady state. 

467 
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expansion (Section 13.5) and the convolution integral (Section 13.6) in 
employing the transfer function in circuit analysis. We conclude with a 
look at the impulse function in circuit analysis. 

13.1 Circuit Elements in the s Domain 
The procedure for developing an ^-domain equivalent circuit for each cir
cuit element is simple. First, we write the time-domain equation that 
relates the terminal voltage to the terminal current. Next, we take the 
Laplace transform of the time-domain equation. This step generates an 
algebraic relationship between the s-domain current and voltage. Note that 
the dimension of a transformed voltage is volt-seconds, and the dimension 
of a transformed current is ampere-seconds. A voltage-to-current ratio in 
the s domain carries the dimension of volts per ampere. An impedance 
in the s domain is measured in ohms, and an admittance is measured in 
Siemens. Finally, we construct a circuit model that satisfies the relation
ship between the ^-domain current and voltage. We use the passive sign 
convention in all the derivations. 

A Resistor in the s Domain 

We begin with the resistance element. From Ohm's law, 

v = RL 

Because R is a constant, the Laplace transform of Eq. 13.1 is 

(13.1) 

V = RI, (13.2) 

4 

+ 

V < 

4 

1 
» 

:K\I 

1 

a 

+ T 

vi 
• 

* ! • 

b b 
(a) (b) 

Figure 13.1 A The resistance element, (a) Time domain, 
(b) Frequency domain. 

where 

V = %{v\ and J = .£{*}. 

Equation 13.2 states that the s-domain equivalent circuit of a resistor is 
simply a resistance of R ohms that carries a current of I ampere-seconds 
and has a terminal voltage of V volt-seconds. 

Figure 13.1 shows the time- and frequency-domain circuits of the 
resistor. Note that going from the time domain to the frequency domain 
does not change the resistance element. 

vL iW' 
An Inductor in the s Domain 

Figure 13.2 shows an inductor carrying an initial current of /Q amperes. 
The time-domain equation that relates the terminal voltage to the termi
nal current is 

Figure 13.2 A An inductor of L henrys carrying an 
initial current of / 0 amperes. 

v = L 
di 

dt 
(13.3) 

The Laplace transform of Eq. 13.3 gives 

V = L[sl - /(0-)] = sLl - LI( (13.4) 
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Two different circuit configurations satisfy Eq. 13.4. The first consists 
of an impedance of sL ohms in series with an independent voltage source 
of L/() volt-seconds, as shown in Fig. 13.3. Note that the polarity marks on 
the voltage source L/() agree with the minus sign in Eq. 13.4. Note also 
that LI() carries its own algebraic sign; that is, if the initial value of i is 
opposite to the reference direction for i, then /(, has a negative value. 

The second .y-domain equivalent circuit that satisfies Eq. 13.4 consists 
of an impedance of sL ohms in parallel with an independent current 
source of I{)/s ampere-seconds, as shown in Fig. 13.4. We can derive the 
alternative equivalent circuit shown in Fig. 13.4 in several ways. One way 
is simply to solve Eq. 13.4 for the current I and then construct the circuit to 
satisfy the resulting equation. Thus 

/ — — T . 

sL sL s 
(13.5) 

Two other ways are: (1) find the Norton equivalent of the circuit shown in 
Fig. 13.3 and (2) start with the inductor current as a function of the induc
tor voltage and then find the Laplace transform of the resulting integral 
equation. We leave these two approaches to Problems 13.1 and 13.2. 

If the initial energy stored in the inductor is zero, that is, if /u = 0, the 
y-domain equivalent circuit of the inductor reduces to an inductor with an 
impedance of sL ohms. Figure 13.5 shows this circuit. 

A Capacitor in the s Domain 

An initially charged capacitor also has two s-domain equivalent circuits. 
Figure 13.6 shows a capacitor initially charged to V{) volts. The terminal 
current is 

Figure 13.3 • The series equivalent circuit for an 
inductor of L henrys carrying an initial current of 
/ „ amperes. 

Figure 13.4 • The parallel equivalent circuit for an 
inductor of L henrys carrying an initial current of 
/ 0 amperes. 

/ = C 
dv 
dt 

(13.6) 
VisLU 

Transforming Eq. 13.6 yields 

or 

I = C[sV - v(0~)] 

I = sCV - CV(h (13.7) 

which indicates that the .v-domain current I is the sum of two branch cur
rents. One branch consists of an admittance of sC Siemens, and the second 
branch consists of an independent current source of CVQ ampere-seconds. 
Figure 13.7 shows this parallel equivalent circuit. 

We derive the series equivalent circuit for the charged capacitor by 
solving Eq. 13.7 for V: 

Figure 13.5 • The s-domain circuit for an inductor 
when the initial current is zero. 

+ 4 
vCT-

+ 

Figure 13.6 • A capacitor of C farads initially charged 
to V0 volts. 

V a»? (13.8) 

Figure 13.8 shows the circuit that satisfies Eq. 13.8. 
In the equivalent circuits shown in Figs. 13.7 and 13.8, V() carries its 

own algebraic sign. In other words, if the polarity of V0 is opposite to the 
reference polarity for v, V{) is a negative quantity. If the initial voltage on 
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l/.vC 

Figure 13.7 A The parallel equivalent circuit for a 
capacitor initially charged to V0 volts. 

+ fa 

1/sC 

V0/s 

Figure 13.8 • The series equivalent circuit for a 
capacitor initially charged to V0 volts. 

/sC 

Figure 13.9 • The s-domain circuit for a capacitor 
when the initial voltage is zero. 

the capacitor is zero, both equivalent circuits reduce to an impedance of 
\/sC ohms, as shown in Fig. 13.9. 

In this chapter, an important first problem-solving step will be to 
choose between the parallel or series equivalents when inductors and 
capacitors are present. With a little forethought and some experience, the 
correct choice will often be quite evident. The equivalent circuits are sum
marized in Table 13.1. 

TABLE 13.1 Summary of the s-Domain Equivalent Circuits 

TIME DOMAIN FREQUENCY DOMAIN 

»i V*R 

b 
v = Ri 

H f a + 

i = C dvjdu 

sL] V ( | ) / „ A 

- * b 
V = sLl - Ll{) 

*b 
v At I = + 

sL s 

i/vc: 

/ = sCV - CV{) 

13.2 Circuit Analysis in the s Domain 
Before illustrating how to use the s-domain equivalent circuits in analysis, 
we need to lay some groundwork. 

First, we know that if no energy is stored in the inductor or capacitor, 
the relationship between the terminal voltage and current for each passive 
element takes the form: 

Ohm's law in the s-domain • V = ZI, (13.9) 

where Z refers to the s-domain impedance of the element. Thus a resistor 
has an impedance of R ohms, an inductor has an impedance of sL ohms. 
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and a capacitor has an impedance of 1/sC ohms. The relationship con
tained in Eq. 13.9 is also contained in Figs. 13.1(b), 13.5, and 13.9. 
Equation 13.9 is sometimes referred to as Ohm's law for the s domain. 

The reciprocal of the impedance is admittance. Therefore, the s domain 
admittance of a resistor is \/R Siemens, an inductor has an admittance of 
1/sL Siemens, and a capacitor has an admittance of sC Siemens. 

The rules for combining impedances and admittances in the s domain 
are the same as those for frequency-domain circuits.Thus series-parallel sim
plifications and A-to-Y conversions also are applicable to .v-domain analysis. 

In addition, Kirchhoff s laws apply to s-domain currents and voltages. 
Their applicability stems from the operational transform stating that the 
Laplace transform of a sum of time-domain functions is the sum of the 
transforms of the individual functions (see Table 12.2). Because the alge
braic sum of the currents at a node is zero in the time domain, the alge
braic sum of the transformed currents is also zero. A similar statement 
holds for the algebraic sum of the transformed voltages around a closed 
path. The s-domain version of Kirchhoff s laws is 

alg2/ = 0, (13.10) 

alg 2 > = 0. (13.11) 

Because the voltage and current at the terminals of a passive element 
are related by an algebraic equation and because Kirchhoff s laws still 
hold, all the techniques of circuit analysis developed for pure resistive 
networks may be used in s-domain analysis. Thus node voltages, mesh 
currents, source transformations, and Thevenin-Norton equivalents are 
all valid techniques, even when energy is stored initially in the inductors 
and capacitors. Initially stored energy requires that we modify Eq. 13.9 by 
simply adding independent sources either in series or parallel with the 
element impedances. The addition of these sources is governed by 
Kirchhoff s laws. 

/ A S S E S S M E N T PROBLEMS 

Objective 1—Be able to transform a circuit into the s domain using Laplace transforms 

13.1 A 500 O, resistor, a 16 mH inductor, and a 25 11F 
capacitor are connected in parallel. 

a) Express the admittance of this parallel com
bination of elements as a rational function 
of s. 

b) Compute the numerical values of the zeros 
and poles. 

Answer: (a) 25 X 1 0 " V + 80,000.? + 25 x 1(f)/s; 

(b) -z{ = -40,000 - /30,000; 
-Z2 = -40,000 + /30,000; px = 0. 

13.2 The parallel circuit in Assessment Problem 13.1 
is placed in series with a 2000 fl resistor. 

a) Express the impedance of this series combi
nation as a rational function of s. 

b) Compute the numerical values of the zeros 
and poles. 

Answer: (a) 2000(5 + 50,000)2/C*2 + 80,0005 

+ 25 X 108); 

(b) -zx = -z2 = -50,000; 
-p1 = -40,000 - /30,000, 
-p2 = -40,000 + 730,000. 

NOTE: Also try Chapter Problems 13.4 and 13.6. 
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13.3 Applications 
We now illustrate how to use the Laplace transform to determine the tran
sient behavior of several linear lumped-parameter circuits. We start by ana
lyzing familiar circuits from Chapters 7 and 8 because they represent a 
simple starting place and because they show that the Laplace transform 
approach yields the same results. In all the examples, the ease of manipulat
ing algebraic equations instead of differential equations should be apparent. 

Figure 13.10 • The capacitor discharge circuit. 

+ 
/ 

RkV 

Figure 13.11 A An s-domain equivalent circuit for the 
circuit shown in Fig. 13.10. 

The Natural Response of an RC Circuit 
We first revisit the natural response of an RC circuit (Fig. 13.10) via 
Laplace transform techniques. (You may want to review the classical 
analysis of this same circuit in Section 7.2). 

The capacitor is initially charged to V0 volts, and we are interested in 
the time-domain expressions for i and v. We start by finding i. In transfer
ring the circuit in Fig. 13.10 to the s domain, we have a choice of two equiv
alent circuits for the charged capacitor. Because we are interested in the 
current, the series-equivalent circuit is more attractive; it results in a single-
mesh circuit in the frequency domain. Thus we construct the .s-domain cir
cuit shown in Fig. 13.11. 

Summing the voltages around the mesh generates the expression 

s sC 
(13.12) 

Solving Eq. 13.12 for /yields 

/ = 
CV0 V{)/R 

RCs + 1 s + (1/RC)' 
(13.13) 

Figure 13.12 A An s-domain equivalent circuit for the 
circuit shown in Fig. 13.10. 

Note that the expression for I is a proper rational function of s and can be 
inverse-transformed by inspection: 

(13.14) 

which is equivalent to the expression for the current derived by the classi
cal methods discussed in Chapter 7. In that chapter, the current is given by 
Eq. 7.26, where T is used in place of RC. 

After we have found /, the easiest way to determine v is simply to 
apply Ohm's law; that is, from the circuit, 

V = Ri = V{)e~'/RCu(t). (13.15) 

We now illustrate a way to find v from the circuit without first finding /'. 
In this alternative approach, we return to the original circuit of Fig. 13.10 
and transfer it to the 5 domain using the parallel equivalent circuit for the 
charged capacitor. Using the parallel equivalent circuit is attractive now 
because we can describe the resulting circuit in terms of a single node volt
age. Figure 13.12 shows the new s-domain equivalent circuit. 

The node-voltage equation that describes the new circuit is 

^ + sCV = CVQ. (13.16) 

Solving Eq. 13.16 for V gives 
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V 
Vn 

(13.17) 
s + {i/Rcy 

Inverse-transforming Eq. 13.17 leads to the same expression for v given by 
Eq. 13.15, namely, 

v = V{)er!lRC = V0e^Tu(t). (13.18) 

Our purpose in deriving by direct use of the transform method is to 
show that the choice of which 5-domain equivalent circuit to use is influ
enced by which response signal is of interest. 

/ A S S E S S M E N T PROBLEM 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the 
time domain 

13.3 The switch in the circuit shown has been in 
position a for a long time. At t = 0, the switch 
is thrown to position b. 

a) Find I, Vh and V2 as rational functions of s. 

b) Find the time-domain expressions for i, vh 

and v2. 

Answer: (a) I = 0.02/(5 + 1250), 
Vx = 80/(5 + 1250), 
V2 = 20/(5 + 1250); 

NOTE: Also try Chapter Problems 13.9 and 13.12. 

(b) i = 20<T1250fM(0 m A , 
V] = 80e-125(V0 V, 
v2 = 20e-u50tu(t) V. 

io kn \ 

100V 

A 
(j\ 0.2 MF; 

0.8 JUF; 

f = 0 
+ 

+ 
| | 5 k a 

The Step Response of a Parallel Circuit 

Next we analyze the parallel RLC circuit, shown in Fig. 13.13, that we first 
analyzed in Example 8.7. The problem is to find the expression for iL after 
the constant current source is switched across the parallel elements. The 
initial energy stored in the circuit is zero. 

As before, we begin by constructing the 5-domain equivalent circuit 
shown in Fig. 13.14. Note how easily an independent source can be trans
formed from the time domain to the frequency domain. We transform the 
source to the s domain simply by determining the Laplace transform of its 
time-domain function. Here, opening the switch results in a step change in 
the current applied to the circuit. Therefore the 5-domain current source is 
!£{I\}Cu(t)}, or lfe/$. To find IL, we first solve for V and then use 

I, = 
sL 

(13.19) 

to establish the 5-domain expression for 1L. Summing the currents away 
from the top node generates the expression 

sCV + — H—- = — 
R sL 5 

Solving Eq. 13.20 for V gives 

V = 
UJC 

52 + {i/RC)s + (1/LC) 

(13.20) 

(13.21) 

R h\L 
625 Ct 

2 5 m H | 

Figure 13.13 • The step response of a parallel 
RLC circuit. 

Figure 13.14 • The s-domain equivalent circuit for the 
circuit shown in Fig. 13.13. 



Substituting Eq. 13.21 into Eq. 13.19 gives 

hJLC 
L s[s2 + (1/RQs + (1/LC)]' 

Substituting the numerical values of R, L, C, and /d c into Eq. 13.22 yields 

384 X 105 

h = —--> 5T« (13.23) 
i'(.?2 + 64,000.v + 16 X 108) 

Before expanding Eq. 13.23 into a sum of partial fractions, we factor the 
quadratic term in the denominator: 

384 X 105 

L " s(s + 32,000 - /24,000)(5 + 32,000 + /24,000) * ( 1 3 '2 4 ) 

Now, we can test the ,v-domain expression for IL by checking to see 
whether the final-value theorem predicts the correct value for iL at 
t = co. All the poles of IL, except for the first-order pole at the origin, lie 
in the left half of the s plane, so the theorem is applicable. We know from 
the behavior of the circuit that after the switch has been open for a long 
time, the inductor will short-circuit the current source.Therefore, the final 
value of iL must be 24 m A. The limit of si L a s s —> 0 is 

,. T 384 X 105
 n, A 

hm sir = r = 24 mA. (13.25) 
*-o 16 X 108 

(Currents in the .v domain carry the dimension of ampere-seconds, so the 
dimension of sIL will be amperes.) Thus our s-domain expression checks out. 

We now proceed with the partial fraction expansion of Eq. 13.24: 

s s + 32,000 - /24,000 

Kl 
+ s + 32,000 + /24,000' ( 1 3 ' 2 6 ) 

The partial fraction coefficients are 

384 X 103 ,„ , 
K] = jT- = 2 4 X 10" 3 , (13.27) 

16 x 10 8 

384 X 10 5 

A.' (-32,000 + /24,000)(/48,000) 

= 20 X 10"3/126.87°. (13.28) 

Substituting the numerical values of Kx and K2 into Eq. 13.26 and inverse-
transforming the resulting expression yields 

iL = [24 + 40e"320(M)'cos(24,000f + 126.87° )]«(f)mA. (13.29) 

The answer given by Eq. 13.29 is equivalent to the answer given for 
Example 8.7 because 

40cos(24,000f + 126.87°) = - 2 4 cos 24,000/ - 32 sin 24,000/. 

If we weren't using a previous solution as a check, we would test 
Eq. 13.29 to make sure that /L(0) satisfied the given initial conditions and 
iL(oo) satisfied the known behavior of the circuit. 
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/ A S S E S S M E N T PROBLEM 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the 
time domain 

13.4 The energy stored in the circuit shown is zero Answer: (a) I = 40/(52 + 1.2s + 1); 
at the time when the switch is closed. ( b ) , = (5Qe-o.6r s i n Q 8 t ) m A ; 

a) Find the 5-domain expression for I. (c) v = 160^/(^2 + 1.2s + 1); 
(d) v = [200£fa6'cos(0.8r + 36.87°)]u(0 V. 

b) Find the time-domain expression for i when 
t > 0. V 4.8 II 4 H 

c) Find the s-domain expression for V. ^J?\ ' = () 

d) Find the time-domain expression for v when 
t > 0. 

NOTE: Also try Chapter Problems 13.10 and 13.21. 

The Transient Response of a Parallel RLC Circuit 

Another example of using the Laplace transform to find the transient behav
ior of a circuit arises from replacing the dc current source in the circuit shown 
in Fig. 13.13 with a sinusoidal current source. The new current source is 

if> = /mcostof A, (13.30) 

where /„, = 24 mA and o> = 40,000 rad/s. As before, we assume that the 
initial energy stored in the circuit is zero. 

The .v-domain expression for the source current is 

Sim 
Ig = 2 2 . (13.31) 

h r + w2 

The voltage across the parallel elements is 

(Is/C)s 

s2 + (l/RC)s + (1/L 

Substituting Eq. 13.31 into Eq. 13.32 results in 

(IJC)s2 

L + (1/RQs 

from which 

V__ (IJLC)s 

sL (s2 + a>2)[s
2 + (1/RQs + {1/LC)] 

Substituting the numerical values of /m , w, R, L, and C into Eq. 13.34 gives 

384 X 105s 

(sz + 16 X 108)(s2 + 64,000^ + 

We now write the denominator in factored form: 

-vw-
+ v — 

V =-- 2 , - / r J ^ -777777- (13-32) 

y - 7 X 7 2u.2 • 7717777, . 777777;, (13.33) 

JL = — == 7 T T - ^ 2 . ,+ ,— 7777- (13.34) 

h = ~h T7^ 5T- (13.35) 

:0.25 F 

384 X 1055 

'" ~ (5 - j(o)(s + j(o)(s + a - //3)(5 + a+Wy 
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where co = 40,000, a = 32,000, and (3 = 24,000. 
We can't test the final value of iL with the final-value theorem because 

lL has a pair of poles on the imaginary axis; that is, poles at ±/4 X 104. 
Thus we must first find iL and then check the validity of the expression 
from known circuit behavior. 

When we expand Eq. 13.36 into a sum of partial fractions, we generate 
the equation 

/ , = 
K: 

+ 
Kl 

+ 
K, 

s -/40,000 s + /40,000 s + 32,000 - /24,000 

+ 
K\ 

s + 32,000 + /24,000 

The numerical values of the coefficients K\ and K2 are 

384 X 105(/40,000) 

(13.37) 

* 1 = 7T 
(/80,000)(32,000 + /16,000)(32,000 + /64,000) 

= 7.5 X 10~ 3 / -90° , (13.38) 

K, = 
384 X 105( -32,000 + /24,000) 

(-32,000 - /16,000)(-32,000 + /64,000)(/48,000) 

12.5 X 10~3/90°. (13.39) 

Substituting the numerical values from Eqs. 13.38 and 13.39 into 
Eq. 13.37 and inverse-transforming the resulting expression yields 

iL = [15 cos (40,000r - 90°) 

+ 25e -32.000? cos(24,000r + 90°)] mA, 

= (15 sin 40,000r - 2Se~nmt sin 24,000/)tt(0 mA. (13.40) 

We now test Eq. 13.40 to see whether it makes sense in terms of the 
given initial conditions and the known circuit behavior after the switch has 
been open for a long time. For t = 0, Eq. 13.40 predicts zero initial current, 
which agrees with the initial energy of zero in the circuit. Equation 13.40 
also predicts a steady-state current of 

iLa = 15sin40,000rmA, 

which can be verified by the phasor method (Chapter 9). 

(13.41) 

Figure 13.15 • A multiple-mesh RL circuit. 

The Step Response of a Multiple Mesh Circuit 

Until now, we avoided circuits that required two or more node-voltage or 
48 ft mesh-current equations, because the techniques for solving simultaneous 

differential equations are beyond the scope of this text. However, using 
Laplace techniques, we can solve a problem like the one posed by the 
multiple-mesh circuit in Fig. 13.15. 
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Here we want to find the branch currents /j and i2 that arise when the 
336 V dc voltage source is applied suddenly to the circuit. The initial 
energy stored in the circuit is zero. Figure 13.16 shows the .v-domain equiv
alent circuit of Fig. 13.15. The two mesh-current equations are 

336 
= (42 + 8.45)/] - 42/2, 

0 = -42 / j + (90 + 10s)I2. 

Using Cramer's method to solve for lx and I2, we obtain 

A = 
42 + 8.4s - 42 

- 42 90 + 10s 

(13.42) 

(13.43) 

48 a 

Figure 13.16 • The s-domain equivalent circuit for the 
circuit shown in Fig. 13.15. 

= 84(52 + 14.9 + 24) 

= 84( s + 2)(5 + 12), (13.44) 

A', 
336/5 - 42 

0 90 + 105 

3360(5 + 9) 
(13.45) 

No = 
42 + 8.45 336/5 

- 42 0 

14,112 
(13.46) 

Based on Eqs. 13.44-13.46, 

/> = 
/Vi _ 40(5 + 9) 

A " s(s + 2)(5 + 12)' 
(13.47) 

A = 
N; 168 
A 5(5 + 2)(5 + 12)' 

Expanding I] and /2 into a sum of partial fractions gives 

14 1 15 
5 5 + 2 5 + 1 2 ' 

(13.48) 

(13.49) 

8.4 1.4 
+ 5 5 + 2 5 + 1 2 

(13.50) 
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We obtain the expressions tor i{ and i2 by inverse-transforming Eqs. 13.49 
and 13.50, respectively: 

I, = (15 - Ue~2t - e~]2t)u(t) A, (13.51) 

/2 = (7 - 8.4e"z' + \Ae~l*)u(t) A. (13.52) 

Next we test the solutions to see whether they make sense in terms of the 
circuit. Because no energy is stored in the circuit at the instant the switch is 
closed, both /'i(0~) and /2(0-) must be zero. The solutions agree with these 
initial values. After the switch has been closed for a long time, the two induc
tors appear as short circuits. Therefore, the final values of i{ and i2 are 

, x 336(90) 
/ ( 0 0 ) = *—'- = 15 A, 1V ) 42(48) 

(13.53) 

15(42) 
/ 2 ( o o ) = ^ = 7A. (13.54) 

One final test involves the numerical values of the exponents and calcu
lating the voltage drop across the 42 11 resistor by three different methods. 
From the circuit, the voltage across the 42 Q resistor (positive at the top) is 

dii d'h 
v = 42(/, - h) = 336 - 8.4—- = 48/, + 1 0 - 2 

dt dt 
(13.55) 

/ ' A S S E S S M E N T PROBLEM 

You should verify that regardless of which form of Eq. 13.55 is used, the 
voltage is 

v = (336 - 235.2e~2r - 100.80e"12r)«(0 V. 

We are thus confident that the solutions for ix and i2 are correct. 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s domain solution to the 
time domain 

13.5 The dc current and voltage sources are 
applied simultaneously to the circuit shown. 
No energy is stored in the circuit at the instant 
of application. 

a) Derive the 5-domain expressions for V\ 
and V2. 

b) For t > 0, derive the time-domain expres
sions for V\ and v2. 

c) Calculate ^(0+) and v2(0
+). 

d) Compute the steady-state values of V\ 
and Vi. 

Answer: (a) Vl = [5(s + 3)]/[s(s + 0.5)(5 + 2)], 

V2 = [2.5(s2 + 6)]/[s(s + 0.5)(5 + 2)]; 

(b) v, = (15 50 -0.5/ + f<r2>(0 v, 
v2 = 05 - l-fe-°-51 + ?e*)«(0 V; 

(c) u,(0+) = 0, v2(0
+) = 2.5 V; 

(d) vi = v2 = 15 V. 

f>A <Z IF: 

1H 
_ / -WY- \_ 

+ 
v\ 3 n f v-

15a 

15VI 

NOTE: Also try Chapter Problems 13.22 and 13.29. 
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The Use of Thevenin's Equivalent 
In this section we show how to use Thevenin's equivalent in the s domain. 
Figure 13.17 shows the circuit to be analyzed. The problem is to find the 
capacitor current that results from closing the switch.The energy stored in 
the circuit prior to closing is zero. 

To find ic, we first construct the 5-domain equivalent circuit and then 
find the Thevenin equivalent of this circuit with respect to the terminals of 
the capacitor. Figure 13.18 shows the 5-domain circuit. 

The Thevenin voltage is the open-circuit voltage across terminals a, b. 
Under open-circuit conditions, there is no voltage across the 60 Q resis
tor. Hence 

V T I , = 
{480/s)(0.002s) 

20 + 0.002* 
480 

5 + 104' 
(13.56) 

The Thevenin impedance seen from terminals a and b equals the 60 ft 
resistor in series with the parallel combination of the 20 fl resistor and the 
2 mH inductor. Thus 

ZT h = 60 + 
0.0025(20) 80(5 + 7500) 

20 + 0.0025 .v + KV 
(13.57) 

Using the Thevenin equivalent, we reduce the circuit shown in Fig. 13.18 
to the one shown in Fig. 13.19. It indicates that the capacitor current Ic 

equals the Thevenin voltage divided by the total series impedance. Thus, 

Ir = 
480/(5 + 104) 

[80(5 + 7500)/(5 + 104)] + [(2 X 105)/5] 

We simplify Eq. 13.58 to 

/c = 
65 6.v 

52 + 10,0005 + 25 X 106 (s + 5000)2 

A partial fraction expansion of Eq. 13.59 generates 

Ir = 
-30,000 

+ 
(5 + 5000)' 

the inverse transform of which is 

5 + 5000' 

ic = (-30,000f«T50,M)' + 6e-5m')u(t) A. 

(13.58) 

(13.59) 

(13.60) 

(13.61) 

We now test Eq. 13.61 to see whether it makes sense in terms of 
known circuit behavior. From Eq. 13.61, 

/c(0) = 6 A. (13.62) 

This result agrees with the initial current in the capacitor, as calculated from 
the circuit in Fig. 13.17. The initial inductor current is zero and the initial 
capacitor voltage is zero, so the initial capacitor current is 480/80, or 6 A. 
The final value of the current is zero, which also agrees with Eq. 13.61. Note 
also from this equation that the current reverses sign when t exceeds 
6/30.000, or 200 /AS. The fact that ic reverses sign makes sense because, 
when the switch first closes, the capacitor begins to charge. Eventually this 
charge is reduced to zero because the inductor is a short circuit at t = co. 
The sign reversal of ic reflects the charging and discharging of the capacitor. 

Let's assume that the voltage drop across the capacitor vc is also of inter
est. Once we know ic. we find vc by integration in the time domain; that is, 

vc = 2 x 10 5 / ( 6 - 30, -5(K«h 0Q0x)e~^m,xdx. (13.63) 

20 fi 60 a a 
'VW-

Figure 13.17 A A circuit to be analyzed using 
Thevenin's equivalent in the s domain. 

20 O 60 0 a 
-̂ vw •-

N 4 | ^ 10.002 s Vc / c t 
-±z2x 105 

Figure 13.18 • The 5-domain model of the circuit 
shown in Fig. 13.17. 

vc ic ; ^ 2 x i o 5 

Figure 13.19 • A simplified version of the circuit 
shown in Fig. 13.18, using a Thevenin equivalent. 



480 The Laplace Transform in Circuit Analysis 

Although the integration called for in Eq. 13.63 is not difficult, we may 
avoid it altogether by first finding the s-domain expression for Vc and then 
finding vc by an inverse transform. Thus 

Vc = -pic sC 

2 X 105 6.v 

s (s + 5000)2 

from which 

12 X 105 

(s + 5000)^ 

vc = 12 x io5rtr50f)0'u(0-

(13.64) 

(13.65) 

You should verify that Eq. 13.65 is consistent with Eq. 13.63 and that it 
also supports the observations made with regard to the behavior of ic (see 
Problem 13.33). 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the 
time domain 

13.6 The initial charge on the capacitor in the circuit 
shown is zero. 

a) Find the 5-domain Thevenin equivalent cir
cuit with respect to terminals a and b. 

b) Find the s-domain expression for the current 
that the circuit delivers to a load consisting of 
a 1 H inductor in series with a 2 ft resistor. 

Answer: (a) VTh = V&h = [20(5 + 2A))/[s(s + 2)), 
ZTtl = 5(5 + 2.8)/(s + 2); 

NOTE: Also try Chapter Problem 13.34. 

(b) Jab = [20(5 + 2A)]/[s(s + 3)(5 + 6)]. 

0.5 F 

A Circuit with Mutual Inductance 
The next example illustrates how to use the Laplace transform to analyze 
the transient response of a circuit that contains mutual inductance. 
Figure 13.20 shows the circuit. The make-before-break switch has been in 
position a for a long time. At t = 0, the switch moves instantaneously to 
position b. The problem is to derive the time-domain expression for i2. 

We begin by redrawing the circuit in Fig. 13.20, with the switch in 
position b and the magnetically coupled coils replaced with a T-equivalent 
circuit.1 Figure 13.21 shows the new circuit. 

9 f i 

© 
3 a 

-'VW-

/ = 0 

2 H 
2D, 

^vw-

60 V 

2H 8H 

Figure 13.20 • A circuit containing magnetically coupled coils. 

h ion 

Sec Appendix C. 
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We now transform this circuit to the s domain. In so doing, we note that 

f l ( ° " ) = f = 5A' 
WO = 0. 

(13.66) 

(13.67) 

Because we plan to use mesh analysis in the s domain, we use the series 
equivalent circuit for an inductor carrying an initial current. Figure 13.22 
shows the s-domain circuit. Note that there is only one independent volt
age source. This source appears in the vertical leg of the tee to account for 
the initial value of the current in the 2 H inductor of /,(0 -) + /2(0~), or 5 A. 
The branch carrying /, has no voltage source because L t - M = 0. 

The two i'-domain mesh equations that describe the circuit in 
Fig. 13.22 are 

(3 + 2s)I} + 2sl2 = 10 

2sTt + (12 + 85)/2 = 10. 

Solving for / 2 yields 

/2 = 
2.5 

(s + l )( j + 3) 
Expanding Eq. 13.70 into a sum of partial fractions generates 

1.25 1.25 
/ 7 = 

s + 1 s + 3 

Then, 

i2 = (1.25e"' - 1.25e"3/)w(0 A. 

(13.68) 

(13.69) 

(13.70) 

(13.71) 

(13.72) 

Equation 13.72 reveals that i2 increases from zero to a peak value of 
481.13 mA in 549.31 ms after the switch is moved to position b. Thereafter, 
/2 decreases exponentially toward zero. Figure 13.23 shows a plot of i2 ver
sus t. This response makes sense in terms of the known physical behavior 
of the magnetically coupled coils. A current can exist in the L2 inductor 
only if there is a time-varying current in the L, inductor. As i\ decreases 
from its initial value of 5 A, /2 increases from zero and then approaches 
zero as i, approaches zero. 

(L, - M) (L2 - M) 
3H OH 6H 2ti 

(MH2H 10 a 

Figure 13.21 A The circuit shown in Fig. 13.20, with 
the magnetically coupled coils replaced by a T-equivalent 
circuit. 

Figure 13.22 A The s-domain equivalent circuit for the 
circuit shown in Fig. 13.21. 

i2 (mA) 

481.13 

549.31 
/(ms) 

Figure 13.23 A The plot of i2 versus t for the circuit 
shown in Fig. 13.20. 

/ A S S E S S M E N T PROBLEM 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the 
time domain 

13.7 a) Verify from Eq. 13.72 that /2 reaches a peak 
value of 481.13 mA at t = 549.31 ms. 

b) Find ih for t > 0, for the circuit shown in 
Fig. 13.20. 

c) Compute dixfdt when i2 is at its peak value. 
d) Express i2 as a function of dii/dt when i2 is 

at its peak value. 
e) Use the results obtained in (c) and (d) to 

calculate the peak value of i2. 

Answer: (a) di2/dt = 0 when t = | l n 3 (s); 

(b) /, = 2.5(6'"' + e " 3 > ( 0 A; 

(c) -2.89 A/s; 

(d) /2 = -{MdiJdt)/\2\ 

(e) 481.13 mA. 

NOTE: Also try Chapter Problems 13.39 and 13.40. 
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+ y 
Vj < Ri 

Figure 13.24 • A circuit showing the use of super
position in s-domain analysis. 

Figure 13.25 • The s-domain equivalent for the circuit 
of Fig. 13.24. 

Figure 13.26 • The circuit shown in Fig. 13.25 with V^ 
acting alone. 

The Use of Superposition 

Because we are analyzing linear lumped-parameter circuits, we can use 
superposition to divide the response into components that can be identi
fied with particular sources and initial conditions. Distinguishing these 
components is critical to being able to use the transfer function, which we 
introduce in the next section. 

Figure 13.24 shows our illustrative circuit. We assume that at the 
instant when the two sources are applied to the circuit, the inductor is car
rying an initial current of p amperes and that the capacitor is carrying an 
initial voltage of y volts. The desired response of the circuit is the voltage 
across the resistor R2, labeled v2. 

Figure 13.25 shows the s-domain equivalent circuit. We opted for the 
parallel equivalents for L and C because we anticipated solving for V2 

using the node-voltage method. 
To find V2 by superposition, we calculate the component of V2 result

ing from each source acting alone, and then we sum the components. We 
begin with Vg acting alone. Opening each of the three current sources 
deactivates them. Figure 13.26 shows the resulting circuit. We added the 
node voltage V{ to aid the analysis. The primes on Vt and V2 indicate that 
they are the components of Vj and V2 attributable to Vg acting alone. The 
two equations that describe the circuit in Fig. 13.26 are 

J_ 
Ri 

l 

sL 

V* 
+ — + sC \V\ - sCV'2 = -P-, 

fli 

\-jf + sC 

(13.73) 

(13.74) 

For convenience, we introduce the notation 

Y» = i+i + sC 
(13.75) 

Yl2 = sC; (13.76) 

K22 = 4 - + ^ . K2 
(13.77) 

Substituting Eqs. 13.75-13.77 into Eqs. 13.73 and 13.74 gives 

YnV\ + YnV2 = Vg/Rh (13.78) 

Y„V\ + YnV'r, = 0. 12" 1 (13.79) 

Solving Eqs. 13.78 and 13.79 for V'2 gives 

V'o 
1̂1¾ _ *12 

(13.80) 

With the current source Ig acting alone, the circuit shown in Fig. 13.25 
reduces to the one shown in Fig. 13.27. Here, V'{ and V2 are the compo
nents of Vx and V2 resulting from L. If we use the notation introduced in 
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Eqs. 13.75-13.77, the two node-voltage equations that describe the circuit 
in Fig. 13.27 are 

YuV"i + YnV'i = 0 (13.81) 

and 

1/sC 

-1(-
sLAV'[ V'^R, 

Yl2Vl + Y22V'i = Ir 

Solving Eqs. 13.81 and 13.82 for V'i yields 

V'i = ^ - j - / 
Ml'22 — '12 

Figure 13.27 • The circuit shown in Fig. 13.25, with 
(13.82) j g acting alone. 

(13.83) 

To find the component of V2 resulting from the initial energy stored in 
the inductor {V%), we must solve the circuit shown in Fig. 13.28, where Fi9U"-e 13.28 • The circuit shown in Fig. 13.25, with 

the energized inductor acting alone. 

YnV'{' + Yl2V2" = -p/s, (13.84) 

Y12Vf + Y22V'{ = 0. 

Til us 

V'i' = 
Yjs 

Ml*22 
-yl V-
* 12 

(13.85) 

(13.86) 

From the circuit shown in Fig. 13.29, we find the component of 
V2 iy'i') resulting from the initial energy stored in the capacitor. The 
node-voltage equations describing this circuit are 

YuVT + Yl2V? = yC, 

K„Vr + Yy>V7 = -yC. 22^ 2 

Solving for Vf yields 

Y\\Y22 Yyi 

The expression for V2 is 

V2=V'2 + V'i + V'i' + V'i" 

(13.87) 

(13.88) 

(13.89) 

Figure 13.29 A The circuit shown in Fig. 13.25, with 
the energized capacitor acting alone. 

-(Yn/Ri) 

Y\\Y22 - Y\\ *i + — — 7 . ? 
Y\]Y22 - Yyi 

+ 
Y]2/s 

Y]\Y22 Y\2 

-C(YU + Yn) 
p ^ T~ y-

Y\\Y22 — Y i2 

(13.90) 

We can find V2 without using superposition by solving the two node-
voltage equations that describe the circuit shown in Fig. 13.25. Thus 
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(13.91) 

YX2VX + Y22V2 = I - yC. (13.92) 

You should verify in Problem 13.43 that the solution of Eqs. 13.91 and 
13.92 for V2 gives the same result as Eq. 13.90. 

• A S S E S S M E N T PROBLEM 

Objective 2—Know how to analyze a circuit in the s domain and be able to transform an s-domain solution to the 
time domain 

13.8 The energy stored in the circuit shown is zero 
at the instant the two sources are turned on. 

a) Find the component of v for t > 0 owing to 
the voltage source. 

b) Find the component of v for t > 0 owing to 
the current source. 

c) Find the expression for v when t > 0. 

NOTE: Also try Chapter Problem 13.42. 

Answer: (a) [(100/3)e"2' - (100/3)<T8rjw(0 V; 

(b) [(50/3)<T2' - (50/3)e-*')u(t) V; 

(c) [50<T2' - 50e"8']«(0 V. 

2 f l 

20u(t)f + 
1.25IH » : 5 0 m F ( t ^5u{t) 

13.4 The Transfer Function 

The transfer function is defined as the s-domain ratio of the Laplace trans
form of the output (response) to the Laplace transform of the input 
(source). In computing the transfer function, we restrict our attention to 
circuits where all initial conditions are zero. If a circuit has multiple inde
pendent sources, we can find the transfer function for each source and use 
superposition to find the response to all sources. 

The transfer function is 

Definition of a transfer function • H(s) = 
Y(s) 
X(s)' 

(13.93) 

sL 

\/sC 

Figure 13.30 • A series RLC circuit. 

where Y(s) is the Laplace transform of the output signal, and X(s) is the 
Laplace transform of the input signal. Note that the transfer function 
depends on what is defined as the output signal. Consider, for example, 
the series circuit shown in Fig. 13.30. If the current is defined as the 
response signal of the circuit, 

H(s) = 
1 sC ]_ __ 

V~R + sL+ 1/sC ~ S
2LC + RCs + 1 

(13.94) 

In deriving Eq. 13.94, we recognized that /corresponds to the output Y(s) 
and Vg corresponds to the input X(s). 
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If the voltage across the capacitor is defined as the output signal of the 
circuit shown in Fig. 13.30, the transfer function is 

H(s) = 
V 1/sC 1 

R + sL + 1/sC s2LC + RCs + 1 
(13.95) 

Thus, because circuits may have multiple sources and because the definition 
of the output signal of interest can vary, a single circuit can generate many 
transfer functions. Remember that when multiple sources are involved, no 
single transfer function can represent the total output—transfer functions 
associated with each source must be combined using superposition to yield 
the total response. Example 13.1 illustrates the computation of a transfer 
function for known numerical values of R, L, and C. 

Example 13.1 Deriving the Transfer Function of a Circuit 

The voltage source v„ drives the circuit shown in 
Fig. 13.31. The response signal is the voltage across 
the capacitor, v(>. 

a) Calculate the numerical expression for the trans
fer function. 

b) Calculate the numerical values for the poles and 
zeros of the transfer function. 

1000 a 
AM, 

250fi 

50 mH 

+ 

1 ju.F vt> 

Figure 13.31 A The circuit for Example 13.1. 

Solution 

a) The first step in finding the transfer function is to 
construct the 5-domain equivalent circuit, as 
shown in Fig. 13.32. By definition, the transfer 
function is the ratio of V0/Vs, which can be com
puted from a single node-voltage equation. 
Summing the currents away from the upper 
node generates 

V - V 
<> .? 

1000 + 
V' V„s 

250 + 0.055 106 = 0. 

ooo n 
AM-— 

s 

Figure 13.32 • The s-domain equivalent circuit for the circuit 
shown in Fig. 13.31. 

Solving for V() yields 

1000(5 + 5()00)¾ 
Vo = 

52 + 60005 + 25 X 106' 

Hence the transfer function is 

s 

1000(5 + 5000) 

" 52 + 60005 + 25 X 106 " 

b) The poles of H{s) are the roots of the denomina
tor polynomial. Therefore 

-p] = -3000 - y'4000, 

-p2 = -3000 + /4000. 

The zeros of H(s) are the roots of the numera
tor polynomial; thus H(s) has a zero at 

-Zi = -5000. 
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ASSESSMENT PROBLEM 

Objective 3—Understand the definition and significance of the transfer function; be able to derive a transfer function 

13.9 a) Derive the numerical expression for the 
transfer function V0flg for the circuit shown. 

b) Give the numerical value of each pole and 
zero of H(s). 

NOTE: Also try Chapter Problem 13.50. 

Answer: (a) H(s) = 10(5 + 2)/(s2 + 2s + 10); 

(b) - / ; , = - 1 + /3 , -p2 = - 1 - /3 , 
-z = -2. 

2a 

1H 
0.1 F 

The Location of Poles and Zeros of H(s) 

For linear lumped-parameter circuits, H(s) is always a rational function 
of s. Complex poles and zeros always appear in conjugate pairs. The 
poles of H(s) must lie in the left half of the s plane if the response to a 
bounded source (one whose values lie within some finite bounds) is to 
be bounded. The zeros of H(s) may lie in either the right half or the left 
half of the s plane. 

With these general characteristics in mind, we next discuss the role 
that H(s) plays in determining the response function. We begin with the 
partial fraction expansion technique for finding y(t). 

13.5 The Transfer Function 
in Partial Fraction Expansions 

From Eq. 13.93 we can write the circuit output as the product of the trans
fer function and the driving function: 

Y(s) = H(s)X(s). (13.96) 

We have already noted that H(s) is a rational function of s. Reference to 
Table 13.1 shows that X(s) also is a rational function of s for the excitation 
functions of most interest in circuit analysis. 

Expanding the right-hand side of Eq. 13.96 into a sum of partial frac
tions produces a term for each pole of H(s) and X(s). Remember from 
Chapter 12 that poles are the roots of the denominator polynomial; zeros 
are the roots of the numerator polynomial. The terms generated by the 
poles of H(s) give rise to the transient component of the total response, 
whereas the terms generated by the poles of X(s) give rise to the steady-
state component of the response. By steady-state response, we mean the 
response that exists after the transient components have become negligi
ble. Example 13.2 illustrates these general observations. 
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Example 13.2 Analyzing the Transfer Function of a Circuit 

The circuit in Example 13.1 (Fig. 13.31) is driven by 
a voltage source whose voltage increases linearly 
with lime, namely, vg = 50tu(t). 

a) Use the transfer function to find va. 

b) Identify the transient component of the 
response. 

c) Identify the steady-slate component of the 
response. 

d) Sketch va versus / for 0 < t =£ 1.5 ms. 

Solution 

a) From Example 13.1, 

10()0(5 + 5000) 
H(S) = -: 

' s2 + 6000^ + 25 X 106 

The transform of the driving voltage is 50/.v~; 
therefore, the .v-domain expression for the out
put voltage is 

K, = 
1000(5 + 5000) 50 

(s2 + 6000s + 25 x 106) .v2 * 

The partial fraction expansion of Va is 

_ K{ 
V° ~ s + 3000 - /4000 

K i K2 K 3 
+ s + 3000 + /4000 I2 V ' 

We evaluate the coefficients K^ K2, and / t3 by 
using the techniques described in Section 12.7: 

/<, = 5V5 x l(r4 /79.70°; 

K\ = 5V5 x IQ- 4 / - 79 .70° , 

K2 = 10, 

The time-domain expression for va is 

va = [10V5 X 10""4e~3,)()()/cos (4000/ + 79.70°) 

+ 10? - 4 X 10~4}u(t) V. 

b) The transient component of va is 

10V5 X 10-V3000 'cos (4000/ + 79.70°). 

Note that this term is generated by the poles 
(-3000 4- /4000) and (-3000 - /4000) of the 
transfer function. 

c) The steady-state component of the response is 

(10/ - 4 X 10"4)z<(/). 

These two terms are generated by the second-
order pole (K/s2) of the driving voltage. 

d) Figure 13.33 shows a sketch of v<7 versus /. Note 
that the deviation from the steady-state solution 
10,000/ - 0.4 mV is imperceptible after approxi
mately 1 ms. 

MmV) 

16 

1 4 -

12 

8 h 

6 

4 -

2 -

(10.()00/- 0.4) mV, 

V 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 
t (ms) 

Figure 13.33 A The graph of i\, versus t for Example 13.2. 
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/ A S S E S S M E N T PROBLEMS 

Objective 4—Know how to use a circuit's transfer function to calculate the circuit's impulse response, unit step 
response, and steady-state response to sinusoidal input 

13.10 Find (a) the unit step and (b) the unit impulse 
response of the circuit shown in Assessment 
Problem 13.9. 

Answer: (a) [2 + (10/3)e"f cos (3/ - 126.87°)]w(0 V; 

(b) 10.54*?-'cos (3/ - 18 .43>(0 V. 

NOTE: Also try Chapter Problems 13.79(a) and (b). 

13.11 The unit impulse response of a circuit is 

v()(t) = 10,000e_70'cos(240r + 6) V, 

where tan 6 = ^ . 

a) Find the transfer function of the circuit. 

b) Find the unit step response of the circuit. 

Answer: (a) 9600s/(s2 + 140s + 62,500); 

(b)40<T70'sin240r V. 

Observations on the Use of H(s) in Circuit Analysis 

Example 13.2 clearly shows how the transfer function H(s) relates to the 
response of a circuit through a partial fraction expansion. However, the 
example raises questions about the practicality of driving a circuit with an 
increasing ramp voltage that generates an increasing ramp response. 
Eventually the circuit components will fail under the stress of excessive 
voltage, and when that happens our linear model is no longer valid. The 
ramp response is of interest in practical applications where the ramp 
function increases to a maximum value over a finite time interval. If the 
time taken to reach this maximum value is long compared with the time 
constants of the circuit, the solution assuming an unbounded ramp is 
valid for this finite time interval. 

We make two additional observations regarding Eq. 13.96. First, let's 
look at the response of the circuit due to a delayed input. If the input is 
delayed by a seconds, 

£{x(t - a)u(t - a)} = e-aiX(s), 

and, from Eq. 13.96, the response becomes 

Y(s) = H(s)X(s)e-as. 

Uy(t) = %-l{H(s)X(s)}, then, from Eq. 13.97, 

y(t - a)u{t - a) = ^T1{B{s)X{s)e-as}. 

(13.97) 

(13.98) 

Therefore, delaying the input by a seconds simply delays the response 
function by a seconds. A circuit that exhibits this characteristic is said to 
be time invariant. 

Second, if a unit impulse source drives the circuit, the response of the 
circuit equals the inverse transform of the transfer function. Thus if 

x(t) = 5(0, then X{s) = 1 

and 

Y(s) = Ms). (13.99) 
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Hence, from Eq. 13.99, 

y(t) = //(/), (13.100) 

where the inverse transform of the transfer function equals the unit 
impulse response of the circuit. Note that this is also the natural response 
of the circuit because the application of an impulsive source is equivalent 
to instantaneously storing energy in the circuit (see Section 13.8). The 
subsequent release of this stored energy gives rise to the natural response 
(see Problem 13.90). 

Actually, the unit impulse response of a circuit, h(t), contains enough 
information to compute the response to any source that drives the circuit. 
The convolution integral is used to extract the response of a circuit to an 
arbitrary source as demonstrated in the next section. 

13.6 The Transfer Function and the 
Convolution Integral 

The convolution integral relates the output y(t) of a linear time-invariant 
circuit to the input x{t) of the circuit and the circuit's impulse response 
h(t). The integral relationship can be expressed in two ways: 

y(t) = / h(X)x(t - X)dX = / h(t - X)x(X)dX. (13.101) 

We are interested in the convolution integral for several reasons. 
First, it allows us to work entirely in the time domain. Doing so may be 
beneficial in situations where x(t) and h{t) are known only through 
experimental data. In such cases, the transform method may be awkward 
or even impossible, as it would require us to compute the Laplace trans
form of experimental data. Second, the convolution integral introduces 
the concepts of memory and the weighting function into analysis. We will 
show how the concept of memory enables us to look at the impulse 
response (or the weighting function) h{t) and predict, to some degree, 
how closely the output waveform replicates the input waveform. Finally, 
the convolution integral provides a formal procedure for finding the *(0 *j Kf) ")'(*) 
inverse transform of products of Laplace transforms. 

We based the derivation of Eq. 13.101 on the assumption that the cir-
cuit is linear and time invariant. Because the circuit is linear, the principle F i9ure 13*34 A A block diagram of a genera l d K u f L 

of superposition is valid, and because it is time invariant, the amount of 
the response delay is exactly the same as that of the input delay. Now con
sider Fig. 13.34, in which the block containing h{t) represents any linear 
time-invariant circuit whose impulse response is known, x(t) represents 
the excitation signal and y(t) represents the desired output signal. 

We assume that x(t) is the general excitation signal shown in 
Fig. 13.35(a). For convenience we also assume that x(t) = 0 for t < (T. 
Once you see the derivation of the convolution integral assuming 
x{t) = 0 for t < 0~, the extension of the integral to include excitation 
functions that exist over all time becomes apparent. Note also that we 
permit a discontinuity in x(t) at the origin, that is, a jump between 0~ 
and0+ . 
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x(t) 

x(t) 

*(X()) 

(a) 

liYX VV(X;?) 

x0 \ j x2 x? . • • K • 

(b) 

x(X()) AX. 

Xo X ! ^ 

r ~ 
-*> 

2 x 

7 * 

3 

9> 
7 
s 

X •i 

(c) 

Figure 13.35 • The excitation signal of x(t). (a) A 
general excitation signal, (b) Approximating x(t) with a 
series of pulses, (c) Approximating x(t) with a series 
of impulses. 

h(t) 

0 

y(') 

(a) 

^ ,N\^ Approximation of v(f) 

(b) 

Figure 13.36 A The approximation of y(f). (a) The 
impulse response of the box shown in Fig. 13.34. 
(b) Summing the impulse responses. 

Now we approximate x(t) by a series of rectangular pulses of uni
form width AA, as shown in Fig. 13.35(b). Thus 

x(t) = x0(t) + Xl(t) + ••• + xt{t) + (13.102) 

where x^t) is a rectangular pulse that equals x(A,) between A/ and A(+1 

and is zero elsewhere. Note that the /th pulse can be expressed in terms of 
step functions; that is, 

Xi(t) = x(Xi){u(t - A/) - u[t - (A, + AA)]}. 

The next step in the approximation of x(t) is to make AA small 
enough that the /th component can be approximated by an impulse func
tion of strength x(Aj)AA. Figure 13.35(c) shows the impulse representa
tion, with the strength of each impulse shown in brackets beside each 
arrow. The impulse representation of x(t) is 

x(t) = x(A0)AA5(f - An) + x(X^)AXS(t - A,) + 

+ jc(Af)AA5(/ - A/) + • • • (13.103) 

Now when x{t) is represented by a series of impulse functions 
(which occur at equally spaced intervals of time, that is, at An, Aj, A2 , . . . ) , 
the response function y{t) consists of the sum of a series of uniformly 
delayed impulse responses. The strength of each response depends on 
the strength of the impulse driving the circuit. For example, let's assume 
that the unit impulse response of the circuit contained in the box in 
Fig. 13.34 is the exponential decay function shown in Fig. 13.36(a). Then 
the approximation of y{t) is the sum of the impulse responses shown in 
Fig. 13.36(b). 

Analytically, the expression for y(t) is 

y(t) = x(X{))AXh(t - A()) + x(M)AXk(t - X{) 

+ x(X2)AXh(t - A2) + 

+ x(A,:)AA/j(/ - A/) + • (13.104) 

As AA^-0, the summation in Eq. 13.104 approaches a continuous 
integration, or 

oo r°° 

^x(Ai)h(t- A;) A A -> I x{X)h{t - X)dX. (13. 
i=0 J0 

105) 

Therefore, 

y{t) = I x(X)h(t - X)dX. (13.106) 

If x{t) exists over all time, then the lower limit on Eq. 13.106 becomes 
-oo ; thus, in general, 

y{t) x{X)h{t - X)dX, (13.107) 
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which is the second form of the convolution integral given in Eq. 13.101. 
We derive the first form of the integral from Eq. 13.107 by making a 
change in the variable of integration. We let u = t — A, and then we note 
that du = — dX, u — - c o when A = oo, and u = + oo when A = - c o . 
Now we can write Eq. 13.107 as 

m x(t - u)h(u)(-du), 

or 

y(t) = / x{t - it)h(ii)(du). (13.108) 

But because ti is just a symbol of integration, Eq. 13.108 is equivalent to 
the first form of the convolution integral, Eq. 13.101. 

The integral relationship between y(t),h(t), and x(t), expressed in 
Eq. 13.101, often is written in a shorthand notation: 

y(t) = h(t)*x{t)^x(t)*h(t), (13.109) 

where the asterisk, signifies the integral relationship between h(t) 
and x(t). Thus h(t) * x(t) is read as "//(f) is convolved with *(/)" and 
implies that 

h(t)*x(t) = J h(X)x(t - X)dX, 

whereas x(t) * //(/) is read as "x(t) is convolved with //(0" and implies that 

x(\)h(t - X)dX. 

The integrals in Eq. 13.101 give the most general relationship for the 
convolution of two functions. However, in our applications of the convolu
tion integral, we can change the lower limit to zero and the upper limit to 
/•.Then we can write Eq. 13.101 as 

y(t) = / h(X)x(t - X)dX = / x(X)h(t - X)dX. (13.110) 
Jo Jo 

We change the limits for two reasons. First, for physically realizable 
circuits, h(t) is zero for t < 0. In other words, there can be no impulse 
response before an impulse is applied. Second, we start measuring 
time at the instant the excitation x{t) is turned on; therefore x{t) = 0 
for t < 0". 

A graphic interpretation of the convolution integrals contained in 
Eq. 13.110 is important in the use of the integral as a computational 
tool. We begin with the first integral. For purposes of discussion, we 
assume that the impulse response of our circuit is the exponential decay 
function shown in Fig. 13.37(a) and that the excitation function has the 
waveform shown in Fig. 13.37(b). In each of these plots, we replaced t 
with A, the symbol of integration. Replacing A with -A simply folds the 
excitation function over the vertical axis, and replacing -A with t — X 
slides the folded function to the right. See Figures 13.37(c) and (d).This 
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h(k)x( 
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t - \ ) 

y(t) = Area 

t - T] t 

(e) 

Figure 13.37 A A graphic interpretation of the 
convolution integral f']h(X)x{t - X)d\. (a) The 
impulse response, (b) The excitation function, (c) The 
folded excitation function, (d) The folded excitation 
function displaced t units, (e) The product 
h(X)x(t - A). 



folding operation gives rise to the term convolution. At any specified 
value of f, the response function y(t) is the area under the product func
tion /j(A).v(f - A), as shown in Fig. 13.37(e). It should be apparent from 
this plot why the lower limit on the convolution integral is zero and the 
upper limit is t. For A < 0, the product h{k)x(t - A) is zero because h{k) 
is zero. For A > r, the product h(X)x{t — A) is zero because x(t - A) 
is zero. 

Figure 13.38 shows the second form of the convolution integral. Note 
that the product function in Fig. 13.38(e) confirms the use of zero for the 
lower limit and t for the upper limit. 

Example 13.3 illustrates how to use the convolution integral, in 
conjunction with the unit impulse response, to find the response of 
a circuit. 

(b) 

/2(-
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-x) 
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h(t - X) 
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— ^> 

t 
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h(t - X)x(X) 

MA 

y — > 
^ 1 
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i >'(/) = Area 

X 
u 

(e) 

Figure 13.38 • A graphic interpretation of the convolu
tion integral J{)h(t - \)x{X)d\. (a) The impulse 
response, (b) The excitation function, (c) The folded 
impulse response, (d) The folded impulse response 
displaced / units, (e) The product h(t - A)x(A). 
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Example 13.3 Using the Convolution Integral to Find an Output Signal 

The excitation voltage v-t for the circuit shown in 
Fig. 13.39(a) is shown in Fig. 13.39(b). 

a) Use the convolution integral to find v0. 

b) Plot va over the range of 0 ^ t ^ 15 s. 

1 H v, 

20 V 

(a) 

5 10 

(b) 

f(s) 

Figure 13.39 A The circuit and excitation voltage for 
Example 13.3. (a) The circuit, (b) The excitation voltage. 

Impulse response 

Figure 13.40 • The impulse response and the folded excitation 
function for Example 13.3. 

Solution 

a) The first step in using the convolution integral is 
to find the unit impulse response of the circuit. 
We obtain the expression for V() from the 
s-domain equivalent of the circuit in Fig. 13.39(a): 

K = 
V, 

s + 1 (1)-

When vt is a unit impulse function 5(f), 

v„ = h(t) = e~'ii(t), 

from which 

//(A) = e'Au(A) 

Using the first form of the convolution integral 
in Eq . 13.110, we construct the impulse response 
and folded excitation function shown in 
Fig. 13.40, which are helpful in selecting the lim
its on the convolution integral. Sliding the 
folded excitation function to the right requires 
breaking the integration into three intervals: 
0 < t < 5; 5 < t < 10; and 10 < t < oo. The 
breaks in the excitation function at 0 ,5 , and 10 s 
dictate these break points. Figure 13.41 shows 
the positioning of the folded excitation for each 
of these intervals. The analytical expression for 
Vi in the time interval 0 < / < 5 is 

Vt = 4/, 0 < t < 5 s. 

/ i ( \ ) 

1.0 

0 

(t - 10) [t - 5) 0 t 5 

^ (t - \) 

20 

5 s s r « 1 0 

[t - 10) 0 (/ - 5) 5 t 10 

vt (t - X) 

20 

10 =£ /=¾ x 

0 ( / - 1 0 ) 5 ( / - 5 ) 1 0 / 

Figure 13.41 A The displacement of ?;,(/ - A) for three 
different time intervals. 
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Hence, the analytical expression for the folded 
excitation function in the interval t — 5 =£ A 
< f is 

Vi(t - A) = 4(r - A), t - 5 < A < t. 

We can now set up the three integral 
expressions for va. For 0 ^ t < 5 s: 

MV) 

Vn = 4(t - \)e~xdX 

For 5 < t 

= 4(e~' + f - 1)V. 

10 s, 

v„ = 20e~xd\ + / 4(r - A)e_AdA 
J f -5 

= 4(5 + e~l - e'{'~5)) V. 

And for 10 < t < oo s. 

= 4(eT' - e"( '-5) + 5e~{t~m) V 

,-A 20t>_ArfA + / 4 ( 7 - \)eAdX 
10 i f - 5 

Figure 13.42 A The voltage response versus time for 
Example 13.3. 

b) We have computed v0 for 1 s intervals of time, 
using the appropriate equation. The results arc 
tabulated in Table 13.2 and shown graphically in 
Fig. 13.42. 

NOTE: Assess your understanding of convolution by trying Chapter Problems 13.62 and 13.63. 

TABLE 13.2 

t 

1 

2 

3 

4 

5 

6 

7 

8 

Numerical Values of v0(t) 

*0 

1.47 

4.54 

8.20 

12.07 

16.03 

18.54 

19.56 

19.80 

t 

9 

10 

11 

12 

13 

14 

15 

v0 

19.93 

19.97 

7.35 

2.70 

0.99 

0.37 

0.13 

v,(t-k) 

Future (will happen) 

Past (has happened) 

(t - 10) (/ 

Figure 13.43 • The past, present, and future values of 
the excitation function. 

The Concepts of Memory and the Weighting Function 
We mentioned at the beginning of this section that the convolution inte
gral introduces the concepts of memory and the weighting function into 
circuit analysis. The graphic interpretation of the convolution integral is 
the easiest way to begin to grasp these concepts. We can view the folding 
and sliding of the excitation function on a timescale characterized as past, 
present, and future. The vertical axis, over which the excitation function 
x(t) is folded, represents the present value; past values of x(t) lie to the 
right of the vertical axis, and future values lie to the left. Figure 13.43 
shows this description of x(t). For illustrative purposes, we used the exci
tation function from Example 13.3. 

When we combine the past, present, and future views of x(t — r) with 
the impulse response of the circuit, we see that the impulse response 
weights x(t) according to present and past values. For example, Fig. 13.41 
shows that the impulse response in Example 13.3 gives less weight to past 
values of x(t) than to the present value of x(t). In other words, the circuit 
retains less and less about past input values. Therefore, in Fig. 13.42, va 

quickly approaches zero when the present value of the input is zero (that 
is, when t > 10 s). In other words, because the present value of the input 
receives more weight than the past values, the output quickly approaches 
the present value of the input. 
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The multiplication of x{t — A) by /z(A) gives rise to the practice of 
referring to the impulse response as the circuit weighting function. The 
weighting function, in turn, determines how much memory the circuit has. 
Memory is the extent to which the circuit's response matches its input. For 
example, if the impulse response, or weighting function, is flat, as shown in 
Fig. 13.44(a), it gives equal weight to all values of x(t), past and present. 
Such a circuit has a perfect memory. However, if the impulse response is 
an impulse function, as shown in Fig. 13.44(b), it gives no weight to past 
values of x(t). Such a circuit has no memory. Thus the more memory a cir
cuit has, the more distortion there is between the waveform of the excita
tion function and the waveform of the response function. We can show this 
relationship by assuming that the circuit has no memory, that is, 
h(t) — A8(t), and then noting from the convolution integral that 

/i(0 

y(0 h(X)x(t - X)d\ 

A8(X)x(t - \)dX 

= Ax(t). (13.111) 

Equation 13.111 shows that, if the circuit has no memory, the output is a 
scaled replica of the input. 

The circuit shown in Example 13.3 illustrates the distortion between input 
and output for a circuit that has some memory. This distortion is clear when we 
plot the input and output waveforms on the same graph, as in Fig. 13.45. 

13.7 The Transfer Function and the 
Steady-State Sinusoidal Response 

Once we have computed a circuit's transfer function, we no longer need to 
perforin a separate phasor analysis of the circuit to determine its steady-
state response. Instead, we use the transfer function to relate the steady-
state response to the excitation source. First we assume that 

1.0 

(a) 

h(t) 

1.0 

(b) 

Figure 13.44 • Weighting functions, (a) Perfect mem
ory, (b) No memory. 

10 12 14 

Figure 13.45 • The input and output waveforms for 
Example 13.3. 

x(t) = A cos (<ot + (f>), (13.112) 

and then we use Eq. 13.96 to find the steady-state solution of y(t). To find 
the Laplace transform of x(t), we first write x(t) as 

x(t) = A cos lot cos 4> - A sin wt sin (/>, (13.113) 

from which 

X{s) 
(A cos 4>)s (A sin (f>)(o 

$ + co s + or 

Ais cos 4> - OJ sin 4>) 

s2 + o>2 ~' 
(13.114) 
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Substituting Eq. 13.114 into Eq. 13.96 gives the .,-domain expression for 
the response: 

TT/ x A(s cos <f> - a)sm<}>) 
Y(s) = H(s) - i Y-—2 ^ . (13.115) 

We now visualize the partial fraction expansion of Eq. 13.115. The number 
of terms in the expansion depends on the number of poles of H(s). 
Because H(s) is not specified beyond being the transfer function of a 
physically realizable circuit, the expansion of Eq. 13.115 is 

TO-T^r + T^r-
S — )0) S + )0) 

+ 2 terms generated by the poles of H(s). (13.116) 

In Eq. 13.116, the first two terms result from the complex conjugate poles 
of the driving source; that is, s2 + w2 = (s — jta)(s + joy). However, the 
terms generated by the poles of H(s) do not contribute to the steady-state 
response of y(t), because all these poles lie in the left half of the s plane; 
consequently, the corresponding time-domain terms approach zero as t 
increases. Thus the first two terms on the right-hand side of Eq. 13.116 
determine the steady-state response. The problem is reduced to finding 
the partial fraction coefficient K\. 

H(s)A(s cos 4> — a) sin</>) 
K\ = ; 

H(jm)A(j(t>eos<f> - fusing) 

H(ja))A(cos(b + / s in0) 1 , ., 
= - ^ ^ 2 ' — = -H(j(o)Ae>*. (13.117) 

In general, H(jo)) is a complex quantity, which we recognize by writing it 
in polar form; thus 

H(ja>) = \H(jo))\ej9iM). (13.118) 

Note from Eq. 13.118 that both the magnitude, \H(j<o)\, and phase angle, 
#(&>), of the transfer function vary with the frequency co. When we substi
tute Eq. 13.118 into Eq. 13.117, the expression for Kx becomes 

K, = — \H(j<o)\emta)+4,]. (13.119) 

We obtain the steady-state solution for y(t) by inverse-transforming 
Eq. 13.116 and, in the process, ignoring the terms generated by the poles of 
H(s). Thus 

Steady-state sinusoidal response computed 
using a transfer function • y«(0 = A\H(ja>)\ cos [ajt + <f> + 6»(ft>)], (13.120) 

which indicates how to use the transfer function to find the steady-state 
sinusoidal response of a circuit. The amplitude of the response equals the 
amplitude of the source, A, times the magnitude of the transfer function, 
\H{j(t))\. The phase angle of the response, <£ + 0(co), equals the phase 
angle of the source, cj>, plus the phase angle of the transfer function, 0(a)). 
We evaluate both \H(ja>)\ and 9(to) at the frequency of the source, io. 

Example 13.4 illustrates how to use the transfer function to find the 
steady-state sinusoidal response of a circuit. 
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Example 13.4 Using the Transfer Function to Find the Steady-State Sinusoidal Response 

The circuit from Example 13.1 is shown in Fig. 13.46. 
The sinusoidal source voltage is 120 cos (5000/ 
+ 30°) V. Find the steady-state expression for v0. 

The frequency of the voltage source is 5000 rad/s; 
hence we evaluate H(s) at 7/(/5000): 

1000 ft 
—VYV— 

o 250 (l 

50 mH-
IjtF 

Figure 13.46 A The circuit for Example 13.4. 

Solution 

From Example 13.1, 

H(s) = 
1000(.v + 5000) 

s2 + 6000s + 25*10* 

7/(/5000) 
1000(5000 + /5000) 

-25 * 106 + /5000(6000) + 25 X 10f 

1 + / 1 1 - / 1 V2 

/6 6 
/ - 4 5 ° . 

Then, from Eq. 13.120, 

(120)V2 
- — 2 cos(5000f + 30° - 45°) o„ 

20V2 cos (5000/ - 15°) V. 

The ability to use the transfer function to calculate the steady-state sinusoidal 
response of a circuit is important. Note that if we know 77(/a>), we also know 
77(^), at least theoretically. In other words, we can reverse the process; instead of 
using 7/(5) to find 77(ja>), we use H(jco) to find H(s). Once we know H(s), we 
can find the response to other excitation sources. In this application, we determine 
H(jo)) experimentally and then construct H{s) from the data. Practically, this 
experimental approach is not always possible; however, in some cases it does pro
vide a useful method for deriving H(s). In theory, the relationship between H{s) 
and H(j(x)) provides a link between the time domain and the frequency domain. 
The transfer function is also a very useful tool in problems concerning the fre
quency response of a circuit, a concept we introduce in the next chapter. 

t /ASSESSMENT PROBLEMS 

Objective 4—Know how to use a circuit's transfer function to calculate the circuit's impulse response, unit step 
response, and steady-state response to sinusoidal input 

13.12 The current source in the circuit shown is deliv
ering 10 cos 4/ A. Use the transfer function to 
compute the steady-state expression for v0. 

Answer: 44.7cos(4/ - 63.43°) V. 

13.13 a) For the circuit shown, find the steady-state 
expression for v0 when 
vg = 10cos50,000r V. 

NOTE: Also try Chapter Problems 13.77 and 13.80. 

b) Replace the 50 kfl resistor with a variable 
resistor and compute the value of resistance 
necessary to cause v0 to lead vg by 120°. 

10 kO 10 kn 
/vw-

Answer: (a) 10 cos (50,000/ + 90°) V; 

(b) 28,867.51 ft. 
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:c, 

Figure 13.47 • A circuit showing the creation of an 
impulsive current. 

Figure 13.48 • The s-domain equivalent circuit for the 
circuit shown in Fig. 13.47. 

R2<R) 

Figure 13.49 A The plot of i (t) versus t for two 
different values of /?. 

13.8 The Impulse Function in 
Circuit Analysis 

Impulse functions occur in circuit analysis either because of a switching 
operation or because a circuit is excited by an impulsive source. The 
Laplace transform can be used to predict the impulsive currents and volt
ages created during switching and the response of a circuit to an impulsive 
source. We begin our discussion by showing how to create an impulse 
function with a switching operation. 

Switching Operations 

We use two different circuits to illustrate how an impulse function can be 
created with a switching operation: a capacitor circuit, and a series induc
tor circuit. 

-£- Capacitor Circuit 

In the circuit shown in Fig. 13.47, the capacitor Ci is charged to an initial 
voltage of V() at the time the switch is closed. The initial charge on C2 is 
zero. The problem is to find the expression for /'(/) as R —» 0. Figure 13.48 
shows the s-domain equivalent circuit. 

From Fig. 13.48, 

I = 
Vjs 

R + (1/sCj) + (l/sC2) 

Vo/R 

s + (\/RCe)' 
(13.121) 

where the equivalent capacitance C\C2/{CX + C2) is replaced by Ce. 
We inverse-transform Eq. 13.121 by inspection to obtain 

^-fe-^^W (13.122) 

which indicates that as R decreases, the initial current (Vo/R) increases 
and the time constant (RCe) decreases. Thus, as R gets smaller, the current 
starts from a larger initial value and then drops off more rapidly. 
Figure 13.49 shows these characteristics of/. 

Apparently i is approaching an impulse function as R approaches zero 
because the initial value of i is approaching infinity and the duration of i is 
approaching zero. We still have to determine whether the area under the 
current function is independent of R. Physically, the total area under the 
i versus t curve represents the total charge transferred to C2 after the switch 
is closed. Thus 

Area = q 
V 

„- K 
QS-er (13.123) 

which says that the total charge transferred to C2 is independent of R and 
equals V{)Ce coulombs. Thus, as R approaches zero, the current approaches 
an impulse strength V()Ce; that is, 

I-—v&CAO- (13.124) 
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The physical interpretation of Eq. 13.124 is that when R = 0, a finite 
amount of charge is transferred to C2 instantaneously. Making R zero in 
the circuit shown in Fig. 13.47 shows why we get an instantaneous transfer 
of charge. With R = 0, we create a contradiction when we close the switch; 
that is, we apply a voltage across a capacitor that has a zero initial voltage. 
The only way to have an instantaneous change in capacitor voltage is to 
have an instantaneous transfer of charge. When the switch is closed, the 
voltage across C2 does not jump to V() but to its final value of 

v2 C, + C, 
(13.125) 

We leave the derivation of Eq. 13.125 to you (see Problem 13.81). 
If we set R equal to zero at the outset, the Laplace transform analysis 

will predict the impulsive current response. Thus, 

(1/Jd) + (l/sC2) C, + C2 
C,V0 

(13.126) 

In writing Eq. 13.126, we use the capacitor voltages at t = (T. The inverse 
transform of a constant is the constant times the impulse function; there
fore, from Eq. 13.126, 

i = CCV08(0- (13.127) 

The ability of the Laplace transform to predict correctly the occurrence of an 
impulsive response is one reason why the transform is widely used to analyze 
the transient behavior of linear lumped-parameter time-invariant circuits. 

Series Inductor Circuit 

The circuit shown in Fig. 13.50 illustrates a second switching operation 
that produces an impulsive response. The problem is to find the time-
domain expression for v(, after the switch has been opened. Note that 
opening the switch forces an instantaneous change in the current of L2, 
which causes v0 to contain an impulsive component. 

Figure 13.51 shows the s-domain equivalent with the switch open. In 
deriving this circuit, we recognized that the current in the 3 H inductor at 
t = 0~ is 10 A, and the current in the 2 H inductor at t = 0~ is zero. Using 
the initial conditions at t = 0" is a direct consequence of our using 0~ as 
the lower limit on the defining integral of the Laplace transform. 

We derive the expression for Va from a single node-voltage equation. 
Summing the currents away from the node between the 15 ft resistor and 
the 30 V source gives 

v: 
2s + 15 + 

Va - [(100/5) + 30] 

3s + 10 
= 0. (13.128) 

10 O 
--VW-

© 100 V 

3H 
_/-Y-Y"Y-\-

Li 

/ = (> 
sC 

i5ir 

2 H 
T -

L2 

Figure 13.50 A A circuit showing the creation of an impulsive Figure 13.51 • The s-domain equivalent circuit for the 
voltage. circuit shown in Fig. 13.50. 



Solving for V0 yields 

40(5 + 7.5) 12(5 + 7.5) 

We anticipate that v0 will contain an impulse term because the second 
term on the right-hand side of Eq. 13.129 is an improper rational function. 
We can express this improper fraction as a constant plus a rational func
tion by simply dividing the denominator into the numerator; that is, 

12(5 + 7.5) 30 
— •=-*- = 12 + -. (13.130) 

s + 5 s + 5 v ' 

Combining Eq. 13.130 with the partial fraction expansion of the first term 
on the right-hand side of Eq. 13.129 gives 

x, 6 0 2 0 ,„ 30 
V„ = r + 12 + 

S 5 + 5 5 + 5 

„„ 60 10 
= 12 + — + - , (13.131) 

5 5 + 5 V ' 

from which 

v0 = 125(0 + (60 + 10e~5')«(0 V. (13.132) 

Does this solution make sense? Before answering that question, let's 
first derive the expression for the current when t > 0~. After the switch has 
been opened, the current in Li is the same as the current in L2. If we refer
ence the current clockwise around the mesh, the 5-domain expression is 

1 
(100/5) + 30 20 

55 + 25 s(s + 5) 5 + 5 

4 
+ 5 5 + 5 5 + 5 

4 2 
= - + r . (13.133 

5 5 + 5 ' 

Inverse-transforming Eq. 13.133 gives 

i = (4 + 2e~5t)u(t) A. (13.134) 

Before the switch is opened, the current in L1 is 10 A, and the current 
in L2 is 0 A; from Eq. 13.134 we know that at t = Q+, the current in L\ and 
in L2 is 6 A.Then, the current in L\ changes instantaneously from 10 to 6 A, 
while the current in L2 changes instantaneously from 0 to 6 A. From this 
value of 6 A, the current decreases exponentially to a final value of 4 A. 
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This final value is easily verified from the circuit; that is, it should equal 
100/25, or 4 A. Figure 13.52 shows these characteristics of i{ and i2. 

How can we verify that these instantaneous jumps in the inductor cur
rent make sense in terms of the physical behavior of the circuit? First, we 
note that the switching operation places the two inductors in series. Any 
impulsive voltage appearing across the 3 H inductor must be exactly bal
anced by an impulsive voltage across the 2 H inductor, because the sum of 
the impulsive voltages around a closed path must equal zero. Faraday's 
law states that the induced voltage is proportional to the change in flux 
linkage (v = dk/dt). Therefore, the change in flux linkage must sum to 
zero. In other words, the total flux linkage immediately after switching is 
the same as that before switching. For the circuit here, the flux linkage 
before switching is 

A = Lxix + L2i2 = 3(10) + 2(0) - 30 Wb-turns. (13.135) 

Immediately after switching, it is 

A = (^ + L2)i(0+) = 5i(0+). (13.136) 

Combining Eqs. 13.135 and 13.136 gives 

Z(0+) = 30/5 = 6 A. (13.137) 

Thus the solution for i (Eq. [13.134]) agrees with the principle of the con
servation of flux linkage. 

We now test the validity of Eq. 13.132. First we check the impulsive 
term 125(f). The instantaneous jump of i2 from 0 to 6 A at t = 0 gives rise 
to an impulse of strength 66(f) in the derivative of i2. This impulse gives 
rise to the 125(f) in the voltage across the 2 H inductor. For f > 0+, di2/dt 
is -10e~5 ' A/s; therefore, the voltage v0 is 

Vo = 15(4 + 2e~5t) + 2(-10<T5') 

/L, i2 (A) 

i2 = i 

Figure 13.52 A The inductor currents versus t for the 
circuit shown in Fig. 13.50. 

(60 + 10e~5')«(/)V. (13.138) 

Equation 13.138 agrees with the last two terms on the right-hand side of 
Eq. 13.132; thus we have confirmed that Eq. 13.132 does make sense in 
terms of known circuit behavior. 

We can also check the instantaneous drop from 10 to 6 A in the cur
rent I'I. This drop gives rise to an impulse of -45(f) in the derivative of ih 

Therefore the voltage across L t contains an impulse of —125(f) at the ori
gin. This impulse exactly balances the impulse across L2; that is, the sum of 
the impulsive voltages around a closed path equals zero. 

Impulsive Sources 
Impulse functions can occur in sources as well as responses; such sources 
are called impulsive sources. An impulsive source driving a circuit imparts 
a finite amount of energy into the system instantaneously. A mechanical 
analogy is striking a bell with an impulsive clapper blow. After the energy 
has been transferred to the bell, the natural response of the bell deter
mines the tone emitted (that is, the frequency of the resulting sound 
waves) and the tone's duration. 
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VQ8(t) 

Figure 13.53 A An RL circuit excited by an impulsive 
voltage source. 

In the circuit shown in Fig. 13.53, an impulsive voltage source having a 
strength of V0 volt-seconds is applied to a series connection of a resistor 
and an inductor. When the voltage source is applied, the initial energy in 
the inductor is zero; therefore the initial current is zero. There is no voltage 
drop across R, so the impulsive voltage source appears directly across L. 
An impulsive voltage at the terminals of an inductor establishes an instan
taneous current. The current is 

--jjV08(x)dx. (13.139) 

Given that the integral of 8(t) over any interval that includes zero is 1, we 
find that Eq. 13.139 yields 

.•«n = v~l A . (13.140) 

Thus, in an infinitesimal moment, the impulsive voltage source has 
stored in the inductor. 

in 
2 L 

(13.141) 

The current V{)/L now decays to zero in accordance with the natural 
response of the circuit; that is, 

l = Te •//T m (13.142) 

Figure 13.54 • The 5-domain equivalent circuit for the 
circuit shown in Fig. 13.53. 

where T = L/R. Remember from Chapter 7 that the natural response is 
attributable only to passive elements releasing or storing energy, and not 
to the effects of sources. When a circuit is driven by only an impulsive 
source, the total response is completely defined by the natural response; 
the duration of the impulsive source is so infinitesimal that it does not 
contribute to any forced response. 

We may also obtain Eq. 13.142 by direct application of the Laplace 
transform method. Figure 13.54 shows the 5-domain equivalent of the cir
cuit in Fig. 13.53. 

Hence 

Vo Vo/L 

R + sL s + (R/L)' 
(13.143) 

ion 
>vw-

3H 
_/-Y"VY>_ 

505(/) 

100 V 

/ = () 
15 n 

12 H 

Figure 13.55 A The circuit shown in Fig. 13.50 with 
an impulsive voltage source added in series with the 
100 V source. 

L 
-(R/L)t 

L 
-t/r U(t). (13.144) 

Thus the Laplace transform method gives the correct solution for i £: 0+. 
Finally, we consider the case in which internally generated impulses 

and externally applied impulses occur simultaneously. The Laplace trans
form approach automatically ensures the correct solution for t > 0+ if 
inductor currents and capacitor voltages at t = 0~ are used in constructing 
the j'-domain equivalent circuit and if externally applied impulses are rep
resented by their transforms. To illustrate, we add an impulsive voltage 



13.8 The Impulse Function in Circuit Analysis 503 

source of 505(f) in series with the 100 V source to the circuit shown in 
Fig. 13.50. Figure 13.55 shows the new arrangement. 

At t = 0", ii(Q~) = 10 A and /2(0~) = 0 A. The Laplace transform of 
505(0 = 50. If we use these values, the s-domain equivalent circuit is as 
shown in Fig. 13.56. 
The expression for I is 

I = 
50 + (100/5) + 30 

25 + 5s 
Figure 13.56 • The s-domain equivalent circuit for the 
circuit shown in Fig. 13.55. 

16 
+ 

20 

s + 5 s(s + 5) 

16 4 4 _ 
5 + 5 s 5 + 5 

12 4 
+ -

5 + 5 5 
(13.145) 

from which 

/(f) = (12e_5/ + 4 )M(0 A. (13.146) 

The expression for V0 is 

v / K . O U 32(.y + 7.5) 40(5 + 7.5) 
V0 = (15 + 2s) J = -

5 + 5 5(5 + 5) 

2.5 \ 60 20 
= 32 1 + r ) + 

5 + 5 ) 5 5 + 5 

= 32 + 
60 60 

+ —, 
5 + 5 5 

(13.147) 

from which 

v„ = 325(f) + (60e"5' + 60)»(f) V. (13.148) 

Now we test the results to see whether they make sense. From 
Eq. 13.146, we see that the current in Lx and L2 is 16 A at f = 0+. As in the 
previous case, the switch operation causes /, to decrease instantaneously 
from 10 to 6 A and, at the same time, causes /2 to increase from 0 to 6 A. 
Superimposed on these changes is the establishment of 10 A in L\ and L2 

by the impulsive voltage source; that is, 

1 
3 + 2 

50S(x)dx = 10 A. (13.149) 

Therefore i{ increases suddenly from 10 to 16 A, while /2 increases sud
denly from 0 to 16 A. The final value of i is 4 A. Figure 13.57 shows ih /2, 
and / graphically. Figure 13.57 • The inductor currents versus t for the 

circuit shown in Fig. 13.55. 



We may also find the abrupt changes in ix and /2 without using super
position. The sum of the impulsive voltages across Lx (3 H) and L2 (2 H) 
equals 505(f). Thus the change in flux linkage must sum to 50; that is, 

AAt + AA2 = 50. (13.150) 

Because A = Li, we express Eq. 13.150 as 

3A/i + 2A/2 = 50. (13.151) 

But because /5 and /2 must be equal after the switching takes place, 

/^(01 + A/i = k(0~) + A/2. (13.152) 

Then, 

10 + All = 0 + A/2. (13.153) 

Solving Eqs. 13.151 and 13.153 for A/j and A/2 yields 

A/j - 6 A, (13.154) 

A/2 = 16 A. (13.155) 

These expressions agree with the previous check. 
Figure 13.57 also indicates that the derivatives of ij and i2 will contain 

an impulse at t = 0. Specifically, the derivative of ix will have an impulse 
of 65(0, and the derivative of /2 will have an impulse of 165(f). 
Figure 13.58(a), (b), respectively, illustrate the derivatives of/̂  and i2. 

Now let's turn to Eq. 13.148. The impulsive component 325(f) agrees 
with the impulse 165(f) that characterizes di2/dt at the origin. The term 
(60<T5' + 60) agrees with the fact that for t > 0+, 

di 
v(> = 15/ + 2 — . 

dt 

We test the impulsive component of di^jdt by noting that it produces 
an impulsive voltage of (3)65(f), or 185(f), across L\. This voltage, along 
with 325(f) across L2, adds to 505(f). Thus the algebraic sum of the impul
sive voltages around the mesh adds to zero. 

To summarize, the Laplace transform will correctly predict the creation 
of impulsive currents and voltages that arise from switching. However, the 
.y-domain equivalent circuits must be based on initial conditions at t — 0~, 
that is, on the initial conditions that exist prior to the disturbance caused by 
the switching. The Laplace transform will correctly predict the response to 
impulsive driving sources by simply representing these sources in the 
,v domain bv their correct transforms. 

NOTE: Assess your understanding of the impulse function in circuit 
analysis by trying Chapter Problems 13.87 and 13.88. 



Practical Perspective 

Practical Perspective 
Surge Suppressors 
As mentioned at the beginning of this chapter, voltage surges can occur in 
a circuit that is operating in the sinusoidal steady state. Our purpose is to 
show how the Laplace transform is used to determine the creation of a surge 
in voltage between the line and neutral conductors of a household circuit 
when a load is switched off during sinusoidal steady-state operation. 

Consider the circuit shown in Fig. 13.59, which models a household cir
cuit with three loads, one of which is switched off at time t = 0. To simplify 
the analysis, we assume that the line-to-neutral voltage, \()r is 
120 / 0 ° V (rms), a standard household voltage, and that when the load 
is switched off at t = 0, the value of V^ does not change. After the switch 
is opened, we can construct the s-domain circuit, as shown in Fig. 13.60. 
Note that because the phase angle of the voltage across the inductive load 
is 0°, the initial current through the inductive load is 0. Therefore, only the 
inductance in the line has a non-zero initial condition, which is modeled in 
the s-domain circuit as a voltage source with the value L//0, as seen in 
Fig. 13.60. 

Just before the switch is opened at t = 0, each of the loads has a 
steady-state sinusoidal voltage with a peak magnitude of 120V2 = 169.7 V. 
All of the current flowing through the line from the voltage source yg is 
divided among the three loads. When the switch is opened at t .=? 0, all of 
the current in the line will flow through the remaining resistive load. This is 
because the current in the inductive load is 0 at t = 0 and the current in an 
inductor cannot change instantaneously. Therefore, the voltage drop across 
the remaining loads can experience a surge as the line current is directed 
through the resistive load. For example, if the initial current in the line is 
25 A (rms) and the impedance of the resistive load is 12 0 , the voltage 
drop across the resistor surges from 169.7 V to (25)( V 2 )(12) = 424.3 V 
when the switch is opened. If the resistive load cannot handle this amount 
of voltage, i t needs to be protected with a surge suppressor such as those 
shown at the beginning of the chapter. 

A 
/ = 0 

V * ( T ) h\k*a.Voh\\iXa fcjiife 

Figure 13.59 • Circuit used to introduce a switching surge voltage. Figure 13.60 A Symbolic s-domain circuit. 

NOTE: Assess your understanding of this Practical Perspective by trying Chapter 

Problems 13.92 and 13.93 
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Summary 

• We can represent each of the circuit elements as an 
6-domain equivalent circuit by Laplace-transforming 
the voltage-current equation for each element: 

• Resistor: V = RI 

• Inductor: V - sLl - LI() 

• Capacitor: V = (l/sC)I + VJs 

In these equations, V = Z£{v}, I = ?£{i}, / 0 is the ini
tial current through the inductor, and V0 is the initial 
voltage across the capacitor. (See pages 468-469.) 

• We can perform circuit analysis in the s domain by 
replacing each circuit element with its s-domain equiva
lent circuit. The resulting equivalent circuit is solved by 
writing algebraic equations using the circuit analysis 
techniques from resistive circuits. Table 13.1 summa
rizes the equivalent circuits for resistors, inductors, and 
capacitors in the s domain. (See page 470.) 

• Circuit analysis in the s domain is particularly advanta
geous for solving transient response problems in linear 
lumped parameter circuits when initial conditions are 
known. It is also useful for problems involving multiple 
simultaneous mesh-current or node-voltage equations, 
because it reduces problems to algebraic rather than 
differential equations. (See pages 476-478.) 

• The transfer function is the s-domain ratio of a circuit's 
output to its input. It is represented as 

where Y(s) is the Laplace transform of the output sig
nal, and X(s) is the Laplace transform of the input sig
nal. (See page 484.) 

• The partial fraction expansion of the product H(s)X(s) 
yields a term for each pole of H(s) and X(s). The 
H(s) terms correspond to the transient component of 
the total response; the X(s) terms correspond to the 
steady-state component. (See page 486.) 

• If a circuit is driven by a unit impulse, x(t) = 8(t), then 
the response of the circuit equals the inverse Laplace 
transform of the transfer function, y(t) = !£~l{H(s)} 
= h(t). (See pages 488-489.) 

• A time-invariant circuit is one for which, if the input is 
delayed by a seconds, the response function is also 
delayed by a seconds. (See page 488.) 

• The output of a circuit, y(t), can be computed by con
volving the input, x(t), with the impulse response of the 
circuit, h(t): 

y{t) = h{t) * x{t) = / h{k)x{t - \)dk 
Jo 

= x{t) * h{t) = j x(\)h(t - A)d\. 
JO 

A graphical interpretation of the convolution integral 
often provides an easier computational method to gen
erate y(t). (See page 489.) 

• We can use the transfer function of a circuit to compute 
its steady-state response to a sinusoidal source. To do so, 
make the substitution s = j<o in H(s) and represent the 
resulting complex number as a magnitude and phase 
angle. If 

x(t) = A cos((ot + ¢), 

Hijco) = \H(jco)\em"K 

then 

yjjt) = A\H(ja>)\ cos[e*t + ¢ + $(<*>)), 

(See page 496.) 

• Laplace transform analysis correctly predicts impulsive 
currents and voltages arising from switching and impul
sive sources. You must ensure that the ^-domain equiva
lent circuits are based on initial conditions at t = (T, 
that is, prior to the switching. (See page 498.) 
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Problems 

Section 13.1 

13.1 Derive the .s-domain equivalent circuit shown in 
Fig. 13.4 by expressing the inductor current i as a 
function of the terminal voltage v and then find
ing the Laplace transform of this time-domain 
integral equation. 

13.2 Find the Thevenin equivalent of the circuit shown 
in Fig. 13.7. 

13.3 Find the Norton equivalent of the circuit shown 
in Fig. 13.3. 

Section 13.2 

13.4 A 2 kil resistor, a 312.5 mH inductor, and a 12.5 nF 
capacitor are in parallel. 

a) Express the s-domain impedance of this parallel 
combination as a rational function. 

b) Give the numerical values of the poles and zeros 
of the impedance. 

13.5 A 1 kd resistor is in series with a 625 nF capaci
tor. This series combination is in parallel with a 
100 mH inductor. 

a) Express the equivalent s-domain impedance of 
these parallel branches as a rational function. 

b) Determine the numerical values of the poles 
and zeros. 

13.6 A 8 kO resistor, a 1 H inductor, and a 40 nF capaci
tor are in series. 

a) Express the s-domain impedance of this series 
combination as a rational function. 

b) Give the numerical value of the poles and zeros 
of the impedance. 

13.7 Find the poles and zeros of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. PI3.7. 

Figure PI3.7 

13.8 Find the poles and zeros of the impedance seen 
looking into the terminals a,b of the circuit shown 
in Fig. P13.8. 

Figure P13.8 

h . 

1 F ^ 
< 

I F ; : 

IH 5 • i n 

iia 

Section 13.3 

13.9 The switch in the circuit shown in Fig. PI 3.9 has 
PSPICE been in position x for a long time. At t = 0, the 

* switch moves instantaneously to position y. 

a) Construct an .v-domain circuit for t > 0. 

b) Find Vot 

c) Find v0. 

Figure P13.9 

13.10 The switch in the circuit in Fig. P13.10 has been in 
position a for a long time. At t - 0, it moves instan
taneously from a to b. 

a) Construct the s-domain circuit for t > 0. 

b) Find Va(s). 

c) Find v„(t) for t > 0. 

Figure P13.10 

12511 

50 V 137.5 V 

10 mH 

13.11 The switch in the circuit in Fig. P13.ll has been 
PSPICE closed for a long time before opening at t ~ 0, 

MULTISIM 

a) Construct the .y-domain equivalent circuit for 
t > 0. 

b) Find Va, 

http://P13.ll
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c) Find v() for t > 0. 

Figure P13.ll 

10 mF 

8(2 

2 H 

PSPKE 

MULTISIM 

13.12 The switch in the circuit in Fig. P13.12 has been in 
position a for a long time. At if = 0, the switch 
moves instantaneously to position b. 

a) Construct the ^-domain circuit for t > 0. 

b) Find Va. 

c) Find / L . 

d) Find v() for t > 0. 

e) Find iL for t > 0. 

Figure P13.12 

6.25 JX¥ 

/ = 0 

20 ft 

son 
+ 

6.4 rnH v„ 

13.13 The switch in the circuit in Fig. P13.13 has been 
PSPICE closed for a long time. A t t = 0, the switch 

MULTISIM • j 

is opened. 

a) Find va for t ^ 0. 

b) Find ia for t > 0. 

Figure P13.13 

t = 0 

PYn 
125 nF 

4kfl 
- A W -

20 V i 0.5 H-

13.14 The make-before-break switch in the circuit in 
PSPICE Fig. PI3.14 has been in position a for a long time. A t 

MULTisiM ? = o, it moves instantaneously to position b. Find i0 

for t > 0. 

Figure P13.14 

( 3 ) 500 V 10 mF 

13.15 Find V0 and va in the circuit shown in Fig. P13.15 if 
PSPICE the initial energy is zero and the switch is closed at 

MULTISIM f = 0 

Figure P13.15 

2.8 kll 200 mH 

t = 0 
125 nF D„ 

13.16 Repea t Problem 13.15 if the initial voltage on the 
PSPICE capacitor is 30 V positive at the upper terminal. 

MULTISIM 

13.17 The switch in the circuit seen in Fig. PI3.17 has been 
PSPICE i n position a for a long time before moving instanta-

MULTISIM neously to position b at t = 0. 

a) Construct the s-domain equivalent circuit for 

t > 0. 

b) Find V\ and v^. 

c) Find V2 and v2. 

Figure P13.17 

450 V 

1.25 mH 

16/UJF: 24^F 

13.18 The switch in the circuit seen in Fig. P13.18 has been 
PSPICE i n position a for a long time. A t t = 0, it moves 

MULTISIM instantaneously to position b. 

a) FindV f r 

b) F i n d e r 

http://P13.ll
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Figure P13.18 

20 a 

13.19 The switch in the circuit in Fig. P13.19 has been 
PSPICE closed for a long time before opening at t = 0. Find 

MULTISIM c + - ^ n 

vn for t > 0. 

Figure P13.19 

13.20 Find v() in the circuit shown in Fig. PI3.20 if 
PSP1CE L = 5u(t) mA. There is no energy stored in the cir-

MULTISIM h ., n 

cuit at t = 0. 

Figure P13.20 

13.21 There is no energy stored in the circuit in Fig. PI3.21 
PSPICE at the time the switch is closed. 

MULTISIM 

a) Find v0 for J s O . 
b) Does your solution make sense in terms of 

known circuit behavior? Explain. 

Figure P13.21 

2H t = 0 + "A 

+ 1H 

_ 4mF 

35 V 0AvM)vo &V 

13.22 There is no energy stored in the circuit in Fig. PI3.22 
PSPICE 

MULTISIM 
at t = 0~. 

a) Use the mesh current method to find ia. 

b) Find the time domain expression for v0. 

c) Do your answers in (a) and (b) make sense in 
terms of known circuit behavior? Explain. 

Figure P13.22 

10//(0 V 

i n 

»1 H 
1 F 

13.23 a) Find the s-domain expression for V0 in the circuit 
_™_ in Fig. PI3.23. 
MULTISIM 

b) Use the ^-domain expression derived in (a) to 
predict the initial- and final-values of va. 

c) Find the time-domain expression for v(). 

Figure P13.23 

|15w(0mA j l H 

7n 
v̂w- + 

;O . IF v„ 

13.24 Find the time-domain expression for the current in 
PSPICE the inductor in Fig. P13.23. Assume the reference 

MULTISIM ¢ ^ ¢ ^ 0 ] } for / £ j s d o w n . 

13.25 There is no energy stored in the capacitors in the 
PSPICE circuit in Fig. P13.25 at the time the switch is closed. 

MULTIsiM , , . . . , n 

a) Construct the s-domain circuit tor t > 0. 

b) Find Ih Vh and V2. 

c) Find z'i, Vi, and i>2. 
d) Do your answers for ih V\, and v2 make sense in 

terms of known circuit behavior? Explain. 

Figure PI3.25 

50 kn 

300 nF 

20 V 

100 nF 

13.26 There is no energy stored in the circuit in Fig. PI3.26 
PSPICE at the time the voltage source is turned on, and 

MULTISIM ^ = 7 5 u { ( ) y 

a) Find V0 and I0. 

b) Find v0 and ia. 

c) Do the solutions for va and ia make sense in 
terms of known circuit behavior? Explain. 
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Figure P13.26 

4mF 

if 
ion 10 n 

:20 II 

13.27 There is no energy stored in the circuit in Fig. PI 3.27 
PSPI« at the time the current source is energized. 

MULTISIM 

a) Find / a and Ib. 

b) Find /a and /b. 

c) Find V&i Vbi and Vc. 

d) Find t*a, vh, and vc. 

e) Assume a capacitor will break down whenever 
its terminal voltage is 1000 V. How long after the 
current source turns on will one of the capacitors 
break down? 

Figure P13.27 

lOOmF 

+ v« -

ion 

9«(0A(t 

100 mF 

Z 100 mF ion 

PSPICE 

MULTISIM 

13.28 There is no energy stored in the circuit in Fig. PI3.28 
at t = 0". 

a) Find Va. 

b) Find va. 

c) Does your solution for v0 make sense in terms of 
known circuit behavior? Explain. 

Figure P13.28 

30 n 
w v 

40 mF 4 H 

50u(l)V| ion v„(J^$u(t)A 

13.29 There is no energy stored in the circuit in Fig. PI 3.29 
PSPICE at the time the sources are energized. 

MULTISIM 

a) Find I^s) and Ijis). 

b) Use the initial- and final-value theorems to check 
the initial- and final-values of i\{t) and /'2(f). 

c) Find i{(t) and i2(t) for t > 0. 

Figure P13.29 

ion *-l\ 

2.5 H 

6«(/)A( f 

200 mF 

:5n 75u(t) V 

13,30 There is no energy stored in the circuit in Fig. P13.30 
PSPICE at the time the current source turns on. Given that 

MULTISIM ig = 5 Q H W A . 

a) Find V„(s). 

b) Use the initial- and final-value theorems to find 
vo(0

+) and yf)(oo). 

c) Determine if the results obtained in (b) agree 
with known circuit behavior. 

d) Find v0(t). 

Figure P13.30 

13.31 The initial energy in the circuit in Fig. P13.31 is zero. 
PSPICE The ideal voltage source is 120«(7) V. 

MULTISIM 

a) Find Ia(s). 

b) Use the initial- and final-value theorems to find 
ia(Q

+) and f0(oo). 

c) D o the values obtained in (b) agree with known 
circuit behavior? Explain. 

d) Find /„(0. 

Figure P13.31 

20 

<e> 
so n %, 20 H 

_4 CYV-V>_ 

+ 

:4 mF 700 O 

13.32 There is no energy stored in the circuit in Fig. P13.32 
PSPICE at the time the voltage source is energized. 

MULTISIM 

a) Find V(), I(), and IL. 

b) Find v0, f(„ and iL for t ^ 0. 



Figure P13.32 Figure P13.35 
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-25f 5Qfe~**u(0 A 5 H r 

13.33 Beginning with Eq. 13,65, show that the capacitor 
current in the circuit in Fig. 13.19 is positive for 
0 < t < 200 (is and negative for t > 200 {is. Also 
show that at 200 (is, the current is zero and that this 
corresponds to when dvc/dt is zero. 

PSPICE 

MULTfSIM 

13.34 The two switches in the circuit shown in Fig. P13.34 
operate simultaneously. There is no energy stored 
in the circuit at the instant the switches close. Find 
/(f) for t & 0+ by first finding the s-domain 
Thevenin equivalent of the circuit to the left of the 
terminals a,b. 

Figure P13.34 

40 V 2fjiF 

13.35 The switch in the circuit shown in Fig. P13.35 
has been open for a long time. The voltage of 
the sinusoidal source is vg = Vm sin {cot + cj>). 
The switch closes at / = 0. Note that the angle 
cf) in the voltage expression determines the value 
of the voltage at the moment when the switch 
closes, that is, vg(0) = Vm sin 4>-

a) Use the Laplace transform method to find 
/" for t > 0. 

b) Using the expression derived in (a), write the 
expression for the current after the switch has 
been closed for a long time. 

c) Using the expression derived in (a), write the 
expression for the transient component of /'. 

d) Find the steady-state expression for i using the 
phasor method. Verify that your expression is 
equivalent to that obtained in (b). 

e) Specify the value of c/> so that the circuit passes 
directly into steady-state operation when the 
switch is closed. 

13.36 The magnetically coupled coils in the circuit seen 
PSPICE m pjg_ pi 3.36 carry initial currents of 15 and 10 A, 

MULTISIM , 

as shown. 

a) Find the initial energy stored in the circuit. 

b) Find I{ and /2 . 

c) Find i] and i2. 
d) Find the total energy dissipated in the 120 and 

270 H resistors. 
e) Repeat (a)-(d), with the dot on the 18 H induc

tor at the lower terminal. 

Figure P13.36 

6 H 

120ft: 

/ 

8 H 

T 
15 A r 

18 H ' hj 
i 
t 

10 A 

:270 0 

13.37 The switch in the circuit seen in Fig. PI3.37 has 
PSPICE been closed for a long time before opening at t = 0. 

1 Use the Laplace transform method of analysis to 
find v„. 

Figure P13.37 

X = 0 

13.38 The make-before-break switch in the circuit seen in 
PSPICE pig. P13.38 has been in position a for a long time. At 

t = 0, it moves instantaneously to position b. Find 
L for t > 0. 
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Figure P13.38 Figure P13.42 

90 V 

10 a 

13.39 There is no energy stored in the circuit in Fig. PI3.39 
PSPICE at the time the switch is closed. 

MULTISIM 

a) Find / , . 
b) Use the initial- and final-value theorems to find 

/ t(0+) and/j(oo). 

c) Find /,. 

Figure P13.39 

150 V 40 n 

13.40 a) Find the current in the 40 XI resistor in the cir-
pspicE cuit in Fig. PI3.39. The reference direction for 

the current is down through the resistor. 

b) Repeat part (a) if the dot on the 1.25 H coil 
is reversed. 

13.41 In the circuit in Fig. P13.41, switch 1 closes at t = 0, 
PSPICE and the make-before-break switch moves instanta-

MULTISIM n e o u s i y from position a to position b. 

a) Construct the A-domain equivalent circuit for 
t > 0. 

b) Find/ , . 

c) Use the initial- and final-value theorems to 
check the initial and final values of /,. 

d) Find /, for t > 0+. 

Figure P13.41 

120 a 

10a 

20 V 

13.42 There is no energy stored in the circuit seen in 
PSPICE Fig. P13.42 at the time the two sources are energized. 

MULTISIM , . . , , . . r. , T , 

a) Use the principle ot superposition to find V0. 
b) Find v0 for t > 0. 

10 a 
AAAr-

60K(/)V V0 

10H 

12.5 mF f \ J1.5w(r)A | 2 0 a 

13.43 Verify that the solution of Eqs. 13.91 and 13.92 for V2 

yields the same expression as that given by Eq. 13.90. 

13.44 The op amp in the circuit shown in Fig. P13.44 is 
fR™. ideal. There is no energy stored in the circuit at the 

MULTISIM time it is energized. If vg = 16,000ta(/) V, find 
(a) V(„ (b) v0, (c) how long it takes to saturate the 
operational amplifier, and (d) how small the rate of 
increase in vg must be to prevent saturation. 

Figure P13.44 

12.5 nF 

13.45 The op amp in the circuit seen in Fig. P13.45 is ideal. 
PSPICE There is no energy stored in the capacitors at the 

MULTISIM ^m& ^ g c r r c m t j s energized. Determine (a) V(), (b) 
vm and (c) how long it takes to saturate the opera
tional amplifier. 

Figure P13.45 

200 ka 200 ka 
• — w v 
+ 

250 nF 

-1(-
250 nF 

:100 Ml 

13.46 
PSPICE 

MULTISIM 

0.5K(J) V ^ - 5 0 0 n F 

Find v()(t) in the circuit shown in Fig. P13.46 if the 
ideal op amp operates within its linear range and 
vs = \6u(t) mV. 
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Figure P13.46 

13.47 The op amp in the circuit shown in Fig. PI3.47 is 
PSPICE ideal. There is no energy stored in the capacitors at 

MUITISIM j j1 £ j n s t a n t the c i r c u i t is energized. 

a) Find va if vgi = 40i/(f) V and VH2 = 16//(/) V. 

b) How many milliseconds after the two voltage 
sources are turned on does the op amp saturate? 

Sections 13.4-13.5 

13.49 a) Find the numerical expression for the trans
fer function H(s) = V„/Vi for the circuit in 
Fig. PI3.49. 

b) Give the numerical value of each pole and zero 
of H{s). 

Figure P13.49 
16 kO 

100 kO 

13.50 Find the numerical expression for the transfer func
tion (VJV,) of each circuit in Fig. P13.50 and give 
the numerical value of the poles and zeros of each 
transfer function. 

Figure P13.47 

w«fion 

Figure P13.50 

100 kO 
• V A — 

40 nF 

40 n F 

r-K-
>\ 100 kO 

(a) 

2kH 

v, 250 mPH v<> v< 2kfi 

13.48 The op amps in the circuit shown in Fig. P13.48 are 
PSPICE ideal. There is no energy stored in the capacitors at 

MULTISIM t = ( ) - T f ^ = 1 6 K ^ m V i h o w m a n y m i l l i s e c o r i d s 

elapse before an op amp saturates? 

Figure P13.48 

25 kf! 

»* 

(c) 

40 kO 

(d) 

•— 
+ 

•— 

-yWVv 1 

10kO< 

( 

i 1 

t 250 nF^ 

» ( 

• 

* 

o 
+ 

o 
(e) 

13,51 a) Find the transfer function H(s) = VJVj for the 
circuit shown in Fig. PI3.51 (a). 

b) Find the transfer function H(s) = V0/Vt for the 
circuit shown in Fig. PI 3.51(b). 

c) Create two different circuits that have the transfer 
function H(s) = V()/Vi = 1000/(5+1000). Use 
components selected from Appendix H and 
Figs.P13.51(a)and(b). 
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Figure PI3.51 

+ 

• — 

R 

<>— 

!-

—• 
(a) 

+ 

(b) 

13.54 The operational amplifier in the circuit in Fig. PI3.54 
is ideal. 

a) Find the numerical expression for the transfer 
function H(s) = VJVS. 

b) Give the numerical value of each zero and pole 
of H(s). 

13.52 a) Find the transfer function H(s) = VJV, for the 
circuit shown in Fig. PI3.52(a). 

b) Find the transfer function H(s) = V0/Vt for the 
circuit shown in Fig. PI3.52(b). 

c) Create two different circuits that have the trans
fer function H(s) = VJV-, = s/(s + 10,000). 
Use components selected from Appendix H and 
Figs. P13.52(a) and (b). 

Figure P13.52 

• — 1 ( -

Figure P13.54 

13.53 

+ + 

(a) (b) 

a) Find the transfer function H(s) = V()/V, for the 
circuit shown in Fig. P13.53. Identify the poles 
and zeros for this transfer function. 

b) Find three components from Appendix H which 
when used in the circuit of Fig. P13.53 will result in 
a transfer function with two poles that are distinct 
real numbers. Calculate the values of the poles. 

c) Find three components from Appendix H which 
when used in the circuit of Fig. PI3.53 will result 
in a transfer function with two poles, both with 
the same value. Calculate the value of the poles. 

d) Find three components from Appendix H which 
when used in the circuit of Fig. P13.53 will result 
in a transfer function with two poles that are 
complex conjugate complex numbers. Calculate 
the values of the poles. 

C? = 25 nF 

+ 

lkQ 200nF 
^vw } | — 

ft c 

13.55 The operational amplifier in the circuit in Fig. PI3.55 
is ideal. 

a) Find the numerical expression for the transfer 
function//(5) = VJVr 

b) Give the numerical value of each zero and pole 
of H(s). 

Figure P13.55 
400 pF 

Figure P13.53 

ft L 

R 

13.56 The operational amplifier in the circuit in 
Fig. PI3.56 is ideal. 

a) Derive the numerical expression of the trans
fer function H(s) = VJVg for the circuit in 
Fig. P13.56. 

b) Give the numerical value of each pole and zero 
of H(s). 
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Figure P13.56 13.59 a) Find the transfer function I(,/Is as a function of 
PSPICE ^ for the circuit seen in Fig. P13.59. 

MULnSIM 

b) Find the largest value of i± that will produce a 
bounded output signal for a bounded input signal. 

c) Find it) for /x = - 3 , 0 , 4 , 5 , and 6 if L = 5u(t) A . 

Figure P13.59 

8kO O 
2kft |2H 

13.57 There is no energy stored in the circuit in Fig. P13.57 
PSPICE a t the time the switch is opened.The sinusoidal current 

MULTISIM s o u r c e i s g e n e r a t j n g the signal 100 cos 10,000/ m A . 
The response signal is the current iir 

a) Find the transfer function l0/lR. 

b) Find Ia(s). 

c) Describe the nature of the transient component 
of 4 ( 0 without solving for in(t). 

d) Describe the nature of the steady-state compo
nent of i0(t) without solving for i0{t). 

e) Verify the observations made in (c) and (d) by 
finding i0(t). 

Figure P13.57 

Section 13.6 

13.60 a) Find h{t) * x{t) when h(t) and x(t) are the rec
tangular pulses shown in Fig. P13.60(a). 

b) Repeat (a) when x(t) changes to the rectangular 
pulse shown in Fig. P13.60(b). 

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. P13.60(c). 

Figure P13.60 

HO 

25 

«.(t> K t= 0 
100 nF 

x{t) 

25 

10 
(a) 

13.58 In the circuit of Fig. P13.58 i(> is the output signal 
and vg is the input signal. Find the poles and zeros 
of the transfer function, assuming there is no initial 
energy stored in the linear transformer or in the 
capacitor. 

Figure P13.58 

x(t) 

12.5 

0 

/7(0 

25 

10 

20 0 
(b) (c) 

5 H 

vP\ 

o 

25 H 

10 H 

10 kO 

62.5 nF 

13.61 a) Given y{t) = h(t) * x(t), find y(t) when h(t) and 
x(t) are the rectangular pulses shown in 
Fig. PI3.61 (a). 

b) Repeat (a) when h{t) changes to the rectangular 
pulse shown in Fig. PI3.61(b). 

c) Repeat (a) when h(t) changes to the rectangular 
pulse shown in Fig. PI 3.61(c). 

d) Sketch y(t) versus t for (a)-(c) on a single graph. 

e) D o the sketches in (d) make sense? Explain. 
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Figure P13.61 

h(t)' 

10 

40 40 / 

(a) 

*(0" 
4 

h(ty 

40 

0 10 t 
(b) 

0 1 
(c) 

13.62 A rectangular voltage pulse i>,- = [«(/) - u(t - 1)] V 
is applied to the circuit in Fig. P13.62. Use the con
volution integral to find vn. 

>•', in: 

13.63 Interchange the inductor and resistor in 
Problem 13.62 and again use the convolution inte
gral to find vQ. 

13.65 a) Repeat Problem 13.64, given that the resistor in 
the circuit in Fig. PI3.50(a) is decreased to 10 kll . 

b) Does decreasing the resistor increase or decrease 
the memory of the circuit? 

c) Which circuit comes closer to transmitting a 
replica of the input voltage? 

13.66 a) Assume the voltage impulse response of a 
circuit is 

//.(/) 
0, t < 0; 
lOtT4', t > 0. 

Use the convolution integral to find the output 
voltage if the input signal is 10*<(0 V. 

b) Repeat (a) if the voltage impulse response is 

0, t < 0; 

= \ 10(1 - 20, 0 < t < 0.5 s; 

0, t > 0.5 s. 

c) Plot the output voltage versus time for (a) and 
(b) for 0 < t < 1 s. 

13.67 The voltage impulse response of a circuit is shown in 
Fig. P13.67(a). The input signal to the circuit is the 
rectangular voltage pulse shown in Fig. P13.67(b). 

a) Derive the equations for the output voltage. 
Note the range of time for which each equation 
is applicable. 

b) Sketch v0 for - 1 < t < 34 s. 

13.64 a) Use the convolution integral to find the output 
voltage of the circuit in Fig. P13.50(a) if the 
input voltage is the rectangular pulse shown in 
Fig. P13.64. 

b) Sketch v0(t) versus t for the time interval 
0 < t < 10 ms. 

Figure P13.64 
»i(V) 

lo 

r(ms) 
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13.68 Assume the voltage impulse response of a circuit 
can be modeled by the triangular waveform shown 
in Fig. P13.68.The voltage input signal to this circuit 
is the step function 10«(^) V. 

a) Use the convolution integral to derive the 
expressions for the output voltage. 

b) Sketch the output voltage over the interval 
0 to 15 s. 

c) Repeat parts (a) and (b) if the area under the 
voltage impulse response stays the same but the 
width of the impulse response narrows to 4 s. 

d) Which output waveform is closer to replicating 
the input waveform: (b) or (c)? Explain. 

Figure P13.68 

A(0 (V) 

10 «(») 

13.69 a) Find the impulse response of the circuit shown 
in Fig. P13.69(a) if vg is the input signal and v0 is 
the output signal. 

b) Given that vq has the waveform shown in 
Fig. P13.69(b), use the convolution integral to 
find va. 

c) Does va have the same waveform as vgl Why or 
why not? 

Figure P13.69 

4H 

vg(V) 

75 

0 

-75 

0.5 1.0 t(s) 

(a) (b) 

13.70 a) Find the impulse response of the circuit seen in 
Fig. PI3.70 if vg is the input signal and vn is the 
output signal. 

b) Assume that the voltage source has the wave
form shown in Fig. P13.69(b). Use the convolu
tion integral to find v(r 

c) Sketch % for 0 < / < 2 s. 

d) Does va have the same waveform as v„l Why or 
why not? 

Figure P13.70 

13.71 The sinusoidal voltage pulse shown in Fig. P13.71(a) 
is applied to the circuit shown in Fig. P13.71(b). Use 
the convolution integral to find the value of v() at 
t = 75 ms. 

Figure P13.71 

5H 

v, 160 n-

77/20 ir/io r(s) 
(b) 

13.72 Use the convolution integral to find v(, in the circuit 
seen in Fig. P13.72 if vt = 75u{t) V. 

Figure P13.72 

40 0 
o Vs/V— 

4H 
J - T Y Y V 

4 

16 H 

13.73 The current source in the circuit shown in 
Fig. P13.73(a) is generating the waveform shown in 
Fig. PI 3.73(b). Use the convolution integral to find 
v„ at t = 5 ms. 
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Figure P13.73 

ig (mA) 

10 

H—I—I— 
1 2 3 4 

- 2 0 4 

(b) 

5 6 t (ms) 

0.4 /itF 

(a) 

Figure P13.75 

i„ {fiA) 

50 

0 

-50 

(b) 

100 200 /(ms) 

(a) 

13.74 The input voltage in the circuit seen in Fig. PI 3.74 is 

V; = 5[u(t) - u(t - 0.5)] V. 

a) Use the convolution integral to find va. 

b) Sketch va for 0 < t < 1 s. 

Figure P13.74 
2 0 

• /vv— 
100 mH 

100 mF 

13.76 a) Show that if y(t) = h(() * x(t), then Y{s) 
H(s)X(s). 

b) Use the result given in (a) to find /(f) if 

F(s) = s(s + a)" 

Section 13.7 

13.77 The transfer function for a linear time-invariant 
circuit is 

13.75 a) Use the convolution integral to find v0 in the cir
cuit in Fig. P13.75(a) if is is the pulse shown in 
Fig. PI3.75(b). 

b) Use the convolution integral to find i0. 

c) Show that your solutions for vv and i(, are consis
tent by calculating va and in at 100" ms, 
100+ ms, 200" ms, and 200+ ms. 

H(s) 
V0 4(s + 3) 

Vg s2 + 8s + 41 

If vK = 40 cos 3/ V, what is the steady-state expres
sion for va'l 

13.78 When an input voltage of 30u(t) V is applied to a 
circuit, the response is known to be 

-80(H)/ .--.111)0,.. 
va = (50*-*™" - 20e-™*")u{t) V. 

What will the steady-state response be if 
vg = 120 cos 6000/ V? 
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13.79 The op amp in the circuit seen in Fig. P13.79 is ideal. 
PSPKE a) Find the transfer function VJV„. 

MULTISIM ' "' S 

b) Find va if vg = 0.6//(0 V. 
c) Find the steady-state expression for v„ if 

vg = 2 cos 10,000/: V. 

Figure P13.79 

13.82 The inductor Lx in the circuit shown in Fig. P13.82 
is carrying an initial current of p A at the instant 
the switch opens. Find (a) v(t); (b) /-i(/); (c) i2(t)', 
and (d) A(r), where A(f) is the total flux linkage in 
the circuit. 

Figure P13.82 

y„*15kll 

13.80 The operational amplifier in the circuit seen in 
PSPICE pig. P13.80 is ideal and is operating within its lin-

MULTISIM 

ear region. 
a) Calculate the transfer function V„/VR. 

b) If vg = 2cos400f V, what is the steady-state 
expression for v(>'~! 

' ifPTU R «2i: 

13.83 a) Let R -» oo in the circuit shown in Fig. P13.82, 
and use the solutions derived in Problem 13.82 
to find v(t), ii(t), and i2{t). 

b) Let R = oo in the circuit shown in Fig. P13.82 
and use the Laplace transform method to find 
-u(f), ii(t), and i2{t). 

13.84 There is no energy stored in the circuit in Fig. P13.84 
at the time the impulsive voltage is applied. 

a) Find v(>(t) for t > 0. 

b) Does your solution make sense in terms of 
known circuit behavior? Explain. 

Figure P13.80 

y r > 5 2 0 k n 

Section 13.8 

13.81 Show that after V^CC coulombs are transferred from 
C] to C2 in the circuit shown in Fig. 13.47, the volt
age across each capacitor is C\V{)f(C\ + C2). (Hint: 
Use the conservation-of-charge principle.) 

Figure P13.84 

200 H 4 mH 

55(/) mV 16 mH 

13.85 The parallel combination of R2 and C2 in the circuit 
shown in Fig. P13.85 represents the input circuit to 
a cathode-ray oscilloscope (CRO). The parallel 
combination of i?j and C\ is a circuit model of a 
compensating lead that is used to connect the CRO 
to the source. There is no energy stored in C\ or C2 

at the time when the 10 V source is connected to the 
CRO via the compensating lead. The circuit values 
are Q = 4 pF, C2 = 16 pF, Rl = 1.25 Mft, and 
R2 = 5 MH. 

a) Find va. 

b) Find i0. 

c) Repeat (a) and (b) given Cj is changed to 64 pF 
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Figure P13.85 13.89 Tliere is no energy stored in the circuit in Fig. P13.89 
at the time the impulsive current is applied. 

a) Find v() for t > ()+. 

b) Does your solution make sense in terms of 
known circuit behavior? Explain. 

Figure P13.89 

250 nF 

13.86 Show that if R\C\ = RiC2 in the circuit shown in 
Fig. P13.85, v(> will be a scaled replica of the 
source voltage. 

13.87 The switch in the circuit in Fig. PI3.87 has been 
closed for a long time. The switch opens at t — 0. 
Compute (a) «,((T); (b) / , (0+) ; (c) /2(<T); (d) /2((T); 
(e) i!(r); (f) / 2 (0 ; and (g) v{t). 

Figure P13.87 

t = 0 1 = u v 

5 A © 
+ 

:8 mH 
::•! 0 jr1 v(t) k\\ 

4 k O | 1 6 k H 

13.90 The voltage source in the circuit in Example 13.1 is 
changed to a unit impulse; that is, vg = 8(t). 

a) How much energy does the impulsive voltage 
source store in the capacitor? 

b) How much energy does it store in the inductor? 

c) Use the transfer function to find va(t). 

d) Show that the response found in (c) is identical 
to the response generated by first charging the 
capacitor to 1000 V and then releasing the 
charge to the circuit, as shown in Fig. P13.90. 

Figure P13.90 

looon 
k - 1 - * 

^ r> < . i-. 

1000 V 

13.88 The switch in the circuit in Fig. P13.88 has been in 
position a for a long time. A t t = 0, the switch 
moves to position b. Compute (a) ^ ( O - ) ; (b) y?(0_); 
(c) v3(0-); (d) i(t); (e) ^ ( 0 + ) ; (f) v2(0

+){ and 
(g)^3(0+) . 

Figure P13.88 

—'VW-
20kfl 

100 v ( - ) 

A 

0.5 ^ F ; 

2.0/XF; 

r = 0 

+ 

+ 

13.91 There is no energy stored in the circuit in Fig. P13.91 
at the time the impulse voltage is applied. 

a) Find i{ for t > 0+ . 

b) Find i2 for t > 0+ . 

c) Find va for t > 0+ . 

d) D o your solutions for iu /2, and v(} make sense in 
terms of known circuit behavior? Explain. 

i(0 

1.6 IJLF: 
+ 

:¾ 

Figure P13.91 

0.5 H 
1>"~ 

205(/) V © IH: 1H j F . 
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Sections 13.1-13.8 

13.92 Assume the line-to-neutral voltage Y0 in the 60 Hz 
m o m c i r c u i t of Fig- 13.59 is 120 /CT V (rms). Load RCI is 

absorbing 1200 W; load Rb is absorbing 1800 W; and 
load Xa is absorbing 350 magnetizing VAR. The 
inductive reactance of the line (X{) is 1 fl. Assume 
V<, does not change after the switch opens. 
a) Calculate the initial value of i2(t) and i[0(t). 

b) Find V0, v()(t), and v()(Q
+) using the s-domain 

circuit of Fig. 13.60. 

c) Test the steady-state component of va using pha-
sor domain analysis. 

d) Using a computer program of your choice, plot 
v0 vs. t for 0 £ t < 20 ms. 

13.93 Assume the switch in the circuit in Fig. 13.59 
'ERSPECTIVE ° P e n s a l t n e instant the sinusoidal steady-state 

voltage va is zero and going positive, i.e., 
v0 = 120V2~sinl207rtV. 
a) Find v0{t) for t > 0. 

b) Using a computer program of your choice, plot 
v0(t) vs. t for 0 < t < 20 ms. 

c) Compare the disturbance in the voltage in 
part (a) with that obtained in part (c) of 
Problem 13.92. 

13.94 The purpose of this problem is to show that the 
•ERSPEcnvE l i n e - t ° - n e u t r a l voltage in the circuit in Fig. 13.59 

can go directly into steady state if the load Rh is 
disconnected from the circuit at precisely the 
right time. Let v0 = Vm cos( 12077/ - 0°) V, where 
Vm = 120 V2. Assume vg does not change after Rb 

is disconnected. 

a) Find the value of 6 (in degrees) so that v0 goes 
directly into steady-state operation when the 
load Rf) is disconnected. 

b) For the value of 6 found in part (a), find %(t) for 
t > 0. 

c) Using a computer program of your choice, plot 
on a single graph, for -10 ms ^ t ^ 10 ms, 
va(t) before and after load Rb is disconnected. 
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C H A P T E R C O N T E N T S 

14.1 Some Preliminaries p. 524 

14.2 Low-Pass Filters p. 526 

14.3 High-Pass Filters p. 532 

14.4 Bandpass Filters p. 536 

14.5 Bandreject Filters p. 545 

Know the RL and RC circuit configurations that 
act as low-pass filters and be able to design 
RL and RC circuit component values to meet a 
specified cutoff frequency. 

Know the RL and RC circuit configurations that 
act as high-pass filters and be able to design 
RL and RC circuit component values to meet a 
specified cutoff frequency. 

Know the RLC circuit configurations that act as 
bandpass filters, understand the definition of 
and relationship among the center frequency, 
cutoff frequencies, bandwidth, and quality 
factor of a bandpass filter, and be able to 
design RLC circuit component values to meet 
design specifications. 

Know the RLC circuit configurations that act as 
bandreject filters, understand the definition of 
and relationship among the center frequency, 
cutoff frequencies, bandwidth, and quality 
factor of a bandreject filter, and be able to 
design RLC circuit component values to meet 
design specifications. 

522 

Introduction to Frequency 
Selective Circuits 
Up to this point in our analysis of circuits with sinusoidal 
sources, the source frequency was held constant. In this chapter, 
we analyze the effect of varying source frequency on circuit volt
ages and currents. The result of this analysis is the frequency 
response of a circuit. 

We've seen in previous chapters that a circuit's response 
depends on the types of elements in the circuit, the way the ele
ments are connected, and the impedance of the elements. 
Although varying the frequency of a sinusoidal source does not 
change the element types or their connections, it does alter the 
impedance of capacitors and inductors, because the impedance 
of these elements is a function of frequency. As we will see, the 
careful choice of circuit elements, their values, and their con
nections to other elements enables us to construct circuits that 
pass to the output only those input signals that reside in a 
desired range of frequencies. Such circuits are called 
frequency-selective circuits. Many devices that communicate 
via electric signals, such as telephones, radios, televisions, and 
satellites, employ frequency-selective circuits. 

Frequency-selective circuits are also called filters because of 
their ability to filter out certain input signals on the basis of fre
quency. Figure 14.1 on page 524 represents this ability in a sim
plistic way. To be more accurate, we should note that no practical 
frequency-selective circuit can perfectly or completely filter out 
selected frequencies. Rather, filters attenuate—that is, weaken or 
lessen the effect of—any input signals with frequencies outside 
frequencies outside a particular frequency band. Your home 
stereo system may have a graphic equalizer, which is an excellent 
example of a collection of filter circuits. Each band in the graphic 
equalizer is a filter that amplifies sounds (audible frequencies) in 
the frequency range of the band and attenuates frequencies out
side of that band. Thus the graphic equalizer enables you to 
change the sound volume in each frequency band. 



Practical Perspective 
Pushbutton Telephone Circuits 
In this chapter, we examine circuits in which the source fre
quency varies. The behavior of these circuits varies as the 
source frequency varies, because the impedance of the reac
tive components is a function of the source frequency. These 
frequency-dependent circuits are called filters and are used 
in many common electrical devices. In radios, filters are used 
to select one radio station's signal while rejecting the signals 
from others transmitting at different frequencies. In stereo 
systems, filters are used to adjust the relative strengths of the 
low- and high-frequency components of the audio signal. 
Filters are also used throughout telephone systems. 

A pushbutton telephone produces tones that you hear 
when you press a button. You may have wondered about these 
tones. How are they used to tell the telephone system which 
button was pushed? Why are tones used at all? Why do the 
tones sound musical? How does the phone system tell the dif
ference between button tones and the normal sounds of peo
ple talking or singing? 

The telephone system was designed to handle audio 
signals—those with frequencies between 300 Hz and 3 kHz. 
Thus, all signals from the system to the user have to be 
audible—including the dial tone and the busy signal. Similarly, 
all signals from the user to the system have to be audible, 
including the signal that the user has pressed a button. I t is 
important to distinguish button signals from the normal audio 
signal, so a dual-tone-multiple-frequency (DTMF) design is 
employed. When a number button is pressed, a unique pair of 
sinusoidal tones with very precise frequencies is sent by the 
phone to the telephone system. The DTMF frequency and timing 
specifications make it unlikely that a human voice could pro
duce the exact tone pairs, even if the person were trying. In 
the central telephone facility, electric circuits monitor the 
audio signal, listening for the tone pairs that signal a number. 
In the Practical Perspective example at the end of the chapter, 
we will examine the design of the DTMF filters used to deter
mine which button has been pushed. 

523 
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Input 
signal Filter 

Output 
signal 

Figure 14.1 • The action of a filter on an input signal 
results in an output signal. 

We begin this chapter by analyzing circuits from each of the four 
major categories of filters: low pass, high pass, band pass, and band reject. 
The transfer function of a circuit is the starting point for the frequency 
response analysis. Pay close attention to the similarities among the trans
fer functions of circuits that perform the same filtering function. We will 
employ these similarities when designing filter circuits in Chapter 15. 

14.1 Some Preliminaries 

Vi(s) 

Figure 14.2 A A circuit with voltage input and output. 

Recall from Section 13.7 that the transfer function of a circuit provides an 
easy way to compute the steady-state response to a sinusoidal input. There, 
we considered only fixed-frequency sources. To study the frequency response 
of a circuit, we replace a fixed-frequency sinusoidal source with a varying-
frequency sinusoidal source. The transfer function is still an immensely useful 
tool because the magnitude and phase of the output signal depend only on 
the magnitude and phase of the transfer function H{ja)). 

Note that the approach just outlined assumes that we can vary the fre
quency of a sinusoidal source without changing its magnitude or phase 
angle. Therefore, the amplitude and phase of the output will vary only if 
those of the transfer function vary as the frequency of the sinusoidal 
source is changed. 

To further simplify this first look at frequency-selective circuits, we will 
also restrict our attention to cases where both the input and output signals 
are sinusoidal voltages, as illustrated in Fig. 14.2. Thus, the transfer function 
of interest to us will be the ratio of the Laplace transform of the output volt
age to the Laplace transform of the input voltage, or H(s) — V0(s)/Vi(s). 
We should keep in mind, however, that for a particular application, a current 
may be either the input signal or output signal of interest. 

The signals passed from the input to the output fall within a band of 
frequencies called the passband. Input voltages outside this band have 
their magnitudes attenuated by the circuit and are thus effectively pre
vented from reaching the output terminals of the circuit. Frequencies not 
in a circuit's passband are in its stopband. Frequency-selective circuits are 
categorized by the location of the passband. 

One way of identifying the type of frequency-selective circuit is to 
examine a frequency response plot. A frequency response plot shows how 
a circuit's transfer function (both amplitude and phase) changes as the 
source frequency changes. A frequency response plot has two parts. One is 
a graph of \H(jai)\ versus frequency w. This part of the plot is called the 
magnitude plot. The other part is a graph of d(Jw) versus frequency w. This 
part is called the phase angle plot. 

The ideal frequency response plots for the four major categories of fil
ters are shown in Fig. 14.3. Parts (a) and (b) illustrate the ideal plots for a 
low-pass and a high-pass filter, respectively. Both filters have one pass-
band and one stopband, which are defined by the cutoff frequency that 
separates them. The names low pass and high pass are derived from the 
magnitude plots: a low-pass filter passes signals at frequencies lower than 
the cutoff frequency from the input to the output, and a high-pass filter 
passes signals at frequencies higher than the cutoff frequency. Thus the 
terms low and high as used here do not refer to any absolute values of fre
quency, but rather to relative values with respect to the cutoff frequency. 

Note from the graphs for both these filters (as well as those for the 
bandpass and bandreject filters) that the phase angle plot for an ideal filter 
varies linearly in the passband. It is of no interest outside the passband 
because there the magnitude is zero. Linear phase variation is necessary to 
avoid phase distortion. 
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Figure 14.3 • Ideal frequency response plots of the four types of filter circuits, 
(a) An ideal low-pass filter, (b) An ideal high-pass filter, (c) An ideal bandpass filter, 
(d) An ideal bandreject filter. 

The two remaining categories of filters each have two cutoff frequen
cies. Figure 14.3(c) illustrates the ideal frequency response plot of a 
bandpass filter, which passes a source voltage to the output only when the 
source frequency is within the band defined by the two cutoff frequencies. 
Figure 14.3(d) shows the ideal plot of a bandreject filter, which passes a 
source voltage to the output only when the source frequency is outside the 
band defined by the two cutoff frequencies. The bandreject filter thus 
rejects, or stops, the source voltage from reaching the output when its fre
quency is within the band defined by the cutoff frequencies. 

In specifying a realizable filter using any of the circuits from this chap
ter, it is important to note that the magnitude and phase angle characteris
tics are not independent. In other words, the characteristics of a circuit 
that result in a particular magnitude plot will also dictate the form of the 
phase angle plot and vice versa. For example, once we select a desired 
form for the magnitude response of a circuit, the phase angle response is 
also determined. Alternatively, if we select a desired form for the phase 
angle response, the magnitude response is also determined. Although 
there are some frequency-selective circuits for which the magnitude and 
phase angle behavior can be independently specified, these circuits are 
not presented here. 

The next sections present examples of circuits from each of the four 
filter categories. They are a few of the many circuits that act as filters. You 
should focus your attention on trying to identify what properties of a cir
cuit determine its behavior as a filter. Look closely at the form of the 
transfer function for circuits that perform the same filtering functions. 
Identifying the form of a filter's transfer function will ultimately help you 
in designing filtering circuits for particular applications. 

All of the filters we will consider in this chapter are passive filters, so 
called because their filtering capabilities depend only on the passive 
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elements: resistors, capacitors, and inductors. The largest output amplitude 
such filters can achieve is usually 1, and placing an impedance in series with 
the source or in parallel with the load will decrease this amplitude. Because 
many practical filter applications require increasing the amplitude of the 
output, passive filters have some significant disadvantages. The only pas
sive filter described in this chapter that can amplify its output is the series 
RLC resonant filter. A much greater selection of amplifying filters is found 
among the active filter circuits, the subject of Chapter 15. 

14.2 Low-Pass Filters 

Here, we examine two circuits that behave as low-pass filters, the series 
RL circuit and the series RC circuit, and discover what characteristics of 
these circuits determine the cutoff frequency. 

The Series RL Circuit—Qualitative Analysis 

A series RL circuit is shown in Fig. 14.4(a). The circuit's input is a sinu
soidal voltage source with varying frequency. The circuit's output is 
defined as the voltage across the resistor. Suppose the frequency of the 
source starts very low and increases gradually. We know that the behavior 
of the ideal resistor will not change, because its impedance is independent 
of frequency. But consider how the behavior of the inductor changes. 

Recall that the impedance of an inductor is jooL. At low frequencies, 
the inductor's impedance is very small compared with the resistor's 
impedance, and the inductor effectively functions as a short circuit. The 
term low frequencies thus refers to any frequencies for which coL <<c R. 
The equivalent circuit for w = 0 is shown in Fig. 14.4(b). In this equivalent 
circuit, the output voltage and the input voltage are equal both in magni
tude and in phase angle. 

As the frequency increases, the impedance of the inductor increases rel
ative to that of the resistor. Increasing the inductor's impedance causes a 
corresponding increase in the magnitude of the voltage drop across the 
inductor and a corresponding decrease in the output voltage magnitude. 
Increasing the inductor's impedance also introduces a shift in phase angle 
between the inductor's voltage and current. This results in a phase angle dif
ference between the input and output voltage. The output voltage lags the 
input voltage, and as the frequency increases, this phase lag approaches 90°. 

At high frequencies, the inductor's impedance is very large compared 
with the resistor's impedance, and the inductor thus functions as an open 
circuit, effectively blocking the flow of current in the circuit. The term high 
frequencies thus refers to any frequencies for which coL » R. The equiv
alent circuit for w = oo is shown in Fig. 14.4(c), where the output voltage 
magnitude is zero. The phase angle of the output voltage is 90° more neg
ative than that of the input voltage. 

Based on the behavior of the output voltage magnitude, this series RL 
circuit selectively passes low-frequency inputs to the output, and it blocks 
high-frequency inputs from reaching the output. This circuit's response to 
varying input frequency thus has the shape shown in Fig. 14.5. These two 
plots comprise the frequency response plots of the series RL circuit in 
Fig. 14.4(a). The upper plot shows how \H(jo))\ varies with frequency. The 
lower plot shows how B(jco) varies as a function of frequency. We present a 
more formal method for constructing these plots in Appendix E. 

We have also superimposed the ideal magnitude plot for a low-pass 
filter from Fig. 14.3(a) on the magnitude plot of the RL filter in Fig. 14.5. 
There is obviously a difference between the magnitude plots of an ideal 

+ 

RI v<, 

(b) 

Figure 14.4 A (a) A series RL low-pass filter, (b) The 
equivalent circuit at w = 0. and (c) The equivalent 
circuit at to = oo. 
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filter and the frequency response of an actual RL filter. The ideal filter 
exhibits a discontinuity in magnitude at the cutoff frequency, a>c, which 
creates an abrupt transition into and out of the passband. While this is, ide
ally, how we would like our filters to perform, it is not possible to use real 
components to construct a circuit that has this abrupt transition in magni
tude. Circuits acting as low-pass filters have a magnitude response that 
changes gradually from the passband to the stopband. Hence the magni
tude plot of a real circuit requires us to define what we mean by the cutoff 
frequency, ooc. 

Defining the Cutoff Frequency 
We need to define the cutoff frequency, a>t., for realistic filter circuits 
when the magnitude plot does not allow us to identify a single frequency 
that divides the passband and the stopband. The definition for cutoff fre
quency widely used by electrical engineers is the frequency for which the 
transfer function magnitude is decreased by the factor 1/V2 from its 
maximum value: 

W{jto)\ 

1.0 

0 

0° 

-90° 

Figure 14.5 A The frequency response plot for the 
series RL circuit in Fig. 14.4(a). 

1 
(14.1) ^ Cutoff frequency de f in i t i on 

where HmiXX is the maximum magnitude of the transfer function. It follows 
from Eq. 14.1 that the passband of a realizable filter is defined as the 
range of frequencies in which the amplitude of the output voltage is at 
least 70.7% of the maximum possible amplitude. 

The constant 1/ V2 used in defining the cutoff frequency may seem like 
an arbitrary choice. Examining another consequence of the cutoff frequency 
will make this choice seem more reasonable. Recall from Section 10.5 that 
the average power delivered by any circuit to a load is proportional to V2

L, 
where VL is the amplitude of the voltage drop across the load: 

2 R 
(14.2) 

If the circuit has a sinusoidal voltage source, V/(/&>), then the load voltage 
is also a sinusoid, and its amplitude is a function of the frequency w. 
Define Pmax as the value of the average power delivered to a load when 
the magnitude of the load voltage is maximum: 

1 VLax 
2 R 

(14.3) 

If we vary the frequency of the sinusoidal voltage source, V,{jo)), the load 
voltage is a maximum when the magnitude of the circuit's transfer func
tion is also a maximum: 

V, Ltnax = //„ (14.4) 

Now consider what happens to the average power when the frequency of 
the voltage source is o)c. Using Eq. 14.1, we determine the magnitude of 
the load voltage at (oc to be 

|Vz.(M)l |tf(M)IM 

~ i s "maxlvi\ 

1 

V2 ^Lmax- (14.5) 
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Substituting Eq. 14.5 into Eq. 14.2, 

p(. . l m(K)i 

1 VV2 
2 

*Lmax 

R 

1 ^Jmax/2 

2 # 

(14.6) 

Equation 14.6 shows that at the cutoff frequency <yc, the average power 
delivered by the circuit is one half the maximum average power. Thus, a)c is 
also called the half-power frequency. Therefore, in the passband, the average 
power delivered to a load is at least 50% of the maximum average power. 

RfV0(s) 

Figure 14.6 A The s-domain equivalent for the circuit 
in Fig. 14.4(a). 

The Series RL Circuit—Quantitative Analysis 

Now that we have defined the cutoff frequency for real filter circuits, we can 
analyze the series RL circuit to discover the relationship between the com
ponent values and the cutoff frequency for this low-pass filter. We begin by 
constructing the .s-domain equivalent of the circuit in Fig. 14.4(a), assuming 
initial conditions of zero. Trie resulting equivalent circuit is shown in Fig. 14.6. 

The voltage transfer function for this circuit is 

H(s) = 
R/L 

(14.7) 
5 + R/L' 

To study the frequency response, we make the substitution s - /&> in Eq. 14.7: 

R/L 
H(jco) = (14.8) 

jo> + R/L' 

We can now separate Eq. 14.8 into two equations. The first defines the 
transfer function magnitude as a function of frequency; the second defines 
the transfer function phase angle as a function of frequency: 

1//(/0,)1 = 
R/L 

V<o2 + (R/L)2' 

e(jco) = - t a n " 1 ^ ) . 

(14.9) 

(14.10) 

Close examination of Eq. 14.9 provides the quantitative support for 
the magnitude plot shown in Fig. 14.5. When o> = 0, the denominator and 
the numerator are equal and |//(/0)| = 1. This means that at o> = 0, the 
input voltage is passed to the output terminals without a change in the 
voltage magnitude. 

As the frequency increases, the numerator of Eq. 14.9 is unchanged, 
but the denominator gets larger. Thus \H(jco)\ decreases as the frequency 
increases, as shown in the plot in Fig. 14.5. Likewise, as the frequency 
increases, the phase angle changes from its dc value of 0°, becoming more 
negative, as seen from Eq. 14.10. 

When o) = oo, the denominator of Eq. 14.9 is infinite and 
\H(joo)\ = 0, as seen in Fig. 14.5. At <o = oo, the phase angle reaches a 
limit of —90°, as seen from Eq. 14.10 and the phase angle plot in Fig. 14.5. 

Using Eq. 14.9, we can compute the cutoff frequency, coc. Remember 
that u)c is defined as the frequency at which \H(jcoc)\ = (1/V2)/ /m a x . For 
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the low-pass filter, //max = \H(jO)\, as seen in Fig. 14.5.Thus,for the circuit 
in Fig. 14.4(a), 

\H(M\ 
1 

111 = 
R/L 

V5 Vo>(
2 + (R/L)2 

Solving Eq. 14.11 for a)c, we get 

R 

L 

(14.11) 

(14.12) ^ Cutoff frequency for RL filters 

Equation 14.12 provides an important result. The cutoff frequency, <oc, 
can be set to any desired value by appropriately selecting values for R and 
L. We can therefore design a low-pass filter with whatever cutoff frequency 
is needed. Example 14.1 demonstrates the design potential of Eq. 14.12. 

Example 14.1 Designing a Low-Pass Filter 

Electrocardiology is the study of the electric signals 
produced by the heart. These signals maintain the 
heart's rhythmic beat, and they are measured by an 
instrument called an electrocardiograph. This instru
ment must be capable of detecting periodic signals 
whose frequency is about 1 Hz (the normal heart 
rate is 72 beats per minute). The instrument must 
operate in the presence of sinusoidal noise consisting 
of signals from the surrounding electrical environ
ment, whose fundamental frequency is 60 Hz—the 
frequency at which electric power is supplied. 

Choose values for R and L in the circuit of 
Fig. 14.4(a) such that the resulting circuit could be 
used in an electrocardiograph to filter out any 
noise above 10 Hz and pass the electric signals 
from the heart at or near 1 Hz. Then compute the 
magnitude of V0 at 1 Hz, 10 Hz, and 60 Hz to see 
how well the filter performs. 

Solution 

The problem is to select values for R and L that 
yield a low-pass filter with a cutoff frequency of 
10 Hz. From Eq. 14.12, we see that R and L cannot 
be specified independently to generate a value for 
a)c. Therefore, let's choose a commonly available 
value of L, 100 mH. Before we use Eq. 14.12 to 
compute the value of R needed to obtain the 
desired cutoff frequency, we need to convert the 
cutoff frequency from hertz to radians per second: 

wc = 2TT(10) = 20TT rad/s. 

Now, solve for the value of R which, together with 
L = 100 mH, will yield a low-pass filter with a cut
off frequency of 10 Hz: 

R = cocL 

= (20TT)(100 X 10-3) 

= 6.28 H. 

We can compute the magnitude of V0 using the 
equation \V0\ = \H(j*>)\' \V&: 

\K(<o)\ 
R/L 

Veer + (R/L)2 

20TT 

V a r + 400TT2 

Table 14.1 summarizes the computed magnitude 
values for the frequencies 1 Hz, 10 Hz, and 60 Hz. 
As expected, the input and output voltages have the 
same magnitudes at the low frequency, because the 
circuit is a low-pass filter. At the cutoff frequency, 
the output voltage magnitude has been reduced by 
1/V2~ from the unity passband magnitude. At 
60 Hz, the output voltage magnitude has been 
reduced by a factor of about 6, achieving the 
desired attenuation of the noise that could corrupt 
the signal the electrocardiograph is designed to 
measure.v 

TABLE 14.1 Input and Output Voltage Magnitudes 
for Several Frequencies 

f(Hz) 

1 

10 

60 

\V,\(V) 

1.0 

1.0 

1.0 

\Vo\(V) 

0.995 

0.707 

0.164 
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Figure 14.7 A A series RC low-pass filter. 

A Series RC Circuit 

The series RC circuit shown in Fig. 14.7 also behaves as a low-pass filter. 
We can verify this via the same qualitative analysis we used previously. In 
fact, such a qualitative examination is an important problem-solving step 
that you should get in the habit of performing when analyzing filters. Doing 
so will enable you to predict the filtering characteristics (low pass, high 
pass, etc.) and thus also predict the general form of the transfer function. If 
the calculated transfer function matches the qualitatively predicted form, 
you have an important accuracy check. 

Note that the circuit's output is defined as the output across the 
capacitor. As we did in the previous qualitative analysis, we use three 
frequency regions to develop the behavior of the series RC circuit in 
Fig. 14.7: 

1. Zero frequency (oo = 0): The impedance of the capacitor is infinite, 
and the capacitor acts as an open circuit. The input and output volt
ages are thus the same. 

2. Frequencies increasing from zero: The impedance of the capacitor 
decreases relative to the impedance of the resistor, and the source 
voltage divides between the resistive impedance and the capaci-
tive impedance. The output voltage is thus smaller than the source 
voltage. 

3. Infinite frequency (to = oo): The impedance of the capacitor is 
zero, and the capacitor acts as a short circuit. The output voltage 
is thus zero. 

Based on this analysis of how the output voltage changes as a function of 
frequency, the series RC circuit functions as a low-pass filter. Example 14.2 
explores this circuit quantitatively. 

Example 14.2 Designing a Series RC Low-Pass Filter 

For the series RC circuit in Fig. 14.7: 

a) Find the transfer function between the source 
voltage and the output voltage. 

b) Determine an equation for the cutoff frequency 
in the series RC circuit. 

c) Choose values for R and C that will yield a low-
pass filter with a cutoff frequency of 3 kHz. 

Solution 

a) To derive an expression for the transfer function, 
we first construct the s-domain equivalent of the 
circuit in Fig. 14.7, as shown in Fig. 14.8. 

Using .v-domain voltage division on the 
equivalent circuit, we find 

s + 
1 

RC 

Now, substitute s = jco and compute the magni
tude of the resulting complex expression: 

1 

\H(jco)\ -
1 / 

RC, 

Figure 14.8 • The s-domain equivalent for the circuit 
in Fig. 14.7. 

b) At the cutoff frequency wc, \H(ja>)\ is equal 
to ( l /V2)/7 m a x . For a low-pass filter, 
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#max = HUty-> a n d f° r t n e circuit in Fig. 14.8, 
/ / ( /0) = 1. We can then describe the relation
ship among the quantities R, C, and <oc: 

\H{J«>c)\ = ^ ( D a 

1 

RC 

(of, + 
RC 

Solving this equation for G>C, we get 

1 
c RC 

• Cutoff frequency of RC filters 

c) From the results in (b), we see that the cutoff fre
quency is determined by the values of R and C. 
Because R and C cannot be computed independ
ently, let's choose C = X (JLF. Given a choice, we 
will usually specify a value for C first, rather than 
for R or L, because the number of available 
capacitor values is much smaller than the num
ber of resistor or inductor values. Remember 
that we have to convert the specified cutoff fre
quency from 3 kHz to (2-77-)(3) krad/s: 

R = 
1 

oirC 

\ 

(2<n-)(3 X 103)(1 X 10-6) 
53.05 ft. 

Figure 14.9 summarizes the two low-pass filter circuits we have examined. 
Look carefully at the transfer functions. Notice how similar in form they 
are—they differ only in the terms that specify the cutoff frequency. In fact, 
we can state a general form for the transfer functions of these two low-
pass filters: 

H(s) = 
s + a), 

(14.13) -4 Transfer function for a low-pass filter 

Any circuit with the voltage ratio in Eq. 14.13 would behave as a low-pass 
filter with a cutoff frequency of o)c. The problems at the end of the chapter 
give you other examples of circuits with this voltage ratio. 

Relating the Frequency Domain to the Time Domain 
Finally, you might have noticed one other important relationship. 
Remember our discussion of the natural responses of the first-order RL 
and RC circuits in Chapter 6. An important parameter for these circuits is 
the time constant, r, which characterizes the shape of the time response. 
For the RL circuit, the time constant has the value L/R (Eq. 7.14); for the 
RC circuit, the time constant is RC (Eq.7.24). Compare the time constants 
to the cutoff frequencies for these circuits and notice that 

l/(Oc. (14.14) 

This result is a direct consequence of the relationship between the 
time response of a circuit and its frequency response, as revealed by the 
Laplace transform. The discussion of memory and weighting as repre
sented in the convolution integral of Section 13.6 shows that as coc—* oo, 
the filter has no memory, and the output approaches a scaled replica of the 
input; that is, no filtering has occurred. As <oc —> 0, the filter has increased 
memory and the output voltage is a distortion of the input, because filter
ing has occurred. 

« M - R/L 

<oc=R/L 

H(s) 
I IRC 

s + 1/RC 

cov= l/RC 

Figure 14.9 A Two low-pass filters, the series RL and 
the series RC, together with their transfer functions and 
cutoff frequencies. 
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I /ASSESSMENT PROBLEMS 

Objective 1—Know the RL and RC circuit configurations that act as low-pass filters 

14.1 A series RC low-pass filter requires a cutoff 
frequency of 8 kHz. Use R = 10 kfl and com
pute the value of C required. 

Answer: 1.99 nF. 

NOTE: Also try ChapterProblems 14.1 and 14.2. 

14.2 A series RL low-pass filter with a cutoff fre
quency of 2 kHz is needed. Using R = 5 kft, 
compute (a) L; (b) \H(joi)\ at 50 kHz; and 
(c) 8(ja>) at 50 kHz. 

Answer: (a) 0.40 H; 

(b) 0.04; 

(c) -87.71°. 

14.3 High-Pass Filters 
We next examine two circuits that function as high-pass filters. Once 
again, they are the series RL circuit and the series RC circuit. We will see 
that the same series circuit can act as either a low-pass or a high-pass filter, 
depending on where the output voltage is defined. We will also determine 
the relationship between the component values and the cutoff frequency 
of these filters. 

C 

R \ o. 

(c) 

Figure 14.10 • (a) A series RC high-pass filter; (b) the 
equivalent circuit at co = 0; and (c) the equivalent 
circuit at a) = oo. 

The Series RC Circuit—Qualitative Analysis 

A series RC circuit is shown in Fig. 14.10(a). In contrast to its low-pass 
counterpart in Fig. 14.7, the output voltage here is defined across the resis
tor, not the capacitor. Because of this, the effect of the changing capacitive 
impedance is different than it was in the low-pass configuration. 

At co = 0, the capacitor behaves like an open circuit, so there is no 
current flowing in the resistor. This is illustrated in the equivalent circuit in 
Fig. 14.10(b). In this circuit, there is no voltage across the resistor, and the 
circuit filters out the low-frequency source voltage before it reaches the 
circuit's output. 

As the frequency of the voltage source increases, the impedance of 
the capacitor decreases relative to the impedance of the resistor, and the 
source voltage is now divided between the capacitor and the resistor. The 
output voltage magnitude thus begins to increase. 

When the frequency of the source is infinite (oo = oo), the capacitor 
behaves as a short circuit, and thus there is no voltage across the capacitor. 
This is illustrated in the equivalent circuit in Fig. 14.10(c). In this circuit, 
the input voltage and output voltage are the same. 

The phase angle difference between the source and output voltages 
also varies as the frequency of the source changes. For oo = co, the output 
voltage is the same as the input voltage, so the phase angle difference is 
zero. As the frequency of the source decreases and the impedance of the 
capacitor increases, a phase shift is introduced between the voltage and 
the current in the capacitor. This creates a phase difference between the 
source and output voltages. The phase angle of the output voltage leads 
that of the source voltage. When oo = 0, this phase angle difference 
reaches its maximum of +90°. 
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Based on our qualitative analysis, we see that when the output is 
defined as the voltage across the resistor, the series RC circuit behaves as 
a high-pass filter. The components and connections are identical to the 
low-pass series RC circuit, but the choice of output is different. Thus, we 
have confirmed the earlier observation that the filtering characteristics of 
a circuit depend on the definition of the output as well as on circuit com
ponents, values, and connections. 

Figure 14.11 shows the frequency response plot for the series RC 
high-pass filter. For reference, the dashed lines indicate the magnitude 
plot for an ideal high-pass filter. We now turn to a quantitative analysis of 
this same circuit. 

The Series RC Circuit—Quantitative Analysis 

To begin, we construct the ^-domain equivalent of the circuit in 
Fig. 14.10(a). This equivalent is shown in Fig. 14.12. Applying s-domain 
voltage division to the circuit, we write the transfer function: 

H(s) 

l«0)| 

s + IjRC 

Making the substitution s = j(o results in 

Figure 14.11 • The frequency response plot for the 
series RC circuit in Fig. 14.10(a). 

H(jo>) = )<» 
jo) + 1/RC 

(14.15) 

Next, we separate Eq. 14.15 into two equations. The first is the equation 
describing the magnitude of the transfer function; the second is the equa
tion describing the phase angle of the transfer function: 

\H(jco)\ = co 

Vcv2 + ( l / i?C)2 ' 

6(jco) = 90° - tan ~lcvRC. 

(14.16) 

(14.17) 

A close look at Eqs. 14.16 and 14.17 confirms the shape of the frequency 
response plot in Fig. 14.11. Using Eq. 14.16, we can calculate the cutoff fre
quency for the series RC high-pass filter. Recall that at the cutoff frequency, 
the magnitude of the transfer function is (1/V2)/ /m a x . For a high-pass filter, 
#max = l#(yw)|w=oo = \H(joo)\, as seen from Fig. 14.11. We can construct 
an equation for (oc by setting the left-hand side of Eq. 14.16 to 
(l/y/2)\H(joo)\, noting that for this series RC circuit, \H(joo)\ = 1: 

J_ 
sC 

Vi(s) 

+ 

Figure 14.12 A The s-domain equivalent of the circuit 
in Fig. 14.10(a). 

1 co, 

V2 Vco? + (l/RC)2 (14.18) 

Solving Eq. 14.18 for o)c, we get 

1 

RC 
(14.19) 

Equation 14.19 presents a familiar result. The cutoff frequency for the 
series RC circuit has the value l/RC, whether the circuit is configured as a 
low-pass filter in Fig. 14.7 or as a high-pass filter in Fig. 14.10(a). This is 
perhaps not a surprising result, as we have already discovered a connec
tion between the cutoff frequency, coc, and the time constant, T, of a circuit. 

Example 14.3 analyzes a series RL circuit, this time configured as a 
high-pass filter. Example 14.4 examines the effect of adding a load resistor 
in parallel with the inductor. 
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Example 14.3 Designing a Series RL High-Pass Filter 

Show that the series RL circuit in Fig. 14.13 also 
acts like a high-pass filter: 

a) Derive an expression for the circuit's transfer 
function. 

b) Use the result from (a) to determine an equation 
for the cutoff frequency in the series RL circuit. 

c) Choose values for R and L that will yield a high-
pass filter with a cutoff frequency of 15 kHz. 

Figure 14.14 • The s-domain equivalent of the circuit in 
Fig. 14.13. 

Figure 14.13 • The circuit for Example 14.3. 

Solution 

a) Begin by constructing the .v-domain equivalent 
of the series RL circuit, as shown in Fig. 14.14. 
Then use .v-domain voltage division on the equiv
alent circuit to construct the transfer function: 

H(s) = 
s + R/L 

Making the substitution s = ja>, we get 

H(jco) = 
jco + R/L' 

Notice that this equation has the same form as 
Eq. 14.15 for the series RC high-pass filter. 

b) To find an equation for the cutoff frequency, first 
compute the magnitude of H(jco): 

|//{/a,)| = 
CO 

V o r + (R/L)2 

Then, as before, we set the left-hand side of this 
equation to ( l /V2)/ / m a x , based on the defini
tion of the cutoff frequency coc. Remember that 
#max ~ IHQ00 )1 f ° r a high-pass filter, and for 
the series RL circuit, |//(j'oo)| = 1. We solve the 
resulting equation for the cutoff frequency: 

1 
V2 Vto; + (R/L)2 ' 

co, = 
R 

L 

This is the same cutoff frequency we computed 
for the series RL low-pass filter. 

c) Using the equation for coc computed in (b), we 
recognize that it is not possible to specify values 
for R and L independently. Therefore, let's arbi
trarily select a value of 500 O for JR. Remember 
to convert the cutoff frequency to radians per 
second: 

L 
R_ 

CO,. 

500 
(2TT)(15,000) 

5.31 mH. 

Example 14.4 Loading the Series RL High-Pass Filter 

Examine the effect of placing a load resistor in par
allel with the inductor in the RL high-pass filter 
shown in Fig. 14.15: 

a) Determine the transfer function for the circuit in 
Fig. 14.15. 

b) Sketch the magnitude plot for the loaded RL 
high-pass filter, using the values for R and L 
from the circuit in Example 14.3(c) and letting 
RL = R. On the same graph, sketch the magni
tude plot for the unloaded RL high-pass filter of 
Example 14.3(c). 

Solution 

a) Begin by transforming the circuit in Fig. 14.15 to 
the i-domain, as shown in Fig. 14.16. Use voltage 
division across the parallel combination of 
inductor and load resistor to compute the trans
fer function: 

H(s) 

RLsL 

RL + sL 

R, 

R + RL Ks 

R + 
RLsL 

Rr + sL 
s + 

RL \R s + tot 

R + RrjL 



143 High-Pass Filters 535 

where 

K = 
i?i 

R + RL' 
u>c = KR/L. 

Note that a)c is the cutoff frequency of the 
loaded filter. 

b) For the unloaded RL high-pass filter from 
Example 14.3(c), the passband magnitude is 1, 
and the cutoff frequency is 15 kHz. For the 
loaded RL high-pass filter, R = RL = 500 H, so 
K - 1/2. Thus, for the loaded filter, the passband 
magnitude is (1)(1/2) = 1/2, and the cutoff fre
quency is (15,000)(1/2) = 7.5 kHz. A sketch of 
the magnitude plots of the loaded and unloaded 
circuits is shown in Fig. 14.17. 

RL 

Figure 14.15 A The circuit for Example 14.4. 

Vfa) 

Figure 14.16 • The 5-domain equivalent of the circuit in 
Fig. 14.15. 

0 £.10 /;. 20 30 40 50 

Frequency (kHz) 

Figure 14.17 • The magnitude plots for the unloaded 
RL high-pass filter of Fig 14.13 and the loaded RL high-pass filter 
of Fig. 14.15. 

Comparing the transfer functions of the unloaded filter in Example 14.3 
and the loaded filter in Example 14.4 is useful at this point. Both transfer 
functions are in the form: 

H(s) = 
Ks 

s + K{R/LY 

with K = 1 for the unloaded filter and K = RL/(R + RL) for the loaded 
filter. Note that the value of K for the loaded circuit reduces to the value 
of K for the unloaded circuit when RL = oo; that is, when there is no load 
resistor. The cutoff frequencies for both filters can be seen directly from 
their transfer functions. In both cases, coc = K(R/L), where K = 1 for the 
unloaded circuit, and K = RJ{R + RfJ for the loaded circuit. Again, the 
cutoff frequency for the loaded circuit reduces to that of the unloaded cir
cuit when RL = oo. Because RL/(R + RL) < h the effect of the load 
resistor is to reduce the passband magnitude by the factor K and to lower 
the cutoff frequency by the same factor. We predicted these results at the 
beginning of this chapter. The largest output amplitude a passive high-pass 
filter can achieve is 1, and placing a load across the filter, as we did in 
Example 14.4, has served to decrease the amplitude. When we need to 
amplify signals in the passband, we must turn to active filters, such as those 
discussed in Chapter 15. 

The effect of a load on a filter's transfer function poses another 
dilemma in circuit design. We typically begin with a transfer function spec
ification and then design a filter to produce that function. We may or may 
not know what the load on the filter will be, but in any event, we usually 
want the filter's transfer function to remain the same regardless of the 
load on it. This desired behavior cannot be achieved with the passive fil
ters presented in this chapter. 

ff(s) 

H(s) s 
s + R/L 

R/L 

Figure 14.18 • Two high-pass filters, the series RC and 
the series RL, together with their transfer functions and 
cutoff frequencies. 
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Figure 14.18 summarizes the high-pass filter circuits we have exam
ined. Look carefully at the expressions for H(s). Notice how similar in form 
these expressions are—they differ only in the denominator, which includes 
the cutoff frequency. As we did with the low-pass filters in Eq. 14.13, we 
state a general form for the transfer function of these two high-pass filters: 

Transfer function for a high-pass filter • H(s) = . (14.20) 

Any circuit with the transfer function in Eq. 14.20 would behave as a high-
pass filter with a cutoff frequency of wc. The problems at the end of the 
chapter give you other examples of circuits with this voltage ratio. 

We have drawn attention to another important relationship. We have 
discovered that a series RC circuit has the same cutoff frequency whether 
it is configured as a low-pass filter or as a high-pass filter. The same is true 
of a series RL circuit. Having previously noted the connection between 
the cutoff frequency of a filter circuit and the time constant of that same 
circuit, we should expect the cutoff frequency to be a characteristic param
eter of the circuit whose value depends only on the circuit components, 
their values, and the way they are connected. 

/ A S S E S S M E N T PROBLEMS 

Objective 2—Know the RL and RC circuit configurations that act as high-pass filters 

14.3 A series RL high-pass filter has R = 5 kfl and 14.5 Compute the transfer function of a series RC 
L = 3.5 mH. What is (oc for this filter? low-pass filter that has a load resistor RL in 

Answer: 1.43 Mrad/s. parallel with its capacitor. 

14.4 A series RC high-pass filter has C = 1 /xF. 
Compute the cutoff frequency for the following 
values of R: (a) 100 H; (b) 5 kH; and (c) 30 kO. 1 

Answer: (a)10krad/s; ~RC RL 

Answer: H{s) = — , where K = (b)200rad/s; * w 1 ' R + RL 

(c) 33.33 rad/s. S + KRC 

NOTE: Also try ChapterProblems 14.13 and 14.14. 

14.4 Bandpass Filters 
The next filters we examine are those that pass voltages within a band of 
frequencies to the output while filtering out voltages at frequencies out
side this band. These filters are somewhat more complicated than the low-
pass and high-pass filters of the previous sections. As we have already seen 
in Fig. 14.3(c), ideal bandpass filters have two cutoff frequencies, coc\ and 
(x)c2, which identify the passband. For realistic bandpass filters, these cutoff 
frequencies are again defined as the frequencies for which the magnitude 
of the transfer function equals (l/V2)Hmax. 

Center Frequency, Bandwidth, and Quality Factor 
There are three other important parameters that characterize a bandpass 
filter. The first is the center frequency, o)m defined as the frequency for 
which a circuit's transfer function is purely real. Another name for the center 



14.4 BandPass Filters 537 

frequency is the resonant frequency. This is the same name given to the fre
quency that characterizes the natural response of the second-order circuits 
in Chapter 8, because they are the same frequencies! When a circuit is 
driven at the resonant frequency, we say that the circuit is in resonance, 
because the frequency of the forcing function is the same as the natural fre
quency of the circuit. The center frequency is the geometric center of the 
passband, that is, oo() = Vwcla)c2. For bandpass filters, the magnitude of the 
transfer function is a maximum at the center frequency (Hnmx = \H(ja>0)\). 

The second parameter is the bandwidth, /3, which is the width of the pass-
band. The final parameter is the quality factor, which is the ratio of the center 
frequency to the bandwidth. The quality factor gives a measure of the width of 
the passband, independent of its location on the frequency axis. It also 
describes the shape of the magnitude plot, independent of frequency. 

Although there are five different parameters that characterize the 
bandpass filter—wcl, <oc2, co0, /3, and Q—only two of the five can be speci
fied independently. In other words, once we are able to solve for any two 
of these parameters, the other three can be calculated from the dependent 
relationships among them. We will define these quantities more specifi
cally once we have analyzed a bandpass filter. In the next section, we 
examine two RLC circuits which act as bandpass filters, and then we 
derive expressions for all of their characteristic parameters. 

The Series RLC Circuit—Qualitative Analysis 
Figure 14.19(a) depicts a series RLC circuit. We want to consider the 
effect of changing the source frequency on the magnitude of the output 
voltage. As before, changes to the source frequency result in changes to 
the impedance of the capacitor and the inductor. This time, the qualitative 
analysis is somewhat more complicated, because the circuit has both an 
inductor and a capacitor. 

At <o = 0, the capacitor behaves like an open circuit, and the inductor 
behaves like a short circuit. The equivalent circuit is shown in Fig. 14.19(b). 
The open circuit representing the impedance of the capacitor prevents cur
rent from reaching the resistor, and the resulting output voltage is zero. 

At to = oo, the capacitor behaves like a short circuit, and the induc
tor behaves like an open circuit. The equivalent circuit is shown in 
Fig. 14.19(c). The inductor now prevents current from reaching the resis
tor, and again the output voltage is zero. 

But what happens in the frequency region between to - 0 and 
to = oo? Between these two extremes, both the capacitor and the inductor 
have finite impedances. In this region, voltage supplied by the source will 
drop across both the inductor and the capacitor, but some voltage will 
reach the resistor. Remember that the impedance of the capacitor is nega
tive, whereas the impedance of the inductor is positive. Thus, at some fre
quency, the impedance of the capacitor and the impedance of the inductor 
have equal magnitudes and opposite signs; the two impedances cancel out, 
causing the output voltage to equal the source voltage. This special fre
quency is the center frequency, a>0. On either side of wr„ the output voltage 
is less than the source voltage. Note that at to0, the series combination of 
the inductor and capacitor appears as a short circuit. 

The plot of the voltage magnitude ratio is shown in Fig. 14.20. Note 
that the ideal bandpass filter magnitude plot is overlaid on the plot of the 
series RLC transfer function magnitude. 

Now consider what happens to the phase angle of the output voltage. 
At the frequency where the source and output voltage are the same, the 
phase angles are the same. As the frequency decreases, the phase angle 
contribution from the capacitor is larger than that from the inductor. 

(a) 

C 
-o o-

+ 

Rk'-o 

(b) 

(c) 

Figure 14.19 A (a) A series RLC bandpass filter; (b) the 
equivalent circuit for to = 0; and (c) the equivalent 
circuit for w = oo. 

\t*iju)\ 

1.0 
1 

42 

0 
O(jco) 

90° 

-90° 

"" I7T\1 

7\ i rv 
/ 1 1 / 3 1 ^ - ^ ^ ^ 

/ M I 
cocl ioa (oc2 CO 

CO 

Figure 14.20 A The frequency response plot for the 
series RLC bandpass filter circuit in Fig. 14.19. 
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R\VM 

Figure 14.21 • The s-domain equivalent for the circuit 
in Fig. 14.19(a). 

Because the capacitor contributes positive phase shift, the net phase angle 
at the output is positive. At very low frequencies, the phase angle at the 
output maximizes at +90°. 

Conversely, if the frequency increases from the frequency at which the 
source and the output voltage are in phase, the phase angle contribution 
from the inductor is larger than that from the capacitor. The inductor con
tributes negative phase shift, so the net phase angle at the output is nega
tive. At very high frequencies, the phase angle at the output reaches its 
negative maximum of -90°. The plot of the phase angle difference thus 
has the shape shown in Fig. 14.20. 

The Series RLC Circuit—Quantitative Analysis 

We begin by drawing the .s-domain equivalent for the series RLC circuit, 
as shown in Fig. 14.21. Use ̂ --domain voltage division to write an equation 
for the transfer function: 

H(s) = 
(R/L)s 

s2 + (R/L)s + (1/LC) 
(14.21) 

As before, we substitute s = jta into Eq. 14.21 and produce the equations 
for the magnitude and the phase angle of the transfer function: 

\H(ja>)\ = 
o)(R/L) 

V[(1/LC) - a>2]2 + [a>(R/L)f 

co(R/L) 
0{ja)) = 90° - tan _ 1 

_(1/LC) - to2_ 

(14.22) 

(14.23) 

We now calculate the five parameters that characterize this RLC band
pass filter. Recall that the center frequency, <u„, is defined as the frequency 
for which the circuit's transfer function is purely real. The transfer func
tion for the RLC circuit in Fig. 14.19(a) will be real when the frequency of 
the voltage source makes the sum of the capacitor and inductor imped
ances zero: 

jcoaL + —-
jo)aC 

= 0. (14.24) 

Solving Eq. 14.24 for co(), we get 

Center frequency • 
LC 

(14.25) 

Next, calculate the cutoff frequencies, tocl and (oc2. Remember that at the 
cutoff frequencies, the magnitude of the transfer function is (1/V2)//m a x . 
Because Hmax = \H(ja)())\, we can calculate Hmax by substituting Eq. 14.25 
into Eq. 14.22: 

#niax = \H(j(Da)\ 

co0(R/L) 

V[(l/LC)-c4]2 + (Wo/?/L)2 

VWLQWL) 
= 1. 

[(\/LC)-(l/LC)Y + V(1/LC)(R/L) 



Now set the left-hand side of Eq. 14.22 to ( l /V2)/ / r a a x (which equals 
1/V2) and prepare to solve for a)c: 
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_ 1 _ = #/1) 

V 2 " V[a/LC)-^]2 + (cocR/L)2 

V[(wcL/R) - (l/a)cRC)}2 + 1 
(14.26) 

We can equate the denominators of the two sides of Eq. 14.26 to get 

±1 = (oc~ ~ 
1 

R cocRC 

Rearranging Eq. 14.27 results in the following quadratic equation: 

a)2
cL ± o)cR - 1/C = 0. 

(14.27) 

(14.28) 

The solution of Eq. 14.28 yields four values for the cutoff frequency. Only 
two of these values are positive and have physical significance; they iden
tify the passband of this filter: 

*. = -£ + 1L) 

2 ( 1 
+ LC r 

Q)c2 

2L + —Y (— 
2LJ h \LC 

(14.29) 

(14.30) 

< Cutoff frequencies, series RLC filters 

We can use Eqs. 14.29 and 14.30 to confirm that the center frequency, <o0, 
is the geometric mean of the two cutoff frequencies: 

co0 = Vo)cl' (oc2 

_R_ 
~2L + 2L + 

1 

LC 

_R_ 
2L + 

1 

\2LJ + \ 

-< Relationship between center frequency 
and cutoff frequencies 

(14.31) 

Recall that the bandwidth of a bandpass filter is defined as the differ
ence between the two cutoff frequencies. Because o)c2 > o>c\ we can com
pute the bandwidth by subtracting Eq. 14.29 from Eq. 14.30: 

(3 = o)c2 - at, <rl 

_R_ 

2L + 
JR_ 
2L + LC 2L 

* Y, a. 
2LJ + LC 

-4 Relationship between bandwidth and 
cutoff frequencies 

(14.32) 
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The quality factor, the last of the five characteristic parameters, is defined 
as the ratio of center frequency to bandwidth. Using Eqs. 14.25 and 14.32: 

Quality factor • Q = «>o/P 

me) 
(R/L) 

CR2 (14.33) 

We now have five parameters that characterize the series RLC band
pass filter: two cutoff frequencies, o>cl and oicl, which delimit the passband; 
the center frequency, co0, at which the magnitude of the transfer function is 
maximum; the bandwidth, /3, a measure of the width of the passband; and 
the quality factor, Q, a second measure of passband width. As previously 
noted, only two of these parameters can be specified independently in a 
design. We have already observed that the quality factor is specified in 
terms of the center frequency and the bandwidth. We can also rewrite the 
equations for the cutoff frequencies in terms of the center frequency and 
the bandwidth: 

6>cl = 
/3 

+ + co: (14.34) 

«c2 + + oi (14.35) 

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency: 

0)cl - Oi() ' 

(Oc2 = 0)o' 

1 
. - 2Q + 

h+v 

Mil 
'•<m 

(14.36) 

(14.37) 

Also see Problem 14.17 at the end of the chapter. 
The examples that follow illustrate the design of bandpass filters, 

introduce another RLC circuit that behaves as a bandpass filter, and 
examine the effects of source resistance on the characteristic parameters 
of a series RLC bandpass filter. 

Example 14.5 Designing a Bandpass Filter 

A graphic equalizer is an audio amplifier that 
allows you to select different levels of amplification 
within different frequency regions. Using the series 
RLC circuit in Fig. 14.19(a), choose values for R, L, 
and C that yield a bandpass circuit able to select 
inputs within the 1-10 kHz frequency band. Such a 
circuit might be used in a graphic equalizer to select 
this frequency band from the larger audio band 
(generally 0-20 kHz) prior to amplification. 

Solution 

We need to compute values for R, L, and C that pro
duce a bandpass filter with cutoff frequencies of 
1 kHz and 10 kHz. There are many possible 
approaches to a solution. For instance, we could use 
Eqs. 14.29 and 14.30, which specify (oci and coc2 in 
terms of R, L, and C. Because of the form of these 
equations, the algebraic manipulations might get 



14.4 Bandpass Filters 541 

complicated. Instead, we will use the fact that the 
center frequency is the geometric mean of the cutoff 
frequencies to compute (o0, and we will then use 
Eq. 14.31 to compute L and Cfrom co0. Next we will 
use the definition of quality factor to compute Q, 
and last we will use Eq. 14.33 to compute R. Even 
though this approach involves more individual com
putational steps, each calculation is fairly simple. 

Any approach we choose will provide only two 
equations—insufficient to solve for the three 
unknowns—because of the dependencies among the 
bandpass filter characteristics. Thus, we need to select 
a value for either R, L, or C and use the two equations 
we've chosen to calculate the remaining component 
values. Here, we choose 1 /xF as the capacitor value, 
because there are stricter limitations on commercially 
available capacitors than on inductors or resistors. 

We compute the center frequency as the geo
metric mean of the cutoff frequencies: 

fo = vT^fo = V(1000)(10,000) = 3162.28 Hz. 

Next, compute the value of L using the com
puted center frequency and the selected value for C. 
We must remember to convert the center frequency 
to radians per second before we can use Eq. 14.31: 

L = 
1 1 

a?0C [27r(3162.28)]2(l(T6) 
2.533 mH. 

The quality factor, Q, is defined as the ratio of 
the center frequency to the bandwidth. The band
width is the difference between the two cutoff fre
quency values. Thus, 

fo 3162.28 
Q fa ~ fd 10,000 - 1000 

Now use Eq. 14.33 to calculate R: 

0.3514. 

R = 
0.0025 

= 143.2411. 
CQ2 V (10"6)(0.3514)2 

To check whether these component values pro
duce the bandpass filter we want, substitute them 
into Eqs. 14.29 and 14.30. We find that 

cocl = 6283.19 rad/s (1000 Hz), 

a)c2 = 62,831.85 rad/s (10,000 Hz), 

which are the cutoff frequencies specified for 
the filter. 

This example reminds us that only two of the 
five bandpass filter parameters can be specified 
independently. The other three parameters can 
always be computed from the two that are speci
fied. In turn, these five parameter values depend on 
the three component values, R, L, and C, of which 
only two can be specified independently. 

Example 14.6 Designing a Parallel RLC Bandpass Filter 

a) Show that the RLC circuit in Fig. 14.22 is also a 
bandpass filter by deriving an expression for the 
transfer function H(s). 

b) Compute the center frequency, co0. 
c) Calculate the cutoff frequencies, wcl and o>c2, the 

bandwidth, /3, and the quality factor, Q. 
d) Compute values for R and L to yield a bandpass 

filter with a center frequency of 5 kHz and a 
bandwidth of 200 Hz, using a 5 /x¥ capacitor. 

c: 
+ 

L<v0 

Figure 14.22 • The circuit for Example 14.6. 

Solution 

a) Begin by drawing the i-domain equivalent of 
the circuit in Fig. 14.22, as shown in Fig. 14.23. 
Using voltage division, we can compute the 
transfer function for the equivalent circuit if we 

first compute the equivalent impedance of the 
parallel combination of L and C, identified as 
Zeq(s) in Fig. 14.23: 

ZeqC?) 

L 

C 

Now, 

H{s) 

sL + 

s 
R~C 

sC 

-, s 1 
S H -I 

RC LC 

ZcJs) 

Vfc) i/vc: 
+ 

sLl V0(s) 

Figure 14.23 • The 5-domain equivalent of the circuit in 
Fig. 14.22. 
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b) To find the center frequency,, we need to calcu
late where the transfer function magnitude is 
maximum. Substituting s = jco in H(s), 

1//(/0))1 u-
CO 

~RC 

- J)" + 
1 

f <» v 
KRCj 

1 + coRC -

The magnitude of this transfer function is maxi
mum when the term 

is zero. Thus, 

\LC 

co„ = 

CO' 

and 

//max = | / / (M,) | = 1. 

c) At the cutoff frequencies, the magnitude of the 
transfer function is ( l /V2) / / m a x = 1/V2. Sub
stituting this constant on the left-hand side of the 
magnitude equation and then simplifying, we get 

co,.RC -
1 

CO,. 
R 

= ±1 . 

Squaring the left-hand side of this equation once 
again produces two quadratic equations for the 
cutoff frequencies, with four solutions. Only two 
of them are positive and therefore have physical 
significance: 

1 
covl = 

<»c2 

2RC 

+ 

+ 
1 

2RC + 
1 

2RC 
l Y _L 

IRC) + LC 

We compute the bandwidth from the cut
off frequencies: 

(3 = coc2 - OJCI 

1 

~ RC 

Finally, use the definition of quality factor to 
calculate Q: 

Q = "J? 

R2C 

Notice that once again we can specify the cutoff 
frequencies for this bandpass filter in terms of 
its center frequency and bandwidth: 

wd="f+V (f) 
2 

0Y + co:, 

d) Use the equation for bandwidth in (c) to com
pute a value for /?, given a capacitance of 5 /xF. 
Remember to convert the bandwidth to the 
appropriate units: 

R = 
1 

PC 

1 

(277)(200)(5 x lO"6) 

= 159.15 n . 

Using the value of capacitance and the equation 
for center frequency in (c), compute the induc
tor value: 

L = 
<C 

1 

[ 2 T T ( 5 0 0 0 ) ] 2 ( 5 X 10 - 6) 

= 202.64 ixH. 

• Cutoff frequencies for parallel RLC filters 

Example 14.7 Determining Effect of a Nonideal Voltage Source on a RLC Bandpass Filter 

For each of the bandpass filters we have constructed, 
we have always assumed an ideal voltage source, that 
is, a voltage source with no series resistance. Even 
though this assumption is often valid, sometimes it is 

not, as in the case where the filter design can be 
achieved only with values of R, L, and C whose equiv
alent impedance has a magnitude close to the actual 
impedance of the voltage source. Examine the effect 
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of assuming a nonzero source resistance, Rh on the 
characteristics of a series RLC bandpass filter. 

a) Determine the transfer function for the circuit in 
Fig. 14.24. 

b) Sketch the magnitude plot for the circuit in 
Fig. 14.24, using the values for /?, L, and C from 
Example 14.5 and setting Rj = R. On the same 
graph, sketch the magnitude plot for the circuit 
in Example 14.5, where /¾ = 0. 

At the center frequency, the maximum magni
tude is 

/-/,- \H(M = 
R 

Ri + R 

The cutoff frequencies can be computed by set
ting the transfer function magnitude equal to 
(l/V2)//max: 

Figure 14.24 • The circuit for Example 14.7. 

Solution 

a) Begin by transforming the circuit in Fig. 14.24 to 
its .y-domain equivalent, as shown in Fig. 14.25. 
Now use voltage division to construct the trans
fer function: 

a»d 2L V I 2L / LC 

R + Rj , (R + Ri\2 , i 

The bandwidth is calculated from the cutoff 
frequencies: 

/3 
R + Rj 

Finally, the quality factor is computed from the 
center frequency and the bandwidth: 

H(s) = 

R 

S> + I ^ \ + L 

Ri sL 1/C 

If 
^5)1 

LC 

+ 

Figure 14.25 • The s-domain equivalent of the circuit in 
Fig. 14.24. 

Substitute s = jco and calculate the transfer 
function magnitude: 

\H(j<o)\ = 

R 
—o) 
L 

w-*) + r L 
R + R;\

2 

The center frequency, w(>, is the frequency at 
which this transfer function magnitude is maxi
mum, which is 

Q 
VL/C 

R + Rf 

From this analysis, note that we can write the 
transfer function of the series RLC bandpass fil
ter with nonzero source resistance as 

H(s) 
Kfis 

s~ + /3s + a)~0 

where 

K = 
R 

R + Ri 

Note that when Rf = 0, K = 1 and the transfer 
function is 

H(s) 
(3s 

s" + (Bs + u)o 

b) The circuit in Example 14.5 has a center fre
quency of 3162.28 Hz and a bandwidth of 9 kHz, 
and HmiXK = 1. If we use the same values for R, 
L, and C in the circuit in Fig. 14.24 and let 
Ri = R, then the center frequency remains at 
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3162.28 kHz, but £ = (/? + R,)/L = 18 kHz, 
and Hmax = R/{R + Rt) = 1/2. The transfer 

[//(/a,)] 
1.0 

function magnitudes for these two bandpass fil
ters are plotted on the same graph in Fig. 14.26. 

Rj = Q 

2500 5000 7500 10000 12500 15000 17500 20000 

Figure 14.26 A The magnitude plots for a series RLC bandpass filter with a zero source 
resistance and a nonzero source resistance. 

/(Hz) 

J_ 
sC 

If-
R\Vo 

(R/L)s 
H(-s)~s2+(R/L)s + l/LC 

a)(, = V\/LC P = R/L 

H(s) 
s/RC 

sz + s/RC+ 1/LC 

(o0 = Vl/LC P = 1/RC 

Figure 14.27 • Two RLC bandpass filters, together with 
equations for the transfer function, center frequency, 
and bandwidth of each. 

Transfer function for RLC bandpass filter • 

If we compare the characteristic parameter values for the filter with 
R,- = 0 to the values for the filter with Rt ¥> 0, we see the following: 

• The center frequencies are the same. 

• The maximum transfer function magnitude for the filter with i?, =£ 0 
is smaller than for the filter with /?, = 0. 

• The bandwidth for the filter with Rt ^ 0 is larger than that for the fil
ter with Rt = 0. Thus, the cutoff frequencies and the quality factors 
for the two circuits are also different. 

The addition of a nonzero source resistance to a series RLC bandpass fil
ter leaves the center frequency unchanged but widens the passband and 
reduces the passband magnitude. 

Here we see the same design challenge we saw with the addition of a 
load resistor to the high-pass filter, that is, we would like to design a band
pass filter that will have the same filtering properties regardless of any 
internal resistance associated with the voltage source. Unfortunately, fil
ters constructed from passive elements have their filtering action altered 
with the addition of source resistance. In Chapter 15, we will discover that 
active filters are insensitive to changes in source resistance and thus are 
better suited to designs in which this is an important issue. 

Figure 14.27 summarizes the two RLC bandpass filters we have stud
ied. Note that the expressions for the circuit transfer functions have the 
same form. As we have done previously, we can create a general form for 
the transfer functions of these two bandpass filters: 

H(s) = 
(Is 

s2 + /3s + of0 

(14.38) 

Any circuit with the transfer function in Eq. 14.38 acts as a bandpass filter 
with a center frequency (o0 and a bandwidth /3. 

In Example 14.7, we saw that the transfer function can also be written 
in the form 

H(s) = 
Kps 

S2 + $S + oil 
(14.39) 

where the values for K and /3 depend on whether the series resistance of 
the voltage source is zero or nonzero. 
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Relating the Frequency Domain to the Time Domain 

We can identify a relationship between the parameters that characterize the 
frequency response of RLC bandpass filters and the parameters that char
acterize the time response of RLC circuits. Consider the series RLC circuit 
in Fig. 14.19(a). In Chapter 8 we discovered that the natural response of this 
circuit is characterized by the neper frequency (a) and the resonant fre
quency ((t)C)). These parameters were expressed in terms of the circuit com
ponents in Eqs. 8.58 and 8.59, which are repeated here for convenience: 

R A, 

a = - rad/s, 

rad/s. 

(14.40) 

(14.41) 

We see that the same parameter co0 is used to characterize both the time 
response and the frequency response. That's why the center frequency is 
also called the resonant frequency. The bandwidth and the neper fre
quency are related by the equation 

/3 = 2a. (14.42) 

Recall that the natural response of a series RLC circuit may be under-
damped, overdamped, or critically damped. The transition from overdamped 
to underdamped occurs when a)l = a2. Consider the relationship between a 
and /3 from Eq. 14.42 and the definition of the quality factor Q. The transi
tion from an overdamped to an underdamped response occurs when 
Q = 1/2. Thus, a circuit whose frequency response contains a sharp peak at 
o)(t, indicating a high Q and a narrow bandwidth, will have an underdamped 
natural response. Conversely, a circuit whose frequency response has a broad 
bandwidth and a low Q will have an overdamped natural response. 

/ A S S E S S M E N T PROBLEMS 

Objective 3—Know the RLC circuit configurations that act as bandpass filters 

14.6 Using the circuit in Fig. 14.19(a), compute the 
values of R and L to give a bandpass filter with 
a center frequency of 12 kHz and a quality fac
tor of 6. Use a 0.1 fxF capacitor. 

Answer: L = 1.76 mH, R = 22.10 H. 

14.7 Using the circuit in Fig. 14.22, compute the val
ues of L and C to give a bandpass filter with a 
center frequency of 2 kHz and a bandwidth of 
500 Hz. Use a 250 Cl resistor. 

Answer: L = 4.97 mH, C = 1.27 /xF. 

NOTE: Also try Chapter Problems 14.22 and 14.23. 

14.8 Recalculate the component values for the cir
cuit in Example 14.6(d) so that the frequency 
response of the resulting circuit is unchanged 
using a 0.2 ^tF capacitor. 

Answer: L = 5.07 mH, R = 3.98 kO. 

14.9 Recalculate the component values for the cir
cuit in Example 14.6(d) so that the quality fac
tor of the resulting circuit is unchanged but the 
center frequency has been moved to 2 kHz. Use 
a 0.2 /xF capacitor. 

Answer: R = 9.95 kft, L = 31.66 mH. 

14.5 Bandreject Filters 
We turn now to the last of the four filter categories—the bandreject filter. 
This filter passes source voltages outside the band between the two cutoff 
frequencies to the output (the passband), and attenuates source voltages 
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R 

,6 <\> 

C 

(c) 

Figure 14.28 • (a) A series RLC bandreject filter. 
(b) The equivalent circuit for 00 = 0. (c) The equivalent 
circuit for co = 00. 

\ff(h*)\ 

90° -

Figure 14.29 • The frequency response plot for the 
series RLC bandreject filter circuit in Fig. 14.28(a). 

before they reach the output at frequencies between the two cutoff fre
quencies (the stopband). Bandpass filters and bandreject filters thus per
form complementary functions in the frequency domain. 

Bandreject filters are characterized by the same parameters as band
pass filters: the two cutoff frequencies, the center frequency, the band
width, and the quality factor. Again, only two of these five parameters can 
be specified independently. 

In the next sections, we examine two circuits that function as band-
reject filters and then compute equations that relate the circuit compo
nent values to the characteristic parameters for each circuit. 

The Series RLC Circuit—Qualitative Analysis 

Figure 14.28(a) shows a series RLC circuit. Although the circuit components 
and connections are identical to those in the series RLC bandpass filter in 
Fig. 14.19(a), the circuit in Fig. 14.28(a) has an important difference: the out
put voltage is now defined across the inductor-capacitor pair. As we saw in 
the case of low- and high-pass filters, the same circuit may perform two dif
ferent filtering functions, depending on the definition of the output voltage. 

We have already noted that at to = 0, the inductor behaves like a 
short circuit and the capacitor behaves like an open circuit, but at 
a) = 00, these roles switch. Figure 14.28(b) presents the equivalent cir
cuit for a) = 0; Fig. 14.28(c) presents the equivalent circuit for to = 00. In 
both equivalent circuits, the output voltage is defined over an effective 
open circuit, and thus the output and input voltages have the same mag
nitude. This series RLC bandreject filter circuit then has two pass-
bands—one below a lower cutoff frequency, and the other above an 
upper cutoff frequency. 

Between these two passbands, both the inductor and the capacitor 
have finite impedances of opposite signs. As the frequency is increased 
from zero, the impedance of the inductor increases and that of the capac
itor decreases. Therefore the phase shift between the input and the out
put approaches —90° as toL approaches 1/OJC. A S soon as coL exceeds 
1/wC, the phase shift jumps to +90° and then approaches zero as to con
tinues to increase. 

At some frequency between the two passbands, the impedances of the 
inductor and capacitor are equal but of opposite sign. At this frequency, 
the series combination of the inductor and capacitor is that of a short cir
cuit, so the magnitude of the output voltage must be zero. This is the cen
ter frequency of this series RLC bandreject filter. 

Figure 14.29 presents a sketch of the frequency response of the series 
RLC bandreject filter from Fig. 14.28(a). Note that the magnitude plot is 
overlaid with that of the ideal bandreject filter from Fig. 14.3(d). Our qual
itative analysis has confirmed the shape of the magnitude and phase angle 
plots. We now turn to a quantitative analysis of the circuit to confirm this 
frequency response and to compute values for the parameters that charac
terize this response. 

^(•v) 

Figure 14.30 • The s-domain equivalent of the circuit 
in Fig. 14.28(a). 

The Series RLC Circuit—Quantitative Analysis 
After transforming to the s-domain, as shown in Fig. 14.30, we use voltage 
division to construct an equation for the transfer function: 

H(s) = 
^Tc 

R + sL + — 
sC 

s2 + 
1 

LC 

•> R l 
(14.43) 



Substitute jco for 5 in Eq. 14.43 and generate equations for the transfer 
function magnitude and the phase angle: 

[H(jm)\ = 
LC 

LC + ?)" 
(14.44) 

6(ja>) = — tan -1 

wR 

L 
(14.45) 

LC 

Note that Eqs. 14.44 and 14.45 confirm the frequency response shape 
pictured in Fig. 14.29, which we developed based on the qualita
tive analysis. 

Wc use the circuit in Fig. 14.30 to calculate the center frequency. For 
the bandreject filter, the center frequency is still defined as the frequency 
for which the sum of the impedances of the capacitor and inductor is zero. 
In the bandpass filter, the magnitude at the center frequency was a maxi
mum, but in the bandreject filter, this magnitude is a minimum. This is 
because in the bandreject filter, the center frequency is not in the pass-
band; rather, it is in the stopband. It is easy to show that the center fre
quency is given by 

V LC (14.46) 

Substituting Eq. 14.46 into Eq. 14.44 shows that \H(jco0)\ = 0. 
The cutoff frequencies, the bandwidth, and the quality factor are 

defined for the bandreject filter in exactly the way they were for the 
bandpass filters. Compute the cutoff frequencies by substituting the 
constant ( l /V2) / / m a x for the left-hand side of Eq. 14.44 and then solv
ing for cocl and wc2- Note that for the bandreject filter, 
#max = 1^(/0)1 = \H(j oo)\, and for the series RLC bandreject filter in 
Fig. 14.28(a), HBUX= l.Thus, 

0>c\ = . -A _, . fJLY 
2L + 2LJ LC 

(14.47) 

R 

^- = 2L + 

R_ 
2L + LC 

(14.48) 

Use the cutoff frequencies to generate an expression for the band
width, jS: 

0 = R/L. (14.49) 

Finally, the center frequency and the bandwidth produce an equation for 
the quality factor, Q: 

Q = 
R2C 

(14.50) 
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Again, we can represent the expressions for the two cutoff frequencies 
in terms of the bandwidth and center frequency, as we did for the band
pass filter: 

cl 2 
(14.51) 

to* - - + + cof (14.52) 

Alternative forms for these equations express the cutoff frequencies in 
terms of the quality factor and the center frequency: 

(0ct 

w c 2 

= t0o' .-¾ + V1 + (¾) 

k + V1 + Qa)\ 

i 

(14.53) 

(14.54) 

Example 14.8 presents the design of a series RLC bandreject filter. 

Example 14.8 Designing a Series RLC Bandreject Filter 

Using the series RLC circuit in Fig. 14.28(a), com
pute the component values that yield a bandreject 
filter with a bandwidth of 250 Hz and a center fre
quency of 750 Hz. Use a 100 nF capacitor. Compute 
values for R, L, a)ch a>c.2, and Q. 

Solution 
We begin by using the definition of quality factor to 
compute its value for this filter: 

Q = <oJ(3 = 3. 

Use Eq. 14.46 to compute L, remembering to con
vert ioa to radians per second: 

colC 

[2TT(750)]2(100 X 10"9) 

= 450 mH. 

Use Eq. 14.49 to calculate R: 

R = (3L 

= 277(250)(450 x 10"3) 

= 707 a 

The values for the center frequency and band
width can be used in Eqs. 14.51 and 14.52 to com
pute the two cutoff frequencies: 

coc] = 
0 

+ f 1 
3992.0 rad/s, 

0)c2 

P 
+ PV + uf 

= 5562.8 rad/s. 

The cutoff frequencies are at 635.3 Hz and 885.3 Hz. 
Their difference is 885.3 - 635.3 = 250 Hz, con
firming the specified bandwidth. The geometric 
mean is V(635.3)(885.3) = 750 Hz, confirming the 
specified center frequency. 



14.5 Bandreject Filters 549 

As you might suspect by now, another configuration that produces a 
bandreject filter is a parallel RLC circuit. Whereas the analysis details of 
the parallel RLC circuit are left to Problem 14.34, the results are summa
rized in Fig. 14.31, along with the series RLC bandreject filter. As we did 
for other categories of filters, we can state a general form for the transfer 
functions of bandreject filters, replacing the constant terms with /3 and OJ(;. 

/ / (5 ) 
s2 + d 

sz + jSs + <a% 2' 
(14.55) A Transfer function for RLC bandreject filter 

Equation 14.55 is useful in filter design, because any circuit with a transfer 
function in this form can be used as a bandreject filter. 

H(s)=~2 
s2 + l/LC 

s1 + (R/L)s + l/LC 

>0= VT/LC P = R/L 

"•© 

sL 

sC 
+ 

H(s) = 
s2 + l/LC 

s2 + s/RC + l/LC 

co0 = VljLC p = l/RC 

Figure 14.31 • Two RLC bandreject filters, together 
with equations for the transfer function, center 
frequency, and bandwidth of each. 

/ A S S E S S M E N T PROBLEMS 

Objective 4—Know the RLC circuit configurations that act as bandreject filters 

14.10 Design the component values for the series 
RLC bandreject filter shown in Fig. 14.28(a) so 
that the center frequency is 4 kHz and the 
quality factor is 5. Use a 500 nF capacitor. 

Answer: L = 3.17 mH, 

R = 15.92 H. 

NOTE: Also try Chapter Problems 14.35 and 14.36. 

14.11 Recompute the component values for 
Assessment Problem 14.10 to achieve a band-
reject filter with a center frequency of 20 kHz. 
The filter has a 100 fi resistor. The quality fac
tor remains at 5. 

Answer: L = 3.98 mH, 

C = 15.92 nF. 
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Practical Perspective 

69? * * 

770 # 
% 

8521» 1 

941 H* 

O ' 
Figure 14.32 • Tones generated by the rows and 
columns of telephone pushbuttons. 

Pushbutton Telephone Circuits 
In the Practical Perspective at the start of this chapter, we described the 
dual-tone-multiple-frequency (DTMF) system used to signal that a button 
has been pushed on a pushbutton telephone. A key element of the DTMF 
system is the DTMF receiver—a circuit that decodes the tones produced by 
pushing a button and determines which button was pushed. 

In order to design a DTMF reciever, we need a better understanding of 
the DTMF system. As you can see from Fig. 14.32, the buttons on the tele
phone are organized into rows and columns. The pair of tones generated by 
pushing a button depends on the button's row and column. The button's row 
determines its low-frequency tone, and the button's column determines its 
high-frequency tone.1 For example, pressing the "6" button produces sinu
soidal tones with the frequencies 770 Hz and 1477 Hz. 

At the telephone switching facility, bandpass filters in the DTMF receiver 
first detect whether tones from both the low-frequency and high-frequency 
groups are simultaneously present. This test rejects many extraneous audio 
signals that are not DTMF. If tones are present in both bands, other filters are 
used to select among the possible tones in each band so that the frequencies 
can be decoded into a unique button signal. Additional tests are performed to 
prevent false button detection. For example, only one tone per frequency 
band is allowed; the high- and low-band frequencies must start and stop 
within a few milliseconds of one another to be considered valid; and the highl
and low-band signal amplitudes must be sufficiently close to each other. 

You may wonder why bandpass filters are used instead of a high-pass 
filter for the high-frequency group of DTMF tones and a low-pass filter for 
the low-frequency group of DTMF tones. The reason is that the telephone 
system uses frequencies outside of the 300-3 kHz band for other signal
ing purposes, such as ringing the phone's bell. Bandpass filters prevent 
the DTMF receiver from erroneously detecting these other signals. 

NOTE: Assess your understanding of this Practical Perspective by trying 
Chapter Problems 14.46-14.48. 

1 A fourth high-frequency tone is reserved at 1633 Hz. This tone is used infrequently and is not 
produced by a standard 12-button telephone. 

Summary 

A frequency selective circuit, or filter, enables signals at 
certain frequencies to reach the output, and it attenu
ates signals at other frequencies to prevent them from 
reaching the output. The passband contains the fre
quencies of those signals that are passed; the stopband 
contains the frequencies of those signals that are atten
uated. (See page 524.) 
The cutoff frequency, coc, identifies the location on the 
frequency axis that separates the stopband from the 

passband. At the cutoff frequency, the magnitude of the 
transfer function equals (1/V2)//raax. (See page 527.) 
A low-pass filter passes voltages at frequencies below 
(ac and attenuates frequencies above coc. Any circuit 
with the transfer function 

/.> 
H{s) 

S + (oc 

functions as a low-pass filter. (See page 531.) 
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A high-pass filter passes voltages at frequencies above 
and attenuates voltages at frequencies below Any cir
cuit with the transfer function 

H{s) = -

functions as a high-pass filter. (See page 536.) 

Bandpass filters and bandreject filters each have two cut
off frequencies, a)c] and a;c2. These filters are further char
acterized by their center frequency («„), bandwidth (/3), 
and quality factor (Q). These quantities are defined as 

w0 = Vcoti • (oc2, 

(3 = (oc2 - o)d, 

Q = "o/P. 

(See pages 539-540.) 

A bandpass filter passes voltages at frequencies within 
the passband, which is between a>cl and u)c2- It attenuates 

frequencies outside of the passband. Any circuit with the 
transfer function 

His) 
Ps 

r + Pi 

functions as a bandpass filter. (See page 544.) 

A bandreject filter attenuates voltages at frequencies 
within the stopband, which is between coc] and wc2. It 
passes frequencies outside of the stopband. Any circuit 
with the transfer function 

His) 
JT + (t)n 

S2 + ps + <4 

functions as a bandreject filter. (See page 549.) 

Adding a load to the output of a passive filter changes 
its filtering properties by altering the location and mag
nitude of the passband. Replacing an ideal voltage 
source with one whose source resistance is nonzero also 
changes the filtering properties of the rest of the circuit, 
again by altering the location and magnitude of the 
passband. (See page 542.) 

Problems 

Section 14.2 

14.1 a) Find the cutoff frequency in hertz for the RL fil
ter shown in Fig. P14.1. 

b) Calculate H(Jm) at G>C, 0.2WC., and 5wc.. 

c) If Vj = lOcosatf V, write the steady-state 
expression for va when co = w(., co = 0.2wr, and 
a) = 5ooc. 

Figure P14.1 

10 mH 
m rv^r*r\ « m 

127 a 

14.2 Use a 1 mH inductor to design a low-pass, RL, pas-
OESIGN sive filter with a cutoff frequency of 5 kHz. 

PROBLEM " J 

PSPICE a ) Specify the value of the resistor. 
MULTISIM 

b) A load having a resistance of 68 fi is connected 
across the output terminals of the filter. What is 
the corner, or cutoff, frequency of the loaded fil
ter in hertz? 

c) If you must use a single resistor from Appendix H 
for part (a), what resistor should you use? What is 
the resulting cutoff frequency of the filter? 

14.3 A resistor, denoted as R/, is added in series with the 
inductor in the circuit in Fig. 14.4(a). The new low-
pass filter circuit is shown in Fig. P14.3. 

a) Derive the expression for His) where 
His) = VJVb 

b) At what frequency will the magnitude of H{J<D) 

be maximum? 

c) What is the maximum value of the magnitude 
of » ( / » ) ? 

d) At what frequency will the magnitude of Hija)) 
equal its maximum value divided by V2? 

e) Assume a resistance of 75 O is added in series 
with the 10 mH inductor in the circuit in 
Fig. P14.1. Find tae, # ( /0 ) , ff(/»e)f / / ( / 0 . 3 0 , 
and Hij3a)c). 

Figure P14.3 

Ri 

+• 

• 

L 

4 

: R 

» 

+ 

• 

14.4 a) Find the cutoff frequency (in hertz) of the low-
pass filter shown in Fig. PI4.4. 

b) Calculate H{joo) at wt., 0.1wt., and 10wr. 
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DESIGN 
PROBLEM 

PSPICE 

MULT1SIM 

c) If Vj = 200 cos col mV, write the steady-state 
expression for va when to = coc, 0.1coc, and 10coc. 

Figure P14.4 

o VW 

100 nF 

14.5 Use a 500 nF capacitor to design a low-pass passive 
filter with a cutoff frequency of 50 krad/s. 

a) Specify the cutoff frequency in hertz. 

b) Specify the value of the filter resistor. 

c) Assume the cutoff frequency cannot increase by 
more than 5%. What is the smallest value of 
load resistance that can be connected across the 
output terminals of the filter? 

d) If the resistor found in (c) is connected across 
the output terminals, what is the magnitude of 
H(joi) when co = 0? 

14.6 Design a passive RC low pass filter (see Fig. 14.7) 
with a cutoff frequency of 100 Hz using a 4.7/AF 
capacitor. 

a) What is the cutoff frequency in rad/s? 

b) What is the value of the resistor? 

c) Draw your circuit, labeling the component val
ues and output voltage. 

d) What is the transfer function of the filter in 
part (c)? 

e) If the filter in part (c) is loaded with a resistor 
whose value is the same as the resistor part (b), 
what is the transfer function of this loaded filter? 

f) What is the cutoff frequency of the loaded filter 
from part (e)? 

g) What is the gain in the pass band of the loaded 
filter from part (e)? 

14.7 A resistor denoted as RL is connected in parallel 
with the capacitor in the circuit in Fig. 14.7. The 
loaded low-pass filter circuit is shown in Fig. P14.7. 

a) Derive the expression for the voltage transfer 
function V0/Vr 

b) At what frequency will the magnitude of H(joo) 
be maximum? 

c) What is the maximum value of the magnitude 

d) At what frequency will the magnitude of H(joo) 
equal its maximum value divided by V2? 

e) Assume a resistance of 10 kH is added in paral
lel with the 100 nF capacitor in the circuit in 

Fig. P14.4. Find a>c, H(jO), H(Jmc), H(j0.1wc), 
and H(jl0coc). 

Figure P14.7 

+ 

m— 

R 

O 4 

:RL 

+ 

• 

14.8 Study the circuit shown in Fig. PI 4.8 (without the 
load resistor). 

a) As co —> 0, the inductor behaves like what circuit 
component? What value will the output voltage 
v0 have? 

b) As co —>• oo, the inductor behaves like what cir
cuit component? What value will the output 
voltage v0 have? 

c) Based on parts (a) and (b), what type of filtering 
does this circuit exhibit? 

d) What is the transfer function of the unloaded 
filter? 

e) If R = 330 O and L = 10 mH, what is the cutoff 
frequency of the filter in rad/s? 

Figure P14.8 

<P R\v,, R, 

His) 
VM 
V,<s) 

14.9 Suppose we wish to add a load resistor in parallel 
with the resistor in the circuit shown in Fig. PI 4.8. 

a) What is the transfer function of the loaded filter? 

b) Compare the transfer function of the unloaded 
filter (part (d) of Problem 14.8) and the trans
fer function of the loaded filter (part (a) of 
Problem 14.9). Are the cutoff frequencies differ
ent? Are the passband gains different? 

c) What is the smallest value of load resistance that 
can be used with the filter from Problem 14.8(e) 
such that the cutoff frequency of the resulting 
filter is no more than 5% different from the 
unloaded filter? 

Section 14.3 

14.10 a) Find the cutoff frequency (in hertz) for the high-
pass filter shown in Fig. P14.10. 

b) Find H(joo) at ooc, 0.2coc, and 5coc. 
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c) If Vj = 500 cos cot mV, write the steady-state 
expression for va when co = coc, to = 0.2coct and 
&) = 5cor. 

Figure P14.10 

5nF 

? 1(-

50 kn 

14.11 A resistor, denoted as Rc, is connected in series 
with the capacitor in the circuit in Fig. 14.10(a). The 
new high-pass filter circuit is shown in Fig. P14.ll. 

a) Derive the expression for H(s) where 
H(s) = VJV, 

b) At what frequency will the magnitude of H(joo) 
be maximum? 

c) What is the maximum value of the magnitude 
of H(joo)? 

d) At what frequency will the magnitude of H(jco) 
equal its maximum value divided by V2? 

e) Assume a resistance of 12.5 kfl is connected in 
series with the 5 nF capacitor in the circuit in 
Fig. P14.10. Calculate wc, H(jtoc), H(jQ.2a>c), 
and H(j5(i)c). 

Figure P14.ll 

Re 
• -vw-

c 

If 
A' 

14.12 Design a passive RC high pass filter (see Fig. 14.10[a]) 
with a cutoff frequency of 500 Hz using a 220 pF 
capacitor. 

a) What is the cutoff frequency in rad/s? 

b) What is the value of the resistor? 

c) Draw your circuit, labeling the component val
ues and output voltage. 

d) What is the transfer function of the filter in 
part (c)? 

e) If the filter in part (c) is loaded with a resistor 
whose value is the same as the resistor in (b), 
what is the transfer function of this loaded filter? 

f) What is the cutoff frequency of the loaded filter 
from part (e)? 

g) What is the gain in the pass band of the loaded 
filter from part (e)? 

14.13 Using a 100 nF capacitor, design a high-pass passive 
filter with a cutoff frequency of 300 Hz. 

a) Specify the value of R in kilohms. 

b) A 47 kfl resistor is connected across the output 
terminals of the filter. What is the cutoff fre
quency, in hertz, of the loaded filter? 

DFSIGN 

PROBLEM 

PSPICE 

MULTISIM 

DESIGN 

PROBLEM 

PSPICE 

MULTISIM 

14.14 Using a 100 juH inductor, design a high-pass, RL, 
passive filter with a cutoff frequency of 1500 krad/s. 

a) Specify the value of the resistance, selecting 
from the components in Appendix H. 

b) Assume the filter is connected to a pure resistive 
load. The cutoff frequency is not to drop below 
1200 krad/s. What is the smallest load resistor 
from Appendix H that can be connected across 
the output terminals of the filter? 

14.15 Consider the circuit shown in Fig. P14.15. 

a) With the input and output voltages shown in the 
figure, this circuit behaves like what type of filter? 

b) What is the transfer function, H(s) = 1/,,(^)/^:(^), 
of this filter? 

c) What is the cutoff frequency of this filter? 

d) What is the magnitude of the filter's transfer 
function at s — jcojl 

Figure P14.15 

150 a 
- A W -

<b + 
lOmHH'o 

14.16 Suppose a 150 ft load resistor is attached to the fil
ter in Fig. P14.15. 

a) What is the transfer function, H(s) = V(,(s)/Vi(s), 
of this filter? 

b) What is the cutoff frequency of this filter? 

c) How does the cutoff frequency of the loaded fil
ter compare with the cutoff frequency of the 
unloaded filter in Fig. P14.15? 

d) What else is different for these two filters? 

Section 14.4 

14.17 Show that the alternative forms for the cutoff fre
quencies of a bandpass filter, given in Eqs. 14.36 
and 14.37, can be derived from Eqs. 14.34 and 14.35. 

14.18 Calculate the center frequency, the bandwidth, and 
the quality factor of a bandpass filter that has an 
upper cutoff frequency of 121 krad/s and a lower 
cutoff frequency of 100 krad/s. 

http://P14.ll
http://P14.ll
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14.19 A bandpass filter has a center, or resonant, frequency 
of 50 krad/s and a quality factor of 4. Find the band
width, the upper cutoff frequency, and the lower cut
off frequency. Express all answers in kilohertz. 

14.20 Use a 5 nF capacitor to design a series RLC band-

PMBLEM P a s s f i l t e r ' a s s n o w n a t t n e t 0 P o f Fig-14.27. Th e c e n " 
PSPFCE ter frequency of the filter is 8 kHz, and the quality 

MumsiM factor is 2. 

a) Specify the values of R and L. 

b) What is the lower cutoff frequency in kilohertz? 

c) What is the upper cutoff frequency in kilohertz? 

d) What is the bandwidth of the filter in kilohertz? 

14.21 Design a series RLC bandpass filter using only 
three components from Appendix Ff that comes 
closest to meeting the filter specifications in 
Problem 14.20. 

a) Draw your filter, labeling all component values 
and the input and output voltages. 

b) Calculate the percent error in this new filter's 
center frequency and quality factor when com
pared to the values specified in Problem 14.20. 

14.22 For the bandpass filter shown in Fig. P14.22, find 
"SPICE (a) coa, (b) fm (c) Q, (d) »At (e) fch (f) coc2, (g) /c2, 

MULT,5IM and(h)iS. 

Figure P14.22 
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PROBLEM 

PSPICE 

MULTISIM 

14.23 Using a 50 nF capacitor in the bandpass circuit 
shown in Fig. 14.22, design a filter with a quality fac
tor of 5 and a center frequency of 20 krad/s. 

a) Specify the numerical values of R and L. 

b) Calculate the upper and lower cutoff frequen
cies in kilohertz. 

c) Calculate the bandwidth in hertz. 

14.24 Design a series RLC bandpass filter using only 
three components from Appendix H that comes 
closest to meeting the filter specifications in 
Problem 14.23. 

a) Draw your filter, labeling all component values 
and the input and output voltages. 

b) Calculate the percent error in this new filter's 
center frequency and quality factor when com
pared to the values specified in Problem 14.23. 

14.25 For the bandpass filter shown in Fig. P14.25, calculate 
-SPICE the following: (a) f0; (b) Q; (c) / c l ; (d) fc2; and (e) 0. 

MULTISIM 

Figure P14.25 

20 H 40 mH 40. " F 

-AW ^nrv> 1 ^ 

180 n v» 

14.26 The input voltage in the circuit in Fig. PI 4.25 is 
500 cos cot mV. Calculate the output voltage when 
(a) co = co0; (b) co = coci; and (c) co = coc2. 

14.27 Design a series RLC bandpass filter (see Fig. 14.19[aJ) 
with a quality of 8 and a center frequency of 
50 krad/s, using a 0.01 /xF capacitor. 

a) Draw your circuit, labeling the component val
ues and output voltage. 

b) For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies. 

14.28 The input to the series RLC bandpass filter designed 
in Problem 14.27 is 50costttf mV. Find the voltage 
drop across the resistor when (a) co = eo(); (b) eo= 
(ocl; (c) co = o)c2\ (d) co = 0.2wo; (e) co = 5co(). 

14,29 The input to the series RLC bandpass filter designed 
in Problem 14.27 is 50coswt mV. Find the voltage 
drop across the series combination of the inductor 
and capacitor when (a) eo = coa; (b) to = o><;1; 
(c) co = coc2\ (d) co = 0.2ooo; (e) oo = 5co(). 

14.30 A block diagram of a system consisting of a sinu
soidal voltage source, an RLC series bandpass fil
ter, and a load is shown in Fig. P14.30. The 
internal impedance of the sinusoidal source is 
80 + ;0 fl, and the impedance of the load is 
480 + /0 11. 

The RLC series bandpass filter has a 20 nF 
capacitor, a center frequency of 50 krad/s, and a 
quality factor of 6.25. 

a) Draw a circuit diagram of the system. 

b) Specify the numerical values of L and R for the 
filter section of the system. 

c) What is the quality factor of the interconnected 
system? 

d) What is the bandwidth (in hertz) of the inter
connected system? 
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Figure P14.30 

Sourc 

* > 
Filt er 

Load 

Figure P14.32 
lOOkft 
-AAV 

400 kH 

14.31 The purpose of this problem is to investigate how a 
resistive load connected across the output termi
nals of the bandpass filter shown in Fig. 14.19 
affects the quality factor and hence the bandwidth 
of the filtering system. The loaded filter circuit is 
shown in Fig. PI 4.31. 

a) Calculate the transfer function VJV-, for the cir
cuit shown in Fig. P14.31. 

b) What is the expression for the bandwidth of 
the system? 

c) What is the expression for the loaded band
width (/3{J as a function of the unloaded band
width (ft/)? 

d) What is the expression for the quality factor of 
the system? 

e) What is the expression for the loaded quality 
factor (Qi) as a function of the unloaded quality 
factor (0 j ) ? 

f) What are the expressions for the cutoff frequen
cies a)cl and ft>c2? 

Figure PI4.31 

14.33 The parameters in the circuit in Fig. P14.31 are 
R = 2.4 kO, C = 50 pF, and L = 2 fiH. The quality 
factor of the circuit is not to drop below 7.5. What is 
the smallest permissible value of the load resistor /?L? 

Section 14.5 

14.34 a) Show (via a qualitative analysis) that the circuit 
in Fig. P14.34 is a bandreject filter. 

b) Support the qualitative analysis of (a) by finding 
the voltage transfer function of the filter. 

c) Derive the expression for the center frequency 
of the filter. 

d) Derive the expressions for the cutoff frequen
cies avi a n d o>C2-

e) What is the expression for the bandwidth of the 
filter? 

f) What is the expression for the quality factor of 
the circuit? 

Figure P14.34 

C 

It- R 

14.32 Consider the circuit shown in Fig. P14.32. 

a) Find co(>. PSPICE 

MULTISIM 

b) Find (3. 

c) FmdQ. 

d) Find the steady-state expression for v„ when 
Vi = 250 cos a)0t mV. 

e) Show that if RL is expressed in kilohms the Q of 
the circuit in Fig. PI4.32 is 

Q = 
20 

1 + 100//?L 

f) Plot Q versus RL for 20 kfl < / ? L < 2 M H . 

14.35 For the bandreject filter in Fig. PI4.35, calculate 
PSPICE (a) (oa; (b) fa; (c) Q; (d) mcl; (e) / c l ; (f) a>c2; (g) / , 2 ; 

HULTC,M and (h) j8 in kilohertz. 

Figure P14.35 
50 fiH 

20 nF 

750 a 
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14.36 Use a 500 nF capacitor to design a bandreject filter, 
as shown in Fig. P14.36. The filter has a center fre
quency of 4 kHz and a quality factor of 5. 

a) Specify the numerical values of R and L. 

b) Calculate the upper and lower corner, or cutoff, 
frequencies in kilohertz. 

c) Calculate the filter bandwidth in kilohertz. 

Figure P14.36 
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14.37 Assume the bandreject filter in Problem 14.36 is 
PSPICE loaded with a 1 kf t resistor. 

MULTISIM 

a) What is the quality factor of the loaded circuit? 
b) What is the bandwidth (in kilohertz) of the 

loaded circuit? 

c) What is the upper cutoff frequency in kilohertz? 

d) What is the lower cutoff frequency in kilohertz? 

14.38 Design a series RLC bandreject filter using only 
three components from Appendix H that comes 
closest to meeting the filter specifications in 
Problem 14.36. 

a) Draw your filter, labeling all component values 
and the input and output voltages. 

b) Calculate the percent error in this new filter's 
center frequency and quality factor when com
pared to the values specified in Problem 14.36. 

14.39 Design an RLC bandreject filter (see Fig. 14.28[a]) 
with a quality of 2.5 and a center frequency of 
25 krad/s, using a 200 nF capacitor. 

a) Draw your circuit, labeling the component val
ues and output voltage. 

b) For the filter in part (a), calculate the bandwidth 
and the values of the two cutoff frequencies. 

14.40 The input to the RLC bandreject filter designed in 
Problem 14.39 is 250cos&tf mV. Find the voltage 
drop across the series combination of the inductor 
and capacitor when (a) co = co(;, (b) co = to€i; 
(c) co = <t)C2, (d) co = 0.2&V, (e) co = 5coa. 

14.41 The input to the RLC bandreject filter designed in 
Problem 14.39 is 250coswf mV. Find the voltage drop 
across the resistor when (a) co = toa; (b) co = coc]; 
(c) co — coc2; (d) o> = 02coa\ (e) co = 5con. 

14.42 The purpose of this problem is to investigate how a 
resistive load connected across the output terminals 
of the bandreject filter shown in Fig. 14.28(a) affects 
the behavior of the filter. The loaded filter circuit is 
shown in Fig. PI4.42. 

a) Find the voltage transfer function VjVi. 

b) What is the expression for the center frequency? 

c) What is the expression for the bandwidth? 

d) What is the expression for the quality factor? 

e) Evaluate H{jcoa). 

f) Evaluate / /( /0). 

g) Evaluate / / ( /co). 

h) What are the expressions for the corner fre
quencies coci and coc21 

Figure P14.42 

R 
• VvV-
+ 

Rt 

14.43 The parameters in the circuit in Fig. PI4.42 
PSPICE are R = 30 ft, L = 1/JLH. C = 4 pF, and 

MULTISIM R h = m a 

a) Find a»(„ /3 (in kilohertz), and Q. 

b) Find //(/0) and //(/oo). 

c) Find fc2 and /c1. 

d) Show that if RL is expressed in ohms the Q of 
the circuit is 

Q = y [1 + (30/KOJ. 

e) Plot Q versus Rh for 10 ft < RL < 300 O. 

PSPICE 

MULTISIM 

14.44 The load in the bandreject filter circuit shown in 
Fig. PI4.42 is 500 ft. The center frequency of the fil
ter is 25 krad/s, and the capacitor is 25 nF. At very 
low and very high frequencies, the amplitude of the 
sinusoidal output voltage should be at least 90% of 
the amplitude of the sinusoidal input voltage. 

a) Specify the numerical values of R and L. 

b) What is the quality factor of the circuit? 
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Sections 14.1-14.5 

14.45 Given the following voltage transfer function: 

Ys. 

1010 

10* 

H{s) 

s2 + 50,000* + 10 

a) At what frequencies (in radians per second) is 
the magnitude of the transfer function equal to 
unity? 

b) At what frequency is the magnitude of the trans
fer function maximum? 

c) What is the maximum value of the transfer func
tion magnitude? 

14.46 Design a series RLC bandpass filter (see Fig. 14.27) 
PERSPECTIVE *-or detecting the low-frequency tone generated by 

DEBST pushing a telephone button as shown in Fig. 14.32. 
PROBLEM 

a) Calculate the values of L and C that place the 
cutoff frequencies at the edges of the DTMF 
low-frequency band. Note that the resistance in 
standard telephone circuits is always R = 600 ft. 

b) What is the output amplitude of this circuit at 
each of the low-band frequencies, relative to the 
peak amplitude of the bandpass filter? 

c) What is the output amplitude of this circuit at 
the lowest of the high-band frequencies? 

14.47 Design a DTMF high-band bandpass filter similar 
r!£E!S?.« t o t n e low-band filter design in Problem 14.46. Be 

PERSPECTIVE » 

DESIGN" sure to include the fourth high-frequency tone, 
1633 Hz, in your design. What is the response ampli
tude of your filter to the highest of the low-
frequency DTMF tones? 

14.48 The 20 Hz signal that rings a telephone's bell has to 
PRSPECTIVE

 n a v e a v e r y l a r g e amplitude to produce a loud 
DESIGN"" enough bell signal. How much larger can the ring

ing signal amplitude be, relative to the low-bank 
DTMF signal, so that the response of the filter in 
Problem 14.46 is no more than half as large as the 
largest of the DTMF tones? 
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/ C H A P T E R OBJECTIVES 

Know the op amp circuits that behave as first-
order low-pass and high-pass filters and be able 
to calculate component values for these circuits 
to meet specifications of cutoff frequency and 
passband gain. 

Be able to design filter circuits starting with a 
prototype circuit and use scaling to achieve 
desired frequency response characteristics and 
component values. 

Understand how to use cascaded first- and 
second-order Butterworth filters to implement 
low-pass, high-pass, bandpass, and bandreject 
filters of any order. 

Be able to use the design equations to calculate 
component values for prototype narrowband, 
bandpass, and bandreject filters to meet desired 
filter specifications. 
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Active Filter Circuits 
Up to this point, we have considered only passive filter circuits, 

that is, filter circuits consisting of resistors, inductors, and capaci

tors. There are areas of application, however, where active cir

cuits, those that employ op amps, have certain advantages over 

passive filters. For instance, active circuits can produce bandpass 

and bandreject filters without using inductors. This is desirable 

because inductors are usually large, heavy, costly, and they may 

introduce electromagnetic field effects that compromise the 

desired frequency response characteristics. 

Examine the transfer functions of all the filter circuits from 

Chapter 14 and you will notice that the maximum magnitude 

does not exceed 1. Even though passive resonant filters can 

achieve voltage and current amplification at the resonant fre

quency, passive filters in general are incapable of amplification, 

because the output magnitude does not exceed the input magni

tude. This is not a surprising observation, as many of the transfer 

functions in Chapter 14 were derived using voltage or current 

division. Active filters provide a control over amplification not 

available in passive filter circuits. 

Finally, recall that both the cutoff frequency and the pass-

band magnitude of passive filters were altered with the addition 

of a resistive load at the output of the filter. This is not the case 

with active filters, due to the properties of op amps. Thus, we use 

active circuits to implement filter designs when gain, load varia

tion, and physical size are important parameters in the design 

specifications. 

In this chapter, we examine a few of the many filter circuits 

that employ op amps. As you will see, these op amp circuits over

come the disadvantages of passive filter circuits. Also, we will 

show how the basic op amp filter circuits can be combined to 

achieve specific frequency responses and to attain a more nearly 

ideal filter response. Note that throughout this chapter we 

assume that every op amp behaves as an ideal op amp. 
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Practical Perspective 
Bass Volume Control 
In this chapter, we continue to examine circuits that are fre
quency selective. As described in Chapter 14, this means that 
the behavior of the circuit depends on the frequency of its 
sinusoidal input. Most of the circuits presented here fall into 
one of the four categories identified in Chapter 14—low-pass 
filters, high-pass filters, bandpass filters, and bandreject f i l 
ters. But whereas the circuits in Chapter 14 were constructed 
using sources, resistors, capacitors, and inductors, the cir
cuits in this chapter employ op amps. We shall soon see what 
advantages are conferred to a filter circuit constructed using 
op amps. 

Audio electronic systems such as radios, tape players, and 
CD players often provide separate volume controls labeled 
''treble" and "bass." These controls permit the user to select 

the volume of high frequency audio signals ("treble") inde
pendent of the volume of low frequency audio signals 
("bass"). The ability to independently adjust the amount of 
amplification (boost) or attenuation (cut) in these two fre
quency bands allows a listener to customize the sound with 
more precision than would be provided with a single volume 
control. Hence the boost and cut control circuit is also 
referred to as a tone control circuit. 

The Practical Perspective example at the end of this 
chapter presents a circuit that implements bass volume con
trol using a single op amp together with resistors and capaci
tors. An adjustable resistor supplies the necessary control 
over the amplification in the bass frequency range. 

Treble 

559 
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Figure 15.1 A A first-order low-pass filter. 

Figure 15.2 A A general op amp circuit. 

15,1 First-Order Low-Pass 
and High-Pass Filters 

Consider the circuit in Fig. 15.1. Qualitatively, when the frequency of the 
source is varied, only the impedance of the capacitor is affected. At very 
low frequencies, the capacitor acts like an open circuit, and the op amp cir
cuit acts like an amplifier with a gain of -R2/R}. At very high frequencies, 
the capacitor acts like a short circuit, thereby connecting the output of the 
op amp circuit to ground. The op amp circuit in Fig. 15.1 thus functions as 
a low-pass filter with a passband gain of —R^Ri-

To confirm this qualitative assessment, we can compute the transfer 
function H(s) = V0(s)/Vi(s). Note that the circuit in Fig. 15.1 has the gen
eral form of the circuit shown in Fig. 15.2, where the impedance in the 
input path (Z() is the resistor Rh and the impedance in the feedback path 
(Zf) is the parallel combination of the resistor R2 and the capacitor C. 

The circuit in Fig. 15.2 is analogous to the inverting amplifier circuit 
from Chapter 5, so its transfer function is —Zf/Z-r Therefore, the transfer 
function for the circuit in Fig. 15.1 is 

H{s) 
Zi 

-Rl\ ( 

R 
,sCj 

(x)c 

-K — . S + (lir 

(15.1) 

where 

and 
<-i-

Oir = 
R7C 

(15.2) 

(15.3) 

Note that Eq. 15.1 has the same form as the general equation for low-pass fil
ters given in Chapter 14, with an important exception: The gain in the pass-
band, K, is set by the ratio Rj/R\ • The op amp low-pass filter thus permits the 
passband gain and the cutoff frequency to be specified independently. 

A Note About Frequency Response Plots 
Frequency response plots, introduced in Chapter 14, provide valuable 
insight into the way a filter circuit functions. Thus we make extensive 
use of frequency response plots in this chapter, too. The frequency 
response plots in Chapter 14 comprised two separate plots —a plot of 
the transfer function magnitude versus frequency, and a plot of the 
transfer function phase angle, in degrees, versus frequency. When we 
use both plots, they are normally stacked on top of one another so that 
they can share the same frequency axis. 

In this chapter, we use a special type of frequency response plots 
called Bode plots. Bode plots are discussed in detail in Appendix E, which 
includes detailed information about how to construct these plots by hand. 
You will probably use a computer to construct Bode plots, so here we 
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summarize the special features of these plots. Bode plots differ from the 
frequency response plots in Chapter 14 in two important ways. 

First, instead of using a linear axis for the frequency values, a Bode 
plot uses a logarithmic axis. This permits us to plot a wider range of fre
quencies of interest. Normally we plot three or four decades of frequen
cies, say from 102 rad/s to 106 rad/s, or 1 kHz to 1 MHz, choosing the 
frequency range where the transfer function characteristics are changing. 
If we plot both the magnitude and phase angle plots, they again share the 
frequency axis. 

Second, instead of plotting the absolute magnitude of the transfer 
function versus frequency, the Bode magnitude is plotted in decibels (dB) 
versus the log of the frequency. The decibel is discussed in Appendix D. 
Briefly, if the magnitude of the transfer function is \H(jco) |, its value in dB 
is given by 

/ l d B = 201og1()|//(yW)|. 

It is important to remember that while \H(jco)\ is an unsigned quantity, 
/4dB is a signed quantity. When AdR = 0, the transfer function magnitude 
is 1, since 20 log10(l) = 0. When AdB < 0, the transfer function magni
tude is between 0 and 1, and when AdB > 0, the transfer function magni
tude is greater than 1. Finally, note that 

201og1 0 | l /V5| = - 3 d B . 

Recall that we define the cutoff frequency of filters by determining 
the frequency at which the maximum magnitude of the transfer function 
has been reduced by 1/V2. If we translate this definition to magnitude in 
dB, we define the cutoff frequency of a filter by determining the frequency 
at which the maximum magnitude of the transfer function in dB has been 
reduced by 3 dB. For example, if the magnitude of a low-pass filter in its 
passband is 26 dB, the magnitude used to find the cutoff frequency is 
26 - 3 = 23 dB. 

Example 15.1 illustrates the design of a first-order low pass filter to 
meet desired specifications of passband gain and cutoff frequency, and 
also illustrates a Bode magnitude plot of the filter's transfer function. 

Example 15.1 Designing a Low-Pass Op Amp Filter 

Using the circuit shown in Fig. 15.1, calculate values 
for C and R2 that, together with Rx = 1 fi, produce 
a low-pass filter having a gain of 1 in the passband 
and a cutoff frequency of 1 rad/s. Construct the 
transfer function for this filter and use it to sketch a 
Bode magnitude plot of the filter's frequency 
response. 

Solution 

Equation 15.2 gives the passband gain in terms of 
Ri and R2, so it allows us to calculate the required 
value of R2' 

R2 = KRX 

= (1)0) 
= i n . 

Equation 15.3 then permits us to calculate C to 
meet the specified cutoff frequency: 

C 
1 

R2coc 

1 

(1)(1) 
= I F . 

The transfer function for the low-pass filter is 
given by Eq. 15.1: 

H(s) K-
S + ft). 

s + 1 
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The Bode plot of | / / ( / O J ) | is shown in Fig. 15.3. This 
is the so-called prototype low-pass op amp filter, 
because it uses a resistor value of 1 Q. and a capaci
tor value of 1 F, and it provides a cutoff frequency 
of 1 rad/s. As we shall see in the next section, proto
type filters provide a useful starting point for the 
design of filters by using more realistic component 
values to achieve a desired frequency response. 
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Figure 15.3 • The Bode magnitude plot of the low-pass filter from 
Example 15.1. 

You may have recognized the circuit in Fig. 15.1 as the integrating 
amplifier circuit introduced in Chapter 7. They are indeed the same cir
cuit, so integration in the time domain corresponds to low-pass filtering in 
the frequency domain. This relationship between integration and low-pass 
filtering is further confirmed by the operational Laplace transform for 
integration derived in Chapter 12. 

The circuit in Fig. 15.4 is a first-order high-pass filter. This circuit also 
has the general form of the circuit in Fig. 15.2, only now the impedance in 
the input path is the series combination of /?t and C, and the impedance in 
the feedback path is the resistor R2. The transfer function for the circuit 
in Fig 15.4 is thus 

H(s) 
-Z 

Figure 15.4 • A first-order high-pass filter. 

= -K-
s -+- u)c 

where 

and 

R2 K = i-

(15.4) 

(15.5) 

a>(. = R{C 
(15.6) 
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Again, the form of the transfer function given in Eq. 15.4 is the same as that 
given in Eq. 14.20, the equation for passive high-pass filters. And again, the 
active filter permits the design of a passband gain greater than 1. 

Example 15.2 considers the design of an active high-pass filter which 
must meet frequency response specifications from a Bode plot. 

Example 15.2 Designing a High-Pass Op Amp Filter 

Figure 15.5 shows the Bode magnitude plot of a 
high-pass filter. Using the active high-pass filter cir
cuit in Fig. 15.4, calculate values of Ri and R2 that 
produce the desired magnitude response. Use a 
0.1 /xF capacitor. If a 10 kO load resistor is added to 
this filter, how will the magnitude response change? 

Solution 

Begin by writing a transfer function that has the 
magnitude plot shown in Fig. 15.5. To do this, note 
that the gain in the passband is 20 dB; therefore, 
AT = 10. Also note that the 3 dB point is 500 rad/s. 
Equation 15.4 is the transfer function for a high-
pass filter, so the transfer function that has the mag
nitude response shown in Fig. 15.5 is given by 

/ / (5) = 
-10^ 

s + 500 

We can compute the values of R{ and R2 needed to 
yield this transfer function by equating the transfer 
function with Eq. 15.4: 

H(s) = 
-10s HRT/RI)S 

s + 500 s + (1/RiQ 

Equating the numerators and denominators and 
then simplifying, we get two equations: 

10 = 500 
1 

RiC 

Using the specified value of C (0.1 /xF), we find 

Rt = 20 kft, R2 = 200 kil. 

The circuit is shown in Fig. 15.6. 
Because we have made the assumption that 

the op amp in this high-pass filter circuit is ideal, 
the addition of any load resistor, regardless of its 
resistance, has no effect on the behavior of the op 
amp. Thus, the magnitude response of a high-pass 
filter with a load resistor is the same as that of a 
high-pass filter with no load resistor, which is 
depicted in Fig. 15.5. 
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Figure 15.5 • The Bode magnitude plot of the high-pass filter for 
Example 15.2. 
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Figure 15.6 • The high-pass filter for Example 15.2. 
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• A S S E S S M E N T PROBLEMS 

Objective 1—Know the op amp circuits that behave as first order low-pass and high-pass filters and be able to 
calculate their component values 

15.1 Compute the values for R2 and C that yield a 
high-pass filter with a passband gain of 1 and a 
cutoff frequency of 1 rad/s if R{ is 1 ft. (Note: 
This is the prototype high-pass filter.) 

Answer: R2 = 1 ft, C = 1 F. 

NOTE: Also try Chapter Problems 15.6 and 15.10. 

15.2 Compute the resistor values needed for the 
low-pass filter circuit in Fig. 15.1 to produce the 
transfer function 

-20,000 
H(s) = 

s + 5000 
Use a 5 /JLF capacitor. 

Answer: Rx = 10 ft, R2 = 40 ft. 

Component scale factors • 

15,2 Scaling 
In the design and analysis of both passive and active filter circuits, working 
with element values such as 1 ft, 1 H, and 1 F is convenient. Although 
these values are unrealistic for specifying practical components, they 
greatly simplify computations. After making computations using conven
ient values of R, L, and C, the designer can transform the convenient val
ues into realistic values using the process known as scaling. 

There are two types of scaling: magnitude and frequency. We scale a 
circuit in magnitude by multiplying the impedance at a given frequency by 
the scale factor km. Thus we multiply all resistors and inductors by km and 
all capacitors by l/km. If we let unprimed variables represent the initial 
values of the parameters, and we let primed variables represent the scaled 
values of the variables, we have 

R' = kmR, L' = kmL, and C = C/k, (15.7) 

Note that km is by definition a positive real number that can be either less 
than or greater than 1. 

In frequency scaling, we change the circuit parameters so that at the 
new frequency, the impedance of each element is the same as it was at the 
original frequency. Because resistance values are assumed to be independ
ent of frequency, resistors are unaffected by frequency scaling. If we let kf 
denote the frequency scale factor, both inductors and capacitors are multi
plied by \/kf. Thus for frequency scaling, 

R' = R, L' = L/kf, and C = C/kf. (15.8) 

The frequency scale factor kf is also a positive real number that can be less 
than or greater than unity. 

A circuit can be scaled simultaneously in both magnitude and frequency. 
The scaled values (primed) in terms of the original values (unprimed) are 

R = kmR, 

k, 
L' = - ^ L, 

C = 

7 

kmkf 
C. (15.9) 
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The Use of Scaling in the Design of Op Amp Filters 
To use the concept of scaling in the design of op amp filters, first select 
the cutoff frequency, coc, to be 1 rad/s (if you are designing low- or high-
pass filters), or select the center frequency, w0, to be 1 rad/s (if you are 
designing bandpass or bandreject filters).Then select a 1 F capacitor and 
calculate the values of the resistors needed to give the desired passband 
gain and the 1 rad/s cutoff or center frequency. Finally, use scaling to 
compute more realistic component values that give the desired cutoff or 
center frequency. 

Example 15.3 illustrates the scaling process in general, and 
Example 15.4 illustrates the use of scaling in the design of a low-pass filter. 

Example 15.3 Scaling a Series RLC Circuit 

The series RLC circuit shown in Fig. 15.7 has a cen
ter frequency of V l / L C = 1 rad/s, a bandwidth of 
R/L = 1 rad/s, and thus a quality factor of 1. Use 
scaling to compute new values of R and L that yield 
a circuit with the same quality factor but with a cen
ter frequency of 500 Hz. Use a 2 /xF capacitor. 

Figure 15.7 • The series RLC circuit for Example 15.3. 

Solution 

Begin by computing the frequency scale factor that 
will shift the center frequency from 1 rad/s to 
500 Hz. The unprimed variables represent values 

before scaling, whereas the primed variables repre
sent values after scaling. 

o)'() 277-(500) 
lf I 

= 3141.59. 

Now, use Eq. 15.9 to compute the magnitude scale 
factor that, together with the frequency scale factor, 
will yield a capacitor value of 2 fxF: 

km ~~ 
J_C_ 
kfC 

1 

(3141.59)(2 X 10"(1) 
= 159.155. 

Use Eq. 15.9 again to compute the magnitude- and 
frequency-scaled values of R and L: 

R' 

V 

kmR 159.155 ft, 

L = 50.66 mH. 

With these component values, the center fre
quency of the series RLC circuit is 
VTJLC = 3141.61 rad/s or 500 Hz, and the band
width is R/L = 3141.61 rad/s or 500 Hz; thus the 
quality factor is still 1. 

Example 15.4 Scaling a Prototype Low-Pass Op Amp Filter 

Use the prototype low-pass op amp filter from 
Example 15.1, along with magnitude and frequency 
scaling, to compute the resistor values for a low-
pass filter with a gain of 5, a cutoff frequency of 
1000 Hz, and a feedback capacitor of 0.01 /xF. 
Construct a Bode plot of the resulting transfer func
tion's magnitude. 

Solution 

To begin, use frequency scaling to place the cutoff 
frequency at 1000 Hz: 

kf = to'c/toc = 2TT(1000)/1 = 6283.185, 

where the primed variable has the new value and 
the unprimed variable has the old value of the cut
off frequency. Then compute the magnitude scale 
factor that, together with kf = 6283.185, will scale 
the capacitor to 0.01 /xF: 

1 

kf C (6283.185)(10^) 
15,915.5. 

Since resistors are scaled only by using magnitude 
scaling, 

R\ = /¾ = kmR = (15,915.5)(1) = 15,915.511. 
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Finally, we need to meet the passband gain 
specification. We can adjust the scaled values of 
either Rx or R2, because K = #2/^1 • If w e adjust 
R2, we will change the cutoff frequency, because 
UJC - l/RiC. Therefore, we can adjust the value of 
R] to alter only the passband gain: 

Rt = R2/K = (15,915.5)/(5) = 3183.1 O. 

The final component values are 

R{= 3183.1X1, /?2 = 15,915.5 O, C = 0.01 /xF. 

The transfer function of the filter is given by 

-31,415.93 
H™ ~ s + 6283.185' 

The Bode plot of the magnitude of this transfer 
function is shown in Fig. 15.8. 

/ASSESSMENT PROBLEM 

Objective 2—Be able to design filter drcuits starting 
response and component values 

15.3 What magnitude and frequency scale factors 
will transform the prototype high-pass filter 
into a high-pass filter with a 0.5 fxF capacitor 
and a cutoff frequency of 10 kHz? 

NOTE: Also try Chapter Problems 15.15 and 15.16. 

15.3 Op Amp Bandpass 
and Bandreject Filters 

We now turn to the analysis and design of op amp circuits that act as band
pass and bandreject filters. While there is a wide variety of such op amp 
circuits, our initial approach is motivated by the Bode plot construction 
shown in Fig. 15.9. We can see from the plot that the bandpass filter con
sists of three separate components: 

1. A unity-gain low-pass filter whose cutoff frequency is <wc.2, the larger 
of the two cutoff frequencies; 

2. A unity-gain high-pass filter whose cutoff frequency is coc[, the 
smaller of the two cutoff frequencies; and 

3. A gain component to provide the desired level of gain in 
the passband. 
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Figure 15.8 • The Bode magnitude plot of the low-pass filter from 
Example 15.4. 
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with a prototype and use scaling to achieve desired frequency 

Answer: kf = 62,831.85, km = 31.831. 
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Figure 15.9 A Constructing the Bode magnitude plot of a bandpass filter. 

These three components are cascaded in series. They combine additively 
in the Bode plot construction and so will combine multiplicatively in the 
s domain. It is important to note that this method of constructing a band
pass magnitude response assumes that the lower cutoff frequency (ooc]) is 
smaller than the upper cutoff frequency (o)c2). The resulting filter is called 
a broadband bandpass filter, because the band of frequencies passed is 
wide. The formal definition of a broadband filter requires the two cutoff 
frequencies to satisfy the equation 

> 2. 

As illustrated by the Bode plot construction in Fig. 15.9, we require the 
magnitude of the high-pass filter be unity at the cutoff frequency of the 
low-pass filter and the magnitude of the low-pass filter be unity at the cut
off frequency of the high-pass filter. Then the bandpass filter will have the 
cutoff frequencies specified by the low-pass and high-pass filters. We need 
to determine the relationship between ft>t<1 and (oc2 that will satisfy the 
requirements illustrated in Fig. 15.9. 

We can construct a circuit that provides each of the three compo
nents by cascading a low-pass op amp filter, a high-pass op amp filter, 
and an inverting amplifier (see Section 5.3), as shown in Fig. 15.10(a). 
Figure 15.10(a) is a form of illustration called a block diagram. Each 
block represents a component or subcircuit, and the output of one 
block is the input to the next, in the direction indicated. We wish to 
establish the relationship between (oc] and OJC2 that will permit each sub-
circuit to be designed independently, without concern for the other sub-
circuits in the cascade. Then the design of the bandpass filter is reduced 
to the design of a unity-gain first-order low-pass filter, a unity-gain first-
order high-pass filter, and an inverting amplifier, each of which is a sim
ple circuit. 
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Figure 15.10 • A cascaded op amp bandpass filter, (a) The block diagram, (b) The circuit. 

The transfer function of the cascaded bandpass filter is the product of 
the transfer functions of the three cascaded components: 

wc2 —s 1^ 
R; S + (Oc2/ \S + (Oci 

-Ktoc2s 

(s + mcl)(s + <oc2) 

-K(Oc2s 

s2 + {oicX + <oc2)s + cocicoc2 

(15.10) 

We notice right away that Eq. 15.10 is not in the standard form for the 
transfer function of a bandpass filter discussed in Chapter 14, namely, 

# B P -
13s 

s2 + f3s + a)2, 

In order to convert Eq. 15.10 into the form of the standard transfer func
tion for a bandpass filter, we require that 

When Eq. 15.11 holds, 

(x)c2 » U)ci. 

(a)c[ + 0)c2) » wc2, 

( 1 5 . 1 1 ) 

and the transfer function for the cascaded bandpass filter in 
Eq. 15.10 becomes 

H(s) 
Kcoc2s 

S + (Oc2S + 0)c[OJc2 

Once we confirm that Eq. 15.11 holds for the cutoff frequencies spec
ified for the desired bandpass filter, we can design each stage of the cas
caded circuit independently and meet the filter specifications. We 
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compute the values of RL and CL in the low-pass filter to give us the 
desired upper cutoff frequency, GJC2: 

1 
W,9 

RJCL' 
(15.12) 

We compute the values of RH and Cu in the high-pass filter to give us the 
desired lower cutoff frequency, a)c]: 

1 
U)cl = 

RHCH 
(15.13) 

Now we compute the values of R; and Rf in the inverting amplifier 
to provide the desired passband gain. To do this, we consider the magni
tude of the bandpass filter's transfer function, evaluated at the center 
frequency, co(): 

\H(j<«o)\ 
Ka)c2(j(D0) 

&c2 

K. (15.14) 

Recall from Chapter 5 that the gain of the inverting amplifier is 
Rf/Ri- Therefore, 

R< 
\H(j*>„)\ = - / 

Ri 
(15.15) 

Any choice of resistors that satisfies Eq. 15.15 will produce the desired 
passband gain. 

Example 15.5 illustrates the design process for the cascaded band
pass filter. 

Example 15.5 Designing a Broadband Bandpass Op Amp Filter 

Design a bandpass filter for a graphic equalizer to 
provide an amplification of 2 within the band of fre
quencies between 100 and 10,000 Hz. Use 0.2 fx¥ 
capacitors. 

Solution 
We can design each subcircuit in the cascade and 
meet the specified cutoff frequency values only if 
Eq. 15.11 holds. In this case, (oc2 = 100wcl, so we can 
say that a)c2 » cocl. 

Begin with the low-pass stage. From Eq. 15.12, 

1 
<*c2 

R, = 

R,C iy-L 
2TT( 10000), 

1 

[2TT( 10000)] (0.2 X 10"6) 

son. 

Next, we turn to the high-pass stage. From Eq. 15.13, 

1 
°M RuC H^H 

Ru — 

= 277(100), 

1 

[27r(100)](0.2 x 10"(1) 

% 7958 O. 

Finally, we need the gain stage. From Eq. 15.15, we 
see there are two unknowns, so one of the resistors 
can be selected arbitrarily. Let's select a 1 kH resis
tor for R[. Then, from Eq. 15.15, 

Rf = 2(1000) 

= 2000 a = 2 k a . 
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The resulting circuit is shown in Fig. 15.11. We 
leave to you to verify that the magnitude of this cir
cuit's transfer function is reduced by 1/V2 at both 
cutoff frequencies, verifying the validity of the 
assumption coc2 » w t l. 

0.2 fxF 

7958 ft 

7958 ft °2 M F 

I "WV 1 £ — 

Figure 15.11 A The cascaded op amp bandpass filter designed in Example 15.5. 

We can use a component approach to the design of op amp bandreject 
filters too, as illustrated in Fig. 15.12. Like the bandpass filter, the band-
reject filter consists of three separate components. There are important 
differences, however: 

1. The unity-gain low-pass filter has a cutoff frequency of wcl, which is 
the smaller of the two cutoff frequencies. 

2. The unity-gain high-pass filter has a cutoff frequency of a)c2, which 
is the larger of the two cutoff frequencies. 

3. The gain component provides the desired level of gain in 
the passbands. 

-40 
5 10 50 100 500 1000 5000 10,000 

(o (rad/s) 

Figure 15.12 • Constructing the Bode magnitude plot of a bandreject filter. 



The most important difference is that these three components cannot 
be cascaded in series, because they do not combine additively on the Bode 
plot. Instead, we use a parallel connection and a summing amplifier, as 
shown both in block diagram form and as a circuit in Fig. 15.13. Again, it is 
assumed that the two cutoff frequencies are widely separated, so that the 
resulting design is a broadband bandreject filter, and ioc2 » wcl. Then 
each component of the parallel design can be created independently, and 
the cutoff frequency specifications will be satisfied. The transfer function 
of the resulting circuit is the sum of the low-pass and high-pass filter trans
fer functions. From Fig. 15.13(b), 

H(s) 
-a>ci 

+ S + 0)c\ S + 0)c2 

Rf{u)cX{s + o)c2) + s(s + o>cl) 

R \ (S + a>cl)(s + (OC2) 

Rffs2 + 2cociS + o)C]C0c2 

Rt \ (s + o)cl)(s + (oc2) 
(15.16) 

Using the same rationale as for the cascaded bandpass filter, the two 
cutoff frequencies for the transfer function in Eq. 15.16 are a>cl and (oc2 

only if oicl » mc\. Then the cutoff frequencies are given by the equations 

1 
Wcl 

&cl 

RLCL 

1 

Rfl^H 

(15.17) 

(15.18) 

Vi 

Low-pass filter 

High-pass filter 

Summing amplifier 

(b) 

Figure 15.13 A A parallel op amp bandreject filter, (a) The block diagram, (b) The circuit. 
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In the two passbands (as s 
tion is Rf/Ri. Therefore, 

0 and s —» oo), the gain of the transfer func-

=3 (15.19) 

As with the design of the cascaded bandpass filter, we have six unknowns 
and three equations. Typically we choose a commercially available capacitor 
value for CL and CH. Then Eqs. 15.17 and 15.18 permit us to calculate RL 

and RH to meet the specified cutoff frequencies. Finally, we choose a value 
for either Rf or R{ and then use Eq. 15.19 to compute the other resistance. 

Note the magnitude of the transfer function in Eq. 15.16 at the center 
frequency, co() = Vwcl, o>c2: 

\H(j<*o)\ = 
* / (;o>0)

2 + 2(0cl(j(oo) + (ociioc2 

RA(M2 + (Wcl + Wc2)(/ft>0) + (OclCOc2 

Rf 2d), c\ 

Rl 0)c\ + (x)c2 
Rf 20),! 

fy ft>c2 ' 
(15.20) 

If (oc2 » a>ch then \H(j(0o)\ <5C 2Rf/Rj (as <oci/(oc2 <5C 1), so the magni
tude at the center frequency is much smaller than the passband magnitude. 
Thus the bandreject filter successfully rejects frequencies near the center 
frequency, again confirming our assumption that the parallel implementa
tion is meant for broadband bandreject designs. 

Example 15.6 illustrates the design process for the parallel band-
reject filter. 

Example 15.6 Designing a Broadband Bandreject Op Amp Filter 

Design a circuit based on the parallel bandreject op 
amp filter in Fig. 15.13(b). The Bode magnitude 
response of this filter is shown in Fig. 15.14. Use 
0.5 fxF capacitors in your design. 

Solution 

From the Bode magnitude plot in Fig. 15.14, we see 
that the bandreject filter has cutoff frequencies of 
100 rad/s and 2000 rad/s and a gain of 3 in the pass-
bands. Thus, (oc2 = 20wcl, so we make the assump
tion that o)c2 » (ocl. Begin with the prototype 
low-pass filter and use scaling to meet the specifica
tions for cutoff frequency and capacitor value. The 
frequency scale factor kt is 100, which shifts the cut
off frequency from 1 rad/s to 100 rad/s. The magni
tude scale factor km is 20,000, which permits the use 
of a 0.5 /xF capacitor. Using these scale factors 
results in the following scaled component values: 

RL = 20 k a , 

CL = 0.5 uF. 
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Figure 15.14 A The Bode magnitude plot for the circuit to be designed 
in Example 15.6. 
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The resulting cutoff frequency of the low-pass filter 
component is 

1 
ft>d = 

RLCI 

1 

(20 X 103)(0.5 X 10-6) 

= lOOrad/s. 

We use the same approach to design the high-
pass filter, starting with the prototype high-pass op 
amp filter. Here, the frequency scale factor is 
kf = 2000, and the magnitude scale factor is 
km = 1000, resulting in the following scaled com
ponent values: 

RH = 1 kO, 

CH = 0.5 /x¥. 

Finally, because the cutoff frequencies are 
widely separated, we can use the ratio Rf/Ri to 
establish the desired passband gain of 3. Let's choose 
Ri = 1 kft, as we are already using that resistance 
for RH. Then Rf = 3 kft, and K = Rf/Ri = 
3000/1000 = 3. The resulting parallel op amp band-
reject filter circuit is shown in Fig. 15.15. 

Now let's check our assumption that 
°°c2 > : > wti by calculating the actual gain at the 
specified cutoff frequencies. We do this by making 
the substitutions s = /277-(100) and s = /2-77-(2000) 
into the transfer function for the parallel bandreject 
filter, Eq. 15.16 and calculating the resulting magni
tude. We leave it to the reader to verify that the 
magnitude at the specified cutoff frequencies is 
2.024, which is less than the magnitude of 
3/V2 = 2.12 that we expect. Therefore, our reject
ing band is somewhat wider than specified in the 
problem statement. 

Figure 15.15 • The resulting bandreject filter circuit designed in Example 15.6. 

NOTE: Assess your understanding of this material by trying Chapter Problems 15.30 and 15.31. 

15.4 Higher Order Op Amp Filters 
You have probably noticed that all of the filter circuits we have exam
ined so far, both passive and active, are nonideal. Remember from 
Chapter 14 that an ideal filter has a discontinuity at the point of cutoff, 
which sharply divides the passband and the stopband. Although we can
not hope to construct a circuit with a discontinuous frequency response, 
we can construct circuits with a sharper, yet still continuous, transition at 
the cutoff frequency. 



Cascading Identical Filters 
How can we obtain a sharper transition between the passband and the 
stopband? One approach is suggested by the Bode magnitude plots in 
Fig. 15.16. This figure shows the Bode magnitude plots of a cascade of 
identical prototype low-pass filters and includes plots of just one filter, two 
in cascade, three in cascade, and four in cascade. It is obvious that as more 
filters are added to the cascade, the transition from the passband to the 
stopband becomes sharper. The rules for constructing Bode plots (from 
Appendix E) tell us that with one filter, the transition occurs with an 
asymptotic slope of 20 decibels per decade (dB/dec). Because circuits in 
cascade are additive on a Bode magnitude plot, a cascade with two filters 
has a transition with an asymptotic slope of 20 + 20 = 40 dB/dec; for 
three filters, the asymptotic slope is 60 dB/dec, and for four filters, it is 
80 dB/dec. as seen in Fig. 15.16. 

In general, an ^-element cascade of identical low-pass filters will transi
tion from the passband to the stopband with a slope of 20« dB/dec. Both 
the block diagram and the circuit diagram for such a cascade are shown in 
Fig. 15.17. It is easy to compute the transfer function for a cascade of n pro
totype low-pass filters—we just multiply the individual transfer functions: 

(-nn 

The order of a filter is determined by the number of poles in its trans
fer function. From Eq. 15.21, we see that a cascade of first-order low-pass 
filters yields a higher order filter. In fact, a cascade of n first-order filters 
produces an /zth-order filter, having n poles in its transfer function and a 
final slope of 20« dB/dec in the transition band. 
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Figure 15.16 A The Bode magnitude plot of a cascade of identical 
prototype first-order filters. 
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Low-pass filter Low-pass filter Low-pass filter 

(a) 

(b) 

Figure 15.17 • A cascade of identical unity-gain low-pass filters, (a) The block diagram, (b) The circuit. 

There is an important issue yet to be resolved, as you will see if you 
look closely at Fig. 15.16. As the order of the low-pass filter is increased by 
adding prototype low-pass filters to the cascade, the cutoff frequency also 
changes. For example, in a cascade of two first-order low-pass filters, the 
magnitude of the resulting second-order filter at o>c. is - 6 dB, so the cutoff 
frequency of the second-order filter is not wt.. In fact, the cutoff frequency 
is less than ooc. 

As long as we are able to calculate the cutoff frequency of the higher 
order filters formed in the cascade of first-order filters, we can use fre
quency scaling to calculate component values that move the cutoff fre
quency to its specified location. If we start with a cascade of n prototype 
low-pass filters, we can compute the cutoff frequency for the resulting 
Azth-order low-pass filter. We do so by solving for the value of mcn that results 
in 1//(/0))1 = 1/V2: 

H{s) = 

\H(jO>cn)\ = 

1 

(-1)* 
(s + ir 

i 

(M-„ + 1)" 
l 

l 

(V^~TT)" V2' 

l _ (±y/n 

, + 1 \ V 2 / 

V 2 = o)ctl + 1, 

1. (15.22) 

To demonstrate the use of Eq. 15.22, let's compute the cutoff fre
quency of a fourth-order unity-gain low-pass filter constructed from a cas
cade of four prototype low-pass filters: 

a)c4 2 - 1 = 0.435 rad/s. (15.23) 
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Thus, we can design a fourth-order low-pass filter with any arbitrary cutoff 
frequency by starting with a fourth-order cascade consisting of prototype 
low-pass filters and then scaling the components by kt = wc/0.435 to 
place the cutoff frequency at any value of wc desired. 

Note that we can build a higher order low-pass filter with a 
nonunity gain by adding an inverting amplifier circuit to the cascade. 
Example 15.7 illustrates the design of a fourth-order low-pass filter 
with nonunity gain. 

Example 15.7 Designing a Fourth-Order Low-Pass Op Amp Filter 

Design a fourth-order low-pass filter with a cutoff 
frequency of 500 Hz and a passband gain of 10. Use 
1 fxF capacitors. Sketch the Bode magnitude plot 
for this filter. 

Finally, add an inverting amplifier stage with a gain 
of Rf/Ri = 10. As usual, we can arbitrarily select one 
of the two resistor values. Because we are already 
using 138.46 11 resistors, let /¾ = 138.46 ft; then, 

Solution 

We begin our design with a cascade of four proto
type low-pass filters. We have already used 
Eq. 15.23 to calculate the cutoff frequency for the 
resulting fourth-order low-pass filter as 0.435 rad/s. 
A frequency scale factor of kf = 7222.39 will scale 
the component values to give a 500 Hz cutoff fre
quency. A magnitude scale factor of k,n = 138.46 
permits the use of 1 (JLF capacitors. The scaled com
ponent values are thus 

R = 138.46 0 ; C = l/xF. 

Rf = 10/¾ 1384.6 tt. 

The circuit for this cascaded the fourth-order 
low-pass filter is shown in Fig. 15.18. It has the 
transfer function 

H(s) = - 1 0 
7222.39 

s + 7222.39 

The Bode magnitude plot for this transfer func
tion is sketched in Fig. 15.19. 

Figure 15.18 A The cascade circuit for the fourth-order low-pass filter designed in Example 15.7. 
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Figure 15.19 A The Bode magnitude plot for the fourth-order low-pass 

fitter designed in Example 15.7. 

By cascading identical low-pass filters, we can increase the asymptotic 
slope in the transition and control the location of the cutoff frequency, but 
our approach has a serious shortcoming: The gain of the filter is not con
stant between zero and the cutoff frequency ooc. Remember that in an 
ideal low-pass filter, the passband magnitude is 1 for all frequencies below 
the cutoff frequency. But in Fig. 15.16, we see that the magnitude is less 
than 1 (0 dB) for frequencies much less than the cutoff frequency. 

This nonideal passband behavior is best understood by looking at the 
magnitude of the transfer function for a unity-gain low-pass nth-order cas
cade. Because 

H(s) 

the magnitude is given by 

1//0)1 = 

(* + "«,)"' 

cocn 

Va? + (x)lr 

\/(co/a>cn)2 + 1 
(15.24) 

As we can see from Eq. 15.24, when (o <5C (oa„ the denominator is 
approximately 1, and the magnitude of the transfer function is also nearly 1. 
But as a) —* (ocn, the denominator becomes larger than 1, so the magnitude 
becomes smaller than 1. Because the cascade of low-pass filters results in 
this nonideal behavior in the passband, other approaches are taken in the 
design of higher order filters. One such approach is examined next. 



Butterworth Filters 
A unity-gain Butterworth low-pass filter has a transfer function whose 
magnitude is given by 

\H(ja>)\ = , =====, (15.25) 
V l + (co/coc)

2" 

where n is an integer that denotes the order of the filter.1 

When studying Eq. 15.25, note the following: 

1. The cutoff frequency is o)c rad/s for all values of n. 

2. If n is large enough, the denominator is always close to unity when 
a) < coc. 

3. In the expression for | H(ja>)\, the exponent of co/coc is always even. 

This last observation is important, because an even exponent is required 
for a physically realizable circuit (see Problem 15.26). 

Given an equation for the magnitude of the transfer function, how do 
we find H(s)? The derivation for H(s) is greatly simplified by using a proto
type filter.Therefore, we set o)c equal to 1 rad/s in Eq. 15.25. As before, we 
will use scaling to transform the prototype filter to a filter that meets the 
given filtering specifications. 

To find H(s), first note that if N is a complex quantity, then 
\N\2 = NN*, where N* is the conjugate of N. It follows that 

\H(jto)\2 = H{jo))H{-ia>). (15.26) 

But because s = jco, we can write 

\H(jo))\2 = H(S)H(S). (15.27) 

Now observe that s2 = — a?. Thus, 

\H(j<o)\2 = 
1 + 

1 + 

1 + 

a>2" 

1 

(<o2y 

1 

is2)" 
1 

1 + (- l)V' 

or 

H(s)H(-s) = , , , - ^ . (15.28) 
1 + (-l)'V 

The procedure for finding H(s) for a given value of n is as follows: 

1. Find the roots of the polynomial 

1 + ( - l ) \v 2 * = 0. 

2. Assign the left-half plane roots to H(s) and the right-half plane 
roots to H(-s). 

3. Combine terms in the denominator of H(s) to form first- and 
second-order factors. 

Example 15.8 illustrates this process. 

1 This filter was developed by the British engineer S. Butterworth and reported in Wireless 
Engineering 7 (1930): 536-541. 
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Example 15.8 Calculating Butterworth Transfer Functions 

Find the Butterworth transfer functions for n = 2 
and n = 3. 

Solution 

For n = 2, we find the roots of the polynomial 

1 + ( - l ) V = 0. 

Rearranging terms, we find 

s4 = - 1 = 1/180°. 

Therefore, the four roots are 

*i = 1 /4T = 1/V5 + j/V2, 

s2 = 1/135° = - 1 / V 2 + j/V2, 

s3 = 1/225° = - 1 / V 2 + - / / V 2 , 

s4 = 1/315° = 1/V2 + - / / V 2 . 

Roots s2 and .y3 are in the left-half plane. Thus, 

H{$) = (s + 1/V2 - j/V2)(s + 1/V5 + ; / V 5 ) 

_ 1 

" (52 + V5s + 1)' 

For n = 3, we find the roots of the polynomial 

l + ( - i ) V = o. 

Rearranging terms, 

s6 = 1/ry = 1/360°. 

Therefore, the six roots are 

st = l / o : = l, 

.v2 = 1/60° = 1/2 + /V5/2, 

53 = 1/120° = - 1 / 2 + /V3/2 , 

s4 = 1/180° = - 1 + / 0 , 

.v5 = 1/240° = -1/2 + - /V3 /2 , 

.vA = 1/300° = 1/2 + - ; 'V3/2. 

Roots S3, \4 , and s$ are in the left-half plane. Thus, 

H ^ ~ (s + 1)(5 + 1/2 - j\/3/2)(s + 1/2 + /V3/2) 

1 

" Cv+l)(.v2 + .v+ 1)' 

We note in passing that the roots of the 
Butterworth polynomial are always equally spaced 
around the unit circle in the s plane. To assist in the 
design of Butterworth filters, Table 15.1 lists the 
Butterworth polynomials up to n = 8. 

TABLE 15.1 Normalized (so that coc = 1 rad/s) Butterworth Polynomials up to the Eighth Order 

/i wth-Order Butterworth Polynomial 

1 (s + 1) 

2 ( r + V2.v + 1) 

3 (s + 1)(52 + s + 1) 

4 (.v2 + 0.7655 + l ) ( r + 1.848s + 1) 

5 (J + l ) ( r + 0.618s + 1)(52 + 1.6185 + 1) 

6 (52 + 0.5185 + 1)(52 + V2 + 1)(52 + 1.9325 + 1) 

7 (5 + 1)(52 + 0.4455 + 1)(52 + 1.2475 + 1)(52 + 1.8025 + 1) 

8 (52 + 0.3905 + 1)(52 + 1.111s + l)(s2 + 1.6663s + l)(s2 + 1.962s + 1) 

Butterworth Filter Circuits 

Now that we know how to specify the transfer function for a Butterworth 
filter circuit (either by calculating the poles of the transfer function directly 
or by using Table 15.1), we turn to the problem of designing a circuit with 
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Figure 15.21 A A circuit that provides the second-order 
transfer function for the Butterworth filter cascade. 

such a transfer function. Notice the form of the Butterworth polynomials 
in Table 15.1. They are the product of first- and second-order factors; 
therefore, we can construct a circuit whose transfer function has a 
Butterworth polynomial in its denominator by cascading op amp circuits, 
each of which provides one of the needed factors. A block diagram of such 
a cascade is shown in Fig. 15.20, using a fifth-order Butterworth poly
nomial as an example. 

All odd-order Butterworth polynomials include the factor (s + 1), 
so all odd-order Butterworth filter circuits must have a subcircuit that 
provides the transfer function H(s) = 1/(5 + 1). This is the transfer 
function of the prototype low-pass op amp filter from Fig. 15.1. So what 
remains is to find a circuit that provides a transfer function of the form 
H(s) = l/(s2 +bis + 1). 

Such a circuit is shown in Fig. 15.21. The analysis of this circuit begins 
by writing the s-domain nodal equations at the noninverting terminal of 
the op amp and at the node labeled Va: 

y - y V - V 
+ (Va - V0)sCx + ^ ^ = 0, R 

V0sC2 + 

R 

Vn - V* 
R 

= 0. 

(15.29) 

(15.30) 

Simplifying Eqs. 15.29 and 15.30 yields 

(2 + RChs)Va - ( 1 + RClS)V0 = V, , (15.31) 

-Va + (1 + RC2s)Va = 0. (15.32) 

Using Cramer's rule with Eqs. 15.31 and 15.32, we solve for Va: 

Vn = 

2+RC^s V, 

- 1 0 

2+RChs -(1+RCts) 

- 1 l+RC2s 

V; 

i?2C,C25
2 + 2RC2s + 1 

(15.33) 

Then, rearrange Eq. 15.33 to write the transfer function for the circuit in 
Fig. 15.21: 

*<'>--£ 
1 

R2CiC2 

sL + s + RC, R2CXC2 

(15.34) 

1 
s2 +0.6185+ 1 

1 
5 2 + 1.6185+ 1 

Figure 15.20 A A cascade of first- and second-order circuits with the indicated transfer 
functions yielding a fifth-order low-pass Butterworth filter with o)r = 1 rad/s. 
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Finally, set R = 1 fi in Eq. 15.34; then 

H(s) = 
C,C H-2 (15.35) 

r + —s + C\ C\C2 

Note that Eq. 15.35 has the form required for the second-order circuit 
in the Butterworth cascade. In other words, to get a transfer function of 
the form 

H(s) = 
1 

s2 + bh<> + 1 

we use the circuit in Fig. 15.21 and choose capacitor values so that 

Z?i = —- and 1 = 
C, ctc2 

(15.36) 

We have thus outlined the procedure for designing an /ith-order 
Butterworth low-pass filter circuit with a cutoff frequency of wt. = 1 rad/s 
and a gain of 1 in the passband. We can use frequency scaling to calculate 
revised capacitor values that yield any other cutoff frequency, and we can 
use magnitude scaling to provide more realistic or practical component 
values in our design. We can cascade an inverting amplifier circuit to pro
vide a gain other than 1 in the passband. 

Example 15.9 illustrates this design process. 

Example 15.9 Designing a Fourth-Order Low-Pass Butterworth Filter 

Design a fourth-order Butterworth low-pass filter 
with a cutoff frequency of 500 Hz and a passband 
gain of 10. Use as many 1 k£l resistors as possible. 
Compare the Bode magnitude plot for this 
Butterworth filter with that of the identical cascade 
filter in Example 15.7. 

Solution 

From Table 15.1, we find that the fourth-order 
Butterworth polynomial is 

( r + 0.7655 + 1)(52 + 1.848^ + 1). 

We will thus need a cascade of two second-order fil
ters to yield the fourth-order transfer function plus 
an inverting amplifier circuit for the passband gain 
of 10. The circuit is shown in Fig. 15.22. 

Let the first stage of the cascade implement 
the transfer function for the polynomial 
(s2 + 0.765s + 1). From Eq. 15.36, 

Cj = 2.61 F, 

C2 = 0.38 F. 

Let the second stage of the cascade implement 
the transfer function for the polynomial 
(s2 + 1.8485 + 1). From Eq. 15.36, 

C3 = 1.08 F, 

C4 = 0.924 F. 

The preceding values for C^, C2, C3 , and C4 
yield a fourth-order Butterworth filter with a cutoff 
frequency of 1 rad/s. A frequency scale factor of 
kf = 3141.6 will move the cutoff frequency to 
500 Hz. A magnitude scale factor of km = 1000 will 
permit the use of 1 kft resistors in place of 1 ft 
resistors. The resulting scaled component values are 

R = 1 kft, 

C, = 831 nF, 

C2 = 121 nF, 

C3 = 344 nF, 

C, = 294 nF. 
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Finally, we need to specify the resistor values in the 
inverting amplifier stage to yield a passband gain 
of 10. Let 7?, = 1 kil ; then 

R MR, = 10 k O . 

Figure 15.23 compares the magnitude 
responses of the fourth-order identical cascade fil
ter from Example 15.7 and the Butterworth filter 

we just designed. Note that both filters provide a 
passband gain of 10 (20 dB) and a cutoff frequency 
of 500 Hz, but the Butterworth filter is closer to an 
ideal low-pass filter due to its flatter passband and 
steeper rolloff at the cutoff frequency. Thus, the 
Butterworth design is preferred over the identical 
cascade design. 

Figure 15.22 • A fourth-order Butterworth filter with non-unity gain. 
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Figure 15.23 • A comparison of the magnitude responses for a 
fourth-order low-pass filter using the identical cascade and Butterworth 
designs. 

The Order of a Butterworth Filter 

It should be apparent at this point that the higher the order of the 
Butterworth filter, the closer the magnitude characteristic comes to that of 
an ideal low-pass filter. In other words, as n increases, the magnitude stays 
close to unity in the passband, the transition band narrows, and the magni
tude stays close to zero in the stopband. At the same time, as the order 
increases, the number of circuit components increases. It follows then that 
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a fundamental problem in the design of a filter is to determine the small
est value of n that will meet the filtering specifications. 

In the design of a low-pass filter, the filtering specifications are usually 
given in terms of the abruptness of the transition region, as shown in 
Fig. 15.24. Once Ap, cop, Ax, and &>s are specified, the order of the 
Butterworth filter can be determined. 

For the Butterworth filter, 

20 log,,, 
1 

V l + cop" 

= -101og10(l + 4 " ) , 

As = 20 logio" 

(15.37) 

V l + cuj" 

= -101og I0(l +(*>;"). (15.38) 

It follows from the definition of the logarithm that 

10 0M '* = 1 + <4", (15.39) 

JQ-0.M, = i + w2n ( 1 5 4 0 j 

Now we solve for <an
p and to" and then form the ratio (toj(op)". We gel 

o) sV Vl0"°-M« - 1 

VuP M „ 1 

(T, 

(TT 
(15.41) 

where the symbols as and ap have been introduced for convenience. 
From Eq. 15.41 we can write 

n logu,(ws/o;p) = logH)(«-s/crp), 

or 

n = 
JoginWa>) 

logm(a>5/&)„) 
(15.42) 

We can simplify Eq. 15.42 if o)p is the cutoff frequency, because then Ap 

equals -20 log]()V2, and <rp = 1. Hence 

login o\ 

One further simplification is possible. We are using a Butterworth fil
ter to achieve a steep transition region. Therefore, the filtering specifica
tion will make 10~aM* » l.Thus 

C7S « U)-(mA\ (15.44) 

log,o as « -0.05/1,. (15.45) 

Therefore, a good approximation for the calculation of n is 

-0.05/4, 

Note that w5/w/} = fs/fp- so we can work with either radians per second or 
hertz to calculate n. 

\H(ja>)\ dB 

Stop band 

Figure 15.24 • Defining the transition region for a 
low-pass filter. 
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The order of the filter must be an integer; hence, in using either 
Eq. 15.42 or Eq. 15.46, we must select the nearest integer value greater 
than the result given by the equation. The following examples illustrate 
the usefulness of Eqs. 15.42 and 15.46. 

Example 15.10 Determining the Order of a Butterworth Filter 

a) Determine the order of a Butterworth filter that 
has a cutoff frequency of 1000 Hz and a gain of 
no more than - 5 0 dB at 6000 Hz. 

b) What is the actual gain in dB at 6000 Hz? 

Solution 

a) Because the cutoff frequency is given, we know 
av = 1. We also note from the specification that 

10 01( 50) is much greater than 1. Hence, we can 
use Eq. 15.46 with confidence: 

(-0.05)(-50) 

log10(6000/1000) 
= 3.21. 

Therefore, we need a fourth-order Butterworth 
filter. 

b) We can use Eq. 15.25 to calculate the actual gain 
at 6000 Hz. The gain in decibels will be 

K = 20 log ID 
1 

Vl + 6* 
-62.25 dB. 

Example 15.11 An Alternate Approach to Determining the Order of a Butterworth Filter 

a) Determine the order of a Butterworth filter 
whose magnitude is 10 dB less than the passband 
magnitude at 500 Hz and at least 60 dB less than 
the passband magnitude at 5000 Hz. 

b) Determine the cutoff frequency of the filter 
(in hertz). 

c) What is the actual gain of the filter (in decibels) 
at 5000 Hz? 

Solution 

a) Because the cutoff frequency is not given, we use 
Eq. 15.42 to determine the order of the filter: 

<rp = Vl0-a,<-10> - 1 = 3, 

= \/1(ro.i(-60) - i ps loot), 

ojtop = fs/fp = 5000/500 = 10, 

log10(1000/3) 

* " log10(10) " 2 > 5 2 ' 

Therefore we need a third-order Butterworth 
filter to meet the specifications. 

b) Knowing that the gain at 500 Hz is — 10 dB, we can 
determine the cutoff frequency. From Eq. 15.25 we 
can write 

-101og10[l + (co/cocf) = - 1 0 , 

where u> = 10007T rad/s. Therefore 

1 + (w/o>c)
6 = 10, 

and 

0) 

= 2178.26 rad/s. 

It follows that 

fc = 346.68 Hz. 

c) The actual gain of the filter at 5000 Hz is 

K = -10 log10[l + (5000/346.68)6] 

= -69.54 dB. 
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Butterworth High-Pass, Bandpass, and Bandreject Filters 
An nth-order Butterworth high-pass filter has a transfer function with the 
nth-order Butterworth polynomial in the denominator, just like the nth-order 
Butterworth low-pass filter. But in the high-pass filter, the numerator of the 
transfer function is sn, whereas in the low-pass filter, the numerator is 1. 
Again, we use a cascade approach in designing the Butterworth high-pass 
filter. The first-order factor is achieved by including a prototype high-pass 
filter (Fig. 15.4, with R{ = R2 = 1 XI, and C = 1 F) in the cascade. 

To produce the second-order factors in the Butterworth polynomial, 
we need a circuit with a transfer function of the form 

H(s) = 
s2 

s2 + bis + I 

Such a circuit is shown in Fig. 15.25. 
This circuit has the transfer function 

V v2 

H(s) = - f = - — — . (15.47) 
Vi 2 2 

s2 + ^—:s •+ R2C RXR2C
2 

Setting C = 1 F yields 

.v2 

H(s) = — . (15.48) 
s2 + —s + 

R2 R\R2 

Thus, we can realize any second-order factor in a Butterworth polynomial 
of the form (s2 + bxs + 1) by including in the cascade the second-order 
circuit in Fig. 15.25 with resistor values that satisfy Eq. 15.49: 

hx = — and 1 = ——. (15.49) 
1\2 *M \̂> 

At this point, we pause to make a couple of observations relative to 
Figs. 15.21 and 15.25 and their prototype transfer functions 
l/(s2 + bxs + 1) and s2/(s2 + b^s + 1). These observations are impor
tant because they are true in general. First, the high-pass circuit in Fig. 
15.25 was obtained from the low-pass circuit in Fig. 15.21 by interchanging 
resistors and capacitors. Second, the prototype transfer function of a high-
pass filter can be obtained from that of a low-pass filter by replacing s in 
the low-pass expression with \/s (see Problem 15.48). 

We can use frequency and magnitude scaling to design a Butterworth 
high-pass filter with practical component values and a cutoff frequency 
other than 1 rad/s. Adding an inverting amplifier to the cascade will 
accommodate designs with nonunity passband gains. The problems at the 
end of the chapter include several Butterworth high-pass filter designs. 

Now that we can design both nth-order low-pass and high-pass 
Butterworth filters with arbitrary cutoff frequencies and passband gains, 
we can combine these filters in cascade (as we did in Section 15.3) to pro
duce nth-order Butterworth bandpass filters. We can combine these filters 
in parallel with a summing amplifier (again, as we did in Section 15.3) to 
produce nth-order Butterworth bandreject filters. This chapter's problems 
also include Butterworth bandpass and bandreject filter designs. 

Figure 15.25 A A second-order Butterworth high-pass 
filter circuit. 



586 Active Filter Circuits 

/ A S S E S S M E N T PROBLEM 

Objective 3—Understand how to use cascaded first- and second-order Butterworth filters 

15.4 For the circuit in Fig. 15.25, find values of i?t Answer: Rx = 0.707 Q,, R2 = 1.41 O 
and R2 that yield a second-order prototype 
Butterworth high-pass filter. 

NOTE: Also try Chapter Problems 15.36,15.38 and 15.39. 

15.5 Narrowband Bandpass and 
Bandreject Filters 

The cascade and parallel component designs for synthesizing bandpass 
and bandreject filters from simpler low-pass and high-pass filters have the 
restriction that only broadband, or low-Q, filters will result. (The Q, of 
course, stands for quality factor.) This limitation is due principally to the 
fact that the transfer functions for cascaded bandpass and parallel band-
reject filters have discrete real poles. The synthesis techniques work best 
for cutoff frequencies that are widely separated and therefore yield the 
lowest quality factors. But the largest quality factor we can achieve with 
discrete real poles arises when the cutoff frequencies, and thus the pole 
locations, are the same. Consider the transfer function that results: 

H(s) s 
S + (x)c/\S + CO, 

SOOc 

s2 + 2(ocs + at2 

0.5/3.5 

s2 + (3s + arc' 
(15.50) 

Eq. 15.50 is in the standard form of the transfer function of a bandpass filter, 
and thus we can determine the bandwidth and center frequency directly: 

/3 = 2(DC, (15.51) 

o?0 = t*l (15-52) 

From Eqs. 15.51 and 15.52 and the definition of Q, we see that 

(Jin 00,. 1 
Q = 

2oOr 

(15.53) 

Thus with discrete real poles, the highest quality bandpass filter (or band-
reject filter) we can achieve has Q = 1/2. 

To build active filters with high quality factor values, we need an op 
amp circuit that can produce a transfer function with complex conjugate 
poles. Figure 15.26 depicts one such circuit for us to analyze. At the invert
ing input of the op amp, we sum the currents to get 

K 

Figure 15.26 • An active high-Q bandpass filter. 
^ -Vg 

X/sC R3 
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Solving for V.v 

K = -£-• (15.54) 

At the node labeled a, we sum the currents to get 

Solving for V,-, 

v, 

v, -
R 

= (1 

V V 

I 

+ 2sRxC 

- va v, 
\/sC 1/sC 

+ RJR2)V.A -

Ri 

sRtCV0 (15.55) 

Substituting Eq. 15.54 into Eq. 15.55 and then rearranging, we get an 
expression for the transfer function V0/ Vt: 

—s 

where 

H{S) = - — ^ , (15.56) 

^2 + TTTP + o 
R3C RCHR3C

2 

Rsq = R1]\R2 = 
R{ + R2 

Since Eq. 15.56 is in the standard form of the transfer function for a 
bandpass filter, that is, 

s~ + ps + a>; 

we can equate terms and solve for the values of the resistors, which will 
achieve a specified center frequency («„), quality factor (Q), and passband 
gain (K): 

fi = ^ ; (15.57) 

Kf3 = — ; (15.58) 

^ = TT7*- (15l59) 

At this point, it is convenient to define the prototype version of the 
circuit in Fig. 15.25 as a circuit in which o>0 = 1 rad/s and C = 1 F. Then 
the expressions for R^, R2, and R3 can be given in terms of the desired 
quality factor and passband gain. We leave you to show (in Problem 15.45) 
that for the prototype circuit, the expressions for Ri, R2, and R3 are 

Ri = Q/K, 

Ri = Q/(2Q2 - K), 

R3 = 2Q. 

Scaling is used to specify practical values for the circuit components. This 
design process is illustrated in Example 15.12. 
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Designing a High-Q Bandpass Filter 

Design a bandpass filter, using the circuit in Fig. 15.26, 
which has a center frequency of 3000 Hz, a quality 
factor of 10, and a passband gain of 2. Use 0.01 /xF 
capacitors in your design. Compute the transfer func
tion of your circuit, and sketch a Bode plot of its mag
nitude response. 

Solution 

Since Q = 10 and K = 2, the values for Ru R2, 
and R3 in the prototype circuit are 

Ri = 10/2 = 5, 

R2 = 10/(200 - 2) = 10/198, 

R3 = 2(10) = 20. 

The scaling factors are kf = 6OOO77- and 
km = lOfyfc/. After scaling, 

R] = 26.5 kO, 

R2 = 268.0 a , 

R3 = 106.1 k a . 

The circuit is shown in Fig. 15.27. 
Substituting the values of resistance and capac

itance in Eq. 15.56 gives the transfer function for 
this circuit: 

H(s) = 
-37705 

s2 + 1885.05 + 355 X 106 

It is easy to see that this transfer function meets the 
specification of the bandpass filter defined in the 
example. A Bode plot of its magnitude response is 
sketched in Fig. 15.28. 

Figure 15.27 • The high-G bandpass filter designed in 
ExampLe 15.12. 
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Figure 15.28 • The Bode magnitude plot for the high-Q bandpass filter 
designed in Example 15.12. 

The parallel implementation of a bandreject filter that combines low-
pass and high-pass filter components with a summing amplifier has the same 
low-<2 restriction as the cascaded bandpass filter. The circuit in Fig. 15.29 is 
an active high-Q bandreject filter known as the twin-T notch filter because of 
the two T-shaped parts of the circuit at the nodes labeled a and b. 

We begin the analysis of this circuit by summing the currents away 
from node a: 

(Vn - V,)sC + (K - V0)sC + 
2(Va-<rV0) 

R 
= 0 

or 

Va[2sCR + 2] - VjsCR + 2a] = sCRV;. (15.60) 
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Figure 15.29 • A high-Q active bandreject filter. 

Summing the currents away from node b yields 

Vb-V, Vb - Va 

R R 
+ (Vb - <rVa)2sC = 0 

or 

Vb [2 + 2RCs) -V0[l + 2a RCs] = Vh (15.61) 

Summing the currents away from the noninverting input terminal of 
the top op amp gives 

V — K 
(V0-Va)sC+ - 2 - ^ - t = 0 

or 

sRCVa ~Vb+ (sRC + l)V0 = 0. (15.62) 

From Eqs. 15.60-15.62, we can use Cramer's rule to solve for V0: 

2(RCs + 1) 0 sCRV; 

0 2(RCs + 1) Vt 

-RCs - 1 0 
K = 

2(RCs + 1) 0 -(RCs + 2a) 

0 2{RCs + 1) -(2trRCs + 1) 
-AC* - 1 ffCj + 1 

( ^ c v + i)Vi 
R2C2s2 + ARC{\ - a)s + 1' 

Rearranging Eq. 15.63, we can solve for the transfer function: 

1 

H(s) = f = 
S? + 

/?2C2 

2 , 4(1 - o) 1 

R2C2\ 

(15.63) 

(15.64) 
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which is in the standard form for the transfer function of a bandreject filter: 

l i 2 
S + 0)() 

H(s) = -= -. 
s2 + (3s + (4 

Equating Eqs. 15.64 and 15.65 gives 

(15.65) 

2,-2 ' RlC 
(15.66) 

P = 
4(1 ~ cr) 

RC 
(15.67) 

In this circuit, we have three parameters (R, C, and a) and two design 
constraints (coa and /3). Thus one parameter is chosen arbitrarily; it is usu
ally the capacitor value because this value typically provides the fewest 
commercially available options. Once C is chosen, 

R = 
1 

a>nC 
(15.68) 

and 

A(o(> AQ 
(15.69) 

Example 15.13 illustrates the design of a high-Q active bandreject filter. 

Designing a High-Q Bandreject Filter 

Design a high-Q active bandreject filter (based on 
the circuit in Fig. 15.29) with a center frequency of 
5000 rad/s and a bandwidth of 1000 rad/s. Use 1 /xF 
capacitors in your design. 

Solution 
In the bandreject prototype filter, con = 1 rad/s, 
R = 1 H, and C = 1 F. As just discussed, once <o(, 
and Q are given, C can be chosen arbitrarily, and R 
and cr can be found from Eqs. 15.68 and 15.69. From 
the specifications, Q = 5. Using Eqs. 15.68 and 
15.69, we see that 

R = 200 i l , 

a = 0.95. 

Therefore we need resistors with the values 200 ft 
(/?), 100 ft (i?/2), 190 ft (0-/2),and 10 ft [(1 - a)R]. 
The final design is depicted in Fig. 15.30, and the 
Bode magnitude plot is shown in Fig. 15.31. 

Figure 15.30 A The high-Q active bandreject filter designed in Example 15.13. 
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Figure 15.31 • The Bode magnitude plot for the high-Q active 
bandreject filter designed in Example 15.13. 

/ A S S E S S M E N T PROBLEMS 

Objective 4—Be able to use design equations to calculate component values for prototype narrowband, bandpass, 
and bandreject filters 

15.5 Design an active bandpass filter with Q = 8, 
K = 5, and <oa = 1000 rad/s. Use 1 /xF capaci
tors, and specify the values of all resistors. 

Answer: Rt = 1.6 kfl, R2 = 65.04 a , R3 = 16 kfl. 

NOTE: Also try Chapter Problem 15.60. 

15.6 Design an active unity-gain bandreject filter 
with (o(} = 1000 rad/s and Q = 4. Use 2 jtF 
capacitors in your design, and specify the values 
of R and a. 

Answer: R - 500 Q, a = 0.9375. 

Practical Perspective 

Bass Volume Control 
We now look at an op amp circuit that can be used to control the amplifica
tion of an audio signal in the bass range. The audio range consists of signals 
having frequencies from 20 Hz to 20 kHz. The bass range includes frequen
cies up to 300 Hz. The volume control circuit and its frequency response are 
shown in Fig. 15.32. The particular response curve in the family of response 
curves is selected by adjusting the potentiometer setting in Fig. 15.32(a). 

In studying the frequency response curves in Fig. 15.32(b) note the fol
lowing. First, the gain in dB can be either positive or negative. I f the gain 
is positive a signal in the bass range is amplified or boosted. I f the gain is 
negative the signal is attenuated or cut. Second, i t is possible to select a 
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Vs* 

*—• * , 

(a) (b) 

Figure 15.32 A (a) Bass volume control circuit; (b) Bass volume control circuit frequency response. 

•VB 

Figure 15.33 A The s-domain circuit for the bass 
volume control. Note that a determines the 
potentiometer setting, so 0 £ a £ 1. 

response characteristic that yields unity gain (zero dB) for all frequencies in 
the bass range. As we shall see, if the potentiometer is set at its midpoint, 
the circuit will have no effect on signals in the bass range. Finally, as the 
frequency increases, all the characteristic responses approach zero dB or 
unity gain. Hence the volume control circuit will have no effect on signals 
in the upper end or treble range of the audio frequencies. 

The first step in analyzing the frequency response of the circuit in 
Fig. 15.32(a) is to calculate the transfer function V0/Vs. To facilitate this 
calculation the s-domain equivalent circuit is given in Fig. 15.33. The node 
voltages Va and Vb have been labeled in the circuit to support node volt
age analysis. The position of the potentiometer is determined by the numer
ical value of a, as noted in Fig. 15.33. 

To find the transfer function we write the three node voltage equations 
that describe the circuit and then solve the equations for the voltage ratio 
V()/Vs. The node voltage equations are 

(1 - a)R2 

aR2 

+ 
K - K 

/?. 
+ (K -V^sC^O; 

+ (Vb-Va)sCl + 
Vb~Vo 

(1 - a)R2 
+ aRo 

0; 

= 0. 

These three node-voltage equations can be solved to find V0 as a function 
of Vs and hence the transfer function H(s): 

' s 

It follows directly that 

-jRi + aR2 + R&Cis) 

/?! + ( ! - a)R2 + R&Cis' 

_ - ( / ? ! + gR2 + jcoR&Ci) 
W [#! + ( 1 - a)R2 + jaRiRfit]' 

Now let's verify that this transfer function will generate the family of fre
quency response curves depicted in Fig. 15.32(b). First note that when 
a = 0.5 the magnitude of H{j<o) is unity for all frequencies, i.e., 

|H0»)l 
\Ri + 0.5R2 + jaR&Cil 

| A, + 0.5R2 + jo}RxR2Cx\ 
1. 
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When w = Owe have 

\H(jO)\ = 
/¾ + aR2 

Rt + (1 - a)R2 

Observe that \H(jO)\ at a = 1 is the reciprocal of \H(jO)\ at a = 0, that is 

/¾ + Ri 1 
\H{m\a=x = 

* i \H(Ma=0' 

With a little thought the reader can see that the reciprocal relationship 
holds for all frequencies, not just <a = 0. For example a = 0.4 and a = 0.6 
are symmetric with a = 0.5 and 

#0'w)«=o.4 -
-(/¾ + 0.4/¾) + fofr/frd 
(/¾ + 0.6/¾) + j(oRiR2Cx 

while 

Hence 

tf(;w)a=0.6 
-( /¾ + 0.6/¾) + j(oRiR2Ci 

(/¾ + 0.4/¾) + jo)RiR2Cl 

H(jo>)af=oA = 
H(j<»)a-0.6 

I t follows that depending on the value of a the volume control circuit can 
either amplify or attenuate the incoming signal. 

The numerical values of R\,R2, and C] are based on two design deci
sions. The first design choice is the passband amplification or attenuation 
in the bass range (as a>-*0). The second design choice is the frequency at 
which this passband amplification or attenuation is changed by 3 dB. The 
component values which satisfy the design decisions are calculated with a 
equal to either 1 or 0. 

As we have already observed, the maximum gain will be (/¾ + R2)/Ri 
and the maximum attenuation will be R\/(R\ + /¾). I f we assume 
(/¾ + R2)/R\ » 1 then the gain (or attenuation) will differ by 3 dB 
from its maximum value when o> = 1 / /¾^ . This can be seen by noting that 

H 
1 

R2CX « = i 

1/¾ + R2 + m 
1/¾ + iR\\ 

/¾ + /¾ 

Ri 
+ /1 

and 

H J R2Cy a=0 

II + /11 

1*1 + /*ll 

1/¾ + R2 + /Xi| 

II + /11 

1 //¾ + /¾ 

V 2 \ fll 

Ri + R2 

Ri 

V2 

+ /1 

* i 

*1 + /¾ 

/V07E; Assess your understanding of this Practical Perspective by trying 
Chapter Problems 15.61 and 15.62. 
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Summary 

• Active filters consist of op amps, resistors, and capacitors. 
They can be configured as low-pass, high-pass, bandpass, 
and bandreject filters. They overcome many of the disad
vantages associated with passive filters. (See page 560.) 

• A prototype low-pass filter has component values of 
Ri = R2 = 1 H and C = 1 F, and it produces a unity 
passband gain and a cutoff frequency of 1 rad/s. The 
prototype high-pass filter has the same component val
ues and also produces a unity passband gain and a cut
off frequency of 1 rad/s. (See pages 561 and 562.) 

• Magnitude scaling can be used to alter component val
ues without changing the frequency response of a circuit. 
For a magnitude scale factor of k , the scaled (primed) 
values of resistance, capacitance, and inductance are 

R' = kmR, V = kmL, and C = C/km. 

(See page 564.) 

• Frequency scaling can be used to shift the frequency 
response of a circuit to another frequency region without 
changing the overall shape of the frequency response. 
For a frequency scale factor of kf, the scaled (primed) 
values of resistance, capacitance, and inductance are 

R' = R, L' = L/kp and C = C/kf. 

(See page 564.) 

• Components can be scaled in both magnitude and fre
quency, with the scaled (primed) component values 
given by 

R' = kmR, L' = (km/kf)L, and C = C/{kmkf). 

(See page 564.) 

• The design of active low-pass and high-pass filters can 
begin with a prototype filter circuit. Scaling can then be 
applied to shift the frequency response to the desired 
cutoff frequency, using component values that are com
mercially available. (See page 565.) 

• An active broadband bandpass filter can be constructed 
using a cascade of a low-pass filter with the bandpass fil
ter's upper cutoff frequency, a high-pass filter with the 
bandpass filter's lower cutoff frequency, and (optionally) 
an inverting amplifier gain stage to achieve nonunity 
gain in the passband. Bandpass filters implemented in 
this fashion must be broadband filters (wc.2 » <ac]), so 
that the elements of the cascade can be specified inde
pendently of one another. (See page 568.) 

• An active broadband bandreject filter can be con
structed using a parallel combination of a low-pass filter 
with the bandreject filter's lower cutoff frequency and a 

high-pass filter with the bandreject filter's upper cutoff 
frequency. The outputs are then fed into a summing 
amplifier, which can produce nonunity gain in the pass-
band. Bandreject filters implemented in this way must 
be broadband filters {coc2 » o>c.i), so that the low-pass 
and high-pass filter circuits can be designed independ
ently of one another. (See page 572.) 

• Higher order active filters have multiple poles in their 
transfer functions, resulting in a sharper transition from 
the passband to the stopband and thus a more nearly 
ideal frequency response. (See page 573.) 

• The transfer function of an nth-order Butterworth low-
pass filter with a cutoff frequency of 1 rad/s can be 
determined from the equation 

H(s)H(s) = =-
K J K ' i + ( - i ) V » 

by 

• finding the roots of the denominator polynomial 

• assigning the left-half plane roots to H(s) 

• writing the denominator of H(s) as a product of first-
and second-order factors 

(See page 578-579.) 

• The fundamental problem in the design of a 
Butterworth filter is to determine the order of the filter. 
The filter specification usually defines the sharpness of 
the transition band in terms of the quantities A , ap-,As> 

and <ar From these quantities, we calculate the smallest 
integer larger than the solution to either Eq. 15.42 or 
Eq. 15.46. (See page 583.) 

• A cascade of second-order low-pass op amp filters 
(Fig. 15.21) with 1 JQ resistors and capacitor values cho
sen to produce each factor in the Butterworth poly
nomial will produce an even-order Butterworth low-pass 
filter. Adding a prototype low-pass op amp filter will pro
duce an odd-order Butterworth low-pass filter. (See 
page 581.) 

• A cascade of second-order high-pass op amp filters 
(Fig. 15.25) with 1 F capacitors and resistor values cho
sen to produce each factor in the Butterworth poly
nomial will produce an even-order Butterworth 
high-pass filter. Adding a prototype high-pass op amp 
filter will produce an odd-order Butterworth high-pass 
filter. (See page 585.) 

• For both high- and low-pass Butterworth filters, fre
quency and magnitude scaling can be used to shift the 
cutoff frequency from 1 rad/s and to include realistic 
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component values in the design. Cascading an inverting 
amplifier will produce a nonunity passband gain. (See 
page 580.) 

Butterworth low-pass and high-pass filters can be cas
caded to produce Butterworth bandpass filters of any 
order n. Butterworth low-pass and high-pass filters can 
be combined in parallel with a summing amplifier to 
produce a Butterworth bandreject filter of any order n. 
(See page 585.) 

If a high-(2, or narrowband, bandpass, or bandreject fil
ter is needed, the cascade or parallel combination will 
not work. Instead, the circuits shown in Figs. 15.26 and 
15.29 are used with the appropriate design equations. 
Typically, capacitor values are chosen from those com
mercially available, and the design equations are used 
to specify the resistor values. (See page 586.) 

Problems 

Section 15.1 

15.1 Find the transfer function V0/V; for the circuit 
shown in Fig. P15.1 if Zf is the equivalent imped
ance of the feedback circuit, Z, is the equivalent 
impedance of the input circuit, and the operational 
amplifier is ideal. 

Figure PI5.1 

15.2 a) Use the results of Problem 15.1 to find the trans
fer function of the circuit shown in Fig. PI5.2. 

b) What is the gain of the circuit a s w ^ 0? 

c) What is the gain of the circuit as w —• oo? 

d) Do your answers to (b) and (c) make sense in 
terms of known circuit behavior? 

Figure P15.2 

15.3 Repeat Problem 15.2, using the circuit shown in 
Fig. P15.3. 

Figure P15.3 

DESIGN 
PROBLEM 

15.4 Design an op amp-based low-pass filter with a cut
off frequency of 2500 Hz and a passband gain of 5 
using a 10 nF capacitor. 

a) Draw your circuit, labeling the component val
ues and output voltage. 

b) If the value of the feedback resistor in the filter 
is changed but the value of the resistor in the 
forward path is unchanged, what characteristic 
of the filter is changed? 

15.5 The input to the low-pass filter designed in 
Problem 15.4 is 2 cos cot V. 

a) Suppose the power supplies are ±VCC. What is 
the smallest value of Vcc that will still cause the 
op amp to operate in its linear region? 

b) Find the output voltage when o> = a)c. 

c) Find the output voltage when w = 0.2(oc. 

d) Find the output voltage when oo = 5wt.. 

15.6 a) Using the circuit in Fig. 15.1, design a low-pass 
filter with a passband gain of 10 dB and a cutoff 
frequency of 1 kHz. Assume a 750 nF capacitor 
is available. 

b) Draw the circuit diagram and label all 
components. 
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15.7 a) Using only three components from Appendix H, 
design a low-pass filter with a cutoff frequency 
and passband gain as close as possible to the 
specifications in Problem 15.6(a). Draw the cir
cuit diagram and label all component values. 

b) Calculate the percent error in this new filter's 
cutoff frequency and passband gain when com
pared to the values specified in Problem 15.6(a). 

15.8 Design an op amp-based high-pass filter with a cut
off frequency of 4 kHz and a passband gain of 8 
using a 250 nF capacitor. 

a) Draw your circuit, labeling the component val
ues and the output voltage. 

b) If the value of the feedback resistor in the filter 
is changed but the value of the resistor in the 
forward path is unchanged, what characteristic 
of the filter is changed? 

15.9 The input to the high-pass filter designed in 
Problem 15.8 is 250 cos ot mV. 

a) Suppose the power supplies are ±Vcc. What is 
the smallest value of Vcc that will still cause the 
op amp to operate in its linear region? 

b) Find the output voltage when a) = (oc. 

c) Find the output voltage when u> = 0.2&><). 

d) Find the output voltage when w = 5ft>0. 

15.10 a) Use the circuit in Fig. 15.4 to design a high-pass 
filter with a cutoff frequency of 8 kHz and a 
passband gain of 14 dB. Use a 3.9 nF capacitor in 
the design. 

b) Draw the circuit diagram of the filter and label 
all the components. 

15.11 Using only three components from Appendix H, 
design a high-pass filter with a cutoff frequency and 
passband gain as close as possible to the specifica
tions in Problem 15.10. 

a) Draw the circuit diagram and label all compo
nent values. 

b) Calculate the percent error in this new filter's cut
off frequency and passband gain when compared 
to the values specified in Problem 15.10(a). 

Section 15.2 

15.12 The voltage transfer function for either high-pass 
prototype filter shown in Fig. P15.12 is 

Figure P15.12 

C = IF 

If 
R = l a v, 

(a) 

R = \a 

L = 1 H v 

(b) 

15.13 The voltage transfer function of either low-pass 
prototype filter shown in Fig. P15.13 is 

H(s) 
1 

s + 1 

Show that if either circuit is scaled in both magni
tude and frequency, the scaled transfer function is 

H'(s) 
1 

(s/kf) + 1 

+ 

C = 1 F v„ 

(a) 

L= 1H 

R = 1 fl v 

(b) 

H(s) = 
s + 1 

15.14 The voltage transfer function of the prototype 
bandpass filter shown in Fig. P15.14 is 

Show that if either circuit is scaled in both magni
tude and frequency, the scaled transfer function is 

H'(s) = 
{s/kf) 

(s/kf) + 1 

H(s) 
s2 + 

Q 
s + 1 
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Show that if the circuit is scaled in both magnitude 
and frequency, the scaled transfer function is 

!)(± 
H>(s) 

Figure P15.14 

<h + 1 

C = 1 F L = 1H 

R = ^ v0 

15.15 a) Specify the component values for the prototype 
passive bandpass filter described in Problem 15.14 
if the quality factor of the filter is 20. 

b) Specify the component values for the scaled 
bandpass filter described in Problem 15.14 if 
the quality factor is 20; the center, or resonant, 
frequency is 40 krad/s; and the impedance at 
resonance is 5 kft. 

c) Draw a circuit diagram of the scaled filter and 
label all the components. 

15.16 An alternative to the prototype bandpass filter 
illustrated in Fig. P15.14 is to make m0 = 1 rad/s, 
R = 1 ft, and L = Q henrys. 

a) What is the value of C in the prototype 
filter circuit? 

b) What is the transfer function of the 
prototype filter? 

c) Use the alternative prototype circuit just described 
to design a passive bandpass filter that has a qual
ity factor of 16, a center frequency of 25 krad/s, 
and an impedance of 10 kft at resonance. 

d) Draw a diagram of the scaled filter and label all 
the components. 

e) Use the results obtained in Problem 15.14 to 
write the transfer function of the scaled circuit. 

DESIGN 
PROBLEM 

15.17 The passive bandpass filter illustrated in Fig. 14.22 
has two prototype circuits. In the first prototype 
circuit, co0 = 1 rad/s, C = 1 F, L = 1 H, and 
R = Q ohms. In the second prototype circuit, 
co0 = 1 rad/s, R = 1 ft, C = Q farads, and 
L = (1/(2) henrys. 

a) Use one of these prototype circuits (your 
choice) to design a passive bandpass filter that 
has a quality factor of 25 and a center frequency 
of 50 krad/s. The resistor R is 40 kft. 

b) Draw a circuit diagram of the scaled filter and 
label all components. 

15.18 The transfer function for the bandreject filter 
shown in Fig. 14.28(a) is 

s2 + 

H(s) 

1 

LC 

'.Il$ 
LC 

Show that if the circuit is scaled in both magnitude 
and frequency, the transfer function of the scaled 
circuit is equal to the transfer function of the 
unsealed circuit with s replaced by (s/kf), where kf 
is the frequency scale factor. 

15.19 Show that the observation made in Problem 15.18 
with respect to the transfer function for the circuit 
in Fig. 14.28(a) also applies to the bandreject filter 
circuit (lower one) in Fig. 14.31. 

15.20 The passive bandreject filter illustrated in 
Fig. 14.28(a) has the two prototype circuits shown 
in Fig. P15.20. 

a) Show that for both circuits, the transfer function is 

H(s) = 
s2 + l 

s2 + ( - )s + 1 

b) Write the transfer function for a bandreject fil
ter that has a center frequency of 50 krad/s and 
a quality factor of 5. 

Figure PI5.20 

-pvQ; 
(b) 

15.21 The two prototype versions of the passive band-
reject filter shown in Fig. 14.31 (lower circuit) are 
shown in Fig. P15.21(a) and (b). 

Show that the transfer function for either ver
sion is 

H(s) 
s2 + 1 

s2 + s + 1 
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Figure P15.21 

1H {Q> 

(a) (b) 

15.22 The circuit in Fig. P13.22 is scaled so that the 1 Q 
resistors are replaced by 1 k l l resistors and the 
1 F capacitor is replaced by a 200 nF capacitor. 

a) What is the scaled value of L? 

b) What is the expression for i(> in the scaled circuit? 

15.23 Scale the circuit in Problem 13.31 so that the 50 0. 
resistor is increased to 5 kH and the frequency 
of the voltage response is increased by a factor of 
5000. Find/„(0-

15.24 Scale the bandpass filter in Problem 14.22 so that 
the center frequency is 200 kHz and the quality fac
tor is still 8, using a 2.5 nF capacitor. Determine the 
values of the resistor, the inductor, and the two cut
off frequencies of the scaled filter. 

15.25 Scale the bandreject filter in Problem 14.35 to get a 
center frequency of 50 krad/s, using a 200 /u,H 
inductor. Determine the values of the resistor, the 
capacitor, and the bandwidth of the scaled filter. 

15.26 a) Show that if the low-pass filter circuit illustrated 
in Fig. 15.1 is scaled in both magnitude and fre
quency, the transfer function of the scaled circuit 
is the same as Eq. 15.1 with s replaced by s/kf, 
where kf is the frequency scale factor. 

b) In the prototype version of the low-pass filter 
circuit in Fig. 15.1, toc = 1 rad/s, C = 1 F, 
R2 = 1 O, and Rx = \/K ohms. What is the 
transfer function of the prototype circuit? 

c) Using the result obtained in (a), derive the 
transfer function of the scaled filter. 

15.27 a) Show that if the high-pass filter illustrated in 
Fig. 15.4 is scaled in both magnitude and fre
quency, the transfer function is the same as 
Eq. 15.4 with s replaced by s/kf, where kf is the 
frequency scale factor. 

b) In the prototype version of the high-pass filter 
circuit in Fig. 15.4, o)c = 1 rad/s, R\ = 1 il, 
C = 1 F, and R2 = K ohms. What is the transfer 
function of the prototype circuit? 

c) Using the result in (a), derive the transfer func
tion of the scaled filter. 

Section 15.3 

15.28 a) Using 0.1 fx¥ capacitors, design an active broad-
OESIGN band first-order bandpass filter that has a lower 

PROBLEM r 

PSPICE cutoff frequency of 1000 Hz, an upper cutoff fre-
MULTISIM quency of 5000 Hz, and a passband gain of 0 dB. 

Use prototype versions of the low-pass and 
high-pass filters in the design process (see 
Problems 15.26 and 15.27). 

b) Write the transfer function for the scaled filter. 

c) Use the transfer function derived in part (b) to 
find H(ja)v), where o)() is the center frequency of 
the filter. 

d) What is the passband gain (in decibels) of the fil
ter at o)a? 

e) Using a computer program of your choice, make 
a Bode magnitude plot of the filter. 

15.29 a) Using 10 nF capacitors, design an active broad-
DESIGN band first-order bandreject filter with a lower 

PROBLEM J 

PSPICE cutoff frequency of 400 Hz, an upper cutoff 
MULTISIM frequency of 4000 Hz, and a passband gain of 

0 dB. Use the prototype filter circuits intro
duced in Problems 15.26 and 15.27 in the 
design process. 

b) Draw the circuit diagram of the filter and label 
all the components. 

c) What is the transfer function of the scaled filter? 

d) Evaluate the transfer function derived in (c) at 
the center frequency of the filter. 

e) What is the gain (in decibels) at the 
center frequency? 

f) Using a computer program of your choice, 
make a Bode magnitude plot of the filter trans
fer function. 

15.30 Design a unity-gain bandpass filter, using a cascade 
connection, to give a center frequency of 200 Hz 
and a bandwidth of 1000 Hz. Use 5 fx¥ capacitors. 
Specify fch fcZ, RL, and RH. 

15.31 Design a parallel bandreject filter with a center fre
quency of 1000 rad/s, a bandwidth of 4000 rad/s, 
and a passband gain of 6. Use 0.2 JJL¥ capacitors, and 
specify all resistor values. 

15.32 Show that the circuit in Fig. P15.32 behaves as a 
bandpass filter. {Hint—find the transfer function 
for this circuit and show that it has the same form as 
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the transfer function for a bandpass filter. Use the 
result from Problem 15.1.) 

a) Find the center frequency, bandwidth and gain 
for this bandpass filter. 

b) Find the cutoff frequencies and the quality for 
this bandpass filter. 

Section 15.4 

15.34 The circuit in Fig. 15.21 has the transfer function 
given by Eq. 15.34. Show that if the circuit in 
Fig. 15.21 is scaled in both magnitude and fre
quency, the transfer function of the scaled circuit is 

1 

Figure P15.32 

400 O 
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»i 

• 

50 (xF 
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1 
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\( 
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. 
+ 

% 

o 

H'(s) = 
JR2C,C l<-2 

RCMf) + R2CtC2 * f 

15.33 For circuits consisting of resistors, capacitors, induc
tors, and op amps, \H(jco) I2 involves only even pow
ers of a). To illustrate this, compute \H(ja))\2 for the 
three circuits in Fig. PI5.33 when 

Figure P15.33 

™-v,-
R 

dB/dec. 

+ 

• 
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> 
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+ 
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— • 

(a) 

Ri 
-AA/V-

R2 

-vw-

1 
sC sL 

(b) 

15.35 The purpose of this problem is to illustrate the 
advantage of an «th-order low-pass Butterworth fil
ter over the cascade of n identical low-pass sections 
by calculating the slope (in decibels per decade) of 
each magnitude plot at the corner frequency o)c. To 
facilitate the calculation, let y represent the magni
tude of the plot (in decibels), and let x = log10&>. 
Then calculate dy/dx at a>c for each plot. 

a) Show that at the corner frequency 
(wc = 1 rad/s) of an wth-order low-pass proto
type Butterworth filter, 

dy 
-T = -10« dB/dec. 
dx 

b) Show that for a cascade of n identical low-pass 
prototype sections, the slope at (oc is 

di _ -20n(2]/" - 1) 

dx ~ 2V" 

c) Compute dy/dx for each type of filter for 
n = 1,2, 3, 4, and oo. 

d) Discuss the significance of the results obtained 
in part (c). 

15.36 a) Determine the order of a low-pass Butterworth 
filter that has a cutoff frequency of 2000 Hz and 
a gain of no more than - 3 0 dB at 7000 Hz. 

b) What is the actual gain, in decibels, at 7000 Hz? 

15.37 a) Write the transfer function for the prototype 
low-pass Butterworth filter obtained in 
Problem 15.36(a). 

b) Write the transfer function for the scaled filter 
in (a) (see Problem 15.34). 

c) Check the expression derived in part (b) by 
using it to calculate the gain (in decibels) at 
7000 Hz. Compare your result with that found in 
Problem 15.36(b). 

* — • V , 

DESIGN 
PROBLEM 

(c) 

15.38 a) Using 1 kO resistors and ideal op amps, design a 
circuit that will implement the low-pass 
Butterworth filter specified in Problem 15.36. 
The gain in the passband is one. 

b) Construct the circuit diagram and label all com
ponent values. 
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15.39 a) Using 10 nF capacitors and ideal op amps, 
PROBLEM design a high-pass unity-gain Butterworth filter 

with a cutoff frequency of 2 kHz and a gain of no 
more than - 4 8 dB at 500 Hz. 

b) Draw a circuit diagram of the filter and label all 
component values. 

15.40 Verify the entries in Table 15.1 for n = 5 and n = 6. 

15.45 Show that if co(, = 1 rad/s and C = 1 F in the cir
cuit in Fig. 15.26, the prototype values of Rh R2, 
and R3 are 

R, = 

R, = 

R, 

Q 

Q 
2Q2 

2Q. 

K 

15.41 The circuit in Fig. 15.25 has the transfer function 
given by Eq. 15.47. Show that if the circuit is scaled 
in both magnitude and frequency, the transfer func
tion of the scaled circuit is 

H'(s) = 

ft 
+ • \ k f l H" D D ^ 2 R{R2a 

DESIGN 

PROBLEM 

Hence the transfer function of a scaled circuit is 
obtained from the transfer function of an unsealed 
circuit by simply replacing s in the unsealed trans
fer function by s/kf, where kf is the frequency scal
ing factor. 

15.42 a) Using 1 kf! resistors and ideal op amps, design a 
low-pass unity-gain Butterworth filter that has a 
cutoff frequency of 8 kHz and is down at least 
48 dB at 32 kHz. 

b) Draw a circuit diagram of the filter and label all 
the components. 

15.43 The high-pass filter designed in Problem 15.39 is 
cascaded with the low-pass filter designed in 
Problem 15.42. 

a) Describe the type of filter formed by this 
interconnection. 

b) Specify the cutoff frequencies, the mid-
frequency, and the quality factor of the filter. 

c) Use the results of Problems 15.36 and 15.40 to 
derive the scaled transfer function of the filter. 

d) Check the derivation of (c) by using it to calculate 
H(Ja)0), where 0)o is the midfrequency of the filter. 

15.44 a) Use 20 nF capacitors in the circuit in Fig. 15.26 
to design a bandpass filter with a quality factor 
of 16, a center frequency of 6.4 kHz, and a pass-
band gain of 20 dB. 

b) Draw the circuit diagram of the filter and label 
all the components. 

DESIGN 

PROBLEM 

15.46 
DESIGN 

PROBLEM 

15.47 

15.48 

15.49 

15.50 
DESIGN 

PROBLEM 

a) Design a broadband Butterworth bandpass fil
ter with a lower cutoff frequency of 500 Hz and 
an upper cutoff frequency of 4500 Hz. The pass-
band gain of the filter is 20 dB. The gain should 
be down at least 20 dB at 200 Hz and 11.25 kHz. 
Use 15 nF capacitors in the high-pass circuit and 
10 kH resistors in the low-pass circuit. 

b) Draw a circuit diagram of the filter and label all 
the components. 

a) Derive the expression for the scaled transfer 
function for the filter designed in Problem 15.46. 

b) Using the expression derived in (a), find the gain 
(in decibels) at 200 Hz and 1500 Hz. 

c) Do the values obtained in part (b) satisfy the fil
tering specifications given in Problem 15.46? 

Derive the prototype transfer function for a sixth-
order high-pass Butterworth filter by first writing 
the transfer function for a sixth-order prototype 
low-pass Butterworth filter and then replacing s by 
\/s in the low-pass expression. 

The sixth-order Butterworth filter in Problem 15.48 
is used in a system where the cutoff frequency is 
25 krad/s. 

a) What is the scaled transfer function for the filter? 

b) Test your expression by finding the gain (in deci
bels) at the cutoff frequency. 

The purpose of this problem is to guide you 
through the analysis necessary to establish a design 
procedure for determining the circuit components 
in a filter circuit. The circuit to be analyzed is shown 
in Fig. P15.50. 

a) Analyze the circuit qualitatively and convince 
yourself that the circuit is a low-pass filter with a 
passband gain of Rj/Rh 

b) Support your qualitative analysis by deriving the 
transfer function V0fV-v {Hint: In deriving the 
transfer function, represent the resistors with their 
equivalent conductances, that is, Gx = l/i?i, and 
so forth.) To make the transfer function useful in 
terms of the entries in Table 15.1, put it in the form 

H(s) = 
-Kb, 

s2 + bis + b0 
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c) Now observe that we have five circuit compo
nents—/?!, R2, i?3, C b and C2—and three trans
fer function constraints—#, bh and b0. At first 
glance, it appears we have two free choices 
among the five components. However, when we 
investigate the relationships between the circuit 
components and the transfer function constraints, 
we see that if C2 is chosen, there is an upper limit 
on C\ in order for R2{G2) to be realizable. With 
this in mind, show that if C2 = 1 F, the three con
ductances are given by the expressions 

G\ — KG2\ 

[G2
]( 

G2 = 
h} ± Vbj - 4b()(l + K)C{ 

2(1 + K) 

For G2 to be realizable, 

C, 
46,,(1 +K)' 

d) Based on the results obtained in (c), outline the 
design procedure for selecting the circuit com
ponents once K, bw and b\ are known. 

Figure P15.50 

+ /?j 
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DESIGN 
PROBLEM 

15.51 Assume the circuit analyzed in Problem 15.50 is 
part of a third-order low-pass Butter worth filter 
having a passband gain of 4. (Hint: implement the 
gain of 4 in the second-order section of the filter.) 

a) If C2 = 1 F in the prototype second-order sec
tion, what is the upper limit on Ci? 

b) If the limiting value of C] is chosen, what are the 
prototype values of R\, R2, and /?3? 

c) If the corner frequency of the filter is 2.5 kHz 
and C2 is chosen to be 10 nF, calculate the scaled 
values of C b Rh R2, and /?3. 

d) Specify the scaled values of the resistors and the 
capacitor in the first-order section of the filter. 

e) Construct a circuit diagram of the filter and 
label all the component values on the diagram. 

DESIGN 
PROBLEM 

15.52 Interchange the Rs and Cs in the circuit in 
Fig. P15.50; that is, replace Rx with Ch R2 with C2, 
i?3 with C3, C\ with R\, and C2 with R2. 

a) Describe the type of filter implemented as a 
result of the interchange. 

b) Confirm the filter type described in (a) by deriv
ing the transfer function Va/Vj. Write the trans
fer function in a form that makes it compatible 
with Table 15.1. 

c) Set C2 = C3 = 1 F and derive the expressions 
for Q , /?i, and R2 in terms of K, bh and b0. (See 
Problem 15.50 for the definition of b\ and b(r) 

d) Assume the filter described in (a) is used in the 
same type of third-order Butterworth filter that 
has a passband gain of 8. With C2 = C3 = 1 F, 
calculate the prototype values of Ch Rh and R2 

in the second-order section of the filter. 

DESIGN 

PROBLEM 

15.53 a) Use the circuits analyzed in Problems 15.50 and 
15.52 to implement a broadband bandreject fil
ter having a passband gain of 0 dB, a lower cor
ner frequency of 400 Hz, an upper corner 
frequency of 6400 Hz, and an attenuation of at 
least 30 dB at both 1000 Hz and 2560 kHz. Use 
10 nF capacitors whenever possible. 

b) Draw a circuit diagram of the filter and label all 
the components. 

15.54 a) Derive the transfer function for the bandreject 
filter described in Problem 15.53. 

b) Use the transfer function derived in part (a) to 
find the attenuation (in decibels) at the center 
frequency of the filter. 

DESIGN 
PROBLEM 

15.55 The purpose of this problem is to develop the 
design equations for the circuit in Fig. PI5.55. (See 
Problem 15.50 for suggestions on the development 
of design equations.) 

a) Based on a qualitative analysis, describe the type 
of filter implemented by the circuit. 

b) Verify the conclusion reached in (a) by deriving 
the transfer function V0/Vi. Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1. 

c) How many free choices are there in the selec
tion of the circuit components? 

d) Derive the expressions for the conductances 
G\ = l/Ri and G2 = l/R2 in terms of Ch C2, 
and the coefficients b0 and b%. (See Problem 
15.50 for the definition of b0 and b\.) 

e) Are there any restrictions on C\ or C2? 

f) Assume the circuit in Fig. P15.55 is used to 
design a fourth-order low-pass unity-gain 
Butterworth filter. Specify the prototype values 
of Rx and R2 in each second-order section if 1 F 
capacitors are used in the prototype circuit. 
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Figure PI5.55 Section 15.5 

15.56 The fourth-order low-pass unity-gain Buttcrworth 
PROBLEM ^ t e r *n Problem 15.55 is used in a system where the 

cutoff frequency is 3 kHz. The filter has 4.7 nF 
capacitors. 
a) Specify the numerical values of R{ and R2 in 

each section of the filter. 

b) Draw a circuit diagram of the filter and label all 
the components. 

15.57 Interchange the Rs and Cs in the circuit in 
DESIGN fig. P15.55, that is, replace i?, with Ci, Ri with C2, 

PROBLEM ° * r ' l • -

and vice versa. 
a) Analyze the circuit qualitatively and predict the 

type of filter implemented by the circuit. 

b) Verify the conclusion reached in (a) by deriving 
the transfer function VQ/Vf. Write the transfer 
function in a form that makes it compatible with 
the entries in Table 15.1. 

c) How many free choices are there in the selec
tion of the circuit components? 

d) Find R\ and R2 as functions of bm b\, Ch and C2. 

e) Are there any restrictions on C} and C21 

f) Assume the circuit is used in a third-order 
Butterworth filter of the type found in (a). Specify 
the prototype values of R\ and R2 in the second-
order section of the filter if C\ = C2 = 1 F. 

DESIGN 
PROBLEM 

15.58 a) The circuit in Problem 15.57 is used in a third-
order high-pass unity-gain Butterworth filter 
that has a cutoff frequency of 5 kHz. Specify the 
values of Rl and R2 if 75 nF capacitors are avail
able to construct the filter. 

b) Specify the values of resistance and capacitance 
in the first-order section of the filter. 

c) Draw the circuit diagram and label all the 
components. 

d) Give the numerical expression for the scaled 
transfer function of the filter. 

e) Use the scaled transfer function derived in (d) 
to find the gain in dB at the cutoff frequency. 

15.59 a) Show that the transfer function for a prototype 
narrow band bandreject filter is 

H{s) 
sl + 1 

s2 + (1/Q)s + 1 

DESIGN 
PROBLEM 

b) Use the result found in (a) to find the transfer 
function of the filter designed in Example 15.13. 

15.60 a) Using the circuit shown in Fig. 15.29, design a 
narrow-band bandreject filter having a center 
frequency of 1 kHz and a quality factor of 20. 
Base the design on C = 15 nF. 

b) Draw the circuit diagram of the filter and label 
all component values on the diagram. 

c) What is the scaled transfer function of the filter? 

Sections 15.1-15.5 

15.61 Using the circuit in Fig. 15.32(a) design a volume 
J£2S™ control circuit to give a maximum gain of 20 dB and 

a gain of 17 dB at a frequency of 40 Hz. Use an 
11.1 kfi resistor and a 100 kfl potentiometer. Test 
your design by calculating the maximum gain at 
o) = 0 and the gain at &> = X/R^Cy using the 
selected values of R[} R7, and Cv 

PERSPECTIVE 

DESIGN 
PROBLEM 

15.62 Use the circuit in Fig. 15.32(a) to design a bass vol-
PERSPECTIVE

 u m e control circuit that has a maximum gain of 
DESIGN 13.98 dB that drops off 3 dB at 50 Hz. 

PROBLEM 

15.63 Plot the maximum gain in decibels versus a when 
<w = 0 for the circuit designed in Probh 
a vary from 0 to 1 in increments of 0.1. 

PRACTICAL w = 0 for the circuit designed in Problem 15.61. Let 
PERSPECTIVE 

PRACTICAL 
PERSPECTIVE 

15.64 a) Show that the circuits in Fig. PI 5.64(a) and (b) 
are equivalent. 

b) Show that the points labeled x and y in 
Fig. P15.64(b) are always at the same potential. 

c) Using the information in (a) and (b), show that 
the circuit in Fig. 15.33 can be drawn as shown in 
Fig. P15.64(c). 

d) Show that the circuit in Fig. PI5.64(c) is in the 
form of the circuit in Fig. 15.2, where 

/?! + (! - a)R2 + RiR2Cxs 
Zi 

z / = 

1 + R2C]S 

R} + aR2 + R^C^ 

1 + R2Cts 
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Figure P15.64 

lfsCi 
l-a a 

HM-K 

(l-a)R2 otR2 

(a) 

(l-a)R2 y cxR2 

(b) 

R4 + 2/?3 

(c) 

15.65 An engineering project manager has received a 
PRACTICAL proposal from a subordinate who claims the circuit 

PERSPECTIVE r r 

shown in Fig. PI 5.65 could be used as a treble vol
ume control circuit if R4 » R^ + R$ + 2R2, The 
subordinate further claims that the voltage transfer 
function for the circuit is 

*«-£ 
-{(2J?3 + R4) + [(1 - /3)i?4 + Rg](fiR4 + R3)C2s} 

{(27?3 + Hi) + [(1 - Aft* + ^ 1 ( / ^ 4 + #e>)C2*} 

where i?(, = /?t + 7?3 + 2R2. Fortunately the project 
engineer has an electrical engineering undergraduate 

student as an intern and therefore asks the student to 
check the subordinate's claim. 

The student is asked to check the behavior of the 
transfer function as co—>0; as w—»oo; and the 
behavior when co = oo and /3 varies between 0 and 1. 
Based on your testing of the transfer function do you 
think the circuit could be used as a treble volume 
control? Explain. 

Figure P15.65 

Vs • VQ 

15.66 In the circuit of Fig. P15.65 the component values 
PRACTICAL are Rx = R2 = 20 kll , R^ = 5.9 kO, R4 = 500 kft, 

PERSPECTIVE L > O * 

and C2 = 2.7 nF. 

a) Calculate the maximum boost in decibels. 

b) Calculate the maximum cut in decibels. 

c) Is R4 significantly greater than Ra7 
d) When p = 1, what is the boost in decibels when 

co = 1/R3C27 
e) When /3 = 0, what is the cut in decibels when 

co = l/i?3C2? 
f) Based on the results obtained in (d) and (e), 

what is the significance of the frequency \/R3C2 

when R4 » i?0? 

15.67 Using the component values given in 
PRACTICAL Problem 15.66, plot the maximum gain in decibels 

PERSPECTIVE ' r ° 

versus /3 when co is inifinite. Let /3 vary from 0 to 1 
in increments of 0.1. 
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1 Be able to calculate the trigonometric form of 
the Fourier coefficients for a periodic waveform 
using the definition of the coefficients and the 
simplifications possible if the waveform exhibits 
one or more types of symmetry. 

2 Know how to analyze a circuit's response to a 
periodic waveform using Fourier coefficients 
and superposition. 

3 Be able to estimate the average power 
delivered to a resistor using a small number 
of Fourier coefficients. 

4 Be able to calculate the exponential form of the 
Fourier coefficients for a periodic waveform and 
use them to generate magnitude and phase 
spectrum plots for that waveform. 

604 

In the preceding chapters, we devoted a considerable amount 
of discussion to steady-state sinusoidal analysis. One reason for 
this interest in the sinusoidal excitation function is that it allows 
us to find the steady-state response to nonsinusoidal, but peri
odic, excitations. A periodic function is a function that repeats 
itself every T seconds. For example, the triangular wave illus
trated in Fig. 16.1 on page 606 is a nonsinusoidal, but periodic, 
break waveform. 

A periodic function is one that satisfies the relationship 

fit) = f(t ± nT), (16.1) 

where n is an integer (1,2, 3,...) and T is the period. The func
tion shown in Fig. 16.1 is periodic because 

f(to) = f(to ~T) = f(tQ + T) = f(t0 + 2T) = ---

for any arbitrarily chosen value of t0. Note that T is the smallest 
time interval that a periodic function may be shifted (in either 
direction) to produce a function that is identical to itself. 

Why the interest in periodic functions? One reason is that 
many electrical sources of practical value generate periodic 
waveforms. For example, nonfiltered electronic rectifiers driven 
from a sinusoidal source produces rectified sine waves that are 
nonsinusoidal, but periodic. Figures 16.2(a) and (b) on page 606 
show the waveforms of the full-wave and half-wave sinusoidal 
rectifiers, respectively. 

The sweep generator used to control the electron beam of a 
cathode-ray oscilloscope produces a periodic triangular wave like 
the one shown in Fig. 16.3 on page 606. 

Electronic oscillators, which are useful in laboratory testing of 
equipment, are designed to produce nonsinusoidal periodic 
waveforms. Function generators, which are capable of producing 
square-wave, triangular-wave, and rectangular-pulse waveforms, 
are found in most testing laboratories. Figure 16.4 on page 606 
illustrates typical waveforms. 
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Practical Perspective 
Active High-Q Filters 

In Chapters 14 and 15, we discovered that an important char
acteristic of bandpass and bandreject filters is the quality fac
tor, Q. The quality factor provides a measure of how selective 
the filter is at its center frequency. For example, a bandpass f i l
ter with a large value of Q will amplify signals at or near its 
center frequency and will attentuate signals at all other fre
quencies. On the other hand, a bandreject filter with a small 
value of Q will not effectively distinguish between signals at 
the center frequency and signals at frequencies quite different 
from the center frequency. 

In this chapter, we learn that any periodic signal can be 
represented as a sum of sinusoids, where the frequencies of the 

sinusoids in the sum are comprised of the frequency of the 
periodic signal and integer multiples of that frequency. We can 
use a periodic signal like a square wave to test the quality fac
tor of a bandpass or bandreject filter. To do this, we choose a 
square wave whose frequency is the same as the center fre
quency of a bandpass filter, for example. I f the bandpass filter 
has a high quality factor, its output will be nearly sinusoidal, 
thereby transforming the input square wave into an output 
sinusoid. If the filter has a low quality factor, its output will 
still look like a square wave, as the filter is not able to select 
from among the sinusoids that make up the input square wave. 
We present an example at the end of this chapter. 
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Figure 16.1 A A periodic waveform. 

v{t) 
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V,„ -
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(a) 

2 7 7/2 

(b) 

Figure 16.2 • Output waveforms of a nonfiltered sinu
soidal rectifier, (a) Full-wave rectification, (b) Half-wave 
rectification. 

Another practical problem that stimulates interest in periodic func
tions is that power generators, although designed to produce a sinusoidal 
waveform, cannot in practice be made to produce a pure sine wave. The 
distorted sinusoidal wave, however, is periodic. Engineers naturally are 
interested in ascertaining the consequences of exciting power systems 
with a slightly distorted sinusoidal voltage. 

Interest in periodic functions also stems from the general observation 
that any nonlinearity in an otherwise linear circuit creates a nonsinusoidal 
periodic function. The rectifier circuit alluded to earlier is one example of 
this phenomenon. Magnetic saturation, which occurs in both machines 
and transformers, is another example of a nonlinearity that generates a 
nonsinusoidal periodic function. An electronic clipping circuit, which uses 
transistor saturation, is yet another example. 

Moreover, nonsinusoidal periodic functions are important in the 
analysis of nonelectrical systems. Problems involving mechanical vibra
tion, fluid flow, and heat flow all make use of periodic functions. In fact, 
the study and analysis of heat flow in a metal rod led the French mathe
matician Jean Baptiste Joseph Fourier (1768-1830) to the trigonometric 
series representation of a periodic function. This series bears his name and 
is the starting point for finding the steady-state response to periodic exci
tations of electric circuits. 

Vm -

Figure 16.3 A The triangular waveform of a cathode-ray 
oscilloscope sweep generator. 
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Figure 16.4 A Waveforms produced by function 
generators used in laboratory testing, (a) Square wave, 
(b) Triangular wave, (c) Rectangular pulse. 
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16.1 Fourier Series Analysis: 
An Overview 

What Fourier discovered in investigating heat-flow problems is that a 
periodic function can be represented by an infinite sum of sine or cosine 
functions that are harmonically related. In other words, the period of any 
trigonometric term in the infinite series is an integral multiple, or har
monic, of the fundamental period T of the periodic function. Thus for peri
odic / ( / ) , Fourier showed that / ( / ) can be expressed as 

oo 

f(t) = av + 5 X c o s n(ad + bn sin/iwo^ (16.2) < Fourier series representation of a periodic 
«=i function 

where n is the integer sequence 1,2,3, 
In Eq. 16.2, av, afn and bn are known as the Fourier coefficients and are 

calculated from /(f). The term o>0 (which equals 2TT/T) represents the 
fundamental frequency of the periodic function /(f). The integral multi
ples of OJ() —that is, 2&>0, 3a>0, 4w0, and so on—are known as the harmonic 
frequencies of / ( / ) . Thus 2w0 is the second harmonic, 3a>0 is the third har
monic, and no)() is the «th harmonic of /(f). 

We discuss the determination of the Fourier coefficients in 
Section 16.2. Before pursuing the details of using a Fourier series in circuit 
analysis, we first need to look at the process in general terms. From an 
applications point of view, we can express all the periodic functions of 
interest in terms of a Fourier series. Mathematically, the conditions on a 
periodic function /(f) that ensure expressing /(f) as a convergent Fourier 
series (known as Dirichlet's conditions) are that 

1. /(f) be single-valued, 

2. / ( / ) have a finite number of discontinuities in the periodic interval, 

3. / ( / ) have a finite number of maxima and minima in the periodic 
interval, 

4. the integral 

/ 1/(01* 

exists. 

Any periodic function generated by a physically realizable source satisfies 
Dirichlet's conditions. These are sufficient conditions, not necessary con
ditions. Thus if /(f) meets these requirements, we know that we can 
express it as a Fourier series. However, if/(f) docs not meet these require
ments, we still may be able to express it as a Fourier series. The necessary 
conditions on /(f) are not known. 

After we have determined /(f) and calculated the Fourier coefficients 
(«,„ a,„ and b„), we resolve the periodic source into a dc source (a„) plus a 
sum of sinusoidal sources (a„ and /?„). Because the periodic source is driv
ing a linear circuit, we may use the principle of superposition to find the 
steady-state response. In particular, we first calculate the response to each 
source generated by the Fourier series representation of/(f) and then add 
the individual responses to obtain the total response. The steady-state 
response owing to a specific sinusoidal source is most easily found with 
the phasor method of analysis. 

The procedure is straightforward and involves no new techniques of 
circuit analysis. It produces the Fourier series representation of the 
steady-state response; consequently, the actual shape of the response is 
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unknown. Furthermore, the response waveform can be estimated only by 
adding a sufficient number of terms together. Even though the Fourier 
series approach to finding the steady-state response does have some draw
backs, it introduces a way of thinking about a problem that is as important 
as getting quantitative results. In fact, the conceptual picture is even more 
important in some respects than the quantitative one. 

16.2 The Fourier Coefficients 
After defining a periodic function over its fundamental period, we deter
mine the Fourier coefficients from the relationships 

av = f. / ( ?) dt> (16-3) 

2 / 
Fourier coefficients • ak = —I f(t) cos kco0t dt, (16.4) 

Tjt(3 

2 f'o+T 
bk = r fit) sin ka)Qt dt. (16.5) 

1 J t0 

In Eqs. 16.4 and 16.5, the subscript k indicates the &th coefficient in the 
integer sequence 1,2,3, Note that av is the average value of /(/), ak is 
twice the average value of f{t) cos kcotf, and bk is twice the average value 
of f(t) sin kcotf. 

We easily derive Eqs. 16.3-16.5 from Eq. 16.2 by recalling the follow
ing integral relationships, which hold when m and n are integers: 

sin mw0f dt = 0, for all m, (16.6) 

'o 

t0+T 

cos mcootdt = 0, for all m, (16-7) 

I 
Jtr, 

tn+T 

cos moitf sin nco^t dt = 0, for all m and n, (16.8) 

t0+r 

sin mo)()t sin no){)t dt = 0, for all m # n, 

= —, for m - n, (16.9) 
2 

to+T 

cos mo)0t cos ncoGt dt = 0, for all m # «, 

T 
= —, for m = n. (16.10) 

We leave you to verify Eqs. 16.6-16.10 in Problem 16.5. 
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To derive Eq. 16.3, we simply integrate both sides of Eq. 16.2 over 
one period: 

rt{)+T rh+T / oo \ 

/ f(t)dt = / f av 4- ^ ancos n(x)()t + bltsinna){)t jdt 
Jio Ji,) \ «=l / 

/.?„+'/' oo rh+T 

= / avdt + 2 / (fl« c o s nwo* + ^« s m '""of) & 
J/tl 11= 1 Jfy 

avT + 0. (16.11) 

Equation 16.3 follows directly from Eq. 16.11. 
To derive the expression for the A:th value of A„, we first multiply 

Eq. 16.2 by cos kio{)t and then integrate both sides over one period of /(f): 

f„+r ,-tu+T 

f{t) cos kco{)t dt = / av cos k(o{)t dt 

+ 2 ) / («/, cos «o>(/ cos &w()f + /}„ sin «6>(/ cos /ca>()f) d/ 
«=1 A, 

'« 

= 0 + a A | y ) (16.12) 

Solving Eq. 16.12 for ak yields the expression in Eq. 16.4. 
We obtain the expression for the kXh. value of bn by first multiplying 

both sides of Eq. 16.2 by sin kcotf and then integrating each side over one 
period of/(f). Example 16.1 shows how to use Eqs. 16.3-16.5 to find the 
Fourier coefficients for a specific periodic function. 

Example 16.1 Finding the Fourier Series of a Triangular Waveform with No Symmetry 

Find the Fourier series for the periodic voltage 
shown in Fig. 16.5. 

- 7 0 T IT 

Figure 16.5 • The periodic voltage for Example 16.1. 

Solution 
When using Eqs. 16.3-16.5 to find av, %, and bk, we 
may choose the value of f0- FOT the periodic voltage 
of Fig. 16.5, the best choice for f() is zero. Any other 
choice makes the required integrations more cum
bersome. The expression for v(t) between 0 and 7 is 

ly1 

The equation for av is 

1 fTfV 
a-= H KTr= iv' 

This is clearly the average value of the waveform in 
Fig. 16.5. 

The equation for the kth value of an is 

(lk = T I 1*7^ ' 

2V 1 * 
•Z—z COS k(Ont + ~ SmkiOnt 

T2 Kk2^ kc*a 

2V, 

T2 ——z ( cos 2-rrk - 1) 0 for all k. 
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The equation for the A:th value of b„ is 

bk = T I \^rL)tsinko)[)tdt 

2V"'f l i t i \ 
T 

o 

2Vm ( T \ 
= 0 0 , coslirk 

T2 \ kcou J 

-vm 
irk 

y m = — -
y y m 

2 

The Fourier series for v(t) is 

V °9 1 v in ^r\ l . 
X ~ smtt&w 

K V V 
sm (o{)t - -— sin 2oj()t - —— sin 3a>0? - • • •. 

1" 27T 37T 

I / A S S E S S M E N T PROBLEMS 

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform 

16.1 Derive the expressions for «„, ak, and bk for the 
periodic voltage function shown if Vm = 9ir V. 

v„ 

3 

27/ 
3 

4T 
3 

57/ 
3 

IT 

f s i n ^ V, 

Answer: av = 21.99 V, 

NOTE: Also try Chapter Problems 16.1-16.3. 

c o s ^ ) V. 

16.2 Refer to Assessment Problem 16.1. 

a) What is the average value of the periodic 
voltage? 

b) Compute the numerical values of ay — a5 

and b\ - b5. 
c) If T = 125.66 ms, what is the fundamental 

frequency in radians per second? 
d) What is the frequency of the third harmonic 

in hertz? 
e) Write the Fourier series up to and including 

the fifth harmonic. 

Answer: (a) 21.99 V; 

(b) -5.2 V,2.6V,0V,-1.3, and 1.04 V; 
9 V, 4.5 V, 0 V, 2.25 V, and 1.8 V; 

(c) 50 rad/s; 

(d) 23.87 Hz; 

(e) v(t) = 21.99 - 5.2 cos 50? + 9 sin 50? + 
2.6 cos 100? + 4.5 sin 100* -
1.3 cos 200? + 2.25 sin 200? + 
1.04 cos 250? + 1.8 sin 250? V. 

Finding the Fourier coefficients, in general, is tedious. Therefore any
thing that simplifies the task is beneficial. Fortunately, a periodic function 
that possesses certain types of symmetry greatly reduces the amount of 
work involved in finding the coefficients. In Section 16.3, we discuss how 
symmetry affects the coefficients in a Fourier series. 
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16.3 The Effect of Symmetry 
on the Fourier Coefficients 

Four types of symmetry may be used to simplify the task of evaluating the 
Fourier coefficients: 

• even-function symmetry, 
• odd-function symmetry, 
• half-wave symmetry, 
• quarter-wave symmetry. 

The effect of each type of symmetry on the Fourier coefficients is discussed 
in the following sections. 

Even-Function Symmetry 

A function is defined as even if 

fit) = /(-0- (16.13) -< Even function 

Functions that satisfy Eq. 16.13 are said to be even because polynomial 
functions with only even exponents possess this characteristic. For even 
periodic functions, the equations for the Fourier coefficients reduce to 

2 fT/2 

(16.14) 

T/2 

f{t) cos ktotfdt, 
1 Jo 

(16.15) 

bk = 0, for all k. (16.16) 

Note that all the b coefficients are zero if the periodic function is even. 
Figure 16.6 illustrates an even periodic function. The derivations of 
Eqs. 16.14-16.16 follow directly from Eqs. 16.3-16.5. In each derivation, 
we select t{) = -T/2 and then break the interval of integration into the 
range from -T/2 to 0 and 0 to T/2, or 

ar 

-T/2 

-T/2 

0 

/(0 dt 

T/2 

T/2 

"fl f(t)dL (16.17) 

-T 

m 

0 

Figure 16.6 • An even periodic function, 

/(0=/(-0-

Now we change the variable of integration in the first integral on the 
right-hand side of Eq. 16.17. Specifically, we let t = -x and note that 
/ ( 0 = f(~x) = /(•*) because the function is even. We also observe that 
x — T/2 when t = -T/2 and dt = —dx. Then 

/ ( 0 dt -
T/2 J'T/2 

0 /-7/2 

f(x)(-dx) = / f(x) dx, (16.18) 
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which shows that the integration from -T/2 to 0 is identical to that from 
0 to 7/2; therefore Eq. 16.17 is the same as Eq. 16.14. The derivation of 
Eq. 16.15 proceeds along similar lines. Here, 

ak = 
2 f° 

/ ( / ) cos ka){)t dt 

T/2 

V — / / ( / ) cos ko){)t dt, 
' h) 

(16.19) 

but 

•4) ,.() 

/ ( / ) cos ku>()tdt = / f(x) cos (-k00^)(-dx) 
T/2 JT/2 

T/2 

f(x) cos k(x){)x dx. (16.20) 

As before, the integration from -T/2 to 0 is identical to that from 0 to 
T/2. Combining Eq. 16.20 with Eq. 16.19 yields Eq. 16.15. 

All the b coefficients are zero when / ( / ) is an even periodic function, 
because the integration from —T/2 to 0 is the exact negative of the inte
gration from 0 to T/2; that is, 

0 ni) 

/ ( / ) sin ka){)t dt = / f(x)sm(-ko){)x)(—dx) 
-T/2 JT/2 

T/2 

f(x) sin koi()X dx. (16.21) 

When we use Eqs. 16.14 and 16.15 to find the Fourier coefficients, the 
interval of integration must be between 0 and T/2. 

Odd-Function Symmetry 

A function is defined as odd if 

Odd function • 

Figure 16.7 • An odd periodic function 
/(0 = -/(-0. 

m = -/(-0. (16.22) 

Functions that satisfy Eq. 16.22 are said to be odd because polynomial 
functions with only odd exponents have this characteristic. The expres
sions for the Fourier coefficients are 

av = 0; 

ak = 0, 

6* = f 
for all k\ 

rT/2 

/ / ( / ) sin ka){)t dt. 
/o 

(16.23) 

(16.24) 

(16.25) 

Note that all the a coefficients are zero if the periodic function is odd. 
Figure 16.7 shows an odd periodic function. 
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We use the same process to derive Eqs. 16.23-16.25 that we used to 
derive Eqs. 16.14-16.16. We leave the derivations to you in Problem 16.7. 

The evenness, or oddness, of a periodic function can be destroyed by 
shifting the function along the time axis. In other words, the judicious 
choice of where t - 0 may give a periodic function even or odd symmetry. 
For example, the triangular function shown in Fig. 16.8(a) is neither even 
nor odd. However, we can make the function even, as shown in 
Fig. 16.8(b), or odd, as shown in Fig. 16.8(c). 

Half-Wave Symmetry 

A periodic function possesses half-wave symmetry if it satisfies the 
constraint 

/(f) = -f(t - T/2). (16.26) 

Equat ion 16.26 states that a periodic function has half-wave symmetry if, 
after it is shifted one-half period and inverted, it is identical to the original 
function. For example, the functions shown in Figs. 16.7 and 16.8 have half-
wave symmetry, whereas those in Figs. 16.5 and 16.6 do not. Note that half-
wave symmetry is not a function of where t = 0. 

If a periodic function has half-wave symmetry, both ak and bk are zero 
for even values of k. Moreover, av also is zero because the average value 
of a function with half-wave symmetry is zero. The expressions for the 
Fourier coefficients are 

av = 0, 

ak = 0, 

(16.27) 

7/2 

1 -/() 

h = o, 

h = y7 

T/2 

fit) cos ko)0t dt, 

i 

fit) sin k(i){)t dt, 

for k even; 

for k odd; 

for k even; 

for k odd. 

(16.28) 

(16.29) 

(16.30) 

(16.31) 

(c) 

Figure 16.8 A How the choice of where t = 0 can 
make a periodic function even, odd, or neither, (a) A 
periodic triangular wave that is neither even nor odd. 
(b) The triangular wave of (a) made even by shifting the 
function along the t axis, (c) The triangular wave of (a) 
made odd by shifting the function along the t axis. 

We derive Eqs. 16.27-16.31 by starting with Eqs. 16.3-16.5 and choos
ing the interval of integration as —T/2 to T/2. We then divide this range 
into the intervals —T/2 to 0 and 0 to T/2. For example, the derivation 
for ak is 

ak = 
Jt,t 

fit) cos kcjQt dt 

T.L 

T/2 

fit) cos kco{)t dt 

T L 

T/2 

.0 

= — / fit) cos kcoot dt 
T/2 

T/2 

+ ;=r / / ( f ) cos ka){]t dt. 
' -A) 

(16.32) 
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Now we change a variable in the first integral on the right-hand side of 
Eq. 16.32. Specifically, we let 

Then 

t = x - T/2. 

x = T/2, when t = 0; 

x = 0, when t = —T/2; 

dt = dx. 

We rewrite the first integral as 

/ ( 0 cos kto()tdt = / f(x - T/2)coskto{)(x - T/2)dx. (16.33) 
-T/2 Ml 

Note that 

cos ktO()(x — T/2) — cos (ko){)x — kir) = cos kir cos kco()x 

and that, by hypothesis, 

f(x - T/2) = -f(x). 

Therefore Eq. 16.33 becomes 

A 

7/4 

-A 

7/2 37/4 7 

(a) 

/(0 
/I 

0 

-

i 
7/4 

-A 

I 
7/2 37/4 7 

(b) 

Figure 16.9 • (a) A function that has quarter-wave 
symmetry, (b) A function that does not have quarter-
wave symmetry. 

./-7/2 
f(t) cos kco()t dt 

T/2 

[-f(x)] cos k 77 cos ko){)x dx. (16.34) 

t Incorporating Eq. 16.34 into Eq. 16.32 gives 

7/2 

ak = - ( 1 — cos kit) / f(t) cos &G>0f rf/. (16.35) 

But cos kTT is 1 when k is even and - 1 when k is odd. Therefore Eq. 16.35 
generates Eqs. 16.28 and 16.29. 

We leave it to you to verify that this same process can be used to 
derive Eqs. 16.30 and 16.31 (see Problem 16.8). 

We summarize our observations by noting that the Fourier series rep
resentation of a periodic function with half-wave symmetry has zero aver
age, or dc, value and contains only odd harmonics. 

Quarter-Wave Symmetry 
The term quarter-wave symmetry describes a periodic function that has 
half-wave symmetry and, in addition, symmetry about the midpoint of the 
positive and negative half-cycles. The function illustrated in Fig. 16.9(a) 
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has quarter-wave symmetry about the midpoint of the positive and nega
tive half-cycles. The function in Fig. 16.9(b) does not have quarter-wave 
symmetry, although it does have half-wave symmetry. 

A periodic function that has quarter-wave symmetry can always be 
made either even or odd by the proper choice of the point where t = 0. 
For example, the function shown in Fig. 16.9(a) is odd and can be made 
even by shifting the function 7/4 units either right or left along the t axis. 
However, the function in Fig. 16.9(b) can never be made either even or 
odd. To take advantage of quarter-wave symmetry in the calculation of the 
Fourier coefficients, you must choose the point where t = 0 to make the 
function either even or odd. 

If the function is made even, then 

av = 0, because of half-wave symmetry; 

ak = 0, for k even, because of half-wave symmetry; 

8 fT/4 

ak = — I f(t) cos kaitf dt, for k odd; 
T Ju 

bk = 0, for all /c, because the function is even. (16.36) 

Equations 16.36 result from the function's quarter-wave symmetry in 
addition to its being even. Recall that quarter-wave symmetry is super
imposed on half-wave symmetry, so we can eliminate ar and ak for k even. 
Comparing the expression for ak, k odd, in Eqs. 16.36 with Eq. 16.29 shows 
that combining quarter-wave symmetry with evenness allows the shorten
ing of the range of integration from 0 to 7/2 to 0 to 7/4. We leave the der
ivation of Eqs. 16.36 to you in Problem 16.9. 

If the quarter-wave symmetric function is made odd, 

av = 0, because the function is odd; 

ak = 0, for all k, because the function is odd; 

bk = 0, for k even, because of half-wave symmetry; 

8 fT/4 
bk = ^ / f(t) sin kco{)tdt, for k odd. (16.37) 

Equations 16.37 are a direct consequence of quarter-wave symmetry and 
oddness. Again, quarter-wave symmetry allows the shortening of the inter
val of integration from 0 to 7/2 to 0 to 7/4. We leave the derivation of 
Eqs. 16.37 to you in Problem 16.10. 

Example 16.2 shows how to use symmetry to simplify the task of find
ing the Fourier coefficients. 
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Example 16.2 Finding the Fourier Series of an Odd Function with Symmetry 

Find the Fourier series representation for the cur
rent waveform shown in Fig, 16.10. 

-T/2 

Figure 16.10 • The periodic waveform for Example 16.2. 

In the interval O s t < 7/4, the expression for 
/(f) is 

m-f, 
Thus 

8 fT/44I 
bk = — —risinkaitfdt 1 Jo * 

321m I sin ktoot t cos kco()t 
2..2 Tl \ kW0 k(0() 

TfA 

Solution 

We begin by looking for degrees of symmetry in the 
waveform. We find that the function is odd and, in 
addition, has half-wave and quarter-wave symme
try. Because the function is odd, all the a coeffi
cients are zero; that is, av = 0 and ak = 0 for all k. 
Because the function has half-wave symmetry, 
bk = 0 for even values of k. Because the function 
has quarter-wave symmetry, the expression for bk 

for odd values of k is 

8j,/« . kir 
2 7 sin — {k is odd). 

Kr £ TT 

The Fourier series representation of /(f) is 

i(t) =—r* 2J ~ sin —- sin «<W0/ 
TT" « = 1,3.5,...« 2 

—r sin wQt - - sin 3<oGt 
IT1 V y 

r/4 
bk=-= f /(f) sin ko){]t dt. 

1 -A) 
+ — sm Statf - — sin 7 ^ + 

/ A S S E S S M E N T PROBLEM 

Objective 1—Be able to calculate the trigonometric form of the Fourier coefficients for a periodic waveform 

16.3 Derive the Fourier series for the periodic volt
age shown. 

\7Vm « sin (mr/3) . 
Answer: vg(t) = —z— 2J z smnco0t. 

TT «=1,3,5,... n 

MO 
vm 

-vm 

/ \ 1 \ 
0 T/6 T/3 r/s 

— 

1 1 
. 27 /3 57/6 

/ 
/ T 

NOTE: Also try Chapter Problems 16.11 and 16.12. 
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16.4 An Alternative Trigonometric Form 
of the Fourier Series 

In circuit applications of the Fourier series, we combine the cosine and 
sine terms in the series into a single term for convenience. Doing so allows 
the representation of each harmonic of v(t) or i(t) as a single phasor quan
tity. The cosine and sine terms may be merged in either a cosine expres
sion or a sine expression. Because we chose the cosine format in the 
phasor method of analysis (see Chapter 9), we choose the cosine expres
sion here for the alternative form of the series. Thus we write the Fourier 
series in Eq. 16.2 as 

fit) = av + ^Ancos(no){)t - 6,X (16.38) 
«=i 

where An and d„ are defined by the complex quantity 

an - jbn = Vflg + bl/-6n = Aa/-9„. (16.39) 

We derive Eqs. 16.38 and 16.39 using the phasor method to add the cosine 
and sine terms in Eq. 16.2. We begin by expressing the sine functions as 
cosine functions; that is, we rewrite Eq. 16.2 as 

00 

/ ( / ) = av + 2X,cosncotf + bncos(nco0t - 90°). (16.40) 

Adding the terms under the summation sign by using phasors gives 

SP{fl„ cos natf} = an / 0 ^ (16.41) 

and 

®{b„ cos(nco()t - 90°)} = bn / - 9 0 ° = -jbn. (16.42) 

Then 

2P{«„ cos(«a>o* + bn cos(ti(OQt — 90°)} = an - jbn 

= Val + %/-$„ 

= A„/-0„. (16.43) 

When we inverse-transform Eq. 16.43, we get 

ancosno)()t + bncos(nw0t - 90°) = ^jA,,/-6,,} 

= Ancos(no)0t - 6n). (16.44) 

Substituting Eq. 16.44 into Eq. 16.40 yields Eq. 16.38. Equation 16.43 
corresponds to Eq. 16.39. If the periodic function is either even or odd, 
An reduces to either an (even) or b„ (odd), and 6n is either 0° (even) or 
90° (odd). 

The derivation of the alternative form of the Fourier series for a given 
periodic function is illustrated in Example 16.3. 
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Example 16.3 Calculating Forms of the Trigonometric Fourier Series for Periodic Voltage 

a) Derive the expressions for ak and bk for the peri
odic function shown in Fig. 16.11. 

b) Write the first four terms of the Fourier series 
representat ion of v(t) using the format of 
Eq . 16.38. 

J L 
T_ T_ yr T 5T 3T IT 2T 
4 2 4 4 2 4 

Figure 16.11 • The periodic function for Example 16.3. 

Solution 

a) The voltage v(t) is neither even nor odd, nor 
does it have half-wave symmetry. Therefore we 
use Eqs. 16.4 and 16.5 to find ak and bk. Choosing 
to as zero, we obtain 

ak = 
T 

7*/4 PT 

Vm cos ko){)t dt + (0) cos ka>{)t dt 
JTjA 

2V m smkcotf 

kcor 

7/4 

0 

Vjn . kTJ^ 

kir 2 

and 

2 [T/A 

bk = — I Vm sin ktntf dt 
1 Jo 

2Vm ( — cos koot 

k(o{) 

Vm(. k-n• 

b) Tlie average value of v{t) is 

a„ = -— = -v 

The values of ak — jbk for k = 1,2, and 3 are 

«i - jb\ 
V, 
IT 

V, 

TT 

V2V, 
/ - 4 5 ° , 

V V 
(h — lb~> = 0 - / = / —90 , 

3 " J IT TT L 

«3 _ jb3 = 
-y,> 

3TT 

Vzv, 
3ir 

/ - 1 3 5 ' 

Thus the first four terms in the Fourier series 
representation of v(t) are 

V V2V V 
v(t) =^r + -—^-cos^t - 45°) + -f-cos(2co()t - 90°) 7T 77 

V2V 
+ ——^cos(3o>o* - 135°) + 

3TT V U f 

/ A S S E S S M E N T PROBLEM 

Objective 1—Be able to calculate the trigonometric form of the Fourier coeffiaents for a periodic waveform 

16.4 a) Compute A\—A5 and 0 i ~ 0 5 for the periodic 
function shown if Vm — 9TT V. 

b) Using the format of Eq. 16.38, write the 
Fourier series for v(t) up to and including 
the fifth harmonic assuming T = 125.66 ms. 

Answer: (a) 10.4,5.2,0,2.6,2.1 V, and - 1 2 0 ° , - 6 0 ° , 
not defined, - 1 2 0 ° , - 6 0 ° ; 

(b) v(t) = 21.99 + 10.4cos(50/ - 120°) + 
5.2cos(100r - 60°) + 
2.6 cos(200f - 120°) + 
2.1 cos(250/ - 60°) V. 

3 

IT 
3 

4 J 
3 

57' 
3 

IT 

NOTE: Also try Chapter Problem 16.22. 



16.5 An Application 
Now we illustrate how to use a Fourier series representation of a periodic 
excitation function to find the steady-state response of a linear circuit. The 
RC circuit shown in Fig. 16.12(a) will provide our example. The circuit is 
energized with the periodic square-wave voltage shown in Fig. 16.12(b). 
The voltage across the capacitor is the desired response, or output, signal. 

The first step in finding the steady-state response is to represent the peri
odic excitation source with its Fourier series. After noting that the source has 
odd, half-wave, and quarter-wave symmetry, we know that the Fourier 
coefficients reduce to bk, with k restricted to odd integer values: 

b. 
T 

4V 

rrk 

774 

Vm sin kaj{]t dt 

(k is odd). 

Then the Fourier series representation of v„ is 

4V 

IT 

CO -t 

- j? — sin nco{)t. 

(16.45) 

(16.46) 

Writing the series in expanded form, we have 

4K„, . 4Vm 

v., = sin cunt + —— sin 3oW 
8 TT 3ir ^ 

16.5 An Application 

(a) 

v„ 

-V, 

27 37 

(b) 

Figure 16.12 A An RC circuit excited by a periodic 
voltage, (a) The RC series circuit, (b) The square-wave 
voltage. 

4V 4V 
in • c ^ v in • *7 . , 

—— sin 5(ti{)t + —— sin 7ct>0/ + 5 7T 777 
(16.47) 

Tlie voltage source expressed by Eq. 16.47 is the equivalent of infi
nitely many series-connected sinusoidal sources, each source having its 
own amplitude and frequency. To find the contribution of each source to 
the output voltage, we use the principle of superposition. 

For any one of the sinusoidal sources, the phasor-domain expression 
for the output voltage is 

V r 

v„ = 1 + jo)RC 
(16.48) 

All the voltage sources are expressed as sine functions, so we interpret a 
phasor in terms of the sine instead of the cosine. In other words, when we 
go from the phasor domain back to the time domain, we simply write the 
time-domain expressions as sin(atf + 6) instead of cos(wf + 6). 

The phasor output voltage owing to the fundamental frequency of the 
sinusoidal source is 

V,„ = 
{4Vm/ir)/Qf 

Writing V„i in polar form gives 

cii 

where 

1 + j(ti{)RC ' 

( 4 V J / - / 3 , 

TrVl + (tilR2Cr 

0i = tan~X(ti{)RC. 

(16.49) 

(16.50) 

(16.51) 



From Eq. 16.50, the time-domain expression for the fundamental fre
quency component of v(, is 

4V 
sin(ttiof - ft). (16.52) 

T T V I + (4RC2 

We derive the third-harmonic component of the output voltage in a simi
lar manner. The third-harmonic phasor voltage is 

(4V„;/377)/cy 
Y " 3 J3(OQRC 

4V 
f = Z z & > (16.53) 

3 T T V I + 9<4R2C 

where 

j33 = tan~l3(oi}RC. (16.54) 

The time-domain expression for the third-harmonic output voltage is 

4V 
V03 = , '" = = =sin(3<o0f - j83). (16.55) 

3TT V I + 9wg^2C2 

Hence the expression for the &th-harmonic component of the output 
voltage is 

vok = '" = sin(/cw,/ - j8jt) (& is odd), (16.56) 

where 

/3* = tan ~]k(o{)RC (k is odd). (16.57) 

We now write down the Fourier series representation of the output 
voltage: 

y«(0 = ^ T 2 ; / =?• (16.58) 
ff /, = u l . . t t V I + (HW0i?C)2 

The derivation of Eq. 16.58 was not difficult. But, although we have an ana
lytic expression for the steady-state output, what v0(t) looks like is not imme
diately apparent from Eq. 16.58. As we mentioned earlier, this shortcoming is 
a problem with the Fourier series approach. Equation 16.58 is not useless, 
however, because it gives some feel for the steady-state waveform of v(>(t), if 
we focus on the frequency response of the circuit. For example, if C is large, 
1/ncooC is small for the higher order harmonics. Thus the capacitor short cir
cuits the high-frequency components of the input waveform, and the higher 
order harmonics in Eq. 16.58 are negligible compared to the lower order har
monics. Equation 16.58 reflects this condition in that, for large C, 

4Vm °° 1 
v<> ~ S^ 2 -^sin(Aio)0r - 90°) 

a ~ 2 -jcosnwof. (16.59) 
7T(D()RC ,, = 1¾.... It 

Equation 16.59 shows that the amplitude of the harmonic in the output 
is decreasing by 1/n2, compared with 1/n for the input harmonics. If C is 
so large that only the fundamental component is significant, then to a 
first approximation 

~4V 
V»{t) « ;^cosw ( ) f , (16.60) 
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and Fourier analysis tells us that the square-wave input is deformed into a 
sinusoidal output. 

Now let's see what happens as C —>0. The circuit shows that v() and vg 

are the same when C = 0, because the capacitive branch looks like an 
open circuit at all frequencies. Equation 16.58 predicts the same result 
because, as C —> 0, 

Wm * 1 , 
v(> = >. — smno){)t. (16.61) 

But Eq. 16.61 is identical to Eq. 16.46, and therefore v0 —* vg as C —*• 0. 
Thus Eq. 16.58 has proven useful because it enabled us to predict that 

the output will be a highly distorted replica of the input waveform if C is 
large, and a reasonable replica if C is small. In Chapter 13, we looked at 
the distortion between the input and output in terms of how much mem
ory the system weighting function had. In the frequency domain, we look 
at the distortion between the steady-state input and output in terms of 
how the amplitude and phase of the harmonics are altered as they are 
transmitted through the circuit. When the network significantly alters the 
amplitude and phase relationships among the harmonics at the output rel
ative to that at the input, the output is a distorted version of the input. 
Thus, in the frequency domain, we speak of amplitude distortion and 
phase distortion. 

For the circuit here, amplitude distortion is present because the ampli
tudes of the input harmonics decrease as 1/rc, whereas the amplitudes of 
the output harmonics decrease as 

1 1 
n V l + (na>QRC)2' 

This circuit also exhibits phase distortion because the phase angle of each 
input harmonic is zero, whereas that of the nth harmonic in the output sig
nal is - tan"1 ri(o0RC. 

An Application of the Direct Approach 
to the Steady-State Response 

For the simple RC circuit shown in Fig. 16.12(a), we can derive the expres
sion for the steady-state response without resorting to the Fourier series 
representation of the excitation function. Doing this extra analysis here 
adds to our understanding of the Fourier series approach. 

To find the steady-state expression for v0 by straightforward circuit 
analysis, we reason as follows. The square-wave excitation function alter
nates between charging the capacitor toward +V„, and —Vm. After the 
circuit reaches steady-state operation, this alternate charging becomes 
periodic. We know from the analysis of the single time-constant RC circuit 
(Chapter 7) that the response to abrupt changes in the driving voltage is 
exponential. Thus the steady-state waveform of the voltage across the 
capacitor in the circuit shown in Fig. 16.12(a) is as shown in Fig. 16.13. 

The analytic expressions for v„{t) in the time intervals 0 < t < T/2 
and T/2<t<T are 

Vo = Vm + (V, - VJe^RC, 0 < t < T/2; (16.62) 

Vo = ~Vm + (V2 + Vm)e-^™RC, T/2 < t < T. (16.63) 

We derive Eqs. 16.62 and 16.63 by using the methods of Chapter 7, as sum
marized by Eq. 7.60. We obtain the values of V\ and V2 by noting from 
Eq. 16.62 that 

Vl = Vm + (1/, - Vm)e-TI2RC\ (16.64) 

Toward + V.„ Toward + V. 

\ \ 
Toward —Vm Toward —V. 

Figure 16.13 • The steady-state waveform of v0 for the 
circuit in Fig. 16.12(a). 
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Small C 

Figure 16.14 • The effect of capacitor size on the 
steady-state response. 

and from Eq. 16.63 that 

V1 = -Vln + (V2 + Vm)e-T?2RC. 

Solving Eqs. 16.64 and 16.65 for V\ and V2 yields 

y, = -y. = —™i L 

Substituting Eq. 16.66 into Eqs. 16.62 and 16.63 gives 

2V, 
V° " j " j |_ e-f/2RC ->/RC, 0 < t < T/2. 

(16.65) 

(16.66) 

(16.67) 

and 

•Vm + 
2V, 

1 + e-r/ac 
ff-(y/2)]/RC F/2 S / =S 7. (16.68) 

Equations 16.67 and 16.68 indicate that vw(0 has half-wave symmetry 
and that therefore the average value of v0 is zero. This result agrees with 
the Fourier series solution for the steady-state response —namely, that 
because the excitation function has no zero frequency component, the 
response can have no such component. Equations 16.67 and 16.68 also 
show the effect of changing the size of the capacitor. If C is small, the 
exponential functions quickly vanish, va = Vm between 0 and T/2, and 
va = —Vm between T/2 and T. In other words, va —* v% as C —> 0. If C is 
large, the output waveform becomes triangular in shape, as Fig. 16.14 
shows. Note that for large C, we may approximate the exponential 
terms e~'/RC and C,-['-(772)1/KC b y t h e H n e a r t e r m s j _ (t/RC) and 

1 - {[t - (T/2)]/RC}i respectively. Equation 16.59 gives the Fourier 
series of this triangular waveform. 

Figure 16.14 summarizes the results. The dashed line in Fig. 16.14 is 
the input voltage, the solid colored line depicts the output voltage when 
C is small, and the solid black line depicts the output voltage when C is large. 

Finally, we verify that the steady-state response of Eqs. 16.67 and 
16.68 is equivalent to the Fourier series solution in Eq. 16.58. To do so we 
simply derive the Fourier series representation of the periodic function 
described by Eqs. 16.67 and 16.68. We have already noted that the periodic 
voltage response has half-wave symmetry. Therefore the Fourier series 
contains only odd harmonics. For k odd, 

«* = 

T!1( 2V e't/IiC 

(y _ ZK"'C ; — 

-8RCV,,, 

cos kco{)t dt 

T[\ + (kco{)RC): (k is odd), (16.69) 

4 ^ / 2Vme-l«c 

bk = - J \Vm - - + e_T/2RC ) 

4V, $kco(ymR2C2 

kir T[\ + (kiOuRC)2] 
(k is odd). (16.70) 

To show that the results obtained from Eqs. 16.69 and 16.70 are consistent 
with Eq. 16.58, we must prove that 

4V„, 1 
Vol + b2

k = 
k7T V l + (ka>{)RC)2' 

and that 

— = ~ko)[)RC. 

(16.71) 

(16.72) 
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We leave you to verify Eqs. 16.69-16.72 in Problems 16.23 and 16.24. 
Equations 16.71 and 16.72 are used with Eqs. 16.38 and 16.39 to derive the 
Fourier series expression in Eq. 16.58; we leave the details to you in 
Problem 16.25. 

With this illustrative circuit, we showed how to use the Fourier series 
in conjunction with the principle of superposition to obtain the steady-
state response to a periodic driving function. Again, the principal short
coming of the Fourier series approach is the difficulty of ascertaining the 
waveform of the response. However, by thinking in terms of a circuit's fre
quency response, we can deduce a reasonable approximation of the 
steady-state response by using a finite number of appropriate terms in the 
Fourier series representation. (See Problems 16.27 and 16.29.) 

S S E S S M E N T P R O B L E M 

Objective 2—Know how to analyze a circuit's response to a periodic waveform 

16.5 The periodic triangular-wave voltage seen on 
the left is applied to the circuit shown on the 
right. Derive the first three nonzero terms in 
the Fourier series that represents the steady-
state voltage v0 if Vm = 281.25ir2 mV and the 
period of the input voltage is 200-7T ms. 

Answer: 2238.83 cos(10; - 5.71°) + 239.46 cos(30/ -

16.70°) + 80.50 cos(50f - 26.57°) + . . . mV 

16.6 The periodic square-wave shown on the left is 
applied to the circuit shown on the right. 

a) Derive the first four nonzero terms in the 
Fourier series that represents the steady-
state voltage v0 if V„, = 210-77 V and the 
period of the input voltage is 0.277 ms. 

b) Which harmonic dominates the output 
voltage? Explain why. 

1 

i 

y,n 

0 

~vm 

1 
T/2 

1 
T 

100 kft 
-^vw— 

+ 

100 nF oa 

Answer: (a) 17.5 cos(10,000r + 88.81°) + 
26.14cos(30,000^ - 95.36°) + 
168cos(50,0000 + 
17.32 cos(70,000/ + 98.30°) + V; 

(b) The fifth harmonic, at 10,000 rad/s, 
because the circuit is a bandpass filter 
with a center frequency of 50,000 rad/s 
and a quality factor of 10. 

10 kH 

!20nF 

+ 

20 mH v„ 

NOTE: Also try Chapter Problems 16.27 and 16.28. 

16.6 Average-Power Calculations 
with Periodic Functions 

If we have the Fourier series representation of the voltage and current at 
a pair of terminals in a linear lumped-parameter circuit, we can easily 
express the average power at the terminals as a function of the harmonic 
voltages and currents. Using the trigonometric form of the Fourier series 



expressed in Eq. 16.38, we write the periodic voltage and current at the 
terminals of a network as 

00 

v = Vdc + 2Xcos(/io>of - Qm)< (16.73) 

DO 

' = ' dc + ^,IaCOS(na){rt - Btn). (16.74) 
/ (=1 

The notation used in Eqs. 16.73 and 16.74 is defined as follows: 

Vdc = the amplitude of the dc voltage component, 

Vn = the amplitude of the nth-harmonic voltage, 

Qvn - the phase angle of the nth-harmonic voltage, 

/d c = the amplitude of the dc current component, 

/n = the amplitude of the nth-harmonic current, 

din = the phase angle of the nth-harmonic current. 

We assume that the current reference is in the direction of the refer
ence voltage drop across the terminals (using the passive sign conven
tion), so that the instantaneous power at the terminals is w'.The average 
power is 

j rh+T j fttt+T 

P = ~ / Pdt = T Vt dL ( 16-75) 

1 Jk 1 At 
To find the expression for the average power, we substitute Eqs. 16.73 and 
16.74 into Eq. 16.75 and integrate. At first glance, this appears to be a for
midable task, because the product vi requires multiplying two infinite 
series. However, the only terms to survive integration are the products of 
voltage and current at the same frequency. A review of Eqs. 16.8-16.10 
should convince you of the validity of this observation. Therefore 
Eq. 16.75 reduces to 

y^dc^dcf 

t0+T oo_ i fh+T 

v„i„co$(na){)t - em) 
DO -i ri 

n=\l Jta 

X cos(nw(/ - Bin)dt. (16.76) 

Now, using the trigonometric identity 

1 1 
cos a cos (3 = - cos (a - / 3 ) + — cos(a + /3), 

we simplify Eq. 16.76 to 

1 °° V I f'0+T 

p = vdc/dc + 7 S - ^ r 1 / I c o s(0- - *bd 
1 ;i=i z A, 

+ cos(2nft)0f - 6m - din)]dt. (16.77) 
The second term under the integral sign integrates to zero, so 

P = ^ d c / d c + 2 - ^ c o s ( 0 , „ - 0in). (16.78) 

Equation 16.78 is particularly important because it states that in the case 
of an interaction between a periodic voltage and the corresponding periodic 
current, the total average power is the sum of the average powers obtained 
from the interaction of currents and voltages of the same frequency. Currents 
and voltages of different frequencies do not interact to produce average 
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power. Therefore, in average-power calculations involving periodic func
tions, the total average power is the superposition of the average powers 
associated with each harmonic voltage and current. Example 16.4 illustrates 
the computation of average power involving a periodic voltage. 

Example 16.4 Calculating Average Power for a Circuit with a Periodic Voltage Source 

Assume that the periodic square-wave voltage in 
Example 16.3 is applied across the terminals of a 
15 H resistor. The value of Vm is 60 V, and that of T 
is 5 ms. 

a) Write the first five nonzero terms of the Fourier 
series representation of v(t). Use the trigono
metric form given in Eq. 16.38. 

b) Calculate the average power associated with 
each term in (a). 

c) Calculate the total average power delivered to 
the 15 O resistor. 

d) What percentage of the total power is delivered 
by the first five terms of the Fourier series? 

Solution 

a) The dc component of v(t) is 

(60)(7/4) 

T 
= 15 V. 

From Example 16.3 we have 

A] = V2 6O/77 = 27.01 V, 

0i = 45°, 

A2 = 60/TT = 19.10 V, 

e2 = 90°, 

A3 = 20 V2/TT = 9.00 V, 

03 = 135°, 

A4 = 0, 

04 = 0° , 

A5 = 5.40 V, 

05 = 45°, 

2TT 277(1000) 
w() = 40077 rad/s . 

Thus, using the first five nonzero terms of the 
Fourier series, 

17(f) = 15 + 27.01 cos(40077/ - 45°) 

+ 19.10COS(800T7/ - 90°) 

+ 9 . 0 0 C O S ( 1 2 0 0 T 7 / - 135°) 

+ 5 . 4 0 C O S ( 2 0 0 0 T 7 / - 45°) + - - - V . 

b) The voltage is applied to the terminals of a resis
tor, so we can find the power associated with 
each term as follows: 

152 

P d c = 15" = 1 5 W ' 

1 92 
P 3 = _ _ = 2 . 7 0 W , 

1 5.42 

, , = - _ _ = 0.97 W. 

c) To obtain the total average power delivered to 
the 15 0 resistor, we first calculate the rms value 
of v(t): 

V = 
rrms 

/(60)2(774) 

T 
= V900 = 30 V. 

The total average power delivered to the 15 (1 
resistor is 

302 , 
PT = — = 60 W. 

d) The total power delivered by the first five 
nonzero terms is 

P = P d c + P{ + P2 + P3 + P5 = 55.15 W. 

This is (55.15/60)(100), or 91.92% of the total. 
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/ A S S E S S M E N T PROBLEM 

Objective 3—Be able to estimate the average power delivered to a resistor using a small number of Fourier 
coefficients 

16.7 The trapezoidal voltage function in Assessment 
Problem 16.3 is applied to the circuit shown. If 
\2Vm = 296.09 V and T = 2094.4ms, estimate 
the average power delivered to the 2 fi resistor. 

Answer: 60.75 W. 

NOTE: Also try Chapter Problems 16.34 and 16.35. 

16.7 The rms Value of a Periodic Function 
The rms value of a periodic function can be expressed in terms of the 
Fourier coefficients; by definition, 

^ = ^ / fitrdt. (16.79) 

Representing /(f) by its Fourier series yields 

tu+T 

av + 2 A i COS (iwat - 0„) 
«=i 

dt. (16.80) 

The integral of the squared time function simplifies because the only 
terms to survive integration over a period are the product of the dc term 
and the harmonic products of the same frequency. All other products inte
grate to zero. There fore Eq. 16.80 reduces to 

F- = w r,r + „?,!"" 
'4 + 2 v 

/ r = l z 

4+2(^¼). (16-81) 

Equation 16.81 states that the rms value of a periodic function is the 
square root of the sum obtained by adding the square of the rms value of 
each harmonic to the square of the dc value. For example, let's assume that 
a periodic voltage is represented by the finite series 

v = 10 + 30cos(w(/ - $t) + 20cos(2w0/ - 02) 

+ 5cos(3to0f - 03) + 2cos(5w(/ - 95). 

The rms value of this voltage is 

V = VlO2 + (30/V2)2 + (20/V2-)2 + (5/V5)2 + (2/V2)2 

= V7643 = 27.65 V. 

Usually, infinitely many terms are required to represent a periodic func
tion by a Fourier series, and therefore Eq. 16.81 yields an estimate of the 
true rms value. We illustrate this result in Example 16.5. 
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Example 16.5 Estimating the rms Value of a Periodic Function 

Use Eq. 16.81 to estimate the rms value of the voltage Therefore, 
in Example 16.4. 

Solution m / 2 fljmy /19T0V f9M\* fSAOY 

From Example 16.4, V V V5 J ^ V5 J ^ ^ 

Vdc = 15 V, = 28.76 V. 

V, = 27.01/V2 V, the rms value of the fundamental, 

V2 = 19.10/V2 V, the rms value of the second harmonic, From Example 16.4, the true rms value is 30 V. We 
nnnj m*r , , /-, , . , , • approach this value by including more and more harmon-

V% = 9.00/V2 V, the rms value of the third harmonic, . . n , , 0 1 c . . , . . ^ . t . .. , 
•1 ; ICS m Eq. 16.81. For example, if we include the harmonics 

V5 = 5.40/V2 V, the rms value of the fifth harmonic. through k = 9, the equation yields a value of 29.32 V. 

NOTE: Assess your understanding of this material by trying Chapter Problems 16.36 and 16.39. 

16.8 The Exponential Form 
of the Fourier Series 

The exponential form of the Fourier series is of interest because it 
allows us to express the series concisely. The exponential form of the 
series is 

oo 

/(0 = 2 CjP**, (16.82) 
ft =t-CX3 

where 

Cn = ^ / f(t)e~,,m'dt. (16.83) 

To derive Eqs. 16.82 and 16.83, we return to Eq. 16.2 and replace the 
cosine and sine functions with their exponential equivalents: 

(16.84) 

2 / • ( W - 8 5 ) 

Substituting Eqs. 16.84 and 16.85 into Eq. 16.2 gives 

OO _ I 

/ ( 0 = av + ^—(einco»' + e-'"bJ"') + —(e>n^ - e~
inmf) 

«=i 2 2/' 

COSrtW()f = 
e//!w„r _|_ e-jnco{)i 

2 

ejnuytf _ g-jnwy/t 

= «„ + 2 ( " 9 " r'"^ + ( " 2 k*W- (16-86) 

Now we define C„ as 

C„ = rfa, - jbn) = -f/-B,„ AZ = 1,2 ,3 , - - (16.87) 



From the definition of C, 

c„-\ 
2 /*'«+7' 7 r'n+T 

f(t) cos na)()t dt — j — I / ( f ) sin nco()tdt 
/ L i A, * «//« 
i r'u+T 

= — / f(t) (cos nw^t — jsm no){)t) dt 

= ~ / f{t)e->,m* dt, (16.88) 

which completes the derivation of Eq. 16.83. To complete the derivation of 
Eq. 16.82, we first observe from Eq. 16.88 that 

C0 = - / ,J{t)dt = a 

Next we note that 
./,,+7 

(16.89) 

(16.90) c-« = ^ / " f{t)e^<dt = c;; = |(«„ + A ) . 

Substituting Eqs. 16.87,16.89, and 16.90 into Eq. 16.86 yields 

00 

/(0 = c0 + ^(c,^'1 + cy^) 
00 DO 

= ^Cne
jn^ + 2 ) C > " / l w r f . (16.91) 

/7=0 / / = 1 

Note that the second summation on the right-hand side of Eq. 16.91 is 
equivalent to summing Cne

ina}"' from - 1 to - c o ; that is, 
oo —oc 

« = i / /=-1 

Because the summation from - 1 to - c o is the same as the summation 
from - c o to —1, we use Eq. 16.92 to rewrite Eq. 16.91: 

00 —1 

/(0 = ^cj*** + 2c>>"^ 
n=Q -co 
00 

= 2C /^"W ( , ,> (16-93) 
—oo 

which completes the derivation of Eq. 16.82. 
We may also express the rms value of a periodic function in terms of 

the complex Fourier coefficients. From Eqs. 16.81,16.87, and 16.89, 

I °° a2 + b2 

r̂ms = \K + 2 ^ V ^ ' (16-94) 

, , Vfl?, + bl 
\C„\ = ~2 " , (16.95) 

Cl = a2, (16.96) 

Substituting Eqs. 16.95 and 16.96 into Eq. 16.94 yields the desired 
expression: 

Fm,= \Ci + 2^\Cn\
2. (16.97) 

« = i 

Example 16.6 illustrates the process of finding the exponential 
Fourier series representation of a periodic function. 
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Example 16.6 Finding the Exponential Form of the Fourier Series 

Find the exponential Fourier series for the periodic 
voltage shown in Fig. 16.15. 

v(t) 

-T/2 0 T/2 T-T/2 T T+T/2 

Figure 16.15 A The periodic voltage for Example 16.6. 

Solution 
Using - T / 2 as the starting point for the integration, 
we have, from Eq. 16.83, 

C, 
T 

V, 

T/2 

Vme-'),m^dt 
72 

-jnioat 

T \ -jnu>o 

T/2 

-r/2 

IV 
no}[)T 

2V 
sin nco() T /2 . 

na)()T 

Here, because v(t) has even symmetry, b„ = 0 
for all n, and hence we expect Cn to be real. 
Moreover, the amplitude of Cn follows a (sin x)/x 
distribution, as indicated when we rewrite 

C„ = 
VmT sin (WQ>()T/2) 

T «W()T/2 

We say more about this subject in Section 16.9. 
The exponential series representation of v(t) is 

v{t)= 2 
T 

V, 

T 

Vmr\ sin Qiaw/2) , 

na)QT/2 

sin (H(JO0T/2) 

/ZO»()T/2 2 

Jl'Ofil 

,)nto(]t 

• A S S E S S M E N T PROBLEMS 

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform 

16.8 Derive the expression for the Fourier coeffi
cients Cn for the periodic function shown. 
Hint: Take advantage of symmetry by using the 
fact that Cn = (a„ — jbn)/2. 

r(A) 

- 2 

- 8 - J 

T—r 1 r i—r 
4 8 12 ITJ-20 24 2T32 36 40 44 

f(ms) 

Answer: C„ = - / ^ ( 1 + 3 cos ,Jf), n odd 

16.9 a) Calculate the rms value of the periodic cur
rent in Assessment Problem 16.8. 

b) Using C\—Cn, estimate the rms value. 

c) What is the percentage of error in the value 
obtained in (b), based on the true value 
found in (a)? 

d) For this periodic function, could fewer terms 
be used to estimate the rms value and still 
insure the error is less than 1 %? 

Answer: (a) V34 A; 

(b) 5.777 A; 

(c) -0.93 %; 

(d) yes; if C\-C<) are used, the error is 
-0.98 %. 

NOTE: Also try Chapter Problems 16.45 and 16.46. 
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16.9 Amplitude and Phase Spectra 
A periodic time function is defined by its Fourier coefficients and its period. 
In other words, when we know av, a„, /?„, and T, we can construct / ( / ) , at 
least theoretically. When we know a„ and bn, we also know the amplitude 
(An) and phase angle (-0,,) of each harmonic. Again, we cannot, in general, 
visualize what the periodic function looks like in the time domain from a 
description of the coefficients and phase angles; nevertheless, we recognize 
that these quantities characterize the periodic function completely. Thus, 
with sufficient computing time, we can synthesize the time-domain wave
form from the amplitude and phase angle data. Also, when a periodic driv
ing function is exciting a circuit that is highly frequency selective, the 
Fourier series of the steady-state response is dominated by just a few terms. 
Thus the description of the response in terms of amplitude and phase may 
provide an understanding of the output waveform. 

We can present graphically the description of a periodic function in 
terms of the amplitude and phase angle of each term in the Fourier series 
of f(t). The plot of the amplitude of each term versus the frequency is 
called the amplitude spectrum of f(t), and the plot of the phase angle ver
sus the frequency is called the phase spectrum of / ( / ) . Because the ampli
tude and phase angle data occur at discrete values of the frequency (that 
is, at <t>(), 2tt)(), 3w0 , . . . ) , these plots also are referred to as line spectra. 

An Illustration of Amplitude and Phase Spectra 
Amplitude and phase spectra plots are based on either Eq. 16.38 (A„ and 
-0,,) or Eq. 16.82 (C„). We focus on Eq. 16.82 and leave the plots based on 
Eq. 16.38 to Problem 16.49. To illustrate the amplitude and phase spectra, 
which are based on the exponential form of the Fourier series, we use the 
periodic voltage of Example 16.6. To aid the discussion, we assume that 
Vm - 5 V and r = 7/5. From Example 16.6, 

•r T T T S / 

1.0-H 

0.6 
0'.4 
0!2 
_L 

10 - 8 - 6 - 4 - 2 

-0.4 

K.rm. 
4 6 8 10 

ft 

Figure 16.16 • The pLot of C„ versus n when r - T/5, 
for the periodic voltage for Example 16.6. 

Figure 16.17 A The plot of (sin x)/x versus x. 

C„ = 
VmT sin (rt«0r/2) 

T H(x){)r/2 
(16.98) 

which for the assumed values of V,„ and T reduces to 

C„= 1 
sin (/277-/5) 

«77-/5 
(16.99) 

Figure 16.16 illustrates the plot of the magnitude of Cn from Eq. 16.99 for 
values of n ranging from -10 to +10. The figure clearly shows that the 
amplitude spectrum is bounded by the envelope of the |( sin -\:)/x| func
tion. We used the order of the harmonic as the frequency scale because the 
numerical value of 7 is not specified. When we know T, we also know o>0 

and the frequency corresponding to each harmonic. 
Figure 16.17 provides the plot of |(sinx)/x| versus x, where x is in 

radians. It shows that the function goes through zero whenever x is an 
integral multiple of TT. From Eq. 16.98, 

tuo() 

/777 T 

T 

/77T 

77? (16.100) 

From Eq. 16.100, we deduce that the amplitude spectrum goes through 
zero whenever m/T is an integer. For example, in the plot, T/T is 1/5, and 
therefore the envelope goes through zero at n = 5, 10,15, 10, 15, and so 
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on. In other words, the fifth, tenth, fifteenth,... harmonics are all zero. As 
the reciprocal of T/T becomes an increasingly larger integer, the number 
of harmonics between every 77 radians increases. If mr/T is not an integer, 
the amplitude spectrum still follows the |( sin x)/x\ envelope. However, 
the envelope is not zero at an integral multiple of w0. 

Because C„ is real for all n, the phase angle associated with C„ is 
either zero or 180°, depending on the algebraic sign of (sin /i7r/5)/(mr/5). 
For example, the phase angle is zero for n = 0, ±1 , ±2, ±3, and ±4. It is 
not defined at n = ±5, because C±$ is zero. The phase angle is 180° at 
n - ±6, ±7, ±8, and ±9, and it is not defined at ±10. This pattern repeats 
itself as n takes on larger integer values. Figure 16.18 shows the phase 
angle of C„ given by Eq. 16.98. 

Now, what happens to the amplitude and phase spectra if f(t) is 
shifted along the time axis? To find out, we shift the periodic voltage in 
Example 16.6 t{) units to the right. By hypothesis, 

v(t) = 2 c^' jn&rf 

/ 1 = - 0 0 

(16.101) 

Therefore 

V(t - '0) = 2 Cne
J,H0^-^ = 2 Cne-}na>^ej,lw«', (16.102) 

which indicates that shifting the origin has no effect on the amplitude spec
trum, because 

\Cn\ = \Cne-''^% [16.103) 

However, reference to Eq. 16.87 reveals that the phase spectrum has 
changed to -(0,, + na)0t()) rads. For example, let's shift the periodic voltage 
in Example 16.1 r/2 units to the right. As before, we assume that r = T/5: 
then the new phase angle d'n is 

B'n = -(0,, + nir/5). (16.104) 

We have plotted Eq. 16.104 in Fig. 16.19 for n ranging from - 8 to +8. Note 
that no phase angle is associated with a zero amplitude coefficient. 

You may wonder why we have devoted so much attention to the 
amplitude spectrum of the periodic pulse in Example 16.6. The reason is 
that this particular periodic waveform provides an excellent way to illus
trate the transition from the Fourier series representation of a periodic 
function to the Fourier transform representation of a nonperiodic func
tion. We discuss the Fourier transform in Chapter 17. 
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Figure 16.18 A The phase angle of C„. Figure 16.19 A The plot of B'„ versus n for Eq. 16.104. 
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• A S S E S S M E N T P R O B L E M 

Objective 4—Be able to calculate the exponential form of the Fourier coefficients for a periodic waveform 

Answer: 16.10 The function in Assessment Problem 16.8 is 
shifted along the time axis 8 ms to the right. 
Write the exponential Fourier series for the 
periodic current. 

NOTE: Also try Chapter Problems 16.49 and 16.50. 

A 60 -I 

Ot) = " 2 - ( 1 + 3 cos ^ ) e -0V/2) (« + i ) e ; ^ A > 
7T „ _ 

w=-oo(odd) 

Practical Perspective 
Active High-Q Fitters 
Consider the narrowband op amp bandpass filter shown in Fig. 16.20(a). The 
square wave voltage shown in Fig. 16.20(b) is the input to the filter. We 
know that the square wave is comprised of an infinite sum of sinusoids, one 
sinusoid at the same frequency as the square wave and all of the remaining 
sinusoids at integer multiples of that frequency. What effect will the filter 
have on this input sum of sinusoids? 

100 nF /? 3 | lOkn 

100 nF 

«—• 
+ 

(a) 

vg(V) 

15.65TT 

•tips) 
- 5 0 T T - 3 ' . 5 T T - 2 5 T T - 1 .5TT 0 12 5-7T 25TT 37 .5TT 50TT 

15.6577 

(b) 

Figure 16.20 • (a) narrowband bandpass filter; (b) square wave input. 



The Fourier series representation of the square wave in Fig. 16.20(b) is 
given by 

,s 4A £ 1 , mr 
vjt) = — V — sin —— cos ncont 77 «=fe„« 2 

where A = 15.65TTV. The first three terms of this Fourier series are given by 

vg(t) = 62.6 cos oj0t - 20.87 cos 3«of + 12.52 cos 5co0t - ... 

The period of the square wave is 507r /AS SO the frequency of the square 
wave is 40,000 rad/s. 

The transfer function for the bandpass filter in Fig. 16.20(a) is 

H(S) = -= r 
s2 + ps + oil 

where K = 400/313, p = 2000 rad/s, a>0 = 40,000 rad/s. This filter has 
a quality factor of 40,000/2000 = 20. Note that the center frequency of the 
bandpass filter equals the frequency of the input square wave. 

Multiply each term of the Fourier series representation of the square 
wave, represented as a phasor, by the transfer function H(s) evaluated at 
the frequency of the term in the Fourier series to get the representation of 
the output voltage of the filter as a Fourier series: 

vM) = - 8 0 cos ujtf - 0.5 cos 3u)0t + 0.17 cos 5<oQt - ... 

Notice the selective nature of the bandpass filter, which effectively 
amplifies the fundamental frequency component of the input square wave 
and attenuates all of the harmonic components. 

Now make the following changes to the bandpass filter of Fig. 16.20(a) 
— let Rx = 391.25 ft, R2 = 74.4 O, R3 = 1 k O , and Cl = C2 = 0.1 /xF 
. The transfer function for the filter, H(s), has the same form given above, 
but now K = 400/313, /3 = 20,000 rad/s, w0 = 40,000 rad/s. The pass-
band gain and center frequency are unchanged, but the bandwidth has 
increased by a factor of 10. This makes the quality factor 2, and the result
ing bandpass filter is less selective than the original filter. We can see this 
by looking at the output voltage of the filter as a Fourier series: 

vo(0 = — 80 cos a>0t — 5 cos 3w0r + 1.63 cos 5<oQt — ... 

The fundamental frequency of the input has the same amplification fac
tor, but the higher harmonic components have not been attenuated as signif
icantly as they were when the filter with Q = 20 was used. Figure 16.21 plots 
the first three terms of the Fourier series representations of the input square 
wave and the resulting output waveforms for the two bandpass filters. Note 
the nearly perfect replication of a sinusoid in Fig. 16.21(b) and the distortion 
that results from the use of a less-selective filter in Fig. 16.21(c). 
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t(txs) 

Figure 16.21 A (a) The first three terms of the Fourier series of the square wave in Fig. 16.20(b); (b) the first three terms of the Fourier 
series of the output from the bandpass filter in Fig. 16.20(a), where Q = 20; (c) the first three terms of the Fourier series of the output 
from the bandpass filter in Fig. 16.20(a) with component values changed to give Q = 2. 

Summary 

• A periodic function is a function that repeats itself 
everv T seconds. 

Five types of symmetry are used to simplify the compu
tation of the Fourier coefficients: 

A period is the smallest time interval (T ) that a peri
odic function can be shifted to produce a function iden
tical to itself. (See page 604.) 

The Fourier series is an infinite series used to represent 
a periodic function. The series consists of a constant 
term and infinitely many harmonically related cosine 
and sine terms. (See page 607.) 

The fundamental frequency is the frequency determined 
by the fundamental period ( / 0 = 1/7 or o>o = 2TJ-/0). 

(See page 607.) 

The harmonic frequency is an integer multiple of the 
fundamental frequency. (See page 607.) 

The Fourier coefficients are the constant term and the 
coefficient of each cosine and sine term in the series. 
(See Eqs. 16.3-16.5.) (See page 608.) 

• even, in which all sine terms in the series are zero 

• odd, in which all cosine terms and the constant term 
are zero 

• half-wave, in which all even harmonics are zero 

• quarter-wave, half-wave, even, in which the series 
contains only odd harmonic cosine terms 

• quarter-wave, half-wave, odd, in which the series con
tains only odd harmonic sine terms 

(See page 611.) 

In the alternative form of the Fourier series, each har
monic represented by the sum of a cosine and sine 
term is combined into a single term of the form 
An cos(nco{)t - 0,,). (See page 617.) 



Problems 635 

For steady-state response, the Fourier series of the 
response signal is determined by first finding 
the response to each component of the input signal. The 
individual responses are added (super-imposed) to 
form the Fourier series of the response signal. The 
response to the individual terms in the input series is 
found by either frequency domain or s-domain analysis. 
(See page 619.) 

The waveform of the response signal is difficult to obtain 
without the aid of a computer. Sometimes the frequency 
response (or filtering) characteristics of the circuit can 
be used to ascertain how closely the output waveform 
matches the input waveform. (See page 620.) 

Only harmonics of the same frequency interact to pro
duce average power. The total average power is the sum 

of the average powers associated with each frequency. 
(See page 623.) 

The rms value of a periodic function can be estimated 
from the Fourier coefficients. (See Eqs. 16.81,16.94, and 
16.97.) (See page 626.) 

The Fourier series may also be written in exponential 
form by using Euler's identity to replace the cosine and 
sine terms with their exponential equivalents. (See 
page 627.) 

The Fourier series is used to predict the steady-state 
response of a system when the system is excited by a 
periodic signal. The series assists in finding the steady-
state response by transferring the analysis from the time 
domain to the frequency domain. 

Problems 

Sections 16.1-16.2 

16.1 Find the Fourier series expressions for the periodic 
voltage functions shown in Fig. P16.1. Note that 
Fig. P16.1(a) illustrates the square wave; Fig. P16.1(b) 
illustrates the full-wave rectified sine wave, where 
v(t) = Vmsm(<ir/T)t, 0 < t < T; and Fig. P16.1(c) 
illustrates the half-wave rectified sine wave, where 
v(t) = Kmsin(27r/7)/,0 < t < T/2. 

Figure P16.1 

v(t) 

-T 

V,n 

0 

-V It 

T IT IT 

(a) 

16.2 Derive the Fourier series for the periodic voltage 
shown in Fig. P16.2, given that 

2*7T 

v(t) = 100 sin — /V , 

2TT 
v(t) = 60 sin — t V, 

0 < t < 

t < T. 

T 

Figure P16.2 
v(t) V 

T/4 T/2 37/4 T 

16.3 For each of the periodic functions in Fig. P16.3, 
specify 

a) (oa in radians per second 

b) f0 in hertz 

c) the value of av 

d) the equations for ak and bk 

e) v(t) as a Fourier series 



636 Fourier Series 

Figure P16.3 

-150 

v(t)V 

8 0 -

40 

16.8 Show that if / ( / ) = - / ( / - T/2), the Fourier coef
ficients bfr are given by the expressions 

•50 50 
-40 

-80 

(a) 

«(t)V 

150 250 

b, = 0 for k even; 

t(fXS) 

T/2 

100 

-45 -35 
r(/xs) 

•5 5 
(b) 

35 45 

16.4 Derive the expressions for av, ak, and bk for the 
periodic voltage shown in Fig. PI6.4 if Vm = 6QTT V. 

Figure P16.4 

v(t) 

vm/z 

T/4 T/2 37/4 T 5T/4 

16.5 a) Verify Eqs. 16.6 and 16.7. 

b) Verify Eq. 16.8. Hint: Use the trigonometric iden
tity cos a sin /3 = \ sin(a + /3) - \ sin(a - /3). 

c) Verify Eq. 16.9. Hint: Use the trigonometric iden
tity sin a sin /3 — \ cos(a - / 3 ) - 2 c o s ( a + £). 

d) Verify Eq. 16.10. Hint: Use the trigonometric iden
tity cos a cos /3 = |cos(a — /3) 4- |cos(a + /3). 

16.6 Derive Eq. 16.5. 

Section 16.3 

16.7 Derive the expressions for the Fourier coefficients of 
an odd periodic function. Hint: Use the same tech
nique as used in the text in deriving Eqs. 16.14-16.16. 

bk = Tf, / f(t)smka)jdt, for A: odd. 

Hint: Use the same technique as used in the text to 
derive Eqs. 16.28 and 16.29. 

16.9 Derive Eqs. 16.36. Hint: Start with Eq. 16.29 and 
divide the interval of integration into 0 to T/4 
and T/4 to T/2. Note that because of evenness and 
quarter-wave symmetry, f(t) = —f(T/2 — t) in the 
interval T/4 < t < T/2. Let x = T/2 - t in the 
second interval and combine the resulting integral 
with the integration between 0 and T/4. 

16.10 Derive Eqs. 16.37. Follow the hint given in 
Problem 16.9 except that because of oddness and 
quarter-wave symmetry, f(t) = /(7//2 - t) in the 
interval T/4 < t < T/2. 

16.11 It is given that v(t) = 20 sin 7r\t\ V over the interval 
- 1 < f < 1 s. The function then repeats itself. 

a) What is the fundamental frequency in radians 
per second? 

b) Is the function even? 

c) Is the function odd? 

d) Does the function have half-wave symmetry? 

16.12 One period of a periodic function is described by 
the following equations: 

/(/) = 5/ A, - 2 ms < t < 2 ms; 

/(f) = 10 mA, 2 ms < f < 6 ms; 

/(/) = 0.04 - 5/ A, 6 ms < / < 10 ms; 

/(f) = -10 mA, 10 ms < / < 14 ms. 

a) What is the fundamental frequency in hertz? 

b) Is the function even? 

c) Is the function odd? 

d) Does the function have half-wave symmetry? 

e) Does the function have quarter-wave symmetry? 

f) Give the numerical expressions for av, ak, and bk. 
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16.13 Find the Fourier series of each periodic function 
shown in Fig. PI6.13. 
Figure P16.13 

v(t) 

V 

-T •T/2 

-v.. 

16.17 a) Derive the Fourier series for the periodic cur
rent shown in Fig. P16.17. 

b) Repeat (a) if the vertical reference axis is shifted 
T/2 units to the right. 

Figure P16.17 

7/2 T 

(a) 

(b) 

16.14 The periodic function shown in Fig. P16.14 is odd 
and has both half-wave and quarter-wave symmetry. 

a) Sketch one full cycle of the function over the 
interval -7//4 < t < 37/4. 

b) Derive the expression for the Fourier coeffi
cients av, cik, and bk. 

c) Write the first three nonzero terms in the 
Fourier expansion of / ( / ) . 

d) Use the first three nonzero terms to estimate 
/(774). 

Figure P16.14 

/(0 

16.18 It is sometimes possible to use symmetry to find the 
Fourier coefficients, even though the original function 
is not symmetrical! With this thought in mind, con
sider the function in Fig P16.4. Observe that v(t) can 
be divided into the two functions illustrated in 
Fig. P16.18(a) and (b). Furthermore, we can make 
v2(t) an even function by shifting it 7/8 units to the 
left. This is illustrated in Fig. P16.18(c). At this point 
we note that v(t) = Vj(t) + v2(t) and that the 
Fourier series of V\ (f) is a single-term series consisting 
of Vm/2. To find the Fourier series of v2(t), we first 
find the Fourier series of v2(t + T/8) and then shift 
this series T/8 units to the right. Use the technique 
just outlined to verify the Fourier coefficients found in 
Problem 16.4. 

Figure P16.18 
vtit) 

V.J2 

T 
4 

v2(t) 

V,„/2 

7 
4 

T 3T 
2 4 

(a) 

T 57 
4 

16.15 It is given that /(f) = 4f2 over the interval 
- 2 < f < 2 s. 

a) Construct a periodic function that satisfies this 
/(f) between - 2 and +2 s, has a period of 8 s, 
and has half-wave symmetry. 

b) Is the function even or odd? 

c) Does the function have quarter-wave symmetry? 

d) Derive the Fourier series for /(f) . 

e) Write the Fourier series for /(f) if /(f) is shifted 
2 s to the right. 

16.16 Repeat Problem 16.15 given that /(f) = t3 over the 
interval - 2 < f < 2 s. 

-T 0 
4 

T T 37/ 
4 2 4 

(b) 

57 
4 

v2(t + 7/8) 

V,„/2 

T 
4 

7 37 
2 4 

(c) 

7 57 
4 
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Section 16.4 

16.19 For each of the periodic functions in Fig. PI6.3, 
derive the Fourier series for v(t) using the form of 
Eq. 16.38. 

16.20 Derive the Fourier series for the periodic function 
described in Problem 16.12, using the form of 
Eq. 16.38. 

16.21 Derive the Fourier series for the periodic function 
constructed in Problem 16.15, using the form of 
Eq. 16.38. 

16.22 a) Derive the Fourier series for the periodic func
tion shown in Fig. PI 6.22 when /,„ = 5TT2 A. 
Write the series in the form of Eq. 16.38. 

b) Use the first five nonzero terms to estimate 
/(7/4). 

16.26 a) Show that for large values of C, Eq. 16.67 can be 
approximated by the expression 

vM) 
-V T V 

Y m' . r in 

ARC ~RC ' 

Note that this expression is the equation 
of the triangular wave for 0 < f < 7/2. 
Hints: (1) Let e~t/,iC « 1 - (t/RC) and 

e-T/2RC ^ j _ (T/2RC); (2) put the resulting 
expression over the common denominator 
2 - (T/2RC); (3) simplify the numerator; and 
(4) for large C, assume that T/2RC is much 
less than 2. 

b) Substitute the peak value of the triangular wave 
into the solution for Problem 16.13 (sec 
Fig. P16.13(b)) and show that the result is 
Eq. 16.59. 

Figure PI6.22 

ii 

* - 1 

Section 16.5 

16.23 Derive Eqs. 16.69 and 16.70. 

16.24 a) Derive Eq. 16.71. Hint: Note that bk = 
4V„,/7rk + ktoaRCak. Use this expression for bk 

to find a\ + b\ in terms of ak. Then use the 
expression for ak to derive Eq. 16.71. 

b) Derive Eq. 16.72. 

16.25 Show that when we combine Eqs. 16.71 and 16.72 
with Eqs. 16.38 and 16.39, the result is Eq. 16.58. 
Hint: Note from the definition of fik that 

ak 

— = - t an pk, 
bk 

and from the definition of 0k that 

t<m9k = -cot/3*. 

Now use the trigonometric identity 

tan x - cot(90 - x) 

to show that 0k = 90 + pk. 

16.27 The periodic square-wave voltage shown in 
PSPICE Fig P16.13(a) with Vm = 105ir V and T = ir ms is 

applied to the circuit shown in Fig. PI6.27. 

a) Derive the first three nonzero terms in the 
Fourier series that represents the steady-state 
voltage va. 

b) Which frequency component in the input volt
age is eliminated from the output voltage? 
Explain why. 

16.28 

Figure P16.27 

100 mH 

The periodic square-wave voltage seen in 
Fig. PI6.28(a) is applied to the circuit shown in 
Fig. P16.28(b). Derive the first three nonzero terms 
in the Fourier series that represents the steady-state 
voltage v0 if Vm = 157r V and the period of the 
input voltage is 4TT ms. 

Figure P16.28 

ion 
• -WW 
+ 

Vm 

0 

I/ 
v in 

, 

1 
T/2 

1 
T 

Vi 

+ 

10 mH uv 

(a) (b) 
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16.29 The full-wave rectified sine-wave voltage shown in 
Fig. PI6.29(a) is applied to the circuit shown in 
Fig. P16.29(b). 
a) Find the first five nonzero terms in the Fourier 

series representation of /„. 
b) Does your solution for i(> make sense? Explain. 

Figure P16.29 

vg(V) 

340 

16.32 The periodic current described below is used to 
energize the circuit shown in Fig. PI6.32. Write the 
time-domain expression for the third-harmonic 
component in the expression for v(). 

iR = 500f, 

= 1 A. 

= 5 - 500f, 

= - 1 A. 

- 2 ms s t < 2 ms; 

2 ms < t < 8 ms; 

8 ms < t <; 12 ms; 

12 ms < t < 18 ms. 
Figure P16.32 

1/120 1/60 1/40 

(a) 
16 H 

312.5 nF 

lkt t 

(b) 

16.30 The square-wave voltage shown in Fig. PI6.30(a) is 
PSPICE applied to the circuit shown in Fig. PI6.30(b). 

MULTISIM 

a) Find the Fourier series representation of the 
steady-state current i. 

b) Find the steady-state expression for /' by straight
forward circuit analysis. 

Figure P16.30 

Section 16.6 

16.33 The periodic current shown in Fig. PI6.33 is applied 
to a 1 kft resistor. 
a) Use the first three nonzero terms in the Fourier 

series representation of /(f) to estimate the aver
age power dissipated in the 1 kft resistor. 

b) Calculate the exact value of the average power 
dissipated in the 1 kft resistor. 

c) What is the percentage of error in the estimated 
value of the average power? 

Figure P16.33 

i (mA) 

2 4 0 -

7/2 7 37/2 

(a) 

-772 7'/2 

(b) 

16.31 A periodic voltage having a period of 10-7T/XS is 
given by the following Fourier series: 

/Z7T 
vg = 150 2 — sin — cos naj V. 

/1=1,3,5...." 2 

This periodic voltage is applied to the circuit shown 
in Fig. PI6.31. Find the amplitude and phase angle 
of the components of va that have frequencies of 
3 and 5 Mrad/s. 

Figure P16.31 

250 kfi 
vw 

16.34 The periodic voltage across a 10 ft resistor is shown 
in Fig. PI6.34. 
a) Use the first three nonzero terms in the Fourier 

series representation of v(t) to estimate the 
average power dissipated in the 10 ft resistor. 

b) Calculate the exact value of the average power 
dissipated in the 10 ft resistor. 

c) What is the percentage error in the estimated 
value of the average power dissipated? 

Figure P16.34 

w(V) 

vB 1 10 111H ;4pF 
37 
4" 
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16.35 The triangular-wave voltage source is applied to the 
circuit in Fig. P16.35(a). The triangular-wave volt
age is shown in Fig. P16.35(b). Estimate the average 
power delivered to the 5 0 v T O resistor when the 
circuit is in steady-state operation. 

Figure P16.35 

100 mH 

lOjiiF 50V2ft 

(a) 

MV) 

t (ms) 

16.36 a) Find the rms value of the voltage shown in 
Fig. PI6.36 for Vm = 100 V. Note that the 
Fourier series for this periodic voltage was 
found in Assessment Problem 16.3. 

b) Estimate the rms value of the voltage, using the 
first three nonzero terms in the Fourier series 
representation of vg(t). 

Figure P16.36 

M0 

16.37 The voltage and current at the terminals of a 
network are 

v = 15 + 400 cos 500/ + 100 sin 1500/ V, 

i = 2 + 5 sin (500/ + 60°) + 3 cos (1500/ - 15°) A. 

The current is in the direction of the voltage drop 
across the terminals. 
a) What is the average power at the terminals? 

b) What is the rms value of the voltage? 

c) What is the rms value of the current? 

16.38 a) Estimate the rms value of the full-wave rectified 
sinusoidal voltage shown in Fig. PI6.38(a) by 
using the first three nonzero terms in the 
Fourier series representation of v(t). 

b) Calculate the percentage of error in the 
estimation. 

c) Repeat (a) and (b) if the full-wave rectified sinu
soidal voltage is replaced by the half-wave recti
fied sinusoidal voltage shown in Fig. PI 6.38(b). 

Figure P16.38 

v(V) 

*- t (ms) 

v(V) 

*- r(ms) 

16.39 a) Estimate the rms value of the periodic square-
wave voltage shown in Fig. PI 6.39(a) by using 
the first five nonzero terms in the Fourier series 
representation of v(t). 

b) Calculate the percentage of error in the 
estimation. 

c) Repeat parts (a) and (b) if the periodic square-
wave voltage is replaced by the periodic triangu
lar voltage shown in Fig. PI6.39(b). 

Figure P16.39 
v(V) 

120 

0 

-120 

5 10 
-»- t (ms) 

(a) 

t (ms) 

-120 -

16.40 a) Use the first four nonzero terms in the Fourier 
series approximation of the periodic voltage 
shown in Fig. PI6.40 to estimate its rms value. 

b) Calculate the true rms value of the voltage. 

c) Calculate the percentage of error in the esti
mated value. 
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Figure P16.40 

IOTT-

2.577-

-2.577-

1077 

Vp/V3. Verify this observation by finding the 
rms value of the three waveforms depicted in 
Fig.P16.43(b)-(d). 

Figure P16.43 

J L J I L 
T/A T/2 3T/A 

16.41 a) Derive the expressions for the Fourier coefficients 
for the periodic current shown in Fig. PI6.41. 

b) Write the first four nonzero terms of the series 
using the alternative trigonometric form given 
by Eq. 16.39. 

c) Use the first four nonzero terms of the expression 
derived in (b) to estimate the rms value of L. 

d) Find the exact rms value of ig. 

e) Calculate the percentage of error in the esti
mated rms value. 

Figure P16.41 
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Section 16.8 

V » / M 
/ 1 . 0 

v{ 

10 

0 

-10 

v.) 
1 

^ \ 1 1 1 

-

(d) 
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L 

0 

- / , „ 
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T/A T/2^ \3T/A 
/ 
T 

16.42 Assume the periodic function described in 
Problem 16.14 is a voltage vR with a peak ampli
tude of 20 V. 

a) Find the rms value of the voltage. 

b) If this voltage exists in a 15 fl resistor, what is 
the average power dissipated in the resistor? 

c) If vg is approximated by using just the fundamen
tal frequency term of its Fourier series, what is the 
average power delivered to the 15 H resistor? 

d) What is the percentage of error in the estimation 
of the power dissipated? 

16.43 The rms value of any periodic triangular wave hav
ing the form depicted in Fig. P16.43(a) is independ
ent of tu and ?/,. Note that for the function to be 
single valued, L ^ th. The rms value is equal to 

/ ( s ) 

16.44 Use the exponential form of the Fourier series to 
write an expression for the voltage shown in 
Fig. PI 6.44. 

Figure PI6.44 

v(t) 

T/A 0 T/A T/2 3T/A T Sir/4 

16.45 Derive the expression for the complex Fourier 
coefficients for the periodic voltage shown in 
Fig. PI 6.45. 

Figure P16.45 
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16.46 a) The periodic voltage in Problem 16.45 is applied 
to a 10 a resistor. If Vm = 120 V what is the 
average power delivered to the resistor? 

b) Assume v(t) is approximated by a truncated 
exponential form of the Fourier series consisting 
of the first eight nonzero terms, that is, 
n = 0,1, 2, 3,4,5, 6 and 7. What is the rms value 
of the voltage, using this approximation? 

c) If the approximation in part (b) is used to repre
sent v what is the percentage of error in the cal
culated power? 

16.47 The periodic voltage source in the circuit shown 
in Fig. P16.47(a) has the waveform shown in 
Fig. PI 6.47(b). 

a) Derive the expression for C„. 

b) Find the values of the complex coefficients 
C(), C^,C], C_2, C2, C_3, C3, C_4, and C4 for the 
input voltage vg if Vm = 54 V and T = IOTT /AS. 

c) Repeat (b) for va. 

d) Use the complex coefficients found in (c) to 
estimate the average power delivered to the 
250 kl i resistor. 

Figure P16.47 

62.5 11 
-AW 

(a) 

V, 

-v,„ -

T/2 
-+-t 

(b) 

16.48 a) Find the rms value of the periodic voltage in 
Fig.P16.47(b). 

b) Use the complex coefficients derived in 
Problem 16.47(b) to estimate the rms value of v*. 

c) What is the percentage of error in the estimated 
rms value of v„? 

Section 16.9 

16.49 a) Make an amplitude and phase plot, based on 
Eq. 16.38, for the periodic voltage in Example 16.3. 
Assume Vm is 40 V. Plot both amplitude and phase 
versus na)(„ where n — 0 , 1 , 2 , 3 , . . . 

b) Repeat (a), but base the plots on Eq. 16.82. 

16.50 a) Make an amplitude and phase plot, based on 
Eq. 16.38, for the periodic voltage in 
Problem 16.33. Plot both amplitude and phase 
versus no)a where n = 0,1, 2 , . . . 

b) Repeat (a), but base the plots on Eq. 16.82. 

16.51 A periodic function is represented by a Fourier 
series that has a finite number of terms. The ampli
tude and phase spectra are shown in Fig. P16.51(a) 
and (b), respectively. 

a) Write the expression for the periodic current 
using the form given by Eq. 16.38. 

b) Is the current an even or odd function of t'! 

c) Does the current have half-wave symmetry? 

d) Calculate the rms value of the current in 
milliamperes. 

e) Write the exponential form of the Fourier series. 

f) Make the amplitude and phase spectra plots on 
the basis of the exponential series. 

Figure P16.51 
An (fiA) 

(11,025) 
(1225) 

y 
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180° 
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16.52 A periodic voltage is represented by a truncated 
Fourier series. The amplitude and phase spectra are 
shown in Fig. P16.52(a) and (b), respectively. 

a) Write an expression for the periodic voltage 
using the form given by Eq. 16.38. 

b) Is the voltage an even or odd function of f? 

c) Does the voltage have half-wave symmetry? 

d) Does the voltage have quarter-wave symmetry? 
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Figure P16.52 
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the Fourier series that represents the steady-state 
output voltage of the filter. 

16.56 The transfer function {VJVg) for the narrowband 
bandpass filter circuit in Fig. P16.56(a) is 

s- + /35 + c4 

a) Find K0, /3, and u>2
0 as functions of the circuit 

parameters JRj, /?2> ^3-. Q» a n d C2. 
b) Write the first three terms in the Fourier series 

that represents va if vH is the periodic voltage in 
Fig. PI 6.56(b). 

c) Predict the value of the quality factor for the fil
ter by examining the result in part (b). 

d) Calculate the quality factor for the filter using /3 
and o)a and compare the value to your predic
tion in part (c). 

16.53 The input signal to a unity-gain third-order low-pass 
Butterworth filter is a half-wave rectified sinusoidal 
voltage. The corner frequency of the filter is 
100 rad/s. The amplitude of the sinusoidal voltage is 
54-77 V and its period is 57r ms. Write the first three 
terms of the Fourier series that represents the steady-
state output voltage of the filter. 

Sections 16.1-16.9 

16.54 The input signal to a unity-gain second-order low-
pass Butterworth filter is the periodic triangular-
wave voltage shown in Fig PI 6.54. The corner 
frequency of the filter is 2 krad/s. Write the first 
three terms of the Fourier series that represents the 
steady-state output voltage of the filter. 

Figure P16.54 
vg(V) 

Figure P16.56 

Vi (mV) 

2.257T, 

\ ' Y 
\ - 0 . 1 T T / 

V-2.257T2 

I ' 
\ O.ITT / 

Y ' ^ 
0.27T 

f(T 

(b) 

-0.6TT -(Mir -0.2TT 0.277 
t (ms) 

16.55 The input signal to a unity-gain second-order low-
pass Butterworth filter is a full-wave rectified sine 
wave with an amplitude of 2.5TT V and a fundamen
tal frequency of 5000 rad/s. The corner frequency 
of the filter is 1 krad/s. Write the first two terms in 

16.57 a) Find the values for K, /3, and col f ° r t r i e band
pass filter shown in Fig. 16.20(b). 

b) Find the first three terms in the Fourier series 
for V[) in Fig. 16.20(b) if the input to the filter is 
the waveform shown in Fig. 16.20(a). 
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. / C H A P T E R OBJECTIVES 

1 Be able to calculate the Fourier transform of a 
function using any or all of the following: 

• The definition of the Fourier transform; 

• Laplace transforms; 

• Mathematical properties of the Fourier 
transform; 

• Operational transforms. 

2 Know how to use the Fourier transform to find 
the response of a circuit 

3 Understand Parseval's theorem and be able to 
use i t to answer questions about the energy 
contained within specific frequency bands. 

The Fourier Transform 
In Chapter 16, we discussed the representation of a periodic 
function by means of a Fourier series. This series representation 
enables us to describe the periodic function in terms of the 
frequency-domain attributes of amplitude and phase. The Fourier 
transform extends this frequency-domain description to functions 
that are not periodic. Through the Laplace transform, we already 
introduced the idea of transforming an aperiodic function from 
the time domain to the frequency domain. You may wonder, then, 
why yet another type of transformation is necessary. Strictly 
speaking, the Fourier transform is not a new transform. It is a spe
cial case of the bilateral Laplace transform, with the real part of 
the complex frequency set equal to zero. However, in terms of 
physical interpretation, the Fourier transform is better viewed as 
a limiting case of a Fourier series. We present this point of view in 
Section 17.1, where we derive the Fourier transform equations. 

The Fourier transform is more useful than the Laplace trans
form in certain communications theory and signal-processing sit
uations. Although we cannot pursue the Fourier transform in 
depth, its introduction here seems appropriate while the ideas 
underlying the Laplace transform and the Fourier series are still 
fresh in your mind. 

644 
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Practical Perspective 
Filtering Digital Signals 
It is common to use telephone lines to communicate informa
tion from one computer to another. As you may know, com
puters represent all information as collections of 1's and O's. 
Usually the value 1 is represented as a voltage, usually 5 V, 
and 0 is represented as 0 V, as shown below. 

The telephone line has a frequency response characteristic 
that is similar to a low pass filter. We can use Fourier trans
forms to understand the effect of transmitting a digital value 
using a telephone line that behaves like a filter. 

0111010010 
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646 The Fourier Transform 

17.1 The Derivation of the 
Fourier Transform 

We begin the derivation of the Fourier transform, viewed as a limiting case 
of a Fourier series, with the exponential form of the series: 

00 

f(0 = 2 Cne»'«»\ (17.1) 
n--oa 

where 

1 fr/2 

Cn = = / f(t)e-'"^ dt. (17.2) 
* J-T/2 

In Eq. 17.2, we elected to start the integration at t0 = - 7 / 2 . 
Allowing the fundamental period T to increase without limit accom

plishes the transition from a periodic to an aperiodic function. In other 
words, if T becomes infinite, the function never repeats itself and hence is 
aperiodic. As T increases, the separation between adjacent harmonic fre
quencies becomes smaller and smaller. In particular, 

Aw = {n + 1)0)() - HWQ = o>() = — , (17.3) 

and as 7 gets larger and larger, the incremental separation &co approaches 
a differential separation dxo. From Eq. 17.3, 

1 doj „ 
T ^ Z T T " ^ 7 - ^ 0 0 , (17 '4) 

As the period increases, the frequency moves from being a discrete vari
able to becoming a continuous variable, or 

nco0^u) as 7—»oo. (17.5) 

In terms of Eq. 17.2, as the period increases, the Fourier coefficients C„ 
get smaller. In the limit, C„—»0 as T—> oo. This result makes sense, 
because we expect the Fourier coefficients to vanish as the function loses 
its periodicity. Note, however, the limiting value of the product C„T; that is, 

C„T~* f(t)e~jwtdt a s r - * o o . (17.6) 

In writing Eq. 17.6 we took advantage of the relationship in Eq. 17.5. 
The integral in Eq. 17.6 is the Fourier transform of /(f) and is denoted 

/

00 

f(t)e-ja" dt. (17.7) 

00 
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We obtain an explicit expression for the inverse Fourier transform by 
investigating the limiting form of Eq. 17.1 as T—» DO. We begin by multi
plying and dividing by T: 

/w= f^c«r)^(f) (17.8) 

As 7*—»oo, the summation approaches integration, CnT —* F(co), 
n<x){) —> OJ, and 1/7 —* dco/2TT. Thus in the limit, Eq. 17.8 becomes 

m 
2ir 

F{co)eio)t dco. (17.9) -4 Inverse Fourier transform 

Equations 17.7 and 17.9 define the Fourier transform. Equation 17.7 trans
forms the time-domain expression f(t) into its corresponding frequency-
domain expression F(co). Equation 17.9 defines the inverse operation of 
transforming F(co) into/(f). 

Let's now derive the Fourier transform of the pulse shown in Fig. 17.1. 
Note that this pulse corresponds to the periodic voltage in Example 16.6 if 
we let T —* oo.The Fourier transform of v(t) comes directly from Eq. 17.7: 

V(co) 
r/2 

V „£->*" lit 
-r/2 

(,->">' 
= v, (-jio) 

r/2 

-r/2 

o(t) 

-T/2 0 r/2 

Figure 17.1 • A voltage pulse. 

Vm ( n . • 0)T 
—— -2} sin — 
-jot \ 2 

(17.10) 

which can be put in the form of (sin x)/x by multiplying the numerator 
and denominator by T.Then, 

V(co) = Vmr 
sin COT/2 

COT/2 
(17.11) 

For the periodic train of voltage pulses in Example 16.6, the expression for 
the Fourier coefficients is 

C. 
V„,T sin nco()T/2 

T nco{)T/2 
(17.12) 

Comparing Eqs. 17.11 and 17.12 clearly shows that, as the time-domain 
function goes from periodic to aperiodic, the amplitude spectrum goes 
from a discrete line spectrum to a continuous spectrum. Furthermore, the 
envelope of the line spectrum has the same shape as the continuous spec
trum. Thus, as T increases, the spectrum of lines gets denser and the ampli
tudes get smaller, but the envelope doesn't change shape. The physical 
interpretation of the Fourier transform V{co) is therefore a measure of the 
frequency content of v(t). Figure 17.2 illustrates these observations. The 
amplitude spectrum plot is based on the assumption that r is constant and 
T is increasing. 



«w0 

C„ 

o.i v„ 

-4TT/T —2TT/T 

Ji u ^ _ 
2TT/T Tvn^p 

(c) 

Figure 17.2 • Transition of the amplitude spectrum as / ( / ) 
goes from periodic to aperiodic, (a) C„ versus /zw(), JT/T = 5; 
(b) C„ versus nw(), T/T = 10; (c) V(a>) versus to. 

17.2 The Convergence of the 
Fourier Integral 

A function of time / ( 0 has a Fourier transform if the integral in Eq. 17.7 
converges. If f(t) is a well-behaved function that differs from zero over a 
finite interval of time, convergence is no problem. Well-behaved implies 
that / ( 0 is single valued and encloses a finite area over the range of inte
gration. In practical terms, all the pulses of finite duration that interest us 
are well-behaved functions. The evaluation of the Fourier transform of the 
rectangular pulse discussed in Section 17.1 illustrates this point. 

If /(f) is different from zero over an infinite interval, the convergence 
of the Fourier integral depends on the behavior of / ( 0 as f—>oo. A 
single-valued function that is nonzero over an infinite interval has a Fourier 
transform if the integral 

[/(01 dt 
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exists and if any discontinuities in / ( 0 are finite. An example is the 
decaying exponential function illustrated in Fig. 17.3. The Fourier trans
form of / ( 0 is 

F(co) = J f{t)e~Jto' dt = Ke-a'e-]a* dt 

fce-(a+jco)t 

(a + jco) 

K 

o -(a + jw) 

K 

(0-1) 

a + ju) 
. a > 0. (17.13) 

Figure 17.3 • The decaying exponential function 
Ke-("u(t). 

A third important group of functions have great practical interest but 
do not in a strict sense have a Fourier transform. For example, the integral 
in Eq. 17.7 doesn't converge i f / ( 0 is a constant. The same can be said if 
/ ( 0 is a sinusoidal function, cos ojQt, or a step function, Ku{t). These func
tions are of great interest in circuit analysis, but, to include them in Fourier 
analysis, we must resort to some mathematical subterfuge. First, we create 
a function in the time domain that has a Fourier transform and at the same 
time can be made arbitrarily close to the function of interest. Next, we find 
the Fourier transform of the approximating function and then evaluate the 
limiting value of F(w) as this function approaches f{t). Last, we define 
the limiting value of F(co) as the Fourier transform of f(t). 

Let's demonstrate this technique by finding the Fourier transform of a 
constant. We can approximate a constant with the exponential function 

/ ( 0 = Ae-£{'1, e > 0. (17.14) 

As e —* 0, / ( 0 —* A. Figure 17.4 shows the approximation graphically. The 
Fourier transform of / ( 0 is 

F{(o) = / Aeae~joyl dt + / Ae^e'^ dt. (17.15) 

Carrying out the integration called for in Eq. 17.15 yields 

„ , , A A 2eA 
F(to) = — + — = —. -. (17.16) 

e - j(o e + a) e2 + a)2 

f(t) 

A£^^^ 

Ae^*^^-

0 

e2 < e l 

A 

-^^Ae^l 

^^_A£2* 

Figure 17.4 A The approximation of a constant with an 
exponential function. 

The function given by Eq. 17.16 generates an impulse function at w = 0 as 
e —>0. You can verify this result by showing that (1) F(co) approaches 
infinity at co = 0 as € —» 0; (2) the width of F(eo) approaches zero as e —>• 0; 
and (3) the area under F(w) is independent of e. The area under F((o) is 
the strength of the impulse and is 

2eA 

eL + (ol 
do) = 4eA 

dco 

o e2 + a2 
= 277-/1. (17.17) 
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In the limit, f(t) approaches a constant A, and F(co) approaches an 
impulse function 2TTA8((O). Therefore, the Fourier transform of a constant 
A is defined as 2TTA8(co), or 

&{A) = 2TTA8((O). (17.18) 

In Section 17.4, we say more about Fourier transforms defined 
through a limit process. Before doing so, in Section 17.3 we show how to 
take advantage of the Laplace transform to find the Fourier transform of 
functions for which the Fourier integral converges. 

/ A S S E S S M E N T PROBLEMS 

Objective 1—Be able to calculate the Fourier transform of a function 

17.1 Use the defining integral to find the Fourier 17.2 The Fourier transform of f(t) is given by 
transform of the following functions: _,, . 

6 F(o)) = 0, - o o < a) < - 3 ; 

a) f(t) = -A, -r/2 < t < 0; F((o) = ^ _ 3 < <, < _ 2 ; 

f{t) « A 0 < f < r / 2 ; F ( C ) = 1, - 2 < O , < 2 ; 

fit) = 0 elsewhere. F ( f t ) ) m 4> 2 < co < 3; 

b) fit) = 0, t < 0; F{a)) = 0 i 3 < w < oo. 

/ . /2A\f. O>T\ 
Answer: (a) - / I — II 1 - c o s — I; 

1 1 
(b) — « . Answer: f(?) = —(4 sin 3t - 3 sin 2f). 

(rt + JO))" TTt 

NOTE: Also try Chapter Problems 17.1 and 17.2. 

17.3 Using Laplace Transforms 
to Find Fourier Transforms 

We can use a table of unilateral, or one-sided, Laplace transform pairs to 
find the Fourier transform of functions for which the Fourier integral con
verges. The Fourier integral converges when all the poles of F(s) lie in the 
left half of the s plane. Note that if F(s) has poles in the right half of the 
s plane or along the imaginary axis,/(/) does not satisfy the constraint that 

Xoo 1 / ( 0 1 * exists. 
The following rules apply to the use of Laplace transforms to find the 

Fourier transforms of such functions. 

1. If / ( / ) is zero for t ^ 0~, we obtain the Fourier transform of f(t) 
from the Laplace transform of /(f) simply by replacing 5 by jco. Thus 

*{/(0) «2{/(0W (17-19) 
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For example, say that 

f(0 = 0, t ^ 0~ 

fit) = e "fcosw(/, 0 + . 

Then 

*{/(/)} 
s + a jco + a 

(s + a)2 + (nl x=jlo (jco + a)2 + (x)f) 

2. Because the range of integration on the Fourier integral goes from 
— oo to +oo, the Fourier transform of a negative-time function 
exists. A negative-time function is nonzero for negative values of 
time and zero for positive values of time. To find the Fourier trans
form of such a function, we proceed as follows. First, we reflect the 
negative-time function over to the positive-time domain and then 
find its one-sided Laplace transform. We obtain the Fourier trans
form of the original time function by replacing s with -jco. 
Therefore, when f(t) = 0 for t > 0+, 

Hf(*)} = -^1/(-01.=-; w (17.20) 

For example, if 

fit) = 0, (for t > 0+); 

then 

/ ( / ) = Aosft tf , (for / < 0"). 

/ ( -0 - o. (for t < 0"); 

/ ( - 0 = <T'"cosw(/, (for t > 0+). 

Both /(/') and its mirror image are plotted in Fig. 17.5. 
The Fourier transform of / ( / ) is 

9{f{t)} = W(~0h= /a 

-jco + a 

s + a 

(s + a) + COQ s=- /w 

(-jo + a)2 + &»§ 
Figure 17.5 • The reflection of a negative-time 
function over to the positive-time domain. 

3. Functions that are nonzero over all time can be resolved into positive-
and negative-time functions. We use Eqs. 17.19 and 17.20 to find the 



Fourier transform of the positive- and negative-time functions, respec
tively. The Fourier transform of the original function is the sum of the 
two transforms. Thus if we let 

then 

and 

A / ) = / ( 0 (for r > 0 ) , 

/ - ( / ) = / ( 0 ( f o r / < 0 ) , 

/(o = n o + /"(o 

= ^{/+(0},=ya> + ie{/-(-0}.v=- ; w . (17.21) 

An example of using Eq. 17.21 involves finding the Fourier trans
form of e_a''L For the original function, the positive- and negative-
time functions are 

/ + ( 0 = e~ul and / " ( / ) = e'". 

Then 

2{/+(0} 
i 

S + a 

1 

s + a 

Therefore, from Eq. 17.21, 

&{e-<to\} 
1 

s + a 

1 

+ 
S= I (it 

+ 

s + a 

1 

s=—ju) 

jo) + a —jo) + a 

2a 
2 '< 2 " 

o) + a 

I f / ( 0 is even, Eq. 17.21 reduces to 

9{f(*)) = %{f(t)}.s=jto + ^{/(01,=-/0,-

If /( /) is odd, then Eq. 17.21 becomes 

9{f{t)} = %{f(t)}s=ia - 2 { / ( / ) } , ~ / . . 

(17.22) 

(17.23) 
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/ A S S E S S M E N T PROBLEM 

Objective 1—Be able to calculate the Fourier transform of a function 

17.3 Find the Fourier transform of each function. In 
each case, a is a positive real constant. 

a) f{t) = 0, 
fit) = e "'smcoyt, 

b) f(t) = 0, 
/ ( 0 = -teat, 

c) f(t) = te-(,t, 
/(0 = to", 

t < 0, 
t > 0. 
t > 0, 
t < 0. 
t > 0, 
t s 0. 

Answer: (a) 

(b) 

OiQ 

(c) 

(a + jco)2 + col' 

1 

(a - jco)2, 

-j4aa) 

NOTE: Also try Chapter Problem 17.5. 

17A Fourier Transforms in the Limit 
As we pointed out in Section 17.2, the Fourier transforms of several prac
tical functions must be defined by a limit process. We now return to these 
types of functions and develop their transforms. 

{a1 + <«/) 2\2' 

The Fourier Transform of a Signum Function 

We showed that the Fourier transform of a constant A is 2TTA8((O) in 
Eq. 17.18. The next function of interest is the signum function, defined as 
+ 1 for / > 0 and - 1 for t < O.The signum function is denoted sgn(0 and 
can be expressed in terms of unit-step functions, or 

sgn(0 - u(t) - u(-t). (17.24) 

Figure 17.6 shows the function graphically. 
To find the Fourier transform of the signum function, we first create a 

function that approaches the signum function in the limit: 

sgn(r) = lim[e~€tu(t) - eetu(-t)], e > 0. 
£->() 

(17.25) 

The function inside the brackets, plotted in Fig. 17.7, has a Fourier trans
form because the Fourier integral converges. Because / ( 0 is an odd func
tion, we use Eq. 17.23 to find its Fourier transform: 

9^(/(0} 
1 

S + € 

1 

1 

s=)to 
S + € 

1 

s=—]u> 

joo + e —jco + e 

_ -2jco 

a)2 + e 2 ' 

As e -> 0, / ( 0 -» sgn(0, and ^ { / ( 0 } ~* 2 / > . Therefore, 

^{sgn(0} = —• 

(17.26) 

sgn(/) 

1.0 

-1.0 

Figure 17.6 • The signum function. 

eM-t) -1.0 

(17 27) Rw* 17.7 A A function that approaches sgn(r) as 
e approaches zero. 



The Fourier Transform of a Unit Step Function 

To find the Fourier transform of a unit step function, we use Eqs. 17.18 and 
17.27. We do so by recognizing that the unit-step function can be 
expressed as 

"( ') = - + -sgn(f). (17.28) 

Thus, 

^2 ( +H^s§n(r) 

= TT8(O)) + — . (17.29) 
7*> 

The Fourier Transform of a Cosine Function 

To find the Fourier transform of cos o)()t, we return to the inverse-transform 
integral of Eq. 17.9 and observe that if 

F(<o) = 2TT8(O) - a>o), (17.30) 

then 

l r 
/(?) = — / \2TTS{O) - o){))]e"°' do). (17.31) 

Using the sifting property of the impulse function, we reduce Eq. (17.31) to 

f(t) = eM>r. (17.32) 

Then, from Eqs. 17.30 and 17.32, 

<${e<^} = 2ir8(a)-a){)). (17.33) 

We now use Eq. 17.33 to find the Fourier transform of cos w()r, because 

ehvf + e~m\t 
cos a y = . (17.34) 

Thus, 

^{cosa>0/} = - ( 3 = ( ^ } + ^{e'j0^}) 

— [2TT8((O — wo) + 2TT8((O + £%)] 

= TT8((O — ojo) + TT8(O) + G>o). (17.35) 
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The Fourier transform of sin co0t involves similar manipulation, which 
we leave for Problem 17.4. Table 17.1 presents a summary of the transform 
pairs of the important elementary functions. 

We now turn to the properties of the Fourier transform that enhance our 
ability to describe aperiodic time-domain behavior in terms of frequency-
domain behavior. 

TABLE 17.1 Fourier Transforms of Elementary Functions 

Type 

impulse 

constant 

signum 

step 

positive-time exponential 

negative-time exponential 

positive- and negative-time exponential 

complex exponential 

cosine 

sine 

/(') 
8(t) 

A 

sgn(/) 

u(t) 

e-inu{t) 

emu(-t) 

e-«\'\ 

e/w 
COS 0)()1 

sin corf 

F(co) 

I 

2TTA8(CO) 

2//oi 

7T8((X)) + 1//(1) 

l / (n + /ftj), a > 0 

l/(« - /«) , a > 0 

2a/(a2 + or), a > 0 

2TT8{(0 — too) 

7r[5(o> + (0()) + (5((0 -

/V[5(o) + (o()) — 5(a; • 

mi)] 

~ «,,)] 

17.5 Some Mathematical Properties 
The first mathematical property we call to your attention is that F(co) is a 
complex quantity and can be expressed in either rectangular or polar 
form. Thus from the defining integral, 

/

00 

f{t)e-'Mtdt 
CXJ 

•J 

/(/)(cos cot - j sin cot) dt 

L f(t) cos cot cit - j f (t) sin cot dt. (17.36) 

Now we let 

M&) = / f(0 COS cot cit (17.37) 

-X fi(o)) = - / / ( / ) sin mtdt. (17.38) 
J—no 

Thus, using the definitions given by Eqs. 17.37 and 17.38 in Eq. 17.36, we get 

F(co) = A(a>) + /£(<«>) = |F(ft>)|e^M. (17.39) 



The following observations about F(co) are pertinent: 

The real part of F(co) — that is, A(co)—is an even function of co; in 
other words, A(co) = A{—co). 

The imaginary part of F(co) —that is, B(co)—is an odd function of co; 
in other words, 5(w) = — B(—(o). 

The magnitude of F(co) —that is, y /42(w) + B2(co) —is an even func
tion of a). 

The phase angle of F(co) —that is, 0(<t>) = tan_15(w)/yl((w)—is an 
odd function of co. 

Replacing co by -co generates the conjugate of F(co); in other words, 
F(-co) = F\co). 

Hence, if / ( / ) is an even function, F(co) is real, and if / ( / ) is an odd 
function, F(to) is imaginary. I f / ( 0 is even, from Eqs. 17.37 and 17.38, 

A(co) =2 f(t) cos cot dt (17.40) 

and 

B{to) = 0. (17.41) 

If / ( / ) is an odd function, 

A(co) = 0 (17.42) 

and 

B(oo) = - 2 / / ( / ) sin cot dt. (17.43) 

We leave the derivations of Eqs. 17.40-17.43 for you as Problems 17.10 
and 17.11. 

If / ( / ) is an even function, its Fourier transform is an even function, 
and if / ( / ) is an odd function, its Fourier transform is an odd function. 
Moreover, if / ( / ) is an even function, from the inverse Fourier integral, 

/ ( / ) = — / F(co)eJOJt dco = — / A(co)el<0' dco 

l r 
= — / A(co)(coscot + j sin cot) dco 

2lT .LOO 

= - / ' 
2TT 7-C 

A(co) cos cot dco + 0 

2 r 
= — / A(co) cos cot dco. (17.44) 

2?r .A) 
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Now compare Eq. 17.44 with Eq. 17.40. Note that, except for a factor of 
1/2TT, these two equations have the same form. Thus, the waveforms of 
A(a)) and / ( / ) become interchangeable if / ( / ) is an even function. For 
example, we have already observed that a rectangular pulse in the time 
domain produces a frequency spectrum of the form (sin OJ)/CO. Specifically, 
Eq. 17.11 expresses the Fourier transform of the voltage pulse shown in 
Fig. 17.1. Hence a rectangular pulse in the frequency domain must be gen
erated by a time-domain function of the form (sin t)/t. We can illustrate 
this requirement by finding the time-domain function / ( / ) corresponding 
to the frequency spectrum shown in Fig. 17.8. From Eq. 17.44, 

A{co) 

M 

-<u„/2 0 wo/2 

Figure 17.8 A A rectangular frequency spectrum. 

/(0 = W„ Ua~**-2pc-r) 
<On/2 

0 

2TT 
M-

sin <*Hf/2\ 

//2 J 

— { M sin w^/2 

2TT I 0)(//2 
(17.45) 

We say more about the frequency spectrum of a rectangular pulse in 
the time domain versus the rectangular frequency spectrum of (sin/)// 
after we introduce Parseval's theorem. 

17.6 Operational Transforms 
Fourier transforms, like Laplace transforms, can be classified as functional 
and operational. So far, we have concentrated on the functional trans
forms. We now discuss some of the important operational transforms. With 
regard to the Laplace transform, these operational transforms are similar 
to those discussed in Chapter 12. Hence we leave their proofs to you as 
Problems 17.12-17.19. 

Multiplication by a Constant 

From the defining integral, if 

94/(0} = F(«>), 

then 

&{Kf(t)} = KF(a>). (17.46) 

Thus, multiplication of/( /) by a constant corresponds to multiplying F(OJ) 
by that same constant. 



Addition (Subtraction) 
Addition (subtraction) in the time domain translates into addition (sub
traction) in the frequency domain. Thus if 

94/2(0} = ^2(0)), 

then 

9{fi(t) - f2(t) + f3(t)} = F,(») - F2(a>) + F3(o,), (17.47) 

which is derived by substituting the algebraic sum of time-domain func
tions into the defining integral. 

Differentiation 
The Fourier transform of the first derivative of/(f) is 

®l^-\ = j(oF(u>). (17.48) 

The nth derivative of /(f) is 

d"f(t) 

Equations 17.48 and 17.49 are valid if /(f) is zero at ±00. 

Integration 
if 

then 

g(t)= / f(x)dx, 

F((o) 
9{g(t)\ = - M . (17.50) 

7W 

Equation 17.50 is valid if 

f f(x)dx = 0. 
J-00 



Scale Change 
Dimensionally, time and frequency are reciprocals. Therefore, when time 
is stretched out, frequency is compressed (and vice versa), as reflected in 
the functional transform 

^{/(«0} = ~F(~\ a > °- (17-51) 

Note that when 0 < a < 1.0, time is stretched out, whereas when a > 1.0, 
time is compressed. 

Translation in the Time Domain 
The effect of translating a function in the time domain is to alter the phase 
spectrum and leave the amplitude spectrum untouched. Thus 

®{f(t - «)} = e->w"F(aj). (17.52) 

If a is positive in Eq. 17.52, the time function is delayed, and if a is nega
tive, the time function is advanced. 

Translation in the Frequency Domain 
Translation in the frequency domain corresponds to multiplication by the 
complex exponential in the time domain: 

9{e**f(t)} =H<0 -<*>)• (17.53) 

Modulation 
Amplitude modulation is the process of varying the amplitude of a sinu
soidal carrier. If the modulating signal is denoted f(t), the modulated car
rier becomes f(t) cos w(/.The amplitude spectrum of this carrier is one-half 
the amplitude spectrum of /(f) centered at ±a)lh that is, 

??{f(t) cos co()t} = - F(w - w0) + - F(co + w()). (17.54) 

Convolution in the Time Domain 
Convolution in the time domain corresponds to multiplication in the fre
quency domain. In other words. 

y(t) = J x(X)h(t - A) dk 

becomes 

®{y(t)\ = Y((o) = X(<o)H(a>). (17.55) 



Equation 17.55 is important in applications of the Fourier transform, 
because it states that the transform of the response function Y(o)) is the 
product of the input transform X((o) and the system function H(co). We 
say more about this relationship in Section 17.7. 

Convolution in the Frequency Domain 

Convolution in the frequency domain corresponds to finding the Fourier 
transform of the product of two time functions. Thus if 

/(0 = /t(0/2(0, 

then 

F((o) = — / FI(M)F-,(6J - u) du, (17.56) 
27T /_c 

Table 17.2 summarizes these ten operational transforms and another 
operational transform that we introduce in Problem 17.18. 

TABLE 17.2 Operational Transforms 

/(') 

Kf{t) 

/ i (0 ~ flit) 
d"f(t)/dt" 

[ f(x)dx 
«/-00 

/(*) 

fit - a) 

e*"f(t) 

f(t) COS O)0t 

/ x{K)h{t-

/1(0/2(0 

/7(0 

+ /3(0 

A)rfA 

F(a>) 

KF((o) 

Fi((o) - F2(a>) + F3((o) 

(JoTFUo) 

F((o)/jco 

lM">o 
e->mF{a)) 

Fio) - o>0) 

-F(u) - (o()) + -F(o) + too) 

X((o)H{to) 

1 r 
— / F[(u)F->(o) — u)du 
2lT J-00 dnF((o) 
(i)" 
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/ " A S S E S S M E N T PROBLEMS 

Objective 1—Be able to calculate the Fourier transform of a function 

17.4 Suppose f(t) is defined as follows: 

/(0 
2A 

t + A, 

2A 
/ (0 = -—t + A, 

- - < t < 0, 
2 

0 < t =s 
2 ' 

/(r) = 0, elsewhere. 

a) Find the second derivative of /(f). 

b) Find the Fourier transform of the second 
derivative. 

c) Use the result obtained in (b) to find the 
Fourier transform of the function in (a). 
(Hint: Use the operational transform of 
differentiation.) 

Answer: (a) 
2 A 7 T 
— 8 \ t + -

T \ 2 
2AJ T 

+ — 8 { t - -
r V 2 

—8(t) 

17.5 The rectangular pulse shown can be expressed 
as the difference between two step voltages; 
that is, 

Vmii[t + T-\ -Vmii(t- T-)W. 

Use the operational transform for translation in 
the time domain to find the Fourier transform 
of v{t). 

v(t) 

- T / 2 0 r/2 

., , 4A ( (OT 
(b )_fco ! 

(x) T 

cor 
1 - cos — 

2 Answer: V(co) = Vmr 
sin(wr/2) 

K/2) 
NOTE: Also try Chapter Problem 17.19. 

17.7 Circuit Applications 
The Laplace transform is used more widely to find the response of a cir
cuit than is the Fourier transform, for two reasons. First, the Laplace trans
form integral converges for a wider range of driving functions, and second, 
it accommodates initial conditions. Despite the advantages of the Laplace 
transform, we can use the Fourier transform to find the response. The fun
damental relationship underlying the use of the Fourier transform in tran
sient analysis is Eq. 17.55, which relates the transform of the response 
Y((o) to the transform of the input X(o)) and the transfer function H(a)) of 
the circuit. Note that H (o>) is the familiar H(s) with s replaced by jo). 

Example 17.1 illustrates how to use the Fourier transform to find the 
response of a circuit. 
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Example 17.1 Using the Fourier Transform to Find the Transient Response 

Use the Fourier transform to find /,,(0 in the circuit 
shown in Fig. 17.9. The current source ig(t) is the 
signum function 20 sgn(0 A. 

Q 

1 H 

Figure 17.9 • The circuit for Example 17.1. 

Evaluating K\ and K2 gives 

Therefore 

*-?-». 
K, = ^ = -10 . 

- 4 

7 ^ 1 0 1 0 

I0(co) = - . 
yo> 4 + ya) 

The response is 

Solution 

The Fourier transform of the driving source is 

/ » = ^{20sgn(0} 

( — 

40 

jto' 

The transfer function of the circuit is the ratio of I, 
to L; so 

//(w) = ^ = 
k 4 + ./w 

The Fourier transform of /,,(0 is 

/,(0)) = Ig(co)H(w) 

40 
/o>(4 + ;'&>) 

Expanding /„(ft>) into a sum of partial fractions yields 

/ » = — + 

/,(0 = ®-[[i<M) 

= 5sgn(r) - 10e_4'//(0-

Figure 17.10 shows the response. Does the solu
tion make sense in terms of known circuit behav
ior? The answer is yes, for the following reasons. 
The current source delivers —20 A to the circuit 
between -oo and 0. The resistance in each branch 
governs how the -20 A divides between the two 
branches. In particular, one fourth of the - 2 0 A 
appears in the ia branch; therefore i() is - 5 for t < 0. 
When the current source jumps from -20 A to 
+20 A at ( = 0, ia approaches its final value of 
+5 A exponentially with a time constant of \ s. 

An important characteristic of the Fourier 
transform is that it directly yields the steady-state 
response to a sinusoidal driving function. The rea
son is that the Fourier transform of cos OJ{)( is based 
on the assumption that the function exists over all 
time. Example 17.2 illustrates this feature. 

5 sgn(r) 
i0 

Ut) 
5 

0 

-10 

( A ) 5 sgn(r) 

^•^c 
'y^r* 

/ft) 4 + jo) Figure 17.10 • The plot of /,,(0 versus t. 
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Example 17.2 Using the Fourier Transform to Find the Sinusoidal Steady-State Response 

The current source in the circuit in Example 17.1 
(Fig. 17.9) is changed to a sinusoidal source. The 
expression for the current is 

iH(t) = 50 cos 3f A. 

Use the Fourier transform method to find ia(t). 

Solution 
The transform of the driving function is 

Ig((o) = 50TT[8(O) - 3 ) + 8(io + 3)]. 

As before, the transfer function of the circuit is 

H(co) = - - ^ - . 
4 + )o> 

The transform of the current response then is 

8(a) - 3 ) + 8(a> + 3) 
1„(OJ) = 50ir-

4 + j(D 

Because of the sifting property of the impulse func
tion, the easiest way to find the inverse transform of 
I0(o)) is by the inversion integral: 

i0(t)=^{I0(co)} 

50TT 

2TT 

8(aj - 3 ) + 8(a) + 3) 

4 + j(o 
eiwl dco 

= 25 

= 25 

,pt -j si 

+ 4 + /3 4 
,,/3/-y36.87 

-I 

/3, 

5 5 

= 5[2cos(3/ - 36.87°)] 

= 10cos(3/ - 36.87°). 

We leave you to verify that the solution for /,,(7) is 
identical to that obtained by phasor analysis. 

/ A C C C C C M C M T r> o n D I C M C 

Objective 2—Know how to use the Fourier transform to find the response of a circuit 

17.6 The current source in the circuit shown delivers 
a current of 10 sgn (r) A. The response is the 
voltage across the 1 H inductor. Compute 
(a) 1,(0)); (b) ff(/»); (c) V » ; (d) va(t); 
(e) *,(0T); (f) *i(0+); (g) /2(0"); (h) *2(0

+); 
( i )^ , (0 - ) ; and( j )^ (0 + ) . 

Answer: (a) 20/jw; 

(b) 4;V(5 + /») ; 

(c) 80/(5 + /«); 

(d) $Qe~5tu(t) V; 
(e) - 2 A; 

(f) 18 A; 

(g)8A; 

(h )8A; 

(i) OV; 

(j) 80 V. 

17.7 The voltage source in the circuit shown is gen
erating the voltage 

v8 = elu(-t) + u(t) V. 

a) Use the Fourier transform method to find v„. 

b) Compute v„(0~), va(0
+), and v ^ 0 0 ) -

Answer: (a) va -elu(-t)-—e-\i(t) + -

1 
+ - sgn( r )V; 

1 1 1 
(b) - V. - V. - V. w 4 4 3 

NOTE: Also try Chapter Problems 17.20,17.28, and 17.30. 



17,8 Parseval's Theorem 

ParsevaFs theorem relates the energy associated with a time-domain func
tion of finite energy to the Fourier transform of the function. Imagine that 
the time-domain function /(f) is either the voltage across or the current in 
a 1 £1 resistor. The energy associated with this function then is 

Wm = f{t)dt. (17.57) 

ParsevaFs theorem holds that this same energy can be calculated by an 
integration in the frequency domain, or specifically, 

[ f(t)dt = ^-[ f{t)dt = — \F(w)\2dco. 
^TT J-C 

(17.58) 

Therefore the 1 il energy associated with /(f) can be calculated either by 
integrating the square of f(t) over all time or by integrating 1/2TT times 
the square of the magnitude of the Fourier transform of/(f) over all fre
quencies. Parseval's theorem is valid if both integrals exist. 

The average power associated with time-domain signals of finite 
energy is zero when averaged over all time. Therefore, when comparing 
signals of this type, we resort to the energy content of the signals. Using a 
1 £1 resistor as the base for the energy calculation is convenient for com
paring the energy content of voltage and current signals. 

We begin the derivation of Eq. 17.58 by rewriting the kernel of the 
integral on the left-hand side as /(f) times itself and then expressing one 
/(f) in terms of the inversion integral: 

/

OO /.00 

f\t)dt= / f(t)f(t)dt 
OO 7 - 0 0 

/(0 — / F((o)ef°*dw 
277 . / - C O 

dt. (17.59) 

We move /(f) inside the interior integral, because the integration is with 
respect to w, and then factor the constant 1/277- outside both integrations. 
Thus Eq. 17.59 becomes 

.oo r /-oo 

/2(f)</f = - - / / F(m)f(t)e&da 
oo ^7T J—oo L J-oo 

dt. (17.60) 

We reverse the order of integration and in so doing recognize that F(ot)) 
can be factored out of the integration with respect to f. Thus 

1 
f\t)dt = -~-f F(co) 

3 277 J-c 
f(t)e)l0tdt 

The interior integral is F ( -w) , so Eq. 17.61 reduces to 

dm. (17.61) 

/>oc 1 p.oo 

J_J2(t)dt = —jj(co)F(-co)dco. (17.62) 



In Section 17.6, we noted that F(—<o) = F"(<y). Thus the product 
F(co)F(-io) is simply the magnitude of F(a>) squared, and Eq. 17.62 is 
equivalent to Eq. 17.58. We also noted that |F(w)| is an even function of w. 
Therefore, we can also write Eq. 17.58 as 

„ 0 0 

f\t) dt = - I \F(oj)\2do>. (17.63) 

A Demonstration of Parseval's Theorem 

We can best demonstrate the validity of Eq. 17.63 with a specific example. If 

f(t) = e""1'1, 

the left-hand side of Eq. 17.63 becomes 

-2aM,/, = dt = / emdt + 2at 2a! dt 
J—oc 

e2at 

la 

1 
la 

0 

+ 
—oc 

1 
+ — 

la 

./o 

e~2at 

—la 

1 

a 
(17.64) 

la 

The Fourier transform of f(t) is 

F<«) = 
(T + (O 

and therefore the right-hand side of Eq. 17.63 becomes 

71 Jo (a + a)-) 

4a2 _ 4a2 1 fc) 1 _,ft) 

» r H— tan — 

- - ( o + f • 
77- V l a 

(17.65) 

Note that the result given by Eq. 17.65 is the same as that given by Eq. 17.64. 

The Interpretation of Parseval's Theorem 

Parseval's theorem gives a physical interpretation that the magnitude of 
the Fourier transform squared, |F(a>)|2, is an energy density (in joules per 
hertz).To see it, we write the right-hand side of Eq. 17.63 as 

77 
- / \F(l7rf)\2l7rdf = l \F(2irf)\2df, (17.66) 

where \F(lirf)\2df is the energy in an infinitesimal band of frequencies 
(df), and the total 1 0 energy associated with f(t) is the summation (inte
gration) of |F(27r/)|2<:/f over all frequencies. We can associate a portion 
of the total energy with a specified band of frequencies. In other words, 
the I fi energy in the frequency band from OD\ to a)2 is 
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\F(o>)\2 

•<y2 ~u>\ 0 CO] <x>2 

Figure 17.11 • The graphic interpretation of Eq. 17.68. 

l r2 

Wm = - \F(co)\2da>. 

Note that expressing the integration in the frequency domain as 

277 
\F{to)\2da) 

instead of 

- I \F(co)\2dco 
^ Jo 

allows Eq. 17.67 to be written in the form 

Wm = ~ \F(a>)\2 dco + — / \F{a>)\2do>. 

(17.67) 

(17.68) 

Figure 17.11 shows the graphic interpretation of Eq. 17.68. 
Examples 17.3-17.5 illustrate calculations involving Parseval's theorem. 

Example 17.3 Applying Parseval's Theorem 

The current in a 40 Cl resistor is 

i = 20e-2lu(t) A. 

What percentage of the total energy dissipated in 
the resistor can be associated with the frequency 
bandO < w < 2V3rad/s? 

Solution 

The total energy dissipated in the 40 il resistor is 

W mi 40 / 400e~4' dt 
./0 

16.0()0 
- 4 

= 4000 J. 

We can check this total energy calculation with 
Parseval's theorem: 

Therefore 

F(co) = 

\F(»)\ = 

20 
2 + jo) 

20 

VT + oj-

and 

w 4 ( ) 

Warn = — 

400 
TV 4 + co2 doo 

16,000/1 
77 

tan ]— 

8 0 0 0 Y ? 1 = 4000J. 
IT \2 

The energy associated with the frequency band 
0 < o) < 2 V3 rad/s is 

Wwu = 

Hence the percentage of the total energy associated 
with this range of frequencies is 

v 
8000/3 

4000 
x 100 = 66.67%. 
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Example 17.4 Applying Parseval's Theorem to an Ideal Bandpass Filter 

The input voltage to an ideal bandpass filter is The total 1 Cl energy available at the output of 
the filter is 

v(t) = 120<T24'«(f) V. 

The filter passes all frequencies that lie between 
24 and 48 rad/s, without attenuation, and completely 
rejects all frequencies outside this passband. 

a) Sketch |V(o»)|2 for the filter input voltage. 

b) Sketch |K„(«)|2 f o r t h e f i l t e r output voltage. 
c) What percentage of the total 1 fi energy content 

of the signal at the input of the filter is available 
at the output? 

1 r48 14,400 , 600 _, co 
W0 = — / ~ dco = tan l —-

TrJ2A 576 + o)2 v 24 

48 

24 

600 / _< _, . , 600/ 7T TT\ 
= (tan l2 - tan H) = — - - -

7T 77 \2.84 4 / 

61.45 J. 

The percentage of the input energy available at 
the output is 

Solution 

a) The Fourier transform of the filter input voltage is 
V = ^§- X 100 = 20.48%. 

V(a>) = 
120 

24 + j(o 

Therefore 

|K(a,)|2 = 
14,400 

576 + co2' 

Fig. 17.12 shows the sketch of |V(a>)|2 versus co. 

b) The ideal bandpass filter rejects all frequencies 
outside the passband, so the plot of 1^(6))12 ver
sus co appears as shown in Fig. 17.13. 

- 6 0 
1 

- 4 0 

in 

25-
/10 

/15 
X 10 

5 
1 

- 2 0 0 

W)|2 

1 
20 

1 
40 

~~ 1 
60 

co (rad/s) 

Figure 17.12 • |V(a/)|2 versus co for Example 17.4. 

c) The total 1 ft energy available at the input to the 
filter is 

W/ = -
IT Jo 576 + w 

14,400 14.400 ( 1 , co 
« w = - — t a n — 

24 24 

600 7T 

7T 2 
= 300 J. 

1 
-60 

\V0(co)\2 

25 
20 
15 

- / 
- 4 0 -

10 

-20 0 
1 

20 
1 

40 
1 

60 
co (rad/s) 

Figure 17.13 A | Vo(w)|2 versus co for Example 17.4. 

file:///2.84
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Example 17.5 Applying Parseval's Theorem to a Low-Pass Filter 

Parseval's theorem makes it possible to calculate 
the energy available at the output of the filter even 
if we don't know the time-domain expression for 
va(t). Suppose the input voltage to the low-pass RC 
filter circuit shown in Fig. 17.14 is 

v,(t) = 15<T5'«(f)V. 

a) What percentage of the 1 Cl energy available in 
the input signal is available in the output signal? 

b) What percentage of the output energy is associ
ated with the frequency range 0 < co < 10 rad/s? 

Solution 

a) The 1 H energy in the input signal to the filter is 

= 22.5 J. 
. - 1 ( ¾ 

W(= / (15e-502rfr = 225—— 
Jo - 1 0 

The Fourier transform of the output voltage is 

V()(co) = VMH(wl 

where 

15 
VM = 

H(co) = 

5 + jo) 

l/RC 

l/RC + jta ~ 10 + j(o 

10 

Hence 

W,M\2 = 

150 

(5 + ;o>)(10 + jco) 

22,500 
2 \ ' (25 + 6/)(100 + OJ1) 

The 1 H energy available in the output signal of 
the filter is 

Wn = 
1 22,500 

irJo (25 + ^/)(100 + coz) 
do). 

10 kO 

+ + 

e 

Figure 17.14 • The low-pass RC filter for Example 17.5. 

We can easily evaluate the integral by expand
ing the kernel into a sum of partial fractions: 

22,500 300 500 

(25 + w2)(100 + o)2) 25 + w2 100 + 

Then 

W = 
do) 300 

K I./() 25 + o? 

do) 

300 

5 V 2 / 10 V 2 

0 100 + o)1 

= 15 J. 

The energy available in the output signal there
fore is 66.67% of the energy available in the 
input signal; that is, 

V = 
15 

22.5 
(100) = 66.67%. 

b) The output energy associated with the frequency 
range 0 < w < 10 rad/s is 

W' 
300 r •in do) 

n [ J0 25 + o)2 J{) 100 + o)1 

10 

3 0 0 / 1 

\.5 

13.64 J. 

- tan" 
15 J_ -] 10 A _ 30 / 2TT TT 

5 10 t a n 10/ " TT U.84 "" 4 

The total 1 fi energy in the output signal is 15 J, 
so the percentage associated with the frequency 
range 0 to 10 rad/s is 90.97%. 

The Energy Contained in a Rectangular Voltage Pulse 

We conclude our discussion of Parseval's theorem by calculating the 
energy associated with a rectangular voltage pulse. In Section 17.1 we 
found the Fourier transform of the voltage pulse to be 

V{0)) = V„,T 
sin COT/2 

O)T/2 
(17.69) 
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To aid our discussion, we have redrawn the voltage pulse and its Fourier 
transform in Fig. 17.15(a) and (b), respectively. These figures show that, as 
the width of the voltage pulse (T) becomes smaller, the dominant portion 
of the amplitude spectrum (that is, the spectrum from -2TT/T to 2TT/T) 

spreads out over a wider range of frequencies. This result agrees with our 
earlier comments about the operational transform involving a scale 
change, in other words, when time is compressed, frequency is stretched 
out and vice versa. To transmit a single rectangular pulse with reasonable 
fidelity, the bandwidth of the system must be at least wide enough to 
accommodate the dominant portion of the amplitude spectrum. Thus the 
cutoff frequency should be at least 2TT/T rad/s, or 1/T HZ. 

We can use Parseval's theorem to calculate the fraction of the total 
energy associated with v(t) that lies in the frequency range 0 ^ co :£ 2TT/T. 

From Eq. 17.69, 

W = 
1 f2jr/T , sin2a>r/2 

Vlr2- dco. 
(cor/2)2 

To carry out the integration called for in Eq. 17.70, we let 

COT 

(17.70) 

(17.71) 

v(t) 

- T / 2 0 

(a) 

T/2 

Figure 17.15 • The rectangular voltage pulse and its 
Fourier transform, (a) The rectangular voltage pulse, 
(b) The Fourier transform of v (t). 

noting that 

dx = - dco 
2 

(17.72) 

and that 

x = 7T, when co = 2TT/T. (17.73) 

If we make the substitutions given by Eqs. 17.71-17.73, Eq. 17.70 becomes 

W = ^ f ^ r f , 
n Jo . r 

We can integrate the integral in Eq. 17.74 by parts. If we let 

(17.74) 

u = SHTJC 

dx 
CIV = — r , 

X 

(17.75) 

(17.76) 

then 

and 

du = 2sin.v:cosx dx = sin2x dx, (17.77) 

(17.78) 

Hence 

"• • 2 - 2 
sin x , sin x 
—T—dx = 

0 X ' 
— sin 2x dx 

0 .70 x 

rsin2.v , 
0 + I dx. 

o x 
(17.79) 



Substituting Eq. 17.79 into Eq. 17.74 yields 

W-—l—dx. (17.80) 

To evaluate the integral in Eq. 17.80, we must first put it in the form of 
sin y/y. We do so by letting y = 2x and noting that dy = 2 dx, and y = 2ir 
when x = 77-. Thus Eq. 17.80 becomes 

W = — — / — - dy. (17.81) 
77 Jo y 

The value of the integral in Eq. 17.81 can be found in a table of sine 
integrals.1 Its value is 1.41815, so 

2V2T 
W = ——(1.41815). (17.82) 

The total 1 O energy associated with v(t) can be calculated either from 
the time-domain integration or the evaluation of Eq. 17.81 with the upper 
limit equal to infinity. In either case, the total energy is 

W, = V2
mr. (17.83) 

The fraction of the total energy associated with the band of frequencies 
between 0 and 2TT/T is 

W 

_ 2I/?„7(1.41815) 

= 0.9028. (17.84) 

Therefore, approximately 90% of the energy associated with v(t) is con
tained in the dominant portion of the amplitude spectrum. 
1 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (New York: Dover, 

l%5),p.244. 
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^ A S S E S S M E N T P R O B L E M S 

Objective 3—Understand Parseval's theorem and be able to use it 

17.8 The voltage across a 50 Cl resistor is 

v = 4te~'u(t) V. 

What percentage of the total energy dissipated 
in the resistor can be associated with the fre
quency band 0 < a) ^ V3 rad/s? 

17.9 Assume that the magnitude of the Fourier 
transform of v(t) is as shown. This voltage is 
applied to a 6 kfi resistor. Calculate the total 
energy delivered to the resistor. 

\V(jco)\ 

-20007T 0 2000 it 
(o (rad/s) 

Answer: 94.23%. 

NOTE: Also try Chapter Problem 17.4(1 

Answer: 4 J. 

Practical Perspective 
Filtering Digital Signals 
To understand the effect of transmitting a digital signal on a telephone line, 
consider a simple pulse that represents a digital value of 1, using 5 V, as shown 
in Fig. 17.15(a), with Vm = 5 V and T = 1 fxs. The Fourier transform of this 
pulse is shown in Fig. 17.15(b), where the amplitude Vmr = 5 /JLM and the first 
positive zero-crossing on the frequency axis is 2TT7T = 6.28 Mrad/s = 1 MHz. 

Note that the digital pulse representing the value 1 is ideally a sum of 
an infinite number of frequency components. But the telephone line cannot 
transmit all of these frequency components. Typically, the telephone has a 
bandwidth of 10 MHz, meaning that it is capable of transmitting only those 
frequency components below 10 MHz. This causes the original pulse to be 
distorted once it is received by the computer on the other end of the tele
phone line, as seen in Fig. 17.16. 

Figure 17.16 • The effect of sending a square voltage 
pulse through a bandwidth-limited filter, causing distor
tion of the resulting output signal in the time domain. 
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Summary 

The Fourier transform gives a frequency-domain descrip
tion of an aperiodic time-domain function. Depending on 
the nature of the time-domain signal, one of three 
approaches to finding its Fourier transform may be used: 

• If the time-domain signal is a well-behaved pulse of 
finite duration, the integral that defines the Fourier 
transform is used. 

• If the one-sided Laplace transform of /(f) exists and 
all the poles of F(s) lie in the left half of the s plane, 
F(s) may be used to find F(a>). 

• If /(f) is a constant, a signum function, a step func
tion, or a sinusoidal function, the Fourier transform is 
found by using a limit process. 

(See page 646.) 

Functional and operational Fourier transforms that are 
useful in circuit analysis are tabulated in Tables 17.1 and 
17.2. (See pages 655 and 660.) 

• The Fourier transform of a response signal y(t) is 

Y(a>) = X{(o)H(co), 

where X(co) is the Fourier transform of the input signal 
x(t), and H{co) is the transfer function H(s) evaluated at 
s = jco. (See page 660.) 

• The Fourier transform accommodates both negative-
time and positive-time functions and therefore is suited 
to problems described in terms of events that start at 
f = - c o . In contrast, the unilateral Laplace transform is 
suited to problems described in terms of initial condi
tions and events that occur for t > 0. 

• The magnitude of the Fourier transform squared is a 
measure of the energy density (joules per hertz) in the 
frequency domain (Parseval's theorem).Thus the Fourier 
transform permits us to associate a fraction of the total 
energy contained in /(f) with a specified band of fre
quencies. (See page 664.) 

Problems 

Sections 17.1-17.2 

17.1 a) Find the Fourier transform of the function shown 
inFig.P17.1. 

b) Find F{co) when w = 0. 

c) Sketch \F(O))\ versus co when A = 1 and T = 1. 
Hint: Evaluate \F(co)\ at co = 0,2, 4, 6,8, 9,10, 
12,14, and 15.5. Then use the fact that |.F(ft>)| is 
an even function of co. 

Figure PI7.1 

w 

17.2 The Fourier transform of /(f) is shown in Fig. P17.2. 

a) Find/(f). 

b) Evaluate/(0). 

c) Sketch /(f) for -10 < f < 10 s when A = 20IT 

and COQ = 2 rad/s. Hint: Evaluate /(f) at f = 0, 
1, 2 , 3 , . . . , 10 s and then use the fact that /(f) 
is even. 

Figure P17.2 

F(co) 
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17.3 Use the defining integral to find the Fourier trans
form of the following functions: 

17.11 Show that i f / ( 0 is an even function. 

a) / ( / ) = /4 sin | / , 

/ ( 0 = 0, 

b) / ( 0 - ^ r * + A 

2A 

-2 < / < 2; 

elsewhere. 

- - < / < 0; 
2 

/ (0 = f + A 0 £ * < = - ; 
j W

 T 2 
/ ( / ) = 0, elsewhere. 

Sections 17.3-17.5 

17.4 Der ived {sin wo/}. 

17.5 Find the Fourier transform of each of the following 
functions. In all of the functions, a is a positive real 
constant and — oo < / < oo. 

a) / (0 = I**4*1: 
b) / ( / ) = / V l ' 1 ; 

c) /(f) = e""1'1 cos »„/; 

d) / ( / ) = e^ ' s ino) , / ; 

e) / ( / ) = § ( / - / „ ) . 

17.6 If / ( / ) is a real function of /, show that the inversion 
integral reduces to 

l r 
/(/) = — / [y4(a)) cos to/ — B(co) sin cot] da). 

27TJ-00 

17.7 If / ( / ) is a real, odd function of t, show that the 
inversion integral reduces to 

l r 
/*(/) = - — / 5(a)) sin a)/ doo. 

2TT ./_«, 

17.8 Use the inversion integral (Eq. 17.9) to show that 
&~]{2/j<o} = sgn(f). Hint: Use Problem 17.7. 

17.9 Find S> { cos o)()/} by using the approximating function 

/(0 = - - « w COS 0)()/, 

where e is a positive real constant. 

17.10 Show that if / ( / ) is an odd function, 

A(co) = 0, 

/l(w) = 2 / / ( / ) cos o)/rf/, 
Jo 

5(o>) = 0. 

Section 17.6 

17.12 a) Show that &{df(t)/dt} = jcoF(co), where 
F(o)) = ^ { / ( / ) } . Hint: Use the defining integral 
and integrate by parts. 

b) What is the restriction on / ( / ) if the result given 
in (a) is valid? 

c) Show that ?${d"f(t)/dt"} = (ja>)nF(a>), where 
F(a>) = 9{f(f)}. 

17.13 a) Show that 

<;9 f(x)dx > = 

where F(a>) = SF {/(#)}• Hint: Use the defining 
integral and integrate by parts. 

b) What is the restriction on f(x) if the result given 
in (a) is valid? 

c) If f(x) = e~axu(x), can the operational trans
form in (a) be used? Explain. 

17.14 a) Show that 

* { / < * ) } - ^ ( f ) . *>0. 

b) Given that f(at) = e"^ for a > 0, sketch 
F(OJ) = ®{f(at)} for a = 0.5,1.0, and 2.0. Do 
your sketches reflect the observation that 
compression in the time domain corresponds to 
stretching in the frequency domain? 

17.15 Derive each of the following operational transforms: 

a) &{f(t - a)} = e-iioa F{OJ)\ 

b) 9{e**f(t)} = F(o) - o)()); 
C ) &{f(t)cOS000t} = \F((I) - O)0) + \F{00 + 0)(,). 

17.16 Given 

y(0 
J-a 

x(\)h(t - A) //A, 

show that Y(o)) = &{y(()} = X(oo)H(w), where 
X(OJ) = &{x(t)} and H(<*>) = &{h(t)}. Hint: Use 
the defining integral to write 

B(m) = - 2 / / ( / ) sin cotdt. 
Jo 

/.00 P /.00 

9{y(t)} = / / x(X)h(t -A)//A 
. / - 0 0 J - 0 0 

<?-;'"" / / / . 
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Next, reverse the order of integration and then 
make a change in the variable of integration; that is, 
let u = t — A. 

17.17 Given /(f) = fi(t)f2(t), show that F(<o) = 

(I/277) / Fi{u)F2{oi - u) du. Hint: First, use the 
J-co 

defining integral to express F(a>) as 

Figure P17.20 

F(o>) f fi(t)f2(t)e-l**dt. 

Second, use the inversion integral to write 

27T ,/_oo 

Third, substitute the expression for fi(t) into the 
defining integral and then interchange the order 
of integration. 

17.18 a) Show that 

07 
dnF((o) 

do'1 nm)Y 
b) Use the result of (a) to find each of the following 

Fourier transforms (assuming a > 0): 

^{|/|e~a|"K 

17.19 Suppose that /(f) = /i(f)/2(f)* where 

/ , ( 0 = cosa)()f, 

/2(0 = 1, -r/2<t<r/2; 

/ 2 ( 0 = 0, elsewhere. 

a) Use convolution in the frequency domain to 
find F((D). 

b) What happens to F(a>) as the width of /2(f) 
increases so that /(f) includes more and more 
cycles on/j(f)? 

Section 17.7 

17.20 a) Use the Fourier transform method to find 
p s p i C E i0(t) in the circuit shown in Fig. PI7.20 if 

MULTISIM -, y- / s , r 

vg = 36 sgn(f) V. 
b) Does your solution make sense in terms of 

known circuit behavior? Explain. 

2/xF 

17.21 Repeat Problem 17.20 except replace /,,(0 with va(t). 
P5PICE 

MULTISIM 

17.22 a) Use the Fourier transform method to find va(t) 
MyS

L""M in the circuit shown in Fig. P17.22. The initial 
value of v(){t) is zero, and the source voltage is 
100M(r) V. 

b) Sketch v()(t) versus t. 

Figure P17.22 

5H 

17.23 Repeat Problem 17.22 if the input voltage (t?g) is 
PSPICE changed to 100 sgn(f). 

MULTISIM 

17.24 a) Use the Fourier transform to find ia in the circuit 
in Fig. P17.24 if ig = 200 sgn(f) /xA. 

b) Does your solution make sense in terms of 
known circuit behavior? Explain. 

PSPICE 

MULTISIM 

Figure P17.24 

-/,,(0 

0.5 /AF 

17.25 Repeat Problem 17.24 except replace i0 with v( 
PSPICE 

MULTISIM 

PSPICE 

MULTISIM 

17.26 The voltage source in the circuit in Fig. P17.26 is 
given by the expression 

Vg = 3 sgn(f) V. 

a) Find vjf). 

b) What is the value of vo(0~)? 

c) What is the value of vo(0
+)? 

d) Use the Laplace transform method to find v0(t) 
for f > 0+. 

e) Does the solution obtained in (d) agree with 
vJt) for f > 0+ from (a)? 
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Figure P17.26 

0.5 n 

250 mF 

17.27 Repeat Problem 17.26 except replace vt){t) with /„(/), 
PSPICE 

MULTISIM 

17.28 a) Use the Fourier transform to find v(> in the cir-
PSPICE cuit in Fig. PI 7.28 if L equals 3<TS|fl A. 

MULTISIM lS 

b) Find 1^(0-). 
c) Find?;o(0+). 

d) Use the Laplace transform method to find v0 

for t > 0. 

e) Does the solution obtained in (d) agree with v0 

for t > ()+ from (a)? 

Figure PI 7.28 

0.1 F 

17.31 a) Use the Fourier transform method to find ia in the 
"pice circuit in Fig. P17.31 if vg = 125 cos 40,000f V. 

MULTISIM 

b) Check the answer obtained in (a) by finding the 
steady-state expression for i0 using phasor 
domain analysis. 

Figure P17.31 

5mH 

120 H 

17.32 a) Use the Fourier transform method to find v0 in 
the circuit shown in Fig. P17.32. The voltage 
source generates the voltage 

vg = 45<r5l)W V. 

b) Calculate Vo(0~), vo{0+), and v0(oo). 

c) Find /L((r); /L(0+); i;c(0"); and vc(0
+). 

d) Do the results in part (b) make sense in terms of 
known circuit behavior? Explain. 

PSPICE 

HULTISIM 

Figure P17.32 

1 /xF 

+ IV -

4H- v„ ^800 0 

17.29 a) Use the Fourier transform to find ia in the circuit 
PSPICE in Fig. P17.28 if L equals 3e~5|f| A. 

MULTISIM 

b) Find /„(()"). 
c) Find/o(0+). 

d) Use the Laplace transform method to find i() 

for t > 0. 

e) Does the solution obtained in (d) agree with /„ 
for t > 0+ from (a)? 

17.30 Use the Fourier transform method to find /'„ in the 
PSPICE circuit in Fig. P17.30 if v„ = 300 cos 5000r V. 

MULTTSIM 

Figure P17.30 

800 nF 

OmH loo n 

17.33 The voltage source in the circuit in Fig. P17.33 is 
PSPICE generating the signal 

MULTISIM 

vg = 5 sgn(f) - 5 + 30e"5l«(0 V. 

a) Find ^,(0 -) and vo(0
+). 

b) Find ^(0 -) and io(0
+). 

c) Find v0. 

Figure P17.33 

5 a 
-vw-I VVV—;— 

y,{Ml00mF 

T 
17.34 a) Use the Fourier transform method to find v0 in 

PSPICE 

MULnSIM 
the circuit in Fig. PI7.34 when 

vg = 36e4t u(-t) - 36e~41 u(t) V. 

b) Find v„(0"). 

c) Find vo(0
+). 
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Figure P17.34 

ion 
-AMr-

1 H 

• o :62.5 mF 

17.35 a) Use the Fourier transform method to find va in 
PSPICE the circuit in Fig. PI 7.35 when 

MULTISIM 

ig = \Semu(-t) - lSe-]{)t u(t) A. 

b) Find v0(O~). 

c) Find vo(0
+). 

d) D o the answers obtained in (b) and (c) make 
sense in terms of known circuit behavior? 
Explain. 

Figure P17.35 

10 mF 

tt 
25 0 

+ 

17.36 When the input voltage to the system shown in 
Fig. P17.36 is \Su{i) V, the output voltage is 

va = [10 + 30<T20' - 40er3Qf]w(f)V. 

What is the output voltage if Vj = 15 sgn(f) V? 

Figure P17.36 

Vt(t) 

(Input voltage) 
h{t) 

Va(t) 

(Output voltage) 

Section 17.8 

17.37 It is given that F(<o) = e0Ju(-(o) + e~w/*(w). 

a) F i n d / ( 0 -

b) Find the 1 f! energy associated with / ( f ) via 
time-domain integration. 

c) Repeat (b) using frequency-domain integration. 

d) Find the value of wt if / ( f ) has 90% of the 

energy in the frequency band 0 £ \<o\ s a>x. 

17.38 The circuit shown in Fig. PI7.38 is driven by 
the current 

L = \2e~mu(t)A. 

What percentage of the total 1 fi energy content in 
the output current i0 lies in the frequency range 
0 < \co\ < lOOrad/s? 

Figure PI7.38 

s 
25 n 500 mH 

17.39 The input current signal in the circuit seen in 
Fig. P17.39 is 

is = 30e~2/ u{t) fiA, t > 0+ . 

What percentage of the total 1 Cl energy content in 
the output signal lies in the frequency range 0 to 
4 rad/s? 

Figure PI 7.39 

1.25 fxF 

17.40 The input voltage in the circuit in Fig. PI7.40 is 
vg = 30e_|f | V. 

a) Find va(t). 

b) Sketch \Vg(oo)\ for - 5 < to < 5 rad/s . 

c) Sketch \V0(to)\ for - 5 < w < 5 rad/s . 

d) Calculate the 1 ft energy content of vg. 

e) Calculate the 1 H energy content of v„. 

f) What percentage of the 1 O energy content in vg 

lies in the frequency range 0 ^ |w| ^ 2 rad/s? 

g) Repeat (f) for v(}. 

Figure PI7.40 

125 mF 

17.41 The amplitude spectrum of the input voltage to the 
high-pass RC filter in Fig. P17.41 is 

VM 
200 

, 100 rad/s < \w\ < 200 rad/s ; 

Vj(co) = 0, elsewhere. 
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a) Sketch |K ,H | 2 for -300 < a> < 300 rad/s. 

b) Sketch \V0(a>)\2 for -300 < <o < 300 rad/s. 

c) Calculate the 1 Q, energy in the signal at the 
input of the filter. 

d) Calculate the 1 Q, energy in the signal at the out
put of the filter. 

Figure P17.41 
0.5 (xF 

r—1(-
vt 20 m 

17.42 The input voltage to the high-pass RC filter circuit 
in Fig. P17.42 is 

Vi(t) = Ae-'"u(t). 

Let a denote the corner frequency of the filter, that 
is, a = 1/RC. 

a) What percentage of the energy in the signal at 
the output of the filter is associated with the fre
quency band 0 < \m\ < a if a = a? 

b) Repeat (a), given that a = V3a. 

c) Repeat (a), given that a = a /V3. 

Figure P17.42 

-1(-
C 

R 

+ 
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C H A P T E R C O N T E N T S 

18.1 The Terminal Equations p. 680 

18.2 The Two-Port Parameters p. 681 

18.3 Analysis of the Terminated Two-Port 
Circuit p. 689 

18.4 Interconnected Two-Port Circuits p. 694 

^ C H A P T E R O B J E C T I V E S 

1 Be able to calculate any set of two-port 
parameters with any of the following methods: 

• Circuit analysis; 

• Measurements made on a circuit; 

• Converting from another set of two-port 
parameters using Table 18.1. 

2 Be able to analyze a terminated two-port circuit 
to find currents, voltages, impedances, and 
ratios of interest using Table 18.2. 

3 Know how to analyze a cascade interconnection 
of two-port circuits. 

678 

Two-Port Circuits 
We have frequently focused on the behavior of a circuit at a 
specified pair of terminals. Recall that we introduced the 
Thevenin and Norton equivalent circuits solely to simplify circuit 
analysis relative to a pair of terminals. In analyzing some electri
cal systems, focusing on two pairs of terminals is also convenient. 
In particular, this is helpful when a signal is fed into one pair of 
terminals and then, after being processed by the system, is 
extracted at a second pair of terminals. Because the terminal 
pairs represent the points where signals are either fed in or 
extracted, they are referred to as the ports of the system. In this 
chapter, we limit the discussion to circuits that have one input and 
one output port. Figure 18.1 on page 680 illustrates the basic two-
port building block. Use of this building block is subject to sev
eral restrictions. First, there can be no energy stored within the 
circuit. Second, there can be no independent sources within the 
circuit; dependent sources, however, are permitted. Third, the cur
rent into the port must equal the current out of the port; that is, 
i\ = i\ and /2 = ii. Fourth, all external connections must be made 
to either the input port or the output port; no such connections are 
allowed between ports, that is, between terminals a and c, a and d, 
b and c, or b and d. These restrictions simply limit the range of cir
cuit problems to which the two-port formulation is applicable. 

The fundamental principle underlying two-port modeling of a 
system is that only the terminal variables (ij, V\, h* an<^ ¾̂) a r e °f 
interest. We have no interest in calculating the currents and volt
ages inside the circuit. We have already stressed terminal behavior 
in the analysis of operational amplifier circuits. In this chapter, we 
formalize that approach by introducing the two-port parameters. 



Practical Perspective 
Characterizing an Unknown Circuit 

Up to this point, whenever we wanted to create a model of a 
circuit, we needed to know what types of components make 
up the circuit, the values of those components, and the inter
connections among those components. But what if we want 
to model a circuit that is inside a "black box", where the com
ponents, their values, and their interconnections are hidden? 

In this chapter, we will discover that we can perform two 
simple experiments on such a black box to create a model 
that consists of just 4 values - the two-port parameter model 
for the circuit. We can then use the two-port parameter 

model to predict the behavior of the circuit once we have 
attached a power source to one of its ports and a load to the 
other port. 

In this example, suppose we have found a circuit, 
enclosed in a casing, with two wires extending from each 
side, as shown below. The casing is labeled "amplifier" and we 
want to determine whether or not i t would be safe to use this 
amplifier to connect a music player modeled as a 2 V source 
to a speaker modeled as a 32 H resistor with a power rating 
of 100 W. 

679 
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'1 

+ 
Input 
port 

<"'i 

• a c* 

Circuit 

• K Am 
• D Q • 

l2 

+ 
Output 

port 

'"': 

Figure 18.1 A The two-port building block. 

h 
+ 

s-domain 
circuit 

h 
+ 

Figure 18.2 A The 5-domain two-port basic 
building block. 

18,1 The Terminal Equations 
In viewing a circuit as a two-port network, we are interested in relating the 
current and voltage at one port to the current and voltage at the other 
port. Figure 18.1 shows the reference polarities of the terminal voltages 
and the reference directions of the terminal currents. The references at 
each port are symmetric with respect to each other; that is, at each port the 
current is directed into the upper terminal, and each port voltage is a rise 
from the lower to the upper terminal. This symmetry makes it easier to 
generalize the analysis of a two-port network and is the reason for its uni
versal use in the literature. 

The most general description of the two-port network is carried out in 
the s domain. For purely resistive networks, the analysis reduces to solving 
resistive circuits. Sinusoidal steady-state problems can be solved either by 
first finding the appropriate ^-domain expressions and then replacing s 
with jo), or by direct analysis in the frequency domain. Here, we write all 
equations in the s domain; resistive networks and sinusoidal steady-state 
solutions become special cases. Figure 18.2 shows the basic building block 
in terms of the s-domain variables I\,Vy, /2, and V2. 

Of these four terminal variables, only two are independent. Thus for 
any circuit, once we specify two of the variables, we can find the two 
remaining unknowns. For example, knowing V{ and V2 and the circuit 
within the box, we can determine I{ and I2. Thus we can describe a two-
port network with just two simultaneous equations. However, there are six 
different ways in which to combine the four variables: 

V2 = Zuh + Zizhi (18.1) 

(18.2) 

Vt = anV2 - al2I2, 

h = rt21^2 — rt22-^2» (18.3) 

V2 = buYi - bl2Ih 

h = bnYx ~ 2̂2 A '•> (18.4) 

Vt = h^Ix + h12V2, 

h = h2XU + ^22^2; (18.5) 

h = g\\V\ + gnh> 

V2 = &i Vi + g22I2. (18.6) 

These six sets of equations may also be considered as three pairs of 
mutually inverse relations. The first set, Eqs. 18.1, gives the input and out
put voltages as functions of the input and output currents. The second set, 
Eqs. 18.2, gives the inverse relationship, that is, the input and output cur
rents as functions of the input and output voltages. Equations 18.3 and 
18.4 are inverse relations, as are Eqs. 18.5 and 18.6. 

The coefficients of the current and/or voltage variables on the right-
hand side of Eqs. 18.1-18.6 are called the parameters of the two-port cir
cuit. Thus, when using Eqs. 18.1, we refer to the z parameters of the circuit. 
Similarly, we refer to the y parameters, the a parameters, the b parameters, 
the h parameters, and the g parameters of the network. 
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18.2 The Two-Port Parameters 
We can determine the parameters for any circuit by computation or meas
urement. The computation or measurement to be made comes directly 
from the parameter equations. For example, suppose that the problem is 
to find the z parameters for a circuit. From Eqs. 18.1, 

Zu 

Zn 

z2\ 

Z?2 

Vi 

h 

h 

h 

h 

ft, 
/ ,=0 

n, 
/ ,=0 

ft, 
/-»=0 

ft. 

(18.7) 

(18.8) 

(18.9) 

(18.10) 
/, =n 

Equations 18.7-18.10 reveal that the four z parameters can be described 
as follows: 

• Z\\ is the impedance seen looking into port 1 when port 2 is open. 

• Zi2 is a transfer impedance. It is the ratio of the port 1 voltage to the 
port 2 current when port 1 is open. 

• in is a transfer impedance. It is the ratio of the port 2 voltage to the 
port 1 current when port 2 is open. 

• Z22 is the impedance seen looking into port 2 when port 1 is open. 

Therefore the impedance parameters may be either calculated or 
measured by first opening port 2 and determining the ratios V\/I\ and 
V2/I], and then opening port 1 and determining the ratios V|//2 and Vjjl^. 
Example 18.1 illustrates the determination of the z parameters for a resis
tive circuit. 

Example 18.1 Finding the z Parameters of a Two-Port Circuit 

and therefore Find the z parameters for the circuit shown in Fig. 18.3. 

Figure 18.3 • The circuit for Example 18.1. 

Solution 
The circuit is purely resistive, so the s-domain cir
cuit is also purely resistive. With port 2 open, that is, 
h = 0, the resistance seen looking into port 1 is the 
20 ft resistor in parallel with the series combination 
of the 5 and 15 ft resistors. Therefore 

Zn = 
/^=0 

(20)(20) 

40 ion. 
When /2 is zero, V2 is 

1/,= 
15 + 5 

(15) = ().75Vb 

Z2\ h 
0.75¼ 

= 7.5 ft. 
/2=o Vi/10 

When I] is zero, the resistance seen looking into 
port 2 is the 15 ft resistor in parallel with the series 
combination of the 5 and 20 X2 resistors. Therefore 

V, 
Zll ~ 

/ ,=0 

(15)(25) 

40 
= 9.375 ft. 

Kjis 

When port 1 is open, Ix is zero and the voltage 

V> = 
V, 

-(20) = 0.8K2. 
5 + 20 

With port 1 open, the current into port 2 is 

V2 

Hence 

2|2 

ll 9.375* 

0.8V2 

/ i = 0 l/2/9.375 
= 7.5 ft. 



Equations 18.7-18.10 and Example 18.1 show why the parameters in 
Eqs. 18.1 are called the z parameters. Each parameter is the ratio of a volt
age to a current and therefore is an impedance with the dimension of ohms. 

We use the same process to determine the remaining port parameters, 
which are either calculated or measured. A port parameter is obtained by 
either opening or shorting a port. Moreover, a port parameter is an imped
ance, an admittance, or a dimensionless ratio. The dimensionless ratio is 
the ratio of either two voltages or two currents. Equations 18.11-18.15 
summarize these observations. 

yu 

yn 
h 

s, 1/2=0 

s, v2=a 

yn 

yn 

v. 

V, 

v,=o 

S. 
1/(=0 

(18.11) 

an V, A=0 

an o, 
1/-,=0 

«21 
Vi /-,=0 

a22 
K-,=0 

(18.12) 

'1] 
Vi / ,=0 

'12 
/1 a 1/,=0 

^ = u 
/ ,=0 

'22 
Vi=0 

(18 .13) 

An = 7-
*1 a 1/,=0 

/*1? = 
/ ,=0 

/ b l = 
1/,=0 

*22 tt / ,=0 
(18.14) 

£ l l Vi s. 
/-,=0 

#12 = 
1/,=0 

& 1 
/ ,=0 

V, 
g22 = a. K , = 0 

(18.15) 

The two-port parameters are also described in relation to the reciprocal 
sets of equations. The impedance and admittance parameters are grouped 
into the immittance parameters. The term immittance denotes a quantity 
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that is either an impedance or an admittance. Tlie a and b parameters are 
called the transmission parameters because they describe the voltage and 
current at one end of the two-port network in terms of the voltage and cur
rent at the other end. Tlie immittance and transmission parameters are the 
natural choices for relating the port variables. In other words, they relate 
either voltage to current variables or input to output variables. The h and 
g parameters relate cross-variables, that is, an input voltage and output cur
rent to an output voltage and input current. Therefore the h and g parame
ters are called hybrid parameters. 

Example 18.2 illustrates how a set of measurements made at the ter
minals of a two-port circuit can be used to calculate the a parameters. 

Example 18.2 Finding the a Parameters from Measurements 

The following measurements pertain to a two-port 
circuit operating in the sinusoidal steady state. 
With port 2 open, a voltage equal to 150 cos 4000/ V 
is applied to port 1. The current into port 1 is 
25 cos (4000/ - 45°) A, and the port 2 voltage is 
100cos (4000/ + 15°) V. With port 2 short-circuited, 
a voltage equal to 30cos4000r V is applied to port 1. 
The current into port 1 is 1.5 cos (4000/ + 30") A, 
and the current into port 2 is 0.25 cos (4000/ 
+ 150°) A. Find the a parameters that can describe 
the sinusoidal steady-state behavior of the circuit. 

Solution 

The first set of measurements gives 

V, = 150 / Q a V , I, = 2 5 / - 4 5 ° A, 

V2 = 100/15° V, I , = 0 A . 

From Eqs. 18.12, 

«i i 

a2\ 
h 

150/0C 

2 5 / - 4 5 1 

= 1.5/-15% 

= 0.25/-60°S. 
/ 2 = 0 100/15° 

The second set of measurements gives 

V! = 30/0° V, Ij = 1.5 /30°A, 

V2 = 0V, I2 = 0.25/150° A. 

Therefore 

an = 

rt2i = 

y, 
i2 

i, 

-30 /0 c 

„2=0 0.25/150° 

-1 .5 /30° 

i/:=o ~ 0.25/150° 

: 120/30° O, 

6/60°. 

I /ASSESSMENT PROBLEMS 

Objective 1—Be able to calculate any set of two-port parameters 

18.1 Find the v parameters for the circuit in Fig. 18.3. 

Answer: yn = 0.25 S, 

18.3 

Vl2 = y 2 ] = 

^ 2 = 1 5 S -

-0.2 S, 

18.2 Find the g and h parameters for the circuit in 
Fig. 18.3. 

Answer: gu = 0.1 S; gn = -0.75; &i = °-75; 
#22 = 3.75 H; kn = 4 (1 ; hl2 = 0.8; 
h2\ = -0.8; /*22 = 0.1067 S. 

The following measurements were made on a 
two-port resistive circuit. With 50 mV applied 
to port 1 and port 2 open, the current into port 
1 is 5 /xA, and the voltage across port 2 is 
200 mV. With port 1 short-circuited and 10 mV 
applied to port 2, the current into port 1 is 
2 ^tA, and the current into port 2 is 0.5 ^A. 
Find the g parameters of the network. 

Answer: gn = 0.1 mS; 
gu = 4; 
&i = 4; 
gr> = 20 k n . 

NOTE: Also try Chapter Problems 18.2,18.3, and 18.8. 
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Relationships Among the Two-Port Parameters 
Because the six sets of equations relate to the same variables, the parame
ters associated with any pair of equations must be related to the parameters 
of all the other pairs. In other words, if we know one set of parameters, we 
can derive all the other sets from the known set. Because of the amount of 
algebra involved in these derivations, we merely list the results in Table 18.1. 

TABLE 18.1 Parameter Conversion Table 

^11 

Z\2 

Zl\ 

yn 

yu 

3;21 

>22 

«11 

rtt-> 

«21 

«22 

bii 

b\2 

V22 
= Ay = 

yn 
Ay 

-yi\ 

Ay 

yn 
Ay 

Z 22 
= Az~ = 

Zu 

Az 

Z2\ 

Az 

_ Zu 
3 Az 

- ill — 
*21 

_ Az _ 
Z2\ 

1 

Z21 

Zl2 

Zn 

Z22 

zu 

_ Az _ 
Z\2 

flu _ ^22 _ Ah _ 1 

«21 h\ hn g\\ 

Art 1 h[2 gu 

«21 b2\ h22 gn 

1 Ab h2\ gii 

«21 hi h22 gn 

«22 ^it 1 kg 

«21 ^21 ^22 g\\ 

«22 ^11 1 Ag 

«12 bl2 /'11 §22 

Art 1 hl2 gu 

«12 ^12 ^11 S22 

1_ ._ _ A/> _ /jn_ _ _#2i 

«12 b\2 fhl £22 

«11 b22 Ah 1 

«12 b\2 'Mi S22 

y22 _ ^22 _ __&l _ _ 1 _ 

m A6 h2] g2] 

_J_ _ bl - _hVL _ Sn 
y21 Ab h2l &, 

Ay = hL=
 hn _ gn 

y2l A6 /z2i &i 

y n 6 n 1 Ag 
y2i A/? /z21 £21 

_yu _ «22 _ J _ _ Ag 

y12 Art hl2 gn 

1_ _ «12 _ fh± _ _gn 

yu Art hn gn 

b2\ = 

•>22 

1 _ " ^ _ * _ *-iz _ "ii _ &11 

h-t-y = 

h2l = 

1 

Zn 

Zu = 

Zu 

Az _ 
222 

£12 _ 

£22 

_£21 

Z22 

1 
*22 

1 
Z\\ 

_zn 
Zu 

zn = 

zu 

Az_ 

Zn 

yu 

yn _ 
}'n 

1 

yn 

_yn 
yn 

_ yn 
yu 

Ay = 

yn 

Ay = 

y22 

= yn 
yn 

_yn 
y22 

1 
>;22 

_ £21 _ ^22 _ g n 

Art hl2 gu 

flu Ah 1 

Art hl2 gn 

«12 ^12 g22 

«22 bn Ag 

_ Art _ J _ _ gi2 

«22 ^11 A g 

1_ _ _Ab_ _ _gn_ 

a22 bn Ag 

«21 _ &21 __ gn_ 

«22 t>n Ag 

«21 _ ^21 _ ^22 

rtn b22 Ah 

Art 1 hl2 

«11 b22 Ah 

1 _ Ab h2\ 

«11 ^22 A/i 

«12 ^12 ^11 

«11 b12 Ah 

h22 -

gn = 

gi2 = 

gn = 

g22 = 

A z = ZyZ22 ~~ ^12-^21 

Ay = yny22 - yuyn 

Art = rtn«22 - «12«21 

Ab = bub22 ~ bnb2\ 

Ah = /Zn/l22 _ ^12^21 

A g = gng22 " gl2g21 

Although we do not derive all the relationships listed in Table 18.1, we 
do derive those between the z and y parameters and between the z and 
a parameters. These derivations illustrate the general process involved in 
relating one set of parameters to another. To find the z parameters as 
functions of the y parameters, we first solve Eqs. 18.2 for Vt and V2. We 



then compare the coefficients of I\ and I2 in the resulting expressions to 
the coefficients of IY and /2 in Eqs. 18.1. From Eqs. 18.2, 

V\ 

v7 

/ l 

h 
yw 
yi\ 

yw 
3¾] 

yn 
>'22 

y\i 

yz2 

h 
h 

yn j yiz T 

A / 1 " Ay'2' 
(18.16) 

Ay A/1 + Ay'2" 
(18.17) 

Comparing Eqs. 18.16 and 18.17 with Eqs. 18.1 shows 

^22 
Z\\ = 

zn = 

z2\ = 

Z22 = 

Ay' 

>>12 

Ay' 

yn 

V 
Ay 

(18.18) 

(18.19) 

(18.20) 

(18.21) 

To find the z parameters as functions of the a parameters, we rearrange 
Eqs. 18.3 in the form of Eqs. 18.1 and then compare coefficients. From the 
second equation in Eqs. 18.3, 

1 #97 

«21 «21 
(18.22) 

Therefore, substituting Eq. 18.22 into the first equation of Eqs. 18.3 yields 

Vi = — / , + - ^ ~ «12 / 2 - (18.23) 
"21 V «21 / 

From Eq. 18.23, 

Z\\ = 

Z\2 = 

«11 

«21 

Aw 

«21 

From Eq. 18.22, 

^21 = 
«21 

^22 
«22 

«21 

(18.24) 

(18.25) 

(18.26) 

(18.27) 

Example 18.3 illustrates the usefulness of the parameter conversion table. 
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Example 18.3 Finding h Parameters from Measurements and Table 18.1 

Two sets of measurements are made on a two-port 
resistive circuit. The first set is made with port 2 open, 
and the second set is made with port 2 short-circuited. 
Hie results are as follows: 

Port 2 Open 

V, = 10 mV 

/i = 10/xA 

V, = - 4 0 V 

Port 2 Short-Circuited 

l/j = 24 m V 

/j = 20 /AA 

/•> = 1 raA 

Find the /; parameters of the circuit. 

Solution 

We can find hu and h2\ directly from the short-
circuit test: 

ku = 
Vi 

V\ = () 

24 x 10 

20 X 10" 

- 3 

= 1.2 kO, 

h->i = ~r 
v2=o 

10""3 

20 X 10 - I T 
50. 

The parameters hl2 and h2i cannot be obtained 
directly from the open-circuit test. However, a 
check of Eqs. 18.7-18.15 indicates that the four 
a parameters can be derived from the test data. 
Therefore, hn and h22 can be obtained through the 
conversion table. Specifically, 

A« 

«22 

«21 
h22 = 

a i7 

The a parameters are 

flu = 
Yi 

h 

/-, = 0 

/ , = 0 

10 X IP"3 

- 4 0 

10 X 10~6 

- 4 0 

= - 0 . 2 5 X 10~3, 

-0.25 X 10"6S, 

«12 = 

Ha -
h 

V-,=() 

1/,=0 

24 X 10"3 

10"3 
= - 2 4 11, 

20 x IP"6 

10~3 = -20 X 10~\ 

The numerical value of Aa is 

Art = «n«22 — aUa21 

= 5 X 10~6 - 6 X 10~6 = - 1 0 - 6 . 

Tli us 

/*12 = 
A« 

«22 

10 - 6 

-20 X 10" 
= 5 X 10 - 5 

, «21 
«22 = 

«22 

-0.25 x icr* m 

- 2 0 X 10~3 

/ A S S E S S M E N T PROBLEM 

Objective 1—Be able to calculate any set of two-port parameters 

18.4 The following measurements were made on a 
two-port resistive circuit: With port 1 open, 
V2 = 15 V, V1 = 10 V, and h = 30 A; with 
port 1 short-circuited, V2 = 10 V, 12 = 4 A, and 
/] = - 5 A. Calculate the z parameters. 

Answer: z n 

«12 

(4/15) ft; 

(1/3) ft; 

Z21 = -1.6 ft; 

Z22 = 0.5 ft. 

NOTE: Also try Chapter Problem 18.13. 
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Reciprocal Two-Port Circuits 

If a two-port circuit is reciprocal, the following relationships exist among 
the port parameters: 

Zl2 ~ z2h 

>'i2 = yai< 

rtlla22 — a 12̂ 21 = Art = 1, 

^11^22 ~~ ^12¾] = A/; = 1, 

/ i ] 2 = -/^21-. 

(18.28) 

(18.29) 

(18.30) 

(18.31) 

(18.32) 

gl2 •gl\- (18.33) 

A two-port circuit is reciprocal if the interchange of an ideal voltage 
source at one port with an ideal ammeter at the other port produces the 
same ammeter reading. Consider, for example, the resistive circuit shown 
in Fig. 18.4. When a voltage source of 15 V is applied to port ad, it produces 
a current of 1.75 A in the ammeter at port cd.Thc ammeter current is eas
ily determined once we know the voltage Vhd. Thus 

60 30 20 
(18.34) 

and Vb(i = 5 V. Therefore 

5 15 
/ = — + — = 1.75 A. 

20 10 
(18.35) 

If the voltage source and ammeter are interchanged, the ammeter will still 
read 1.75 A. We verify this by solving the circuit shown in Fig. 18.5: 

60 30 20 
(18.36) 

From Eq. 18.36, V^ = 7.5 V. The current /at) equals 

7.5 15 
U = — + — = 1.75 A. 'ad 

30 10 
(18.37) 

A two-port circuit is also reciprocal if the interchange of an ideal cur
rent source at one port with an ideal voltmeter at the other port produces 

10(1 
- A W -

30 O b 20 0 
- /Wv f -VW-

15 VI 6()() / ' ( / j Ammeter 

d d 

Figure 18.4 A A reciprocal two-port circuit 

ion 

30 n b 20 n c 
AM* f VW •—•-

Ammeter ( / yl 60 n 15 V 

Figure 18.5 A The circuit shown in Fig. 18.4, with the voltage 
source and ammeter interchanged. 
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(a) (b) 

/ l 

+ 
2 a 

2C 

Vi 
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2 b 

—it— 

2 a 

U 

+ 

V2 

• 

/, 

+ xC\ 
2 a 

/•> 

^ / + 

(c) (d) 

Figure 18.6 A Four examples of symmetric two-port circuits, (a) A symmetric tee. 
(b) A symmetric pi. (c) A symmetric bridged tee. (d) A symmetric lattice. 

the same voltmeter reading. For a reciprocal two-port circuit, only three 
calculations or measurements are needed to determine a set of parameters. 

A reciprocal two-port circuit is symmetric if its ports can be inter
changed without disturbing the values of the terminal currents and volt
ages. Figure 18.6 shows four examples of symmetric two-port circuits. In 
such circuits, the following additional relationships exist among the 
port parameters: 

Z\\ = z22, (18.38) 

vii = to 

au = a22, 

^11^22 _ 1̂2½ = A/* = 1, 

8n822 - Sngn = &g = 1-

(18.39) 

(18.40) 

(18.41) 

(18.42) 

(18.43) 

For a symmetric reciprocal network, only two calculations or meas
urements are necessary to determine all the two-port parameters. 

^ A S S E S S M E N T P R O B L E M 

Objective 1—Be able to calculate any set of two-port parameters 

18.5 The following measurements were made on a 
resistive two-port network that is symmetric 
and reciprocal: With port 2 open, V\ = 95 V 
and I{ = 5 A; with a short circuit across port 2, 

Vl = 11.52 V and I2 = -2.72 A. Calculate the 
Z parameters of the two-port network. 

Answer: z\\ = z22 = 19 O, zn = £21 = 17 ft. 

NOTE: Also try Chapter Problem 18.14. 
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18.3 Analysis of the Terminated 
Two-Port Circuit 

In the typical application of a two-port model, the circuit is driven at port 
1 and loaded at port 2. Figure 18.7 shows the s-domain circuit diagram for 
a typically terminated two-port model. Here, Z ? represents the internal 
impedance of the source, Vg the internal voltage of the source, and ZL the 
load impedance. Analysis of this circuit involves expressing the terminal 
currents and voltages as functions of the two-port parameters, Vs, Zg, 
and ZL. 

Six characteristics of the terminated two-port circuit define its termi
nal behavior: 

the input impedance Zm = V\jl\, or the admittance Y-m = l\/V\ 

the output current h 

theThevenin voltage and impedance (KTh, ZTh) with respect to port 2 

the current gain I2/Ii 

the voltage gain V2/V\ 

the voltage gain VtfVn 

/ l 

i> 
zg i-

Two-port model 
of a 

network 

h 
+ 

? i. 

Figure 18.7 • A terminated two-port model. 

The Six Characteristics in Terms of the z Parameters 

To illustrate how these six characteristics are derived, we develop the 
expressions using the z parameters to model the two-port portion of the 
circuit. Table 18.2 summarizes the expressions involving the y, a, b, h, and 
g parameters. 

The derivation of any one of the desired expressions involves the 
algebraic manipulation of the two-port equations along with the two con
straint equations imposed by the terminations. If we use the z-parameter 
equations, the four that describe the circuit in Fig. 18.7 are 

V\ = Zii/i + 212^21 

V2 - Z2\h + 

vt = vs - i{zg, 

V2=-I2ZL. 

(18.44) 

(18.45) 

(18.46) 

(18.47) 

Equations 18.46 and 18.47 describe the constraints imposed by 
the terminations. 

To find the impedance seen looking into port 1, that is, Zm = Vx/Ih we 
proceed as follows. In Eq. 18.45 we replace V2 with -I2ZL and solve the 
resulting expression for /2: 

h = 
-z2]h 

ZL + z22 

(18.48) 
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TABLE 18.2 Terminated Two-Port Equations 

z Parameters 

-^12^21 
Zm

 - Z\\ 

I, = 

-̂ 22 + Z / 

-221V. 

(«n + Z^izn + Z,) - znz2[ 

zn + z« 

Zxh — Z?? ~ 
£ 1 2 ¾ 

:„ + Zg 

*2 — ^21 

/ ] ~ Z22 + Zl 

VI z2\ZL 

V, zuZL + Az 

^2 Z2\ZL 

Vf. (Zll + 2 , ) ( ¾ + 2/.) - <12*21 

y Parameters 

y m = vn -

i, = 

y\2y2\ZL 

1 + y22ZL 

VnVn 

VTh = 

1 + y22ZL + ynZg + &yZnZL 

Z-Th = 

>^2 + A}>Z(, 

1 + >')iZ, 

V22 + A> 'Z S 

^2 _ >'21 

1{ y n + A y Z 7 , 

V2 _ -y*zL 

V\ 1 + y 2 2 ^ 

y2 yiiZL 

VK y\2}'2\ZRZL - ( 1 + yuZR){\ + j ^ Z L ) 

a Parameters 

a\\ZL + «12 
Z i n = 

/, = 

fl2]Z/_ + «22 

•v* 
a\\Z[ + «1 2 + a2\Z^Z.h + ̂ 2 2 ^ 

V„ 

1½. = 

Zlh — 

« n + anZs 

«12 + « 2 2 ^ 

fl,, + «21 Zj. 

h = -1 
/ ] «21Z/, + ^22 

V2 _ ZL 

Vx auZL + «1 2 

V2 Z ; 

^ ( a l l + a2\ZR)ZL + «12 + ^22¾ 

b Parameters 

k&Zi + /?i2 
Z,n = 

621Z/. + bn 

h 
-V^b 

buZf, + b2[ZgZL + b22ZL + b[2 

hx + hiZg 

_huZR + bx2 

b2\ZR + b22 

h _ - A / J 

/ l 6 l ] + &2lZ L 

V, hbZL 

V\ b\2 + buZi 

V2 U?ZL 

Vs bn + 6 n Z s + />22Z,. + 62iZ f iZ/, 

h Parameters 

Zin = / ' l l ~ 
hvM\ZL 

1 + / J 2 2 Z ; . 

(1 + h22Z,)(hu + Z s ) - hnh2{ZL 

- / ' 2 . V , 

"Th " 

Z'lh 

/2 

h 
Vi 

h22 Z„ + A/? 

ZK + i 

h&Zft 

A21 
1 + /z2: 

- / l 2 ] 

+ A/i 

sZ/. 

Z/. 

Vx AhZL + hu 

V2 -h2{ZL 

V, (Mi + Z ? ) ( l + h12Z,) - hl2h2lZL 

g Parameters 

S12S21 

2i-> + Z £ 2 2 ~»~ ^ / . 

/ 0 
'£21 K« 

VTH = 

(1 + guZn)(g22 + Zi) - gng2iZf, 

1 + SiiZg 

ZJU - 822 

/, 

gl282lZs 

I + gaZK 

• & i 

/1 g u Z L + Ag 

^2 _ g2lZL 

V\ 812 + Z / . 

^2 8i\ZL 

V„ (1 + g l lZ s ) (g 2 2 + ZL) - g i 2g2lZ s 



We then substitute this equation into Eq. 18.44 and solve for Zm: 

Zin = zu 7 ^ - , (18.49) 
Z22 + ZL 

To find the terminal current h, we first solve Eq. 18.44 for I\ after 
replacing Vx with the right-hand side of Eq. 18.46. The result is 

h = ' 7 • (18.50) 
Z\\ -r A, 

We now substitute Eq. 18.50 into Eq. 18.48 and solve the resulting equa
tion for /2: 

-z2lVR 

(zn + 2^ ) (¾ + ZL) - z12z2] 

The Thevenin voltage with respect to port 2 equals V2 when U = 0. With 
I2 = 0, Eqs. 18.44 and 18.45 combine to yield 

^(/,=0 = Z2l/l = % — • (18.52) 
Zll 

But V, = V̂  - I\Zg, and /j = Vg/(Zg + Z\\Y therefore substituting the 
results into Eq. 18.52 yields the open-circuit value of V2: 

V2|/,-o = Vvk = 7 I VK- (18.53) 

The Thevenin, or output, impedance is the ratio V2/I2 when VM is replaced 
by a short circuit. When V„ is zero, Eq. 18.46 reduces to 

V, = - 7 , Z f . (18.54) 

Substituting Eq. 18.54 into Eq. 18.44 gives 

— Sl2'2 
A = f ^ T - (18-55) 

We now use Eq. 18.55 to replace ^ in Eq. 18.45, with the result that 

Z\lZ2\ 
= Z T h = z22 — = - . (18.56) 

VH=i) Zu -r &R 

Tire current gain I2/I\ comes directly from Eq. 18.48: 

h _ ~Zi\ 

h ZL + z22 
(18.57) 

To derive the expression for the voltage gain V2fV\, we start by replac
ing I2 in Eq. 18.45 with its value from Eq. 18.47; thus 

V2 = Z2]I] + Z22 -7T1- • (18.58) 
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or 

Next we solve Eq. 18.44 for /, as a function of V\ and V2\ 

Zuh — V\ - z\2 

vx zvy2 

Z]l Zll^L 
(18.59) 

We now replace I{ in Eq. 18.58 with Eq. 18.59 and solve the resulting 
expression for V2/V\: 

Vi 

ZnZ, \**L 
Z\\ZL + Z\\Z22 ~ Z\2Z2\ 

= z2lZL 

znZL + Az' 
(18.60) 

To derive the voltage ratio V2/Vg, we first combine Eqs. 18.44, 18.46, 
and 18.47 to find /, as a function of V2 and K: 

Z12V2 Vg 

Zdzu + ZR) + Z„ 
(18.61) 

We now use Eqs. 18.61 and 18.47 in conjunction with Eq. 18.45 to derive 
an expression involving only V2 and Vg; that is, 

Vi 
Z22 

v* ZL(zn + Zg) zn + Zg ZL 

which we can manipulate to get the desired voltage ratio: 

V2 z2\ZL 

n (zn + Zg)(z22 + ZL) - Z12Z21 

(18.62) 

(18.63) 

The first entries in Table 18.2 summarize the expressions for these six 
attributes of the terminated two-port circuit. Also listed are the corre
sponding expressions in terms of the y, a, b, h, and g parameters. 

Example 18.4 illustrates the usefulness of the relationships listed in 
Table 18.2. 

Example 18.4 Analyzing a Terminated Two-Port Circuit 

The two-port circuit shown in Fig. 18.8 is described 
in terms of its b parameters, the values of which are 

bu = -20 , bl2 = -3000X1, 

b2] = - 2 mS, b22 = -0.2. 

a) Find the phasor voltage V2. 

b) Find the average power delivered to the 5 kH load. 

c) Find the average power delivered to the input port. 

500Z00 

.1500 0 
• -vw + 

T> : 
^1 [b] 

+ 

v: 

1 

5 kft 

d) Find the load impedance for maximum average 
power transfer. 

e) Find the maximum average power delivered to 
the load in (d). 

Solution 

a) To find V2, we have two choices from the entries 
in Table 18.2. We may choose to find I2 and then 
find V2 from the relationship V2 = -12ZL, or we 
may find the voltage gain V2/Vg and calculate V2 

from the gain. Let's use the latter approach. For 
the 6-parameter values given, we have 

&b = (-20)(-0.2) - (-3000)(-2 x 10"3) 

= 4 - 6 = - 2 . 

Figure 18.8 • The circuit for Example 18.4. 
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From Table 18.2, 

V2 &bZ, 

Yg b]2 + bnZg + b22ZL + b2lZ„ZL 

The average power delivered to the input port is 

0.789472 

Px = -(13333) = 41.55 W. 

(-2)(5000) 

-3000 + (-20)500 + (-0.2)5000 + [-2 X 10 

10 

~ 19' 

Then, 

3(500)(5000)] 

d) The load impedance for maximum power trans
fer equals the conjugate of the Thevenin imped
ance seen looking into port 2. From Table 18.2, 

bnZg + bu 

V, = 500 = 263.16/0° V. 

b) The average power delivered to the 5000 ft load is 

263.162 

P> = 
2(5000) 

6.93 W. 

c) To find the average power delivered to the input 
port, we first find the input impedance Zin. From 
Table 18.2, 

7 = 
b22ZL + b12 

b2]ZL + bn 

(-0.2)(5000) - 3000 

" - 2 X 10_3(5000) - 20 

400 
3 

Now i! follows directly: 

500 

133.33 ft. 

Ii = 
500 + 133.33 

= 789.47 mA. 

-Th b2lZg + b 22 

(-20)(500) - 3000 

( - 2 X 10~3)(500) - 0.2 

13,000 

1.2 
= 10,833.33 ft. 

Therefore ZL = Z j h = 10,833.33 ft. 

e) To find the maximum average power delivered 
to ZL, we first find V2 from the voltage-gain 
expression V2/V/,. When ZL is 10,833.33 ft, this 
gain is 

V2 

Thus 

and 

0.8333. 

V2 = (0.8333)(500) = 416.67 V, 

PL(maximum) 
1 416.672 

2 10,833.33 

8.01 W. 

•ASSESSMENT PROBLEM 

Objective 2—Be able to analyze a terminated two-port circuit to find currents, voltages, and ratios of interest 

18.6 The a parameters of the two-port network 
shown are an = 5 X 10~4, al2 = 10 ft, 
a2l = 10~6 S, and a22 = - 3 X 10~2. The net
work is driven by a sinusoidal voltage source 
having a maximum amplitude of 50 mV and an 
internal impedance of 100 + /0 ft. It is termi
nated in a resistive load of 5 kft. 

a) Calculate the average power delivered to 
the load resistor. 

b) Calculate the load resistance for maximum 
average power. Answer: (a) 62.5 mW; 

c) Calculate the maximum average power (J°) 70/6 kft; 
delivered to the resistor in (b). (c) 74.4 mW. 

/l 

1 z* + 

/4\ 
( ) K' T -

Two-port model 
of a 

network 

+ 

Vi 

/-

zL 

NOTE: Also try Chapter Problems 18.29,18.30, and 18.34. 



18.4 Interconnected Two-Port Circuits 
Synthesizing a large, complex system is usually made easier by first designing 
subsections of the system. Interconnecting these simpler, easier-to-design 
units then completes the system. If the subsections are modeled by two-port 
circuits, synthesis involves the analysis of interconnected two-port circuits. 

Two-port circuits may be interconnected five ways: (1) in cascade, 
(2) in series, (3) in parallel, (4) in series-parallel, and (5) in parallel-series. 
Figure 18.9 depicts these five basic interconnections. 

We analyze and illustrate only the cascade connection in this section. 
However, if the four other connections meet certain requirements, we can 
obtain the parameters that describe the interconnected circuits by simply 
adding the individual network parameters. In particular, the z parameters 
describe the series connection, the y parameters the parallel connection, 
the h parameters the series-parallel connection, and the g parameters the 
parallel-series connection.1 

The cascade connection is important because it occurs frequently in 
the modeling of large systems. Unlike the other four basic interconnec
tions, there are no restrictions on using the parameters of the individual 
two-port circuits to obtain the parameters of the interconnected circuits. 
The a parameters are best suited for describing the cascade connection. 

We analyze the cascade connection by using the circuit shown in 
Fig. 18.10, where a single prime denotes a parameters in the first circuit 
and a double prime denotes a parameters in the second circuit. The output 

1 2 

(a) 

1 

2 

(b) (c) 

1 

- • • -
2 

1 
^ ^ 

2 

(d) (e) 

Figure 18.9 • The five basic interconnections of two-port circuits. 
(a) Cascade, (b) Series, (c) Parallel, (d) Series-parallel, (e) Parallel-series. 

1 A detailed discussion of Ihese four interconnections is presented in Henry Ruston and 
Joseph Bordogna, Electric Networks: Functions, Filters, Analysis (New York: McGraw-Hill. 
1966). ch. 4. 
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voltage and current of the first circuit are labeled V2 and /2 , and the input 
voltage and current of the second circuit are labeled V\ and I\. The prob
lem is to derive the ̂ -parameter equations that relate V2 and I2 to Vj and 
/ l t In other words, we seek the pair of equations 

L\ — (121*2 ^22-^2^ 

/, 
m — * • 

+ 

Circuit 1 

a 21 a 22 

+ + 

r2 v, 

Circuit 2 

«"ll «"l2 

» 2 1 ^ 22 

/ , 

+ 

^ 2 

(18.64) 

(18 65) Fl'9ure 18«10 A A cascade connection. 

where the a parameters are given explicitly in terms of the a parameters of 
the individual circuits. 

We begin the derivation by noting from Fig. 18.10 that 

VI = a\iV2 - a\2I'2, (18.66) 

The interconnection means that V2 — V\ and V2 •-
these constraints into Eqs. 18.66 and Eqs. 18.67 yields 

(18.67) 

•l\. Substituting 

Vi = a'uV\ + a'l2I'h (18.68) 

/, = a'21v\ + a'22I\. (18.69) 

The voltage V\ and the current l\ are related to V2 and I2 through the 
a parameters of the second circuit: 

V\ = a"nV2 - an
nIz, (18.70) 

/1 = a2\V2 - ahh- (18.71) 

We substitute Eqs. 18.70 and 18.71 into Eqs. 18.68 and 18.69 to generate 
the relationships between Vh /j and V2,12: 

Vi = (flnfln + a'ua2\)V2-{a'na'{2 + a\2a22)I2, (18.72) 

/] = («21«11 + «22«2l)^2-(«21«f2 + (lVflh)h- (18.73) 

By comparing Eqs. 18.72 and 18.73 to Eqs. 18.64 and 18.65, we get the 
desired expressions for the a parameters of the interconnected 
networks, namely, 

au = a'ua'{: + a\2a2\. (18.74) 

«12 = fliifli2 + (iiiah- (18.75) 

«21 = 021«?] + "22"21- (18.76) 

«22 = rt21fl12 + rt22«22- (18.77) 
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If more than two units are connected in cascade, the a parameters of 
the equivalent two-port circuit can be found by successively reducing the 
original set of two-port circuits one pair at a time. 

Example 18.5 illustrates how to use Eqs. 18.74-18.77 to analyze a cas
cade connection with two amplifier circuits. 

Example 18.5 Analyzing Cascaded Two-Port Circuits 

Two identical amplifiers are connected in cas
cade, as shown in Fig. 18.11. Each amplifier is 
described in terms of its h parameters. The values 
are hu = 1000 H, hn = 0.0015, hn = 100, and 
h22 = 100 /xS. Find the voltage gain V2/Vg. 

10.25 X 10-6, 

Figure 18.11 • The circuit for Example 18.5. 

Solution 

The first step in finding V2/Vg is to convert from 
h parameters to a parameters. The amplifiers are 
identical, so one set of a parameters describes 
the amplifiers: 

«n = 

«12 = 

«21 = 

-Ah +0.05 -4 

-hn 

100 

-1000 

5 x 10 

= -lo a, 
h2] 100 

-h22 -100 x 10~6 

«12 = «11 «12 + «12«22 

= (5 X 10^)(-10) + ( -10)(-10 - 2 ) 

= 0.095 a , 

«21 = «21«11 + «22«21 

= (-KT6)(5 X 10~4) + (-0.01)(-10 - 6) 

= 9.5 x 10~9S, 

«22 = «21«12 + «22«22 

= ( -10^) ( -10 ) + ( -10 - 2 ) 2 

= 1.1 X 10-4. 

From Table 18.2, 

Vg («n + «2iZ<,)Zi. + al2 + a22ZR 

10< 

h2\ 

- 1 

100 
•10-6S. 

1 
"* = % - wo = - , 0 

Next we use Eqs. 18.74-18.77 to compute the 
a parameters of the cascaded amplifiers: 

«n = «ii«'n + «i2«2i 

= 25 x 10 -8 + ( -10)(-10 - 5 ) 

[10.25 X 10-6 + 9.5 X 10-9(500)]104 + 0.095 + 1.1 X 10-4(500) 

= 104^ 

~ 0.15 + 0.095 + 0.055 

_ \tf_ 
3 

= 33,333.33. 

Thus an input signal of 150 /JLV is amplified to an 
output signal of 5 V. For an alternative approach to 
finding the voltage gain V2IVg, see Problem 18.41. 
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I/ASSESSMENT PROBLEM 

Objective 3—Know how to analyze a cascade interconnection of two-port circuits 

18.7 Each element in the symmetric bridged-tee 
circuit shown is a 15 ft resistor. Two of these 
bridged tees are connected in cascade between a 
dc voltage source and a resistive load. The dc 
voltage source has a no load voltage of 100 V and 
an internal resistance of 8 ft. The load resistor is 
adjusted until maximum power is delivered to 
the load. Calculate (a) the load resistance, (b) the 
load voltage, and (c) the load power. 

/ l 
-̂

+ za 

zc 

v, 

• 

zb 

—<•— 

za 
h ~ * c — 

+ 

Vi 

• 

Answer: 

NOTE: Also try Chapter Problem 18.40. 

(a) 14.44 ft; 
(b)16V; 
(c) 17.73 W. 

Practical Perspective 
Characterizing an Unknown Circuit 
We make the following measurements to find the h parameters for our "black 
box" amplifier: 

With Port 1 open, apply 50 V at Port 2. Measure the voltage at Port 1 
and the current at Port 2: 

V{ = 50 mV; /2 = 2.5 A. 

With Port 2 short-circuited, apply 2.5 mA at Port 1. Measure the volt
age at Port 1 and the current at Port 2: 

V, = 1.25 V; /2 = 3.75 A. 

Calculate the h parameters according to Eq. 18.14: 

hu = —-

h\ = 

Vi 

h 

h 
h 

1.25 
v2=() 0.0025 

3.75 
v2=0 0.0025 

= 500 ft; h12 = 77 
V, 

= 1500; ^22 = 77 

/,=o 

7,=0 

0.05 

50 
= 10 - 3 

-7- = 50 mS. 
50 

Now we use the terminated two-port equations to determine whether or not 
it is safe to attach a 2 V(rms) source with a 100 ft internal impedance to 
Port 1 and use this source together with the amplifier to drive a speaker 
modeled as a 32 ft resistance with a power rating of 100 W. Here we find 
the value of /2 fr°m TaD^e 1 8 - 2 : 

hyVg 
h (1 + h22ZL)(hn + Zg) - hl2h2lZL 

1500(2) 

" [1 + (0.05)(32)][500 + 100] - (1500)(10^)(32) 

= 1.98 A(rms) 

Calculate the power to the 32 ft speaker: 

P = Rll = (32)(1.98)2 = 126 W. 

The amplifier would thus deliver 126 W to the speaker, which is rated at 
100 W, so it would be better to use a different amplifier or buy a more pow
erful speaker. 
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Summary 

• The two-port model is used to describe the performance 
of a circuit in terms of the voltage and current at its 
input and output ports. (See page 678.) 

• The model is limited to circuits in which 

• no independent sources are inside the circuit between 
the ports; 

• no energy is stored inside the circuit between the ports; 

• the current into the port is equal to the current out of 
the port; and 

• no external connections exist between the input and 
output ports. 

(See page 678.) 

• Two of the four terminal variables (Vi, /i , V2, />) a r e 

independent; therefore, only two simultaneous equa
tions involving the four variables are needed to describe 
the circuit. (See page 680.) 

• The six possible sets of simultaneous equations involv
ing the four terminal variables are called the z-, y-, a-, b-, 
h-, and g-parameter equations. See Eqs. 18.1-18.6. (See 
page 680.) 

• The parameter equations are written in the s domain. The 
dc values of the parameters are obtained by setting s ~ 0, 
and the sinusoidal steady-state values are obtained by 
setting $ = jw. (See page 680.) 

Any set of parameters may be calculated or measured by 
invoking appropriate short-circuit and open-circuit con
ditions at the input and output ports. See Eqs. 18.7-18.15. 
(See pages 681 and 682.) 

The relationships among the six sets of parameters are 
given in Table 18.1. (See page 684.) 

A two-port circuit is reciprocal if the interchange of an 
ideal voltage source at one port with an ideal ammeter 
at the other port produces the same ammeter reading. 
The effect of reciprocity on the two-port parameters is 
given by Eqs. 18.28-18.33. (See page 687.) 

A reciprocal two-port circuit is symmetric if its ports 
can be interchanged without disturbing the values of 
the terminal currents and voltages. The added effect 
of symmetry on the two-port parameters is given by 
Eqs. 18.38-18.43. (See page 688) 

The performance of a two-port circuit connected to a 
Thevenin equivalent source and a load is summarized by 
the relationships given in Table 18.2. (See page 690.) 

Large networks can be divided into subnetworks by 
means of interconnected two-port models. The cas
cade connection was used in this chapter to illustrate 
the analysis of interconnected two-port circuits. (See 
page 694.) 

Problems 

Sections 18.1-18.2 

18.1 Find the h and g parameters for the circuit in 
Example 18.1. 

18.2 Find the y parameters for the circuit shown in 
Fig. P18.2. 

Figure P18.3 
I 

+ 
± 1ft 

AAA- f W V 
4 ft M 

12 ft V-, 

Figure P18.2 

+ 

V\ 

8 f t 

20 ft 4 f t 

:10ft 

-»-

v? 

18.3 Find the z parameters for the circuit in Fig. PI8.3. 

18.4 Use the results obtained in Problem 18.3 to calcu
late the y parameters for the circuit in Fig. PI8.3. 

18.5 Find the h parameters for the circuit in Fig. PI8.5. 

Figure P18.5 

h 10 ft 
-AM, 
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18.6 Find the b parameters for the circuit shown in 18.11 Find the g parameters for the operational amplifier 
Fig. P18.6. circuit shown in Fig. PI 8.11. 

Figure P18.6 

20 n 

Figure P18.ll 

l ion 
-VW # + 

V^ V, 

5 0 

4012 

18.7 Select the values of Rh R2, and i?3 in the circuit 
in Fig. P18.7 so that hu = 4 ft, hu = 0.8, 
h2] = -0.8, and/*22 = 0.14 S. 

18.12 The operational amplifier in the circuit shown 
in Fig. P18.12 is ideal. Find the h parameters of 
the circuit. 

Figure P18.7 

+ 

V", 

!± r /?i 

:Ri i ̂ 3 

1 /2 

+ 

v2 

Figure P18.12 

400 fi 

18.8 Find the a parameters for the circuit in Fig. PI8.8. 18.13 The following direct-current measurements were 
made on the two-port network shown in Fig. PI8.13. 

Figure P18.8 

'v l kn 
• 'Wv 

V, 10"4V 1)50/! 140 kH V2 

Port 2 Open 

K, = 20 mV 

Is -5V 

/, = 0.25 juA 

Port 2 Short-Circuited 

lx = 200 fiA 

h = 50 fiA 

V{ = 10 V 

Calculate the g parameters for the network. 

18.9 Use the results obtained in Problem 18.8 to calcu
late the g parameters of the circuit in Fig. PI8.8. 

18.10 Find the h parameters of the two-port circuit shown 
inFig.P18.10. 

Figure P18.10 

Figure P18.13 

+ 

v, 

•— 

I. ion /20a 20011 

I ™ 
A»„ 

i : 

— < 

+ 

=:-/ioon v: 

> • 

- / . 
+ 

Vi g 

-*< h 

+ 
V, 

18.14 a) Use the measurements given in Problem 18.13 
to find the y parameters for the network. 

b) Check your calculations by finding the 
y parameters directly from the g parameters 
found in Problem 18.13. 

18.15 Derive the expressions for the h parameters as 
functions of the g parameters. 

http://P18.ll
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18.16 Derive the expressions for the b parameters as 
functions of the h parameters. 

18.17 Derive the expressions for the g parameters as 
functions of the z parameters. 

18.18 Find the ^-domain expressions for the a parameters 
of the two-port circuit shown in Fig. P18.18. 

Figure P18.18 

*i 1F i „ k 
e : |(- 1 TVY-Y-V 0 

' • ' 
:4H 

18.19 Find the ^-domain expressions for the z parameters 
of the two-port circuit shown in Fig. P18.19. 

Figure P18.19 

18.20 Find the frequency-domain values of the a parame
ters for the two-port circuit shown in Fig. P18.20. 

Figure P18.20 
I, 

20 n 

18.21 Find the h parameters for the two-port circuit 
shown in Fig. P18.20. 

18.22 a) Use the defining equations to find the s-domain 
expressions for the h parameters for the circuit 
in Fig. PI 8.22. 

b) Show that the results obtained in (a) agree with 
the /i-parameter relationships for a reciprocal 
symmetric network. 

Figure P18.22 

18.23 Is the two-port circuit shown in Fig. PI8.23 sym
metric? Justify your answer. 

Figure P18.23 

Section 18.3 

18.24 Derive the expression for the voltage gain V2/V\ of 
the circuit in Fig. 18.7 in terms of the y parameters. 

18.25 Derive the expression for the input impedance 
(Zin = Vj//i) of the circuit in Fig. 18.7 in terms of 
the b parameters. 

18.26 Derive the expression for the voltage gain V2/Vg °f 
the circuit in Fig. 18.7 in terms of the h parameters. 

18.27 Derive the expression for the current gain I2/l\ 
of the circuit in Fig. 18.7 in terms of the 
g parameters. 

18.28 Find the Thevenin equivalent circuit with respect 
to port 2 of the circuit in Fig. 18.7 in terms of the 
z parameters. 

18.29 The b parameters of the amplifier in the circuit 
shown in Fig. PI8.29 are 

hn = 25; 

blx = -1.25 S; 

bl2 = 1 kO; 

b22 = -40 . 

Find the ratio of the output power to that supplied 
by the ideal voltage source. 

Figure P18.29 

loo a 
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18.30 The y parameters for the two-port amplifier circuit 
in Fig. PI 8.30 are 

yu = 2mS; yn = -2 /xS; 

y2\ = 100 mS; y22
 = - 5 0 JJLS. 

The internal impedance of the source is 2500 + /0 ft, 
and the load impedance is 70,000 + jO 0.. The ideal 
voltage source is generating a voltage 

vg = 80 V2 cos 4000r mV. 

a) Find the rms value of V2. 

b) Find the average power delivered to ZL. 

c) Find the average power developed by the ideal 
voltage source. 

Figure P18.30 

7 

j—Z, 
vA 

1 

V2| 

L 

V22 

i 
1 
1 + 

| ^ 2 

1 
1 

_ J 

z L 

18.31 For the terminated two-port amplifier circuit in 
Fig. P18.30, find 

a) the value of ZL for maximum average power 
transfer to ZL 

b) the maximum average power delivered to Zi 

c) the average power developed by the ideal voltage 
source when maximum power is delivered to ZL. 

18.32 The linear transformer in the circuit shown in 
Fig. P18.32 has a coefficient of coupling of 0.75. The 
transformer is driven by a sinusoidal voltage source 
whose internal voltage is vg = 260 cos 4000^ V. The 
internal impedance of the source is 25 + ;0 ft. 

a) Find the frequency-domain a parameters of the 
linear transformer. 

b) Use the a parameters to derive the Thevenin 
equivalent circuit with respect to the terminals 
of the load. 

c) Derive the steady-state time-domain expression 
for ih. 

Figure P18.32 

25 a 
^vw-

'-'l 

50 O o.75 4 0 0 . ° 
"k 

12.5 mH 

18.33 The g parameters for the two-port circuit in 
Fig. PI 8.33 are 

1 ! Q 
^ = 6 " ; 6 S ' 

£12 = -0.5 + /0.5; 

- /0 .5 ; g22 = 1.5 + /2.5ft. 

The load impedance ZL is adjusted for maximum 
average power transfer to ZL. The ideal voltage 
source is generating a sinusoidal voltage of 

vg = 42V2" cos 5000* V. 

a) Find the rms value of V2. 

b) Find the average power delivered to ZL. 

c) What percentage of the average power developed 
by the ideal voltage source is delivered by ZL? 

Figure P18.33 

18.34 The following dc measurements were made on the 
resistive network shown in Fig. P18.34. 

Measurement 1 

V, = 4V 

/, - 5 raA 

h = -200 mA 

Measurement 2 

V! = 20 mV 

/, = 20 juA 

V2 = 40 V 

/2 = 0A 

A variable resistor R0 is connected across port 
2 and adjusted for maximum power transfer to R(). 
Find the maximum power. 

Figure P18.34 

1 
5.25 mvf+ 

T 

/. 

250 O + 

) " . 
Resistive 
network 

U 

+ 

V-, i 
A 

ikn 
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18.35 The following measurements were made on a resis
tive two-port network: 

Condition 1 - create a short circuit at port 2 and 
apply 20 V to port 1: 
Measurements: I: = 1 A; h = - 1 A. 
Condition 2 - create an open circuit at port 1 and 
apply 80 V to port 2: 
Measurements: V{ = 400 V; I2 = 3 A. 

Find the maximum power that this two-port circuit 
can deliver to a resistive load at port 2 when port 1 
is driven by a 4 A dc current source with an internal 
resistance of 60 O. 

Figure P18.38 

soon 

jf 
a c 

[h] 

b 1 d 

c 

d 2 

e 

f 

t 

c»-

(a) 

R 

R R 
•^WV f -VS-V * - •c 

18.36 a) Find the s-domain expressions for the g parame
ters of the circuit in Fig. PI 8.36. 

b) Port 2 in Fig. P18.36 is terminated in a resistance 
of 400 O, and port 1 is driven by a step voltage 
source vx(t) = 30u(t) V. Find v2(t) for t > 0 if 
C = 0.2 /xF and L = 200 mH. 

R = 72 kH IR 

Figure P18.36 

• •-
sL 

1/rC 1/sC 
+ 

(b) 

18.39 The networks A and B in the circuit in Fig. PI8.39 
are reciprocal and symmetric. For network A, it is 
known that a'n = 5 and a\2 = 24 O. 

a) Find the a parameters of network B. 

b) Find V2 when Vg = 75/CT V, 

Zg = 1/tT n , and Z L = 10/0° a . 

Figure P18.39 

18.37 a) Find the y parameters for the two-port network 
in Fig. PI8.37. 

b) Find v2 for t > 0 when v8 = 50u(t) V. 

Figure P18.37 

Section 18.4 

18.38 The h parameters of the first two-port circuit in 
Fig. PI8.38(a) are 

hn = 1000 O; hn = 5 x 10-4: 

/i2i = 40; h22 = 25 fiS. 

The circuit in the second two-port circuit is shown 
in Fig. P18.38(b), where R = 72 kH. Find va if 
vn = 9 mV dc. 

1 r 50 j is nAj 5 a,j is a 512 

;-/ion 

J L 

18.40 Tlie z and _y parameters for the resistive two-ports 
in Fig. P18.40 are given by 

z\\ = - r -U; );n = 200/xS; 
3 

100 
<12 ft; y12 = 40 /x.S; 

z21 = - k O ; y2l = -800/xS 

Z22 = v ^ i i ; -y22 = 4W A<S; 

Calculate t>0 if 1?» = 30 mV dc. 
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Figure P18.40 

ion 

? [z] [>'] 

+ 

vn< 

Sections 18.1-18.4 

18.41 a) Show that the circuit in Fig. P18.41 is an equiva
lent circuit satisfied by the //-parameter equations. 

b) Use the /i-parameter equivalent circuit of (a) to 
find the voltage gain V^Vg in the circuit in 
Fig. 18.11. 

Figure P18.41 

/, 

18.42 a) Show that the circuit in Fig. PI 8.42 is an equiva
lent circuit satisfied by the z-parameter equations. 

b) Assume that the equivalent circuit in Fig. PI 8.42 
is driven by a voltage source having an internal 
impedance of Z ? ohms. Calculate the Thevenin 
equivalent circuit with respect to port 2. Check 
your results against the appropriate entries in 
Table 18.2. 

Figure P18.42 

/, I-, 

+ -o-
h(Z[2 ~ Zl\) 

-•II tl\ ^22 — ^21 

221 

+ 
V, 

18.43 a) Show that the circuit in Fig. P18.43 is also an 
equivalent circuit satisfied by the z-parameter 
equations. 

b) Assume that the equivalent circuit in Fig. PI8.43 
is terminated in an impedance of ZL ohms at 
port 2. Find the input impedance V\jl\. Check 
your results against the appropriate entry in 
Table 18.2. 

Figure P18.43 

/. 
• * -
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?11 - *12 

z 12 

— I I — 

^22 ~~ - ¾ 
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• 

18.44 a) Derive two equivalent circuits that are satisfied 
by the y-parameter equations. Hint: Start with 
Eqs. 18.2. Add and subtract y2\V2 to the first 
equation of the set. Construct a circuit that satis
fies the resulting set of equations, by thinking in 
terms of node voltages. Derive an alternative 
equivalent circuit by first altering the second 
equation in Eq. 18.2. 

b) Assume that port 1 is driven by a voltage source 
having an internal impedance Z ? , and port 2 is 
loaded with an impedance ZL. Find the current 
gain /2//1. Check your results against the appro
priate entry in Table 18.2. 

18.45 a) Derive the equivalent circuit satisfied by the 
^-parameter equations. 

b) Use the g-parameter equivalent circuit derived 
in part (a) to solve for the output voltage in 
Problem 18.38. Hint: Use Problem 3.65 to simplify 
the second two-port circuit in Problem 18.38. 

18.46 a) What conditions and measurements will allow 
you to calculate the b parameters for the "black 
box" amplifier described in the Practical 
Perspective? 

b) What measurements will be made if the result
ing b parameters are equivalent to the h param
eters calculated in the Practical Perspective? 

18.47 Repeat Problem 18.46 for the z parameters. 





Appendix m\ 

r \ 
The Solution of Linear 
Simultaneous Equations 

Circuit analysis frequently involves the solution of linear simultaneous 
equations. Our purpose here is to review the use of determinants to solve 
such a set of equations. The theory of determinants (with applications) can 
be found in most intermediate-level algebra texts. (A particularly good 
reference for engineering students is Chapter 1 of E.A. Guillemin's The 
Mathematics of Circuit Analysis [New York: Wiley, 1949]. In our review 
here, we will limit our discussion to the mechanics of solving simultaneous 
equations with determinants. 

A.l Preliminary Steps 
The first step in solving a set of simultaneous equations by determinants is 
to write the equations in a rectangular (square) format. In other words, we 
arrange the equations in a vertical stack such that each variable occupies 
the same horizontal position in every equation. For example, in Eqs. A.l , 
the variables ih /2, and /3 occupy the first, second, and third position, 
respectively, on the left-hand side of each equation: 

21/! - 9/2 - 12/3 = - 3 3 , 

-3/j + 6/2 - 2/3 = 3, (A.l) 

- 8 / , - 4*2 + 22/3 = 50. 

Alternatively, one can describe this set of equations by saying that i\ 
occupies the first column in the array, i2 the second column, and f3 the 
third column. 

If one or more variables are missing from a given equation, they can 
be inserted by simply making their coefficient zero. Thus Eqs. A.2 can be 
"squared up" as shown by Eqs. A 3 : 

2vx - v2 = 4, 

4v2 + 3¾ = 16, (A.2) 

lv\ + 2?;3 = 5; 

2V] - v2 + 0v3 = 4, 

Ovi + 4v2 + 3¾ = 16, (A.3) 

7y, + 0v2 + 2v3 = 5. 



A.2 Cramer's Method 
The value of each unknown variable in the set of equations is expressed as 
the ratio of two determinants. If we let N, with an appropriate subscript, 
represent the numerator determinant and A represent the denominator 
determinant, then the /cth unknown xk is 

N, 
Xk = (A.4) 

The denominator determinant A is the same for every unknown variable 
and is called the characteristic determinant of the set of equations. The 
numerator determinant Nk varies with each unknown. Equation A.4 is 
referred to as Cramer's method for solving simultaneous equations. 

A.3 The Characteristic Determinant 
Once we have organized the set of simultaneous equations into an 
ordered array, as illustrated by Eqs. A.l and A.3, it is a simple matter to 
form the characteristic determinant. This determinant is the square array 
made up from the coefficients of the unknown variables. For example, the 
characteristic determinants of Eqs. A.l and A.3 are 

A = 
21 
- 3 

- 8 

- 9 
6 

- 4 

-12 
- 2 

22 

(A.5) 

and 

A = 

2 
0 

7 

- 1 
4 

0 

0 
3 
2 

(A.6) 

respectively. 

A.4 The Numerator Determinant 
The numerator determinant Nk is formed from the characteristic determi
nant by replacing the kth column in the characteristic determinant with 
the column of values appearing on the right-hand side of the equations. 
For example, the numerator determinants for evaluating / j , /2, and 1*3 in 
Eqs. A.l are 

A/, = 

- 3 3 

50 

- 9 
6 

- 4 

-12 
- 2 
22 

(A.7) 



N-> = 

21 - 3 3 - 1 2 
- 3 3 - 2 
- 8 50 22 

(A.8) 

and 

N 3 = 
21 
- 3 
- 8 

- 9 
6 

- 4 

- 3 3 
3 

50 

(A.9) 

The numerator determinants for the evaluation of t?j, v2, and ?;3 in 
Eqs. A.3 are 

N, = 

4 

16 

5 

- 1 
4 

0 

0 

3 

2 

(A.10) 

and 

Ar, 

2 

0 
7 

4 

16 

5 

0 

3 
2 

7V3 

2 
0 

7 

- 1 
4 
0 

4 
16 
5 

(A.ll) 

(A.12) 

A.5 The Evaluation of a Determinant 
The value of a determinant is found by expanding it in terms of its minors. 
The minor of any element in a determinant is the determinant that 
remains after the row and column occupied by the element have been 
deleted. For example, the minor of the element 6 in Eq. A.7 is 

•33 - 1 2 
50 22 

while the minor of the element 22 in Eq. A.7 is 

- 3 3 

3 

The cofactor of an element is its minor multiplied by the sign-
controlling factor 

- l ( / + / ) , 

where i and j denote the row and column, respectively, occupied by the 
element. Thus the cofactor of the element 6 in Eq. A.7 is 

_ j (2+2) -33 - 1 2 

50 22 



and the cofactor of the clement 22 is 

_l(3+3) -33 - 9 

3 6 

The cofactor of an element is also referred to as its signed minor. 
The sign-controlling factor — l((+y) will equal +1 or —1 depending on 

whether i + j is an even or odd integer. Thus the algebraic sign of a cofac
tor alternates between + 1 and —1 as we move along a row or column. For 
a 3 X 3 determinant, the plus and minus signs form the checkerboard pat
tern illustrated here: 

+ + 
+ 

+ - + 

A determinant can be expanded along any row or column. Thus the first 
step in making an expansion is to select a row i or a column j . Once a row 
or column has been selected, each element in that row or column is multi
plied by its signed minor, or cofactor. The value of the determinant is the 
sum of these products. As an example, let us evaluate the determinant in 
Eq. A.5 by expanding it along its first column. Following the rules just 
explained, we write the expansion as 

A = 21(1) 
- 2 

22 
- 3( -1) 

-9 -12 
•4 22 

- 8 ( 1 ) 
•9 - 1 2 
6 - 2 

(A.13) 

The 2 X 2 determinants in Eq. A.13 can also be expanded by minors. 
The minor of an element in a 2 x 2 determinant is a single element. It fol
lows that the expansion reduces to multiplying the upper-left element by 
the lower-right element and then subtracting from this product the product 
of the lower-left element times the upper-right element. Using this obser
vation, we evaluate Eq. A.13 to 

A = 21(132 - 8 ) + 3(-198 - 48) - 8(18 + 72) 

= 2604 - 738 - 720 = 1146. (A.14) 

Had we elected to expand the determinant along the second row of ele
ments, we would have written 

A = - 3 ( - 1 ) 
-12 

22 
+6(+1) 

21 

- 8 

-12 

22 
- 2 ( - 1 ) 

21 

- 8 

- 9 

- 4 

= 3(-198 - 48) + 6(462 - 96) + 2(-84 - 72) 

-738 + 2196 - 312 = 1146. (A.15) 

The numerical values of the determinants Nu N2, and N3 given by 
Eqs. A.7, A.8, and A.9 are 

Ni = 1146, (A.16) 



and 

N2 = 2292, 

N3 = 3438. 

(A.17) 

(A.18) 

It follows from Eqs. A.15 through A.18 that the solutions for i\, i2, and i3 in 
Eq. A.l are 

H - T - 1 A , 

i2 = -/ = 2A, (A.19) 

and 

N3 
h = ~T = 3 A. 

We leave you to verify that the solutions for vh v2, and v3 in Eqs. A.3 are 

49 
Vl = — = -9.8 V, 

v2 = ^ | = -23.6 V, 
- 5 

(A.20) 

and 

„ - ^ f U 36.8 V. 

A.6 Matrices 
A system of simultaneous linear equations can also be solved using 
matrices. In what follows, we briefly review matrix notation, algebra, and 
terminology.1 

A matrix is by definition a rectangular array of elements; thus 

A = 

#ii an au 
(l2\ (l22 &2T, 

_ " m l "-ml "m3 

«1» 

ttln 
(A.21) 

is a matrix with m rows and n columns. We describe A as being a matrix of 
order m by n, or m X «, where m equals the number of rows and n the 

1 An excellent introductory-level text in matrix applications to circuit analysis is Lawrence P. 
Huelsman, Circuits, Matrices, and Linear Vector Spaces (New York: McGraw-Hill, 1963). 



number of columns. We always specify the rows first and the columns sec
ond. The elements of the matrix — « n , a12, «13, • • .—can be real numbers, 
complex numbers, or functions. We denote a matrix with a boldface capi
tal letter. 

The array in Eq. A.21 is frequently abbreviated by writing 

A [aij\mii > 

where atj is the element in the /th row and theyth column. 
If m — 1, A is called a row matrix, that is, 

A « [flu an al3 ••• ah!). 

If /2 = 1, A is called a column matrix, that is, 

(A.22) 

(A.23) 

«11 

«21 

A = a3l . (A. 24) 

. am\. 

If m = n, A is called a square matrix. For example, if m = n = 3, the 
square 3 by 3 matrix is 

A = «21 «22 «23 • (A.25) 

«11 

«21 

«31 

«12 

«22 

«32 

«13 

«23 

«33 

Also note that we use brackets [] to denote a matrix, whereas we use 
vertical lines 11 to denote a determinant. It is important to know the differ
ence. A matrix is a rectangular array of elements. A determinant is a func
tion of a square array of elements. Thus if a matrix A is square, we can 
define the determinant of A. For example, if 

2 1 
6 15 

then 

detA 30 - 6 = 24. 

A,7 Matrix Algebra 
The equality, addition, and subtraction of matrices apply only to matrices 
of the same order. Two matrices are equal if, and only if, their correspon
ding elements are equal. In other words, A = B if, and only if, a^ = b,j for 
all i and ;*. For example, the two matrices in Eqs. A.26 and A.27 arc equal 
because an = bn,au = b12,a2i = 62i,and«22 = ^22: 

"36 
4 

-20 
16 

(A.26) 



B = 
36 - 2 0 
4 16 

If A and B are of the same order, then 

(A.27) 

C = A + B (A.28) 

implies 

For example, if 

ij ^U ij' (A.29) 

4 - 6 10 
8 12 - 4 

(A.30) 

and 

B 
16 10 - 3 0 

-20 8 15 
(A.31) 

then 

20 4 -20 
-12 20 11 

(A.32) 

The equation 

D = A - B (A.33) 

implies 

djj = atj - bjj. 

For the matrices in Eqs. A.30 and A.31, we would have 

(A.34) 

D 
-12 -16 40 

28 4 -19 
(A.35) 

Matrices of the same order are said to be conformable for addition and 
subtraction. 

Multiplying a matrix by a scalar k is equivalent to multiplying each 
element by the scalar. Thus A = kB if, and only if, a-t; = kbn. It should be 
noted that k may be real or complex. As an example, we will multiply the 
matrix D in Eq. A.35 by 5. The result is 

5D 
- 6 0 - 8 0 200 

140 20 - 9 5 
(A.36) 

Matrix multiplication can be performed only if the number of 
columns in the first matrix is equal to the number of rows in the second 
matrix. In other words, the product AB requires the number of columns in 
A to equal the number of rows in B.The order of the resulting matrix will 
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be the number of rows in A by the number of columns in B. Thus if 
C = AB, where A is of order m X p and B is of order /; x n, then C will 
be a matrix of order m X n. When the number of columns in A equals the 
number of rows in B, we say A is conformable to B for multiplication. 

An element in C is given by the formula 

(A.37) 

The formula given by Eq. A.37 is easy to use if one remembers that 
matrix multiplication is a row-by-column operation. Hence to get the /th, 
/ th term in C, each element in the /th row of A is multiplied by the corre
sponding element in the / th column of B, and the resulting products are 
summed. The following example illustrates the procedure. We are asked to 
find the matrix C when 

A = 
6 3 2 

1 4 6 
(A.38) 

and 

B 

~4 
0 

_1 

2~ 

3 

- 2 _ 

(A.39) 

First we note that C will be a 2 X 2 matrix and that each element in C 
will require summing three products. 

To find Cj! we multiply the corresponding elements in row 1 of matrix A 
with the elements in column 1 of matrix B and then sum the products. We 
can visualize this multiplication and summing process by extracting the 
corresponding row and column from each matrix and then lining them up 
element by element. So to find C u we have 

Row 1 of A 

Column 1 of B 

6 

4 

3 

0 

2 

1 

therefore 

Cn = 6 X 4 + 3 x 0 + 2 X 1 = 26. 

To find Cp we visualize 

Row 1 of A 6 

Column 2 of B 2 - 2 ' 

thus 

C12 = 6 X 2 + 3 X 3 + 2 X (-2) = 17. 

For C2\ we have 

Row 2 of A 

Column 1 of B 

1 
4 

4 
0 

6 

1 



and 

C2\ = 1 X 4 + 4 X 0 + 6 X 1 = 10. 

Finally, for C22 we have 

Row 2 of A 1 

from which 

Column 2 of B 2 -2 ' 

C22 = 1 X 2 + 4 X 3 + 6 X ( -2 ) = 2. 

It follows that 

AB = 
26 17 

10 2 
(A.40) 

In general, matrix multiplication is not commutative, that is, 
AB & BA. As an example, consider the product BA for the matrices in 
Eqs. A.38 and A.39. The matrix generated by this multiplication is of order 
3 X 3 , and each term in the resulting matrix requires adding two products. 
Therefore if D = BA, we have 

D = 
26 

3 
4 

20 
12 

- 5 

20 
18 

- 1 0 
(A.41) 

Obviously, C =£ D. We leave you to verify the elements in Eq. A.41. 
Matrix multiplication is associative and distributive. Thus 

(AB)C = A(BC), (A.42) 

and 

A(B + C) = AB + AC, 

(A + B)C = AC + BC. 

(A.43) 

(A.44) 

In Eqs. A.42, A.43, and A.44, we assume that the matrices are conformable 
for addition and multiplication. 

We have already noted that matrix multiplication is not commutative. 
There are two other properties of multiplication in scalar algebra that do 
not carry over to matrix algebra. 

First, the matrix product AB = 0 does not imply either A = 0 or 
B = 0. (Note: A matrix is equal to zero when all its elements are zero.) For 
example, if 

A = 
1 0 
2 0 

and B = 
'0 0' 

4 8 

then 

AB 
"0 0 

0 0 



Hence the product is zero, but neither A nor B is zero. 
Second, the matrix equation AB = AC does not imply B = C. For 

example, if 

A = 
1 0 

2 0_ 
B = V, U 8. 

, and C = 
"3 4 

.5 6 

then 

AB = AC = 
3 4 
6 8 

b u t B 56 C. 

The transpose of a matrix is formed by interchanging the rows and 
columns. For example, if 

A = 
1 2 3 

4 5 6 
7 8 9 

, then A r = 

1 4 7 

2 5 8 
3 6 9 

The transpose of the sum of two matrices is equal to the sum of the 
transposes, that is, 

T _ A T (A + B)y = A' + B ' . (A.45) 

The transpose of the product of two matrices is equal to the product 
of the transposes taken in reverse order. In other words, 

[AB]7' = BTAr. (A.46) 

Equation A.46 can be extended to a product of any number of matri
ces. For example, 

T _ nTr-TttTAT [ABCD]' = D'C'B'A (A.47) 

If A = A7, the matrix is said to be symmetric. Only square matrices 
can be symmetric. 

A.8 Identity, Adjoint, and 
Inverse Matrices 

An identity matrix is a square matrix where a(/ = 0 for i <£ y, and ai} = 1 
for i = j . In other words, all the elements in an identity matrix are zero 
except those along the main diagonal, where they are equal to l.Thus 

and 1 
0 

0' 

1, 

1 

0 
0 

0 

1 
0 

0 

0 
1 

1 
0 
0 
0 

0 
1 
0 
0 

0 

0 
1 

0 

0~ 

0 
0 

1_ 



are all identity matrices. Note that identity matrices are always square. We 
will use the symbol U for an identity matrix. 

The adjoint of a matrix A of order n X n is defined as 

adjA = [A/zkxa, (A.48) 

where A,y is the cofactor of %. (See Section A.5 for the definition of a 
cofactor.) It follows from Eq. A.48 that one can think of finding the 
adjoint of a square matrix as a two-step process. First construct a matrix 
made up of the cofactors of A, and then transpose the matrix of cofactors. 
As an example we will find the adjoint of the 3 x 3 matrix 

1 

3 
1 

2 
2 

1 

3 
1 
5 

The cofactors of the elements in A are 

A „ = 1(10- 1) = 9, 
A12 = -1(15 + 1) = -16, 
A]3 = 1(3 + 2) = 5, 
A21 = -1(10 - 3) = -7 , 
A22 = 1(5 + 3) = 8, 
A23 = -1(1 +2) = - 3 , 
A31 = 1(2 - 6) = -4 , 
A32 = -1(1 - 9) = 8, 
A33 = 1(2 - 6) = -4 . 

The matrix of cofactors is 

B 
9 

- 7 
- 4 

-16 
S 

8 

5 
- 3 

- 4 

It follows that the adjoint of A is 

adj A = B7 = 
9 

-16 

5 

- 7 
8 

- 3 

- 4 
8 

- 4 

One can check the arithmetic of finding the adjoint of a matrix by 
using the theorem 

adj A • A = det A • U. (A.49) 

Equation A.49 tells us that the adjoint of A times A equals the determi
nant of A times the identity matrix, or for our example. 

det A = 1(9) + 3(-7) - 1(-4) = -8 . 



If we let C = adj A • A and use the technique illustrated in Section A.7, 
we find the elements of C to be 

Therefore 

C = 

= 

cu 
C\2 

^13 

^21 

c 22 

c 2 3 

C31 

C32 

^33 

~ - 8 
0 

0 

Jet A 

= 9 -
= 18 
= 27 

21 + 4 = - 8, 
- 14 - 4 = 0, 

- 7 - 20 = 0, 

= - 1 6 + 24 - 8 = 0, 
= - 3 2 + 16 + 8 = - 8 , 
= - 4 8 + 8 + 40 = 0, 

= 5 -
= 10 

= 15 

0 
- 8 

0 

•u. 

9 + 4 = 0, 

- 6 - 4 = 0, 

- 3 - 20 = - 8 . 

0" 
0 

- 8 _ 
= - 8 

" l 0 

0 1 
_0 0 

0 

0 

1 

A square matrix A has an inverse, denoted as A ', if 

A -1 A = AA_1 = U. (A.50) 

Equation A.50 tells us that a matrix either premultiplied or postmultiplied 
by its inverse generates the identity matrix U. For the inverse matrix to 
exist, it is necessary that the determinant of A not equal zero. Only square 
matrices have inverses, and the inverse is also square. 

A formula for finding the inverse of a matrix is 

A- ! = 
detA 

(A.51) 

The formula in Eq. A.51 becomes very cumbersome if A is of an order 
larger than 3 by 3.2 Today the digital computer eliminates the drudgery 
of having to find the inverse of a matrix in numerical applications of 
matrix algebra. 

It follows from Eq. A.51 that the inverse of the matrix A in the previ
ous example is 

-1 _ A -1 = -1/8 

9 
16 

5 

- 7 
8 

- 3 

- 4 
8 

~4_ 

-1.125 0.875 
2 - 1 

-0.625 0.375 

- 1 A _ 1 i You should verify that A lA = AA = U. 

0.5 
- 1 
0.5 

2 You can learn alternative methods for finding the inverse in any introductory text on 
matrix theory. See, for example, Franz E. Hohn, Elementary Matrix Algebra (New York: 
Macmillan, 1973). 



A.9 Partitioned Matrices 
It is often convenient in matrix manipulations to partition a given matrix 
into submatrices. The original algebraic operations are then carried out in 
terms of the submatrices. In partitioning a matrix, the placement of the 
partitions is completely arbitrary, with the one restriction that a partition 
must dissect the entire matrix. In selecting the partitions, it is also neces
sary to make sure the submatrices are conformable to the mathematical 
operations in which they are involved. 

For example, consider using submatrices to find the product 
C = AB, where 

A = 

1 
5 
1 
0 

0 

2 
4 

0 
1 

2 

3 
3 

2 

- 1 

1 

4 
2 

- 3 

0 
- 2 

5 
1 

1 

1 

0 

and 

B 

2 
0 

- 1 
3 
0 

Assume that we decide to partition B into two submatrices, B n and 
B 2 j ; thus 

B 
B21 

Now since B has been partitioned into a two-row column matrix, A must be 
partitioned into at least a two-column matrix; otherwise the multiplication 
cannot be performed. The location of the vertical partitions of the A matrix 
will depend on the definitions of B n and B2i. For example, if 

B, and B 21 

then An must contain three columns, and A12 must contain two columns. 
Thus the partitioning shown in Eq. A.52 would be acceptable for execut
ing the product AB: 

C = 

1 2 
5 4 
-1 0 
0 1 
0 2 

3 

3 

2 

- 1 

1 

4 5~ 

2 1 
3 1 
0 1 

2 0_ 

2~ 

0 

- 1 

3 
0_ 

(A.52) 



If, on the other hand, we partition the B matrix so that 

B n -
2 

.0. 
and B?i = 

- 1 

3 

0 

then An must contain two columns, and A12 must contain three columns. 
In this case the partitioning shown in Eq. A.53 would be acceptable in exe
cuting the product C = AB: 

C = 

1 

5 

1 
0 
0 

2 

4 

0 

1 
2 

3 

3 
2 

- 1 

1 

4 
2 

- 3 
0 

- 2 

5~ 
1 

1 

1 

0_ 

2 
0 

- 1 
3 
0 

(A.53) 

For purposes of discussion, we will focus on the partitioning given in 
Eq. A.52 and leave you to verify that the partitioning in Eq. A.53 leads to 
the same result. 

From Eq. A.52 we can write 

C = [An A12] B„ = A n B n + A12B 21- (A. 54) 

It follows from Eqs. A.52 and A.54 that 

A,,B l l * » 1 l 

1 2 
5 4 
-1 0 
0 1 
0 2 

3~ 

3 

2 
1 

1 

2~ 

0 

_- !_ 
= 

~ - l " 
7 

- 4 
1 

_- !_ 

A12B21 -

4 5~ 

2 1 

- 3 1 

0 1 

_~2 0_ 

"3" 
.0. = 

~ 12" 
6 

- 9 

0 

_ - 6 _ 

and 
11 

13 
-13 

1 
- 7 

The A matrix could also be partitioned horizontally once the vertical 
partitioning is made consistent with the multiplication operation. In this 
simple problem, the horizontal partitions can be made at the discretion of 



the analyst. Therefore C could also be evaluated using the partitioning 
shown in Eq.A.55: 

1 
5 

1 

0 

0 

? 

4 

0 

1 

2 

3 
3 

2 

- 1 

1 

5 
1 

1 
1 
0_ 

2~ 

0 
- 1 

3 

0_ 

(A.55) 

From Eq. A.55 it follows that 

An 
A21 

A12 

A,? 
B,i 
B„ LC21 

(A.56) 

where 

You should verify that 

Cj! - A u B n + A I2B2 | , 

C2i = A21B11 + A22B21. 

C„ = 
1 2 3 
5 4 3 + 

4 5 

2 1 

- 1 

7 
+ 

12 

6 
= 

11 

13 

c„ = 
-1 0 

0 1 

0 2 

2~ 
1 

1_ 

2~ 
0 

_ - ! _ 

+ 
" - 3 

0 
_ - 2 

r 
1 

0_ 

"3* 

.0. 

- 4 

1 

- 1 

+ 
- 9 

0 
- 6 

= 
- 1 3 

1 

- 7 

and 

C = 

11 

13 
- 1 3 

1 
- 7 

We note in passing that the partitioning in Eqs. A.52 and A.55 is 
conformable with respect to addition. 
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A.10 Applications 
The following examples demonstrate some applications of matrix algebra 
in circuit analysis. 

Example A.l 

Use the matrix method to solve for the node volt
ages V\ and v2 in Eqs. 4.5 and 4.6. 

Solution 

The first step is to rewrite Eqs. 4.5 and 4.6 in matrix 
notation. Collecting the coefficients of «, and v2 

and at the same time shifting the constant terms to 
the right-hand side of the equations gives us 

1.7«! - 0.5¾ = 10, 
(A.57) 

-0.5«] + 0.6«2 = 2. 

It follows that in matrix notation, Eq. A.57 becomes 

1.7 

-0.5 

•0.5 
0.6 

10 
2 

or 

where 

AV = I, 

(A.58) 

(A.59) 

A 
A. — 

V = 

I = 

1.7 

.-().5 

V 

'10" 

. 2. 

• 

• 

-0 .5" 

0.6. 

To find the elements of the V matrix, we pre-
multiply both sides of Eq. A.59 by the inverse of 
A; thus 

or 

A_1AV = A_1I. 

Equation A.60 reduces to 

UV = A "T, 

V = A " I . 

(A.60) 

(A.61) 

(A.62) 

It follows from Eq. A.62 that the solutions for 
V\ and v2 are obtained by solving for the matrix 
product A - 11. 

To find the inverse of A, we first find the 
cofactors of A. Thus 

AH = (-1)2(0.6) = 0.6, 

A12 = ( - l ) 3 ( -0 .5) = 0.5, 

A2i = (" l ) 3 ( -0 .5) = 0.5, 

A22 = (-l)4(l-7) = 1.7. 

The matrix of cofactors is 

(A.63) 

B 
0.6 
0.5 

and the adjoint of A is 

adj A = B7 = 

The determinant of A is 

0.5 

1.7 

0.6 
L0.5 

0.5 
1.7 

(A.64) 

(A.65) 

detA 
1.7 

-0.5 

-0.5 
0.6 

(1.7)(0.6) - (0.25) = 0.77. 

(A.66) 

From Eqs. A.65 and A.66, we can write the inverse 
of the coefficient matrix, that is, 

(A.67) A"1 1 

0.77 

0.6 

.0.5 

0.5 
1.7 

Now the product A - 11 is found: 

A - I = ^ 
77 

0.6 0.5" 

.0.5 1.7. 

loor 7" 
77 U.4 _ " 

"10 
. 2 

" 9.09" 

.10.91. 

It follows directly that 

V 
v2-

' 9.09' 
.1 3.91 ' 

(A.68) 

(A.69) 

or vj = 9.09 V and v2 = 10.91 V. 
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Example A.2 

Use the matrix method to find the three mesh cur
rents in the circuit in Fig. 4.24. 

Solution 

The mesh-current equations that describe the cir
cuit in Fig. 4.24 are given in Eq. 4.34. The constraint 
equation imposed by the current-controlled voltage 
source is given in Eq. 4.35. When Eq. 4.35 is substi
tuted into Eq. 4.34, the following set of 
equations evolves: 

25/,- - 5/2 - 20/3 = 50, 

- 5 / , - 4z2 + 9/3 = 0. 

In matrix notation, Eqs. A.70 reduce to 

AI = V, 

where 

A = 

(A.70) 

(A.71) 

and 

25 -5 
- 5 10 
- 5 - 4 

'*] 

h 
h_ 

1 

V = 

r 50" 
0 
0 

-20 
- 4 

9 

. 

It follows from Eq. A.71 that the solution for I is 

I = A 1V. (A.72) 

We find the inverse of A by using the relationship 

A - ' = 
_ adjA 

de tA 
(A.73) 

To find the adjoint of A, we first calculate the cofac-
tors of A. Thus 

An = (-1)2(90 - 16) = 74, 

A12 = ( - l ) 3 ( - 4 5 - 20) = 65, 

A13 = (-1)^(20 + 50) = 70, 

A21 = ( - l ) 3 ( - 4 5 - 80) = 125, 

A22 = 

A 23 = 

A31 = I 

A 3 2 = < 

A33 = ( 

;- l)4(225 - 100) = 125, 

; - l ) 5 ( -100 - 25) = 125, 

; - l )4(20 + 200) = 220, 

-1) 5 ( -100 - 100) = 200, 

-1)6(25() - 25) = 225. 

The cofactor matrix is 

B 

74 65 70 

125 125 125 

220 200 225 

(A.74) 

from which we can write the adjoint of A: 

adj A = Br --
74 
65 

_70 

The determinant of A is 

detA = 

25 - 5 - 2 0 

- 5 10 - 4 
- 5 - 4 9 

125 
125 

125 

220 

200 
225 

(A.75) 

= 25(90 - 1 6 ) + 5( -45 - 80) - 5(20 + 200) = 125. 

It follows from Eq. A.73 that 

-1 _ 1 

125 

74 125 220 

65 125 200 

70 125 225 
(A.76) 

The solution for I is 

1 

125 

74 125 

65 125 

70 125 

220 

200 

225 

50 

0 

0 

= 
29.60 

26.00 

28.00 
. (A.77) 

The mesh currents follow directly from Eq. A.77. Thus 

(A.78) 

or /j = 29.6 A, i2 = 26 A, and /3 = 28 A. 
Example A.3 illustrates the application of the 
matrix method when the elements of the matrix are 
complex numbers. 

h 
h 

_*3_ 

= 

"29.6" 

26.0 

_28.0_ 
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Example A.3 

Use the matrix method to find the phasor mesh cur
rents I, and I2 in the circuit in Fig. 9.37. 

Solution 

Summing the voltages around mesh 1 generates 
the equation 

(1 + /2)1, + (12 - /16)(1, - I2) = 150/0". (A.79) 

Summing the voltages around mesh 2 produces 
the equation 

(12 - /16)(I2 - Ii) + ( 1 + /3)I2 + 39IV = 0.(A.80) 

The current controlling the dependent voltage 
source is 

I, = (Ii - I2)- (A.81) 

After substituting Eq. A.81 into Eq. A.80, the 
equations are put into a matrix format by first collect
ing, in each equation, the coefficients of I, and I2: thus 

(13 - /14)1, - (12 - /16)I2 = 150/0°, 

(27 + /16)1, - (26 + /13)¾ = 0. 

Now, using matrix notation, Eq. A.82 is written 

(A.82) 

where 

A = 

I 

AI = V, 

13 - /14 - (12 - /16) 

[27 + /16 -(26 + /13) 

(A.83) 

and V 
150/0 

0 

It follows from Eq. A.83 that 

I = A V. (A.84) 

The inverse of the coefficient matrix A is found 
using Eq. A.73. In this case, the cofactors of A are 

^n = ( - l ) 2 ( - 2 6 - / 1 3 ) = - 2 6 - / 1 3 , 
A12 = (- l )3(27 + /16) = - 2 7 - / 1 6 , 
A2i = ( -1) 3 ( -12 + /16) = 12 - /16, 
A22 = (-1)4(13 - /14) = 13 - /14. 

The cofactor matrix B is 

B = 

The adjoint of A is 

adj A = B7 = 

The determinant of A is 

detA = 

(-26 - /13) ( -27 - /16) 

( 1 2 - / 1 6 ) ( 1 3 - / 1 4 ) 

(-26 - /13) (12 - /16) 

L ( - 2 7 - / 1 6 ) ( 1 3 - / 1 4 ) J 

(A.85) 

(A.86) 

(13 - /14) 
(27 + /16) 

(12 - /16) 

(26 + /13) 

= - (13 - /14)(26 + /13) + (12 - /16)(27 + /16) 

= 60 - /45. (A.87) 

The inverse of the coefficient matrix is 

A~! = 

( - 2 6 - / 1 3 ) ( 1 2 - / 1 6 ) 

L(-27 - / 1 6 ) (13 - / 1 4 ) J 

(60 - /45) 

Equation A.88 can be simplified to 

(A.88) 

60 + /45 

5625 

(-26 - /13) (12 - /16) 

(-27 - /16) (13 - /14) 

1 
375 

-65 - /130 96 - /28 
-60 - /145 94 - /17 

(A.89) 

Substituting Eq. A.89 into A.84 gives us 

1 

375 

(-65 - /130) (96 - /28) 
( -60 - /145) (94 - /17) 

150/0C 

0 

(-26 - /52) 

(-24 - /58) 

It follows from Eq. A.90 that 

I, = (-26 - /52) = 58.14/-116.57° A, 
h = ( -24 - /58) = 62.77/-122.48° A. 

(A.90) 

(A.91) 

In the first three examples, the matrix elements have been numbers—real 
numbers in Examples A.l and A.2, and complex numbers in Example A.3. It 
is also possible for the elements to be functions. Example A.4 illustrates the 
use of matrix algebra in a circuit problem where the elements in the coeffi
cient matrix are functions. 
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Example A.4 

Use the matrix method to derive expressions for 
the node voltages Vx and V2 in the circuit in Fig. A. 1. 

Solution 

Summing the currents away from nodes 1 and 2 
generates the following set of equations: 

R 
+ VxsC + (K, - V2)sC = 0, 

f + (½ ~ VfisC + (V2 - Vg)sC = 0. 
(A.92) 

Letting G = \/R and collecting the coefficients of 
V] and V2 gives us 

(G + 2sC)Vi - sCV2 = GVp 

-sCVi + (G + 2sC)V2 = sCVR. 

Writing Eq. A.93 in matrix notation yields 

AV = I, 

where 

(A.93) 

(A.94) 

G + 2sC 
-sC 

v2. 
, and 

—5 C 
G + 2sC_ 

I -
_sCV 

i 

V = 

It follows from Eq. A.94 that 

V - A ' l . (A.95) 

As before, we find the inverse of the coefficient 
matrix by first finding the adjoint of A and the 
determinant of A. The cofactors of A are 

A n = (-1)2[G + 2sC] = G + 2sC, 

A12 = (-l)\sC) = sC, 
A2i = {-l)\sC) - sC, 

A22 = (~1)4[G + 2sC] = G + 2sC. 

The cofactor matrix is 

G + 2sC 
B -

sC 

sC 

G + 2sC 
(A.96) 

and therefore the adjoint of the coefficient matrix is 

I G + 2sC sC 

sC G + 2sC 
adj A = B7 

(A.97) 

Figure A.l • The circuit for Example A.4. 

The determinant of A is 

G + 2sC sC 
detA = „ _ „ _ 

sC G + 2sC 
= G2 + 4sCG + 3.v2C2. 

(A.98) 

The inverse of the coefficient matrix is 

A~l = 

G + 2sC sC 

sC G + 2sC 

(G2 + AsCG + 3.v2C2) 
(A.99) 

It follows from Eq. A.95 that 

G + 2sC sC 

sC G + 2sC sCVa 

{Gz + AsCG + 3slCl) 
(A.100) 

Carrying out the matrix multiplication called for in 
Eq.A.100 gives 

V2J (G2 + 4.vCG + 3.v2C2) 

(G2 + 2sCG + s2C2)Vg 

(2sCG + 2s*C2)Vn 

(A.101) 

Now the expressions for V\ and V2 can be written 
directly from Eq. A. 101; thus 

(G2 + 2sCG + s2C2)VK 

V\ = ,w> . . ^ . „ ^ » (A-102) (G2 + 4sCG + 3s2C2) ' 

and 
2 ^ 

v> = 
2(sCG + slCz)V<, 

(G2 + 4sCG + 3s2C2) 
(A.103) 
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In our final example, we illustrate how matrix algebra can be used to 
analyze the cascade connection of two two-port circuits. 

Example A.5 

Show by means of matrix algebra how the input 
variables Vx and Iy can be described as functions of 
the output variables V2 and I2 in the cascade con
nection shown in Fig. 18.10. 

Solution 

We begin by expressing, in matrix notation, the 
relationship between the input and output variables 
of each two-port circuit. Thus 

(A.104) 

and 

(A.105) 

Vi 
/J 

v\ 
/', 

«il 
.«21 

r«u 
k i 

-«12 

~«22-

-«12] 

~«22 J 

v2 
L/2 

\v2 
lh 

Now the cascade connection imposes the constraints 

V'2 = V\ and 1'2 = -J\. (A.106) 

These constraint relationships are substituted into 
Eq. A.104. Thus 

«h 
«21 

«ii 
«21 

- « 1 2 

- « 2 2 

«12 

«22-

-I'u 

L/'I 
(A.107) 

The relationship between the input variables (Vh /j) 
and the output variables (V2, J2) is obtained by 
substituting Eq. A.105 into Eq. A.107. The result is 

«11 

«23 

«12 

«22 

«11 

L«2'i 

- « 1 2 

"«22J 
v2 

L/2 
(A.108) 

After multiplying the coefficient matrices, we have 

V2 Vi 

LA 
(«il«ll + «12«2l) 

(«21«11 + «22«2l) 

-(«11«']2 + «12«22) 

-(«21«12 + «22«22)J L/2 
(A.109) 

Note that Eq.A.109 corresponds to writing Eqs. 18.72 
and 18.73 in matrix form. 



Appendix 

Q Complex Numbers 
Complex numbers were invented to permit the extraction of the square roots 
of negative numbers. Complex numbers simplify the solution of problems 
that would otherwise be very difficult. The equation x2 + 8x + 41 = 0, 
for example, has no solution in a number system that excludes complex 
numbers. These numbers, and the ability to manipulate them algebraically, 
are extremely useful in circuit analysis. 

B.l Notation 
There are two ways to designate a complex number: with the cartesian, or 
rectangular, form or with the polar, or trigonometric, form. In the 
rectangular form, a complex number is written in terms of its real and 
imaginary components; hence 

n = a + jb, (B.l) 

where a is the real component, b is the imaginary component, and ; is by 
definition V - l . 1 

In the polar form, a complex number is written in terms of its magni
tude (or modulus) and angle (or argument); hence 

n = ceje (B.2) 

where c is the magnitude, 6 is the angle, e is the base of the natural loga
rithm, and, as before, j = V - T . In the literature, the symbol /6° is fre
quently used in place of ejB\ that is, the polar form is written 

n = c/6°. (B.3) 

Although Eq. B.3 is more convenient in printing text material, Eq. B.2 is of 
primary importance in mathematical operations because the rules for 
manipulating an exponential quantity are well known. For example, because 
(77> = y*»,then(e^)" = ejn6\ because v"v = l / y \ then e'10 = l /e^ ;and 
so forth. 

Because there are two ways of expressing the same complex number, 
we need to relate one form to the other. The transition from the polar to 
the rectangular form makes use of Euler's identity: 

e. 
±ie = cos 6 ± / s in 6. (B.4) 

1 You may be more familiar with the notation i = y/^. In electrical engineering, / is used 
as the svmbol for current, and hence in electrical engineering literature,/ is used to denote 
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A complex number in polar form can be put in rectangular form by writing 

ceje = c(cos0 + /sin 0) 

= c cos 0 + jc sin 0) 

= a + jb. 
(B.5) 

The transition from rectangular to polar form makes use of the geom
etry of the right triangle, namely, 

a + jb = Va2 + b2 )eje 

= cej0 (B.6) 

where 

tan0 = b/a. (B.7) 

It is not obvious from Eq. B.7 in which quadrant the angle 0 lies. The ambi
guity can be resolved by a graphical representation of the complex number. 

b 

0 
s^ H 

J?\ C 

a 

Figure B.l • The graphical representation of a + jb 
when a and b are both positive. 

I l 

5 36.87° 5 

4 

4 + / 3 = 5/36.87° 

(a) 

143.13° ' 

\ 3 

1 1 1 1 I X 
-4 

J
/l

 1
 

1 

i 
i 

i 
; 

l. 

- 4 + /3 = 5,/143.13° 

(b) 

i i 1 ilU 

- 4 , 

- 3 
5 216.87° 

- 4 - / 3 = 5/216,870 

(c) 

i_L 
0 

1 1 1 1 1 I 

- 3 

i_ 

~l 1 

ZyS 

— 5 

1 1 1 
4 

s 
323. 

1, 

13° 

4-/3 = 5/323.13° 

(d) 

Figure B.2 A The graphical representation of four 
complex numbers. 

B.2 The Graphical Representation 
of a Complex Number 

A complex number is represented graphically on a complex-number 
plane, which uses the horizontal axis for plotting the real component and 
the vertical axis for plotting the imaginary component. The angle of the 
complex number is measured counterclockwise from the positive real axis. 
The graphical plot of the complex number n = a + jb = c /0°, if we 
assume that a and b are both positive,is shown in Fig. B.l. 

This plot makes very clear the relationship between the rectangular and 
polar forms. Any point in the complex-number plane is uniquely defined by 
giving either its distance from each axis (that is, a and b) or its radial dis
tance from the origin (c) and the angle of the radial measurement 0. 

It follows from Fig. B.l that 0 is in the first quadrant when a and b are 
both positive, in the second quadrant when a is negative and b is positive, 
in the third quadrant when a and b are both negative, and in the fourth 
quadrant when a is positive and b is negative. These observations are 
illustrated in Fig. B.2, where we have plotted 4 + /3 , - 4 + /3 , - 4 - / 3 , 
and 4 - / 3 . 

Note that we can also specify 0 as a clockwise angle from the positive 
real axis. Thus in Fig. B.2(c) we could also designate —4 - /3 as 
5/-143.13°. In Fig. B.2(d) we observe that 5/323.13° = 5/-36.87°. It is 
customary to express 0 in terms of negative values when 0 lies in the third 
or fourth quadrant. 

The graphical interpretation of a complex number also shows the 
relationship between a complex number and its conjugate. The conjugate 
of a complex number is formed by reversing the sign of its imaginary 
component. Thus the conjugate of a + jb is a - jb, and the conjugate of 
—a + jb is — a - jb. When we write a complex number in polar form, we 
form its conjugate simply by reversing the sign of the angle 0. Therefore 
the conjugate of c/0° is c/-0°. The conjugate of a complex number is 
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designated with an asterisk. In other words, n* is understood to be the /j, = -a+jb-c &•> 
conjugate of n. Figure B.3 shows two complex numbers and their conju
gates plotted on the complex-number plane. 

Note that conjugation simply reflects the complex numbers about the 
real axis. 

/j-. = — a+ib—v #-> 
^ . " d-

~a ^ ^ 

-b-
112 — —u-jb=c -H2 

n 

^f 
^ ¾ ^ 

« ] = 

-

(i-

«+ 

~jb = 

b = c 0, 

1 

a 

c -0{ 

B.3 Arithmetic Operations 

Addition (Subtraction) 
To add or subtract complex numbers, we must express the numbers in rec
tangular form. Addition involves adding the real parts of the complex 
numbers to form the real part of the sum, and the imaginary parts to form 
the imaginary part of the sum. Thus, if we are given 

Figure B.3 A The complex numbers nx and n2 amd their 
conjugates n\ and «3. 

and 

then 

«! = 8 + /16 

«2 = 12 - /3 , 

n{ + n2 = (8 + 12) + /(16 - 3) = 20 + /13. 

Subtraction follows the same rule. Thus 

n2 - «j = (12 - 8 ) + / ( - 3 - 16) = 4 - /19. 

If the numbers to be added or subtracted are given in polar form, they are 
first converted to rectangular form. For example, if 

«i = 10/53.13° 

and 

then 

and 

n2 = 5 / - 1 3 5 ° , 

m + n2 = 6 + /8 - 3.535 - /3.535 
= (6 - 3.535) + /(8 - 3.535) 
= 2.465 + /4.465 = 5.10/61.10°, 

/11 - n2 = 6 + / 8 - (-3.535 - /3.535) 

= 9.535 + /11.535 

= 14.966 /50.42°. 



Multiplication (Division) 
Multiplication or division of complex numbers can be carried out with the 
numbers written in either rectangular or polar form. However, in most 
cases, the polar form is more convenient. As an example, let's find the 
product nxn2 when /^ = 8 + /10 and n2 = 5 - /4. Using the rectangular 
form, we have 

nxn2 = (8 + /10)(5 - /4) = 40 - /32 + /50 + 40 

= 80 + /18 

= 82/12.68°. 

If we use the polar form, the multiplication n.\n2 becomes 

n1n2 = (12.81 /51.34° )(6.40 / -38 .66° ) 

= 82/12.68° 

= 80 + /18. 

The first step in dividing two complex numbers in rectangular form is to 
multiply the numerator and denominator by the conjugate of the denomi
nator. This reduces the denominator to a real number. We then divide the 
real number into the new numerator. As an example, let's find the value of 
n\/n2, where rt\ = 6 + /3 and n2 = 3 - / 1 . We have 

« 1 

n2 

6 + /3 
3 - /1 

(6 + 
( 3 -

18 + /6 + /9 -
9 + 1 

15 + /15 
10 

= 2.12 /45° 

/3)(3 + 
/1)(3 + 

- 3 

= 1.5 + /1.5 

/1) 
/1) 

In polar form, the division of nx by n2 is 

n{ 6.71 /26.57° 

n2 3.16/-18.43° 

= 1.5 + /1.5. 

2.12 / 4 5 ' 

B.4 Useful Identities 
In working with complex numbers and quantities, the following identities 
are very useful: 

± / 2 = + 1, (B.8) 

( - / ) ( / ) = U (B.9) 

/ = ^ 7 , (B.10) 



ff*/»/2 = ± /. (B.i2) 

Given that n = a + jb = c/0°, it follows that 

nn = a2 + bz = <r, (B.13) 

« + n = 2«, (B.14) 

n - n* = jib, (B.15) 

«/w* = 1/20°. (B.16) 

B.5 The Integer Power 
of a Complex Number 

To raise a complex number to an integer power k, it is easier to first write 
the complex number in polar form. Thus 

nk = (a + jb)k 

= (cei°)k = ckejk0 

= ck(coskd + j sinkO). 

For example, 

(2e/12°)5 = 2V6()° = 32emr 

= 16 +)27.71, 

and 

(3 + /4)4 = (5e^y)4 = 5 V m 5 2 ° 

= 625^212,52° 

= -527 - /336. 

B.6 The Roots of a Complex Number 
To find the /cth root of a complex number, we must recognize that we are 
solving the equation 

xk-ce'6 = 0, (B.17) 

which is an equation of the kth degree and therefore has k roots. 
To find the k roots, we first note that 

ceje = cemi*) = cem-w = . . . > (B 1 8 ) 



It follows from Eqs. B.17 and B.18 that 

Xj = (ce'°y/k = cykeW\ 

X2 = [ceW+2iryil/k = cl/kej{fi+2v)/k^ 

X$ = [ce'i0+47T)}]/k = cVkeJ(0+47r)/k^ 

We continue the process outlined by Eqs. B.19, B.20, and B.21 until the 
roots start repeating. This will happen when the multiple of n is equal to 
2k. For example, let's find the four roots of 81tfy6{)°. We have 

Xt = 8lVV6°/4 = 3e' ls°, 
X2 = 81^/^+360)/4 = ^ / 1 ( ^ 

x3 = 8Wm+mV4 = 3e'195'\ 
x = gll/4e /(6()+ t«H0)/4 = 2ej2^'\ 

X j = 81l/4^(60+1440)/4 = 3t,/375^ = 3 ^ 

Here, x$ is the same as X\, so the roots have started to repeat. Therefore we 
know the four roots of 81*?; are the values given by X\, X2, X3, and X4. 

It is worth noting that the roots of a complex number lie on a circle in 
the complex-number plane. The radius of the circle is c!///<. The roots are 
uniformly distributed around the circle, the angle between adjacent roots 
being equal to lir/k radians, or 360/k degrees. The four roots of 81 e '6(r are 
shown plotted in Fig. B.4. 

3 . 105° 
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/ 

1 
1 1• 1 1 

3 1 9 5 ° ^ 
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N 
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fc3 15° 

1 i 1 1 1 
- I 
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~ 3. 285° 

Figure B.4 • The four roots of %\em". 

(B.19) 

(B.20) 

(B.21) 



Appendix 

_ More on Magnetically 
{ Coupled Coils and Ideal 

Transformers 
C.l Equivalent Circuits for Magnetically 

Coupled Coils 
At times, it is convenient to model magnetically coupled coils with an 
equivalent circuit that does not involve magnetic coupling. Consider the 
two magnetically coupled coils shown in Fig. C.l. The resistances Ri and 
R2 represent the winding resistance of each coil. The goal is to replace the 
magnetically coupled coils inside the shaded area with a set of inductors 
that are not magnetically coupled. Before deriving the equivalent circuits, 
we must point out an important restriction: The voltage between terminals 
b and d must be zero. In other words, if terminals b and d can be shorted 
together without disturbing the voltages and currents in the original cir
cuit, the equivalent circuits derived in the material that follows can be 
used to model the coils. This restriction is imposed because, while the 
equivalent circuits we develop both have four terminals, two of those four 
terminals are shorted together. Thus, the same requirement is placed on 
the original circuits. 

We begin developing the circuit models by writing the two equations 
that relate the terminal voltages i?i and v2 to the terminal currents ix and 
i2. For the given references and polarity dots, 

di\ diz 
i-h U-r + M~r 

dt dt 
(C.l) 

and 

Vi 
du dh 

dt dt 
(C.2) 

« 1 

+-

' l 

a 

+ 
"i 

* L* 

L l ) 

M 
« 1 

••2 V2 

Figure C.l • The circuit used to develop an equivalent 
circuit for magnetically coupled coils. 

The T-Equivalent Circuit 

To arrive at an equivalent circuit for these two magnetically coupled coils, 
we seek an arrangement of inductors that can be described by a set of 
equations equivalent to Eqs. C.l and C.2. The key to finding the arrange
ment is to regard Eqs. C.l and C.2 as mesh-current equations with iy and i2 

as the mesh variables. Then we need one mesh with a total inductance of 
L\ H and a second mesh with a total inductance of L2 H. Furthermore, the 
two meshes must have a common inductance of M H. The T-arrangement 
of coils shown in Fig. C.2 satisfies these requirements. 

Figure C.2 • The T-equivalent circuit for the magneti
cally coupled coils of Fig. C.l. 
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You should verify that the equations relating vY and v2 to /, and i2 

reduce to Eqs. C.l and C.2. Note the absence of magnetic coupling between 
the inductors and the zero voltage between b and d. 

The ^-Equivalent Circuit 

We can derive a 7r-equivalent circuit for the magnetically coupled coils 
shown in Fig. C.l.This derivation is based on solving Eqs. C.l and C.2 for 
the derivatives dijdt and di^jdt and then regarding the resulting expres
sions as a pair of node-voltage equations. Using Cramer's method for solv
ing simultaneous equations, we obtain expressions for di\jdt and di2/dt: 

di\ 

dt 

V\ 

v2 

u 
M 

M 
L2 

M 
L2 

LiL 1^2 M 
Vl 

M 

LXL2 - M 
•v2; (C.3) 

di2 

dt 

M v2 •M 

UU - M2 UL <\^2 1^2 w 
Vi + 

Li 

L,L>, - Ml jVl (C.4) 

Now we solve for /, and i2 by multiplying both sides of Eqs. C.3 and C.4 by 
dt and then integrating: 

k = *i(0) + 
LXL2 - M2

J{) 

V{dT 
M 

LXL2- Mlh 
v2dr (C.5) 

and 

'2(0) 
UU 

x / v\dr + r / 
M2J{) LXL2-M

2k 
v2dT. (C.6) 

If we regard vx and v2 as node voltages, Eqs. C.5 and C.6 describe a circuit 
of the form shown in Fig. C.3. 

All that remains to be done in deriving the 7r-equivalent circuit is to 
find LA, LB, and L c as functions of Lh L2, and M. We easily do so by writ
ing the equations for /t and i2 in Fig. C.3 and then comparing them with 
Eqs. C.5 and C.6. Thus 

Figure C.3 • The circuit used to derive the 7r-equivalent circuit for 
magnetically coupled coils. 
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1 f 1 /*' 
ii = /j(0) + — / Vidr + — I («! - v2)dr 

LA JO LB JO 

and 

1 /"' 1 / ' 
*2 = «2(0) + -^- v2dT + — I (v2 - vx)dr 

I-C ./0 L 3 JO 

= «'2(0) + 7" / M * + ( 7 - + 7 - ] 

Then 

M 

LB L ^ - M 2 ' 
(C.9) 

LA 

L2-M 

LXL2- M 2 ' 
(CIO) 

L c 

L i /V/ 

LiL 1^2 Mr 
( t i l ) 

When we incorporate Eqs. C.9-C.11 into the circuit shown in Fig. C.3, the 
^-equivalent circuit for the magnetically coupled coils shown in Fig. C.l is 
as shown in Fig. C.4. 

Note that the initial values of iy and i2 are explicit in the ^-equivalent 
circuit but implicit in the T-equivalent circuit. We are focusing on the sinu
soidal steady-state behavior of circuits containing mutual inductance, so 
we can assume that the initial values of ij and i2 are zero. We can thus 
eliminate the current sources in the ^-equivalent circuit, and the circuit 
shown in Fig. C.4 simplifies to the one shown in Fig. C.5. 

The mutual inductance carries its own algebraic sign in the T- and 
^-equivalent circuits. In other words, if the magnetic polarity of the cou
pled coils is reversed from that given in Fig. C.l, the algebraic sign of M 

Figure C.4 A The 7r-equivalent circuit for the magnetically coupled coils of Fig. C.l. Figure C.5 • The -̂equivalent circuit used for 
sinusoidal steady-state analysis. 
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reverses. A reversal in magnetic polarity requires moving one polarity dot 
without changing the reference polarities of the terminal currents and 
voltages. 

Example C.l illustrates the application of theT-equivalent circuit. 

Example C.l 

a) Use the T-equivalent circuit for the magnetically 
coupled coils shown in Fig. C.6 to find the phasor 
currents I | and I2. The source frequency is 
400 rad/s. 

b) Repeat (a), but with the polarity dot on the sec
ondary winding moved to the lower terminal. 

Solution 
a) For the polarity dots shown in Fig. C.6, M carries 

a value of +3 H in the T-equivalent circuit. 
Therefore the three inductances in the equiva
lent circuit are 

L{ - M = 9 - 3 = 6 H; 

L2 - M = 4 - 3 = 1 H; 

M = 3 H. 

Figure C.7 shows the T-equivalent circuit, and 
Fig. C.8 shows the frequency-domain equivalent 
circuit at a frequency of 400 rad/s. 

Figure C.9 shows the frequency-domain 
circuit for the original system. 

Here the magnetically coupled coils are 
modeled by the circuit shown in Fig. C.8. To find 
the phasor currents I] and I2, we first find the 
node voltage across the 1200 O inductive reac
tance. If we use the lower node as the reference, 
the single node-voltage equation is 

300 
+ 900 - /2100 

= 0. 
700 + y'2500 /1200 

Solving for V yields 

V = 136 - /8 = 136.24/-3.37° V(rms). 

Then 

300 - ( 1 3 6 - /8) 

700 + /2500 
63.25 / -71 .57° mA (rms) 

500 a /loo a 
_ T V Y Y > _ 

II 
300/0QV 

a 200 a /1200 a 
4. o I • 

loo a 800 a 
A/W 

6H 1 H 

|3H 

Figure C.7 A The T-equivalent circuit for the magnetically 
coupled coils in Example C.l. 

/2400 /400 

:/1200 

Figure C.8 • The frequency-domain model of the equivalent 
circuit at 400 rad/s. 

500 a / loo a 200 a /2400 a /400 a 100 a 

6 3()0,()° V /I200a 

Figure C.9 A The circuit of Fig. C.6, with the magnetically 
coupled coils replaced by their T-equivalent circuit. 

and 

I , = 
136 - /8 

900 - /2100 
59.63 /63.43° mA (rms). 

Vi /3600 a 

b) When the polarity dot is moved to the lower ter
minal of the secondary coil, M carries a value of 
- 3 H in the T-equivalent circuit. Before carrying 
out the solution with the new T-equivalent cir
cuit, we note that reversing the algebraic sign of 
M has no effect on the solution for Ij and shifts 
I2 by 180°.Therefore we anticipate that 

/2500 a 

Figure C.6 A The frequency-domain equivalent circuit for Example C.l. 



and 

Ij = 63.25/-71.57° mA (rms) 

I2 = 59.63 / -116.57° mA (rms). 

We now proceed to find these solutions 
by using the new T-equivalent circuit. With 
M = - 3 H, the three inductances in the equiv
alent circuit are 

Lj - M = 9 - ( -3) = 12 H; 

L2- M = 4 - ( -3) = 7 H ; 

M = - 3 H . 

At an operating frequency of 400 rad/s, the 
frequency-domain equivalent circuit requires two 
inductors and a capacitor, as shown in Fig. CIO. 

The resulting frequency-domain circuit for 
the original system appears in Fig. C.ll. 

As before, we first find the node voltage 
across the center branch, which in this case is a 
capacitive reactance of — /'1200 H. If we use the 
lower node as reference, the node-voltage 
equation is 

V - 300 
+ + 700 + /4900 -/1200 900 + /300 

Solving for V gives 

V = - 8 - /56 

= 56.57 / -98 .13° V (rms). 
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Then 

300 - ( - 8 - /56) 
h = 

and 

700 + /4900 

= 63.25 / -71 .57° mA (rms) 

- 8 - /56 

900 + /300 

= 59.63 / -116.57° mA (rms). 

/4800 fl /2800 0 

-/1200O 

Figure CIO • The frequency-domain equivalent circuit for 
M = - 3 H and a> = 400 rad/s. 

500 n /loo n 200 n /48ooa /28oon 1000 

r^/3°(Mjc 
I 

V -/120012: 
800 O 

-/25()0 i l 

Figure C.ll • The frequency-domain equivalent circuit for 
Example C.l(b). 

C.2 The Need for Ideal Transformers in 
the Equivalent Circuits 

The inductors in the T- and 77-equivalent circuits of magnetically cou
pled coils can have negative values. For example, if L\ = 3 mH, 
L2 = 12 mH, and M = 5 mH, the T-equivalent circuit requires an induc
tor of —2 mH, and the 7r-equivalent circuit requires an inductor of 
-5.5 mH. These negative inductance values are not troublesome when 
you are using the equivalent circuits in computations. However, if you 
are to build the equivalent circuits with circuit components, the negative 
inductors can be bothersome. The reason is that whenever the frequency 
of the sinusoidal source changes, you must change the capacitor used to 
simulate the negative reactance. For example, at a frequency of 
50 krad/s, a - 2 mH inductor has an impedance of - /100 fi.This imped
ance can be modeled with a capacitor having a capacitance of 0.2 /xF. If 
the frequency changes to 25 krad/s, the - 2 mH inductor impedance 
changes to - /50 il. At 25 krad/s, this requires a capacitor with a capaci
tance of 0.8 /xF. Obviously, in a situation where the frequency is varied 
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continuously, the use of a capacitor to simulate negative inductance is 
practically worthless. 

You can circumvent the problem of dealing with negative inductances 
by introducing an ideal transformer into the equivalent circuit. This doesn't 
completely solve the modeling problem, because ideal transformers can 
only be approximated. However, in some situations the approximation is 
good enough to warrant a discussion of using an ideal transformer in the 
T- and ^-equivalent circuits of magnetically coupled coils. 

An ideal transformer can be used in two different ways in either the 
T-equivalent or the -equivalent circuit. Figure C.12 shows the two arrange
ments for each type of equivalent circuit. 

Verifying any of the equivalent circuits in Fig. C.12 requires showing 
only that, for any circuit, the equations relating vx and v2 to dijdt and 
di2/dt are identical to Eqs. C.l and C.2. Here, we validate the circuit shown 
in Fig. C.12(a); we leave it to you to verify the circuits in Figs. C.12(b), (c), 
and (d).To aid the discussion, we redrew the circuit shown in Fig. C.12(a) 
as Fig. C.13, adding the variables i{) and % 

From this circuit, 

v1 = [Ll 

M \ di} M d , 

a ) dt a dt 
(C.12) 

and 

v{) = hi M 

a 

diQ M d 
(C.13) 

a 

(a) 

LXL2 - M: 

Ma 
ry~rv\— • • — n i:« rr 

ULX - M2 ^LXL2-M
2 

L-> - Ma 3 a2L\ - Ma 

(c) 

+ 
th 

'\ 

+ • 

»1 

+ 

»1 

lia 

Ideal 

a L] - Ma L2 - Ma 

Ma th 

(b) 

a(LxL2 - M2) 

Ideal 

1 :a 

Ideal 

M 

a2(LxL2-M
2U a2(LxL2-M

2) 

U-Ma a2Lx - Ma 
Vt 

(d) 

Figure C.12 • The four ways of using an ideal transformer in the T- and 7r-equivalent circuit for magnetically coupled coils. 

M ^2 _ M 
Lx - -Q a2 a 

V\ M 
a 

h) r^i^^ir^t 
V(l V-7 

Ideal 

(a) 

Figure C.13 A The circuit of Fig. C.12(a) with i0 and vQ 

defined. 
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The ideal transformer imposes constraints on v{) and /(): 

«o 
V2 

a ' 

Substituting Eqs. C.14 and C.15 into Eqs. C.12 and C.13 gives 

dh . M d 
Vi = LTTT + —-J-U12) 

at a dt 

(C.14) 

(C.15) 

(C.16) 

and 

Vi = Lid_ 

a a1 dt 

From Eqs. C.16 and C.17, 

, (ah) H —. 
2 <** a dt 

(C.17) 

di\ di-} 

dt dt 
(C.18) 

and 

^2 
di\ dU 

M—- + L2-^ 
dt dt 

(C.19) 

Equat ions C.18 and C.19 are identical to Eqs. C.l and C.2; thus, insofar as 
terminal behavior is concerned, the circuit shown in Fig. C.13 is equivalent 
to the magnetically coupled coils shown inside the box in Fig. C.l . 

In showing that the circuit in Fig. C.13 is equivalent to the magneti
cally coupled coils in Fig. C.l , we placed no restrictions on the turns 
ratio a. Therefore, an infinite number of equivalent circuits are possible. 
Fur thermore, we can always find a turns ratio to make all the inductances 
positive. Three values of a are of particular interest: 

and 

M_ 

hi 

L2 

(C.20) 

(C.21) 

(C22) 

The value of a given by Eq. C.20 eliminates the inductances Lx — M/a 
and a2Lx — aM from the T-equivalent circuits and the inductances 
(LXL2 - M2)/(a2L{ - aM) and a2(L{L2 - M2)/{a2U - aM) from the 
17-equivalent circuits. The value of a given by Eq. C.21 
eliminates the inductances (L2/a

2) - (M/a) and L2 — aM from the 
T-equivalent circuits and the inductances (LXL2 - M2)J(L2 - aM) and 
a2(LiL2 — M2)j(L2 — aM) from the 7r-equivalent circuits. 

Also note that when a = M/Lh the circuits in Figs. C.l2(a) and (c) 
become identical, and when a = L2/M, the circuits in Figs. C.12(b) and (d) 
become identical. Figures C.14 and C.15 summarize these observations. 

_ynrvnr>_ 

"1 -U-i 

• I 1-O « 

Ideal 

(a) 

• 1:« 

Ideal 

(1 - k2)L2 

\k2L, v. 

(b) 

Figure C.14 • Two equivalent circuits when 
a = M/Lh 

/.,(1 - k2) 

i/c2L, 

• 1 : a • 

Ideal 

(a) 

HP-IJ *, 
1 :a 

Ideal 

\U n 

(b) 

Figure C.15 • Two equivalent circuits when 
a = L2/M. 

• + 

NA \N2 

Figure C.16 A Experimental determination of the 
ratio MfLx. 
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In deriving the expressions for the inductances there, we used the 
relationship M = kVL\L2. Expressing the inductances as functions of 
the self-inductances L\ and L2 and the coefficient of coupling k allows the 
values of a given by Eqs. C.20 and C.21 not only to reduce the number of 
inductances needed in the equivalent circuit, but also to guarantee that all 
the inductances will be positive. We leave to you to investigate the conse
quences of choosing the value of a given by Eq. C.22. 

The values of a given by Eqs. C.20-C.22 can be determined experi
mentally. The ratio MjLx is obtained by driving the coil designated as hav
ing N\ turns by a sinusoidal voltage source. The source frequency is set 
high enough that coL\ 5$> R\, and the N2 coil is left open. Figure C.16 
shows this arrangement. 

With the N2 coil open, 

V2 = juiM\{. (C.23) 

Now, as /a>L] » Rh the current I\ is 

I. = 7 7 - - (C-24) ja)L[ 

Substituting Eq. C.24 into Eq. C23 yields 

(C.25) 

in which the ratio M/Ll is the terminal voltage ratio corresponding to 
coil 2 being open; that is, I2 = 0. 

We obtain the ratio L2/M by reversing the procedure; that is, coil 2 is 
energized and coil 1 is left open. Then 

Finally, we observe that the value of a given by Eq. C.22 is the geo
metric mean of these two voltage ratios; thus 

VxA-oVViA-o VL, M 
(C.27) 

For coils wound on nonmagnetic cores, the voltage ratio is not the 
same as the turns ratio, as it very nearly is for coils wound on ferromagnetic 
cores. Because the self-inductances vary as the square of the number of 
turns, Eq. C27 reveals that the turns ratio is approximately equal to the 
geometric mean of the two voltage ratios, or 
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~L ' 

D The Decibel 

Telephone engineers who were concerned with the power loss across the 
cascaded circuits used to transmit telephone signals introduced the deci
bel. Figure D.l defines the problem. 

There, p, is the power input to the system, px is the power output of 
circuit A, p2 is the power output of circuit B, and p(> is the power output 
of the system. The power gain of each circuit is the ratio of the power out 
to the power in. Thus 

Pi P\ B Pi 
-# • -

C P<> 

Figure D.l • Three cascaded circuits. 

P\ P2 , Pa 
CTA = — , an = — , and err — — . 

Pi Pi Pi 

The overall power gain of the system is simply the product of the individ
ual gains, or 

Po 

Pi 

P^PlPo 
Pi Pi Pi 

= (TA<rBac. 

The multiplication of power ratios is converted to addition by means of 
the logarithm; that is, 

log10— = logujo-A + log1()o-B + log1()crc, 
Pi 

This log ratio of the powers was named the bel, in honor of Alexander 
Graham Bell. Thus we calculate the overall power gain, in bels, simply by 
summing the power gains, also in bels, of each segment of the transmission 
system. In practice, the bel is an inconveniently large quantity. One-tenth 
of a bel is a more useful measure of power gain; hence the decibel. The 
number of decibels equals 10 times the number of bels, so 

Po 
Number of decibels = 10 login — 

Pi 

When we use the decibel as a measure of power ratios, in some situa
tions the resistance seen looking into the circuit equals the resistance 
loading the circuit, as illustrated in Fig. D.2. 

When the input resistance equals the load resistance, we can convert 
the power ratio to either a voltage ratio or a current ratio: 

Po 

Pi 

vou\ 

Via 

'in 

'"in •* A 

'out 
+-

+ { 
R, 

Figure D.2 • A circuit in which the input resistance 
equals the load resistance. 

or 

Po 

Pi if R 'in 
739 
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These equations show that the number of decibels becomes 

Number of decibels = 20 log]0 
'out 

= 20 log 'out 
10 (D.l) 

TABLE D.l Some dB-Ratio Pairs 

dB 

0 

3 

6 

10 

15 

20 

Ratio 

1.00 

1.41 

2.00 

3.16 

5.62 

10.00 

dB 

30 

40 

60 

80 

100 

120 

Ratio 

31.62 

100.00 

103 

104 

105 

106 

The definition of the decibel used in Bode diagrams (see Appendix E) 
is borrowed from the results expressed by Eq. D.l, since these results 
apply to any transfer function involving a voltage ratio, a current ratio, a 
voltage-to-current ratio, or a current-to-voltage ratio. You should keep the 
original definition of the decibel firmly in mind because it is of fundamen
tal importance in many engineering applications. 

When you are working with transfer function amplitudes expressed in 
decibels, having a table that translates the decibel value to the actual value 
of the output/input ratio is helpful. Table D.l gives some useful pairs. The 
ratio corresponding to a negative decibel value is the reciprocal of the pos
itive ratio. For example, - 3 dB corresponds to an output/input ratio of 
1/1.41, or 0.707. Interestingly, —3 dB corresponds to the half-power fre
quencies of the filter circuits discussed in Chapters 14 and 15. 

The decibel is also used as a unit of power when it expresses the ratio 
of a known power to a reference power. Usually the reference power is 
1 mW and the power unit is written dBm, which stands for "decibels rela
tive to one milliwatt." For example, a power of 20 mW corresponds to 
±13 dBm. 

AC voltmeters commonly provide dBm readings that assume not only 
a 1 mW reference power but also a 600 ft reference resistance (a value 
commonly used in telephone systems). Since a power of 1 mW in 600 ft 
corresponds to 0.7746 V (mis), that voltage is read as 0 dBm on the meter. 
For analog meters, there usually is exactly a 10 dB difference between 
adjacent ranges. Although the scales may be marked 0.1, 0.3,1, 3,10, and 
so on, in fact 3.16 V on the 3 V scale lines up with 1 V on the 1 V scale. 

Some voltmeters provide a switch to choose a reference resistance (50, 
135,600, or 900 ft) or to select dBm or dBV (decibels relative to one volt). 



Appendix 

Q Bode Diagrams 

As we have seen, the frequency response plot is a very important tool for 
analyzing a circuit's behavior. Up to this point, however, we have shown 
qualitative sketches of the frequency response without discussing how to 
create such diagrams. The most efficient method for generating and plot
ting the amplitude and phase data is to use a digital computer; we can rely 
on it to give us accurate numerical plots of \H(jm)\ and d{ja>) versus co. 
However, in some situations, preliminary sketches using Bode diagrams 
can help ensure the intelligent use of the computer. 

A Bode diagram, or plot, is a graphical technique that gives a feel 
for the frequency response of a circuit. These diagrams are named in 
recognition of the pioneering work done by H. W. Bode.1 They are most 
useful for circuits in which the poles and zeros of H(s) are reasonably 
well separated. 

Like the qualitative frequency response plots seen thus far, a Bode 
diagram consists of two separate plots: One shows how the amplitude of 
H(jco) varies with frequency, and the other shows how the phase angle 
of H(j(o) varies with frequency. In Bode diagrams, the plots are made on 
semilog graph paper for greater accuracy in representing the wide range 
of frequency values. In both the amplitude and phase plots, the frequency 
is plotted on the horizontal log scale, and the amplitude and phase angle 
are plotted on the linear vertical scale. 

E,l Real, First-Order Poles and Zeros 
To simplify the development of Bode diagrams, we begin by considering 
only cases where all the poles and zeros of H(s) are real and first order. 
Later we will present cases with complex and repeated poles and zeros. 
For our purposes, having a specific expression for H(s) is helpful. Hence 
we base the discussion on 

K(s + zi) 

from which 

ui> \ ^ O + *l) 
]0)(j(0 + Pi) 

The first step in making Bode diagrams is to put the expression for 
H(jco) in a standard form, which we derive simply by dividing out the 
poles and zeros: 

Kzi(l + /w/z i ) f s 
H(m) = , . w < . , - . (E.3) 

p,(7a.)(l + /a>/A) 

1 See II. W. Bode, Network Analysis and Feedback Design (New York: Van Nostrand, 1945). 
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Next we let Ka represent the constant quantity Kz.[/p\, and at the 
same time we express H(jto) in polar form: 

M / 9 0 |1 + J^/Pil /j3i 

K„|l + /w/zil 

Mil + W A I 
(E.4) 

From Eq. E.4, 

\H(ja>)\ = / ; ' , (E.5) 

0(«) = ?Ai - 90° - /3,. (E.6) 

By definition, the phase angles ip\ and /3j are 

0, = tan ~xwfz\\ (E.7) 

j3i = tan^w/Pi- (E-8) 

The Bode diagrams consist of plotting Eq. E.5 (amplitude) and Eq. E.6 
(phase) as functions of o>. 

E.2 Straight-Line Amplitude Plots 
The amplitude plot involves the multiplication and division of factors 
associated with the poles and zeros of H(s). We reduce this multiplication 
and division to addition and subtraction by expressing the amplitude of 
H(j(o) in terms of a logarithmic value: the decibel (dB).2 The amplitude 
of H(ja)) in decibels is 

/l t l B = 2()log1() |//f>)|. (E.9) 

TABLE E.1 Actual Amplitudes and Their T o § i v e y ° u a f e e l f o r t h e u n i t o f decibels, Table E.l provides a translation 
Decibel Values between the actual value of several amplitudes and their values in deci

bels. Expressing Eq. E.5 in terms of decibels gives 

K0\l+jco/Zl\ 
AdB = 20 logJ() 

w|l + ja>/pi\ 

= 201og1()/C + 20lQgtJl + /»/*il 

- 20 log10<u - 20 log10|l -f- ja/pxl (E.10) 

See Appendix D for more information regarding the decibel. 
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The key to plotting Eq. E.10 is to plot each term in the equation sepa
rately and then combine the separate plots graphically. The individual fac
tors are easy to plot because they can be approximated in all cases by 
straight lines. 

The plot of 20 log10 K(> is a horizontal straight line because K0 is not a 
function of frequency. The value of this term is positive for Ka > 1, zero 
for K0 - 1, and negative for K0 < 1. 

Two straight lines approximate the plot of 20 log10| 1 +• j(o/z\\. For small 
values of <w, the magnitude 11 + jafz\ | is approximately 1, and therefore 

201og1()|l + j(o/zi\^0 a s w - ^ 0 . (E.ll) 

For large values of w, the magnitude |1 + jo)/z\\ is approximately o)/z\, 
and therefore 

201og1()|l + j(o/z.[\ ^20 \ogu)((o/Z]) asw—>oc. (E.12) 

On a log frequency scale, 20 \ogm(a)/z\) is a straight line with a slope of 
20 dB/decade (a decade is a 10-to-l change in frequency).This straight 
line intersects the 0 dB axis at w = z\. This value of o» is called the 
corner frequency.Thus, on the basis of Eqs. E . l l and E.12, two straight 
lines can approximate the amplitude plot of a first-order zero, as 
shown in Fig. E.l . 

The plot of — 201ogioa> is a straight line having a slope of 
-20 dB/decade that intersects the 0 dB axis at a» = l.Two straight lines 
approximate the plot of - 2 0 log10|l 4- jco/p\\. Here the two straight lines 
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Figure E.l • A straight-line approximation of the amplitude plot of a 
first-order zero. 



intersect on the 0 dB axis at w = p\. For large values of w, the straight line 
20 log10(o>/pi) has a slope of -20 dB/decade. Figure E.2 shows the 
straight-line approximation of the amplitude plot of a first-order pole. 
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Figure E.2 • A straight-line approximation of the amplitude plot of a first-order pole. 

Figure E.3 shows a plot of Eq. E.10 for K0 = VlO, Z\ = 0.1 rad/s, 
and pi = 5 rad/s. Each term in Eq. E.10 is labeled on Fig. E.3, so you can 
verify that the individual terms sum to create the resultant plot, labeled 
201og1()|//(/a>)|. 

Example E.l illustrates the construction of a straight-line amplitude 
plot for a transfer function characterized by first-order poles and zeros. 
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Figure E.3 • A straight-line approximation of the amplitude plot for Eq. E.10. 
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Example E.l 

For the circuit in Fig. E.4: 

a) Compute the transfer function, H(s). 

b) Construct a straight-line approximation of the 
Bode amplitude plot. 

c) Calculate 20log10|.//(/cu)| at w = 50 rad/s and 
co = 1000 rad/s. 

d) Plot the values computed in (c) on the straight-
line graph; and 

e) Suppose that vt{t) = 5cos (500* + 15°) V, and 
then use the Bode plot you constructed to pre
dict the amplitude of va(t) in the steady state. 

100 mH 10.mF 

I 

11 i l l V, 

Figure E.4 • The circuit for Example E.l. 

c) We have 

//(/50) = 
o.ii(;50) 

(1 + /5)(1 + /0.5) 

Solution 

a) Transforming the circuit in Fig. E.4 into the 
s-domain and then using 5-domain voltage divi
sion gives 

= 0.9648/-15.25°, 

20 log10 |//(/50)| = 20 log10 0.9648 

H(s) = 
(R/L)s 

i • 
S* + (R/L)s + £ 

Substituting the numerical values from the cir
cuit, we get 

= -0.311 dB; 

//(/1000) = 
0.11(/1000) 

(1 + /100)(1 + /10) 

H(s) = 
110s 1105 

s2 + 110$ + 1000 (s + 10)(5 + 100) 

b) We begin by writing H(jto) in standard form: 

= 0.1094/-83.72°; 

20 log1()0.1094 = -19.22 dB. 

H(ja>) = 
0.11;a» 

[1 + /(a>/10)][l + / K 1 0 0 ) ] ' 

The expression for the amplitude of H(J<&) in 
decibels is 

AdB = 201og1() |//(/w)| 

= 201og100.11 + 201og10 |H 

- 20 log 10 1 + / - 2 0 log10 

Figure E.5 shows the straight-line plot. 
Each term contributing to the overall amplitude 
is identified. 
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Figure E.5 • The straight-line amplitude plot for the transfer function of 
the circuit in Fig. E.4. 
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d) See Fig. E.5. 

e) As we can see from the Bode plot in Fig. E.5, the 
value of AdB at w = 500 rad/s is approximately 
-12.5 dB. Therefore, 

\A\ = io(-12-5/20> = 0.24 

and 

Vmo = \A\Vltli = (0.24)(5) = 119 V. 

We can compute the actual value of \H(jo))\ 
by substituting w = 500 into the equation for 
\H(]<o)\; 

//(/500) = 
0.11(/500) 

(1 + /50)(1 + /5) 
0.22/-77.54' 

Thus, the actual output voltage magnitude for 
the specified signal source at a frequency of 
500 rad/s is 

V,no = \A\Vim = (0.22)(5) = 1.1 V. 

E.3 More Accurate Amplitude Plots 
We can make the straight-line plots for first-order poles and zeros more 
accurate by correcting the amplitude values at the corner frequency, one 
half the corner frequency, and twice the corner frequency. At the corner 
frequency, the actual value in decibels is 

AdBc = ±20log10 |l +/11 

= ±20 log10V2 

« ±3 dB. (E.13) 

The actual value at one half the corner frequency is 

AdBc!2 = ±20 log 
>c/2 10 1 +j: 

±201og]()V574 

± l d B . (E.14) 

At twice the corner frequency, the actual value in decibels is 

Ad B 2 c= ±201og10|l + / 2 | 

= ±201og10V5 

w ±7 dB. (E.15) 

In Eqs. E.13-E.15, the plus sign applies to a first-order zero, and the minus 
sign applies to a first-order pole. The straight-line approximation of the 
amplitude plot gives 0 dB at the corner and one half the corner frequencies, 
and ±6 dB at twice the corner frequency. Hence the corrections are ±3 dB 
at the corner frequency and ±1 dB at both one half the corner frequency 
and twice the corner frequency. Figure E.6 summarizes these corrections. 

A 2-to-l change in frequency is called an octave. A slope of 
20 dB/decade is equivalent to 6.02 dB/octave, which for graphical pur
poses is equivalent to 6 dB/octave. Thus the corrections enumerated cor
respond to one octave below and one octave above the corner frequency. 
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Figure E.6 A Corrected amplitude plots for a first-order zero 
and pole. 

If the poles and zeros of H(s) are well separated, inserting these 
corrections into the overall amplitude plot and achieving a reasonably 
accurate curve is relatively easy. However, if the poles and zeros are 
close together, the overlapping corrections are difficult to evaluate, and 
you're better off using the straight-line plot as a first estimate of the 
amplitude characteristic. Then use a computer to refine the calculations 
in the frequency range of interest. 

EA Straight-Line Phase Angle Plots 
We can also make phase angle plots by using straight-line approximations. 
The phase angle associated with the constant K() is zero, and the phase 
angle associated with a first-order zero or pole at the origin is a constant 
± 90°. For a first-order zero or pole not at the origin, the straight-line 
approximations are as follows: 

• For frequencies less than one tenth the corner frequency, the phase 
angle is assumed to be zero. 

• For frequencies greater than 10 times the corner frequency, the phase 
angle is assumed to be ±90°. 

• Between one tenth the corner frequency and 10 times the corner fre
quency, the phase angle plot is a straight line that goes through 0° at 
one-tenth the corner frequency, ±45° at the corner frequency, and 
±90° at 10 times the corner frequency. 

In all these cases, the plus sign applies to the first-order zero and the minus 
sign to the first-order pole. Figure E.7 depicts the straight-line approxima
tion for a first-order zero and pole. The dashed curves show the exact vari
ation of the phase angle as the frequency varies. Note how closely the 
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Figure E.7 • Phase angle plots for a first-order zero and pole. 

straight-line plot approximates the actual variation in phase angle. The 
maximum deviation between the straight-line plot and the actual plot is 
approximately 6°. 

Figure E.8 depicts the straight-line approximation of the phase angle of 
the transfer function given by Eq. B.l. Equation B.6 gives the equation for 
the phase angle; the plot corresponds to z\ = 0,1 rad/s, and Pi = 5 rad/s. 

An illustration of a phase angle plot using a straight-line approxima
tion is given in Example E.2. 
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Figure E.8 A A straight-line approximation of the phase angle plot for Eq. B.l. 



E.5 Bode Diagrams: Complex Poles and Zeros 749 

Example E.2 

a) Make a straight-line phase angle plot for the 
transfer function in Example E.l. 

b) Compute the phase angle 0(<D) at <o = 50, 500, 
and 1000 rad/s. 

c) Plot the values of (b) on the diagram of (a). 

d) Using the results from Example E.l(e) and (b) 
of this example, compute the steady-state out
put voltage if the source voltage is given by 
v&t) = 10cos(500f - 25°) V. 

Solution 

a) From Example E.l, 

0.11(/6.) 
H(ja>) 

[1 + j(<o/10)][l + /(«/100)] 

o.iiH 
|1 +/(«/10) | | l +/(o>/100)| / ( fo-f t nfe). 

Therefore, 

0(a>) = ft - /3t - /32, 

where i/'i = 90°, pl = tan_1(w/10), and (32 = 
tan_1(w/100). Figure E.9 depicts the straight-line 
approximation of 6(co). 

b) We have 

Thus. 

//(/50) = 0.96/-15.25% 

//(/500) = 0.22/-77.54% 

//(/1000) = 0.11/-83.72°. 

0(/50) = -15.25°, 

0(/500) = -77.54°, 

en 

and 

c) See Fig. E.9. 

d) We have 

0(/1000) = -83.72°. 

and 

Vm0 = \H(j500)\Vm 

= (0.22)(10) 

= 2.2 V, 

e0 = e(to) + 0j 

= -77.54° - 25' 

= -102.54°. 

Thus, 

v0(t) = 2.2 cos(500? - 102.54°) V. 

5 10 50100 5001000 
co (rad/s) 

Figure E.9 A A straight-line approximation of 6(a)) for Example E.2. 

E.5 Bode Diagrams: Complex Poles 
and Zeros 

Complex poles and zeros in the expression for H(s) require special atten
tion when you make amplitude and phase angle plots. Let's focus on the 
contribution that a pair of complex poles makes to the amplitude and 
phase angle plots. Once you understand the rules for handling complex 
poles, their application to a pair of complex zeros becomes apparent. 



The complex poles and zeros of H(s) always appear in conjugate 
pairs. The first step in making either an amplitude or a phase angle plot of 
a transfer function that contains complex poles is to combine the conju
gate pair into a single quadratic term. Thus, for 

His) = 7 — 7ZZ, (E.16) 

we first rewrite the product (s + a - j(B)(s + a + y/3) as 

(s + a)2 + p2 = s2 + las + a2 + jS2. (E.17) 

When making Bode diagrams, we write the quadratic term in a more con
venient form: 

s2 4- las + a2 + 01 = s2 + 2£a>ns + a?n. (E.18) 

A direct comparison of the two forms shows that 

G>2 = a2 + jS2 (E.19) 

and 

fan = a. (E.20) 

The term <afl is the corner frequency of the quadratic factor, and £ is the 
damping coefficient of the quadratic term. The critical value of £ is 1. If 
£ < 1, the roots of the quadratic factor are complex, and we use Eq. E.18 
to represent the complex poles. If £ > 1, we factor the quadratic factor 
into (s + pi)(s + p2) and then plot amplitude and phase in accordance 
with the discussion previously. Assuming that £ < 1, we rewrite Eq. E.16 as 

sl + 2t,u>ns + cof, 

We then write Eq. E.21 in standard form by dividing through by the poles 
and zeros. For the quadratic term, we divide through by <*>„, so 

K_ 1_ 

a)2 1 + (s/o)n)
2 + 2£{s/(o„) 

H& = A^„ . . . . . 2 - ( L 2 1 ) 

H(s) = — , , , , , ,? , „ , , _ , . , . (E-22) 

from which 

where 

H ^ = 1 , 2/ 2w . n r , V (E-23) 

1 - (or/tof,) + j(2^0)/(0,,) 

K _ K 

Before discussing the amplitude and phase angle diagrams associated 
with Eq. E.23, for convenience we replace the ratio (o/o)n by a new vari
able, u. Then 

H{h) = TT^r- <E-24> 

Now we write H(ico) in polar form: 



from which 

AdB = 20 log1()|//(;to)| 

= 20 \ogwKa - 20 log10|(l - u2) + j2£u\> (E.26) 

and 

6((0) = - f t = - t a n " 1 - ^ ^ . (E.27) 
1 - ir 

E.6 Amplitude Plots 
The quadratic factor contributes to the amplitude of H(jco) by means of the 
term —201og10|l - u2 + j2gu\. Because u = to/to,,, M—»0 as to—»0, and 
« —* oo as co —* oo. To see how the term behaves as to ranges from 0 to oo, 
we note that 

- 2 0 log1()|(l - u2) + j2£u\ = -20 log1 0V(l - u2)1 + 4£2u2 

= -101og10[w4 + 2u2(2(2 - 1 ) + 1], (E.28) 

as u —> 0, 

- 1 0 Iog10[«
4 + 2w2(2£2 - l ) + l ] - ^ 0 , (E.29) 

and as «—» oo, 

-101og10[u4 + 2u2(2£2 - 1) + 1] -» - 401og10«. (E.30) 

From Eqs. E.29 and E.30, we conclude that the approximate amplitude plot 
consists of two straight lines. For to < co„, the straight line lies along the 
0 dB axis, and for to > co„, the straight line has a slope of —40 dB/decade. 
These two straight lines join on the 0 dB axis at u = 1 or to = &>„. 
Figure E.10 shows the straight-line approximation for a quadratic factor 
with t < 1. 
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Figure E.10 • The amplitude plot for a pair of complex poles. 
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E.7 Correcting Straight-Line 
Amplitude Plots 

Correcting the straight-line amplitude plot for a pair of complex poles 
is not as easy as correcting a first-order real pole, because the correc
tions depend on the damping coefficient £. Figure E . l l shows the 
effect of £ on the amplitude plot. Note that as £ becomes very small, a 
large peak in the amplitude occurs in the neighborhood of the corner 
frequency a>n(u = 1). When £ > 1/V2, the corrected amplitude plot 
lies entirely below the straight-line approximation. For sketching pur
poses, the straight-line amplitude plot can be corrected by locating 
four points on the actual curve. These four points correspond to 
(1) one half the corner frequency, (2) the frequency at which the ampli
tude reaches its peak value, (3) the corner frequency, and (4) the fre
quency at which the amplitude is zero. Figure E.12 shows these 
four points. 

At one half the corner frequency (point 1), the actual amplitude is 

A U B K / 2 ) = -10 log1()(£
2 + 0.5625). (E.31) 

The amplitude peaks (point 2) at a frequency of 

cop = o»„Vl - 2£2, (E.32) 

and it has a peak amplitude of 

AdB(cop) = - 1 0 log10[4£2(l - ft]. (E.33) 

At the corner frequency (point 3), the actual amplitude is 

A d B K ) = -201og102£. (E.34) 

The corrected amplitude plot crosses the 0 dB axis (point 4) at 

w0 = a),(V2(l - 2 f t = V2cop. (E.35) 

The derivations of Eqs. E.31, E.34, and E.35 follow from Eq. E.28. 
Evaluating Eq. E.28 at u = 0.5 and u = 1.0, respectively, yields Eqs. E.31 
and E.34 Equation E.35 corresponds to finding the value of u that makes 
u4 + 2u2(2£2 - 1) + 1 = l.The derivation of Eq. E.32 requires differen
tiating Eq. E.28 with respect to u and then finding the value of u where the 
derivative is zero. Equation E.33 is the evaluation of Eq. E.28 at the value 
of u found in Eq. E.32. 

Example E.3 illustrates the amplitude plot for a transfer function with 
a pair of complex poles. 
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Example E.3 

Compute the transfer function for the circuit shown 
in Fig. E.13. 

a) What is the value of the corner frequency in radi
ans per second? 

b) What is the value of K()l 

c) What is the value of the damping coefficient? 

d) Make a straight-line amplitude plot ranging from 
10to500rad/s. 

e) Calculate and sketch the actual amplitude in 
decibels at a>„/2, top, con, and co(). 

f) From the straight-line amplitude plot, describe 
the type of filter represented by the circuit in 
Fig. E.13 and estimate its cutoff frequency, me, 

d) See Fig. E.14. 

e) The actual amplitudes are 

^ J B K / 2 ) = - 1 0 log10(0.6025) = 2.2 dB, 

o)p = 50VO92 = 47.96 rad/s, 

A I B K ) = -101ogI0(0.16)(0.96) = 8.14 dB, 

^ W O = -20Iog1()(0.4) = 7.96 dB, 

w 0 = V2(t)p = 67.82 rad/s, 

^ B K ) = 0 dB. 

50mH i n 
-'WV-

8mF 

Figure E.13 • The circuit for Example E.3. 

Solution 

Transform the circuit in Fig. E.13 to the ^-domain 
and then use s-domain voltage division to get 

Figure E.14 shows the corrected plot. 

f) It is clear from the amplitude plot in Fig. E.14 
that this circuit acts as a low-pass filter. At the 
cutoff frequency, the magnitude of the transfer 
function, \H(Jmc)]t is 3 dB less than the maximum 
magnitude. From the corrected plot, the cutoff 
frequency appears to be about 55 rad/s, almost 
the same as that predicted by the straight-line 
Bode diagram. 

H(s) = 
LC 

s2 + ({)*+ ] 
LC 

Substituting the component values. 

H(s) 
2500 

s2 + 20s + 2500 

a) From the expression for H(s), o)2
n = 2500; there

fore, o)u = 50 rad/s. 

b) By definition, Ka is 2500/^,, or 1. 

c) The coefficient of s equals 2£a>n; therefore 

20 
C = ^ - = 0.20. 

2(i)„ 
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Figure E.14 • The amplitude plot for Example E.3. 
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E.8 Phase Angle Plots 
The phase angle plot for a pair of complex poles is a plot of Eq. E.27. The 
phase angle is zero at zero frequency and is -90° at the corner frequency. 
It approaches —180° as co(u) becomes large. As in the case of the ampli
tude plot, I is important in determining the exact shape of the phase angle 
plot. For small values of £, the phase angle changes rapidly in the vicinity 
of the corner frequency. Figure E.15 shows the effect of £ on the phase 
angle plot. 

We can also make a straight-line approximation of the phase angle plot 
for a pair of complex poles. We do so by drawing a line tangent to the phase 
angle curve at the corner frequency and extending this line until it inter
sects with the 0° and -180° lines. The line tangent to the phase angle curve 
at -90° has a slope of -23/(, rad/decade (—132/£ degrees/decade), and it 
intersects the 0° and -180° lines at ux = 4.81_f and u2 = 4.81^, respec
tively. Figure E.16 depicts the straight-line approximation for £ = 0.3 and 
shows the actual phase angle plot. Comparing the straight-line approxima
tion to the actual curve indicates that the approximation is reasonable in 
the vicinity of the corner frequency. However, in the neighborhood of ii\ 
and u2, the error is quite large. In Example E.4, we summarize our discus
sion of Bode diagrams. 
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Figure E.16 • A straight-line approximation of the phase 
angle for a pair of complex poles. 
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Example E.4 

a) Compute the transfer function for the circuit 
shown in Fig. E.17. 

b) Make a straight-line amplitude plot of 
201og lfl|/f(/»)|. 

c) Use the straight-line amplitude plot to deter
mine the type of filter represented by this circuit 
and then estimate its cutoff frequency. 

d) What is the actual cutoff frequency? 

e) Make a straight-line phase angle plot of H(joo). 

f) What is the value of 0(a)) at the cutoff frequency 
from (c)? 

g) What is the actual value of 0(OJ) at the cutoff 
frequency? 

from which 

H(jm) 
|1 + /»/251/01 

|1 - (o)/10)2 + /0.4(0,/10)1//3,-

Note that for the quadratic factor, u = o>/10. 
The amplitude of H(jca) in decibels is 

AdB = 20 log10|l + /«/251 

- 20 log10 ^J + HTO 

and the phase angle is 

250 mH 
B(OJ) = fa - ft, 

«Q 
i n 

40 mF 

Figure E.17 • The circuit for Example E.4. 

Solution 

a) Transform the circuit in Fig. E.17 to the s-domain 
and then perform s-domain voltage division to get 

«w = ,2+ £, + £• 

Substituting the component values from the cir
cuit gives 

H(s) 
4(s + 25) 

s2 + 4s + 100 

b) The first step in making Bode diagrams is to put 
H{jo)) in standard form. Because H(s) contains 
a quadratic factor, we first check the value of £,. 
We find that £ = 0.2 and co„ = 10, so 

H(s) = 
s/25 + 1 

1 + (5/10)2 + 0.4(5/10)' 

where 

\pi = tan_1(o,/25), 

, 0.4(0,/10) 
0i = tan"1 V 

1 - (o>/10)2 

Figure E.18 shows the amplitude plot. 

c) From the straight-line amplitude plot in Fig. E.18, 
this circuit acts as a low-pass filter. At the cutoff 
frequency, the amplitude of H(joi) is 3 dB less 
than the amplitude in the passband. From the 
plot, we predict that the cutoff frequency is 
approximately 13 rad/s. 
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Figure E.18 • The amplitude plot for Example E.4. 
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d) To solve for the actual cutoff frequency, replace s 
with joi in H(s), compute the expression for 
17/(/0,)1, set \H(M\ = (1/V2) //max = 1/V2, 
and solve for coc. First, 

H(jco) = 

Then, 

l^(K)l 

4(/6>) + 100 

(/a;)2 + 4(/a,) + 100 

V(4o>c.)
2 + 1002 

V(100 - wl)2 + (4o>c)
2 V2" 

Solving for a>c gives us 

(oc = 16 rad/s. 

e) Figure E.19 shows the phase angle plot. Note 
that the straight-line segment of 0(o>) between 
1.0 and 2.5 rad/s does not have the same slope as 
the segment between 2.5 and 100 rad/s. 

f) From the phase angle plot in Fig. E.19, we esti
mate the phase angle at the cutoff frequency of 
16 rad/s to be -65°. 

g) We can compute the exact phase angle at the 
cutoff frequency by substituting s = /16 into the 
transfer function H(s): 

//(/16) 
4(/16 + 25) 

0(0,) 

Computing the phase angle, we see 

0(a>c) = 61(/16) = -125.0°. 

Note the large error in the predicted angle. In 
general, straight-line phase angle plots do not 
give satisfactory results in the frequency band 
where the phase angle is changing. The straight-
line phase angle plot is useful only in predicting 
the general behavior of the phase angle, not in 
estimating actual phase angle values at particu
lar frequencies. 
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90° 

45° 
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(/16)2 + 4(/16) + 100 Figure E.19 • The phase angle plot for Example E.4. 





Appendix | An Abbreviated Table of F Trigonometric Identities 
1. sin(a ± /3) = sinacos/3 ± cosasin/3 

2. cos(a ± /3) = cosacos/3 + sinasin/3 

a + (3 a - /3 
3. sina + sin/3 = 2 sin — - — cos — - — K 2 2 

, ' a + / 3 \ fa- (3 
4. sina - sin/3 = 2 cos I — - — I sin 

fa + /3\ fa - (3 
5. cosa + cos/3 = 2 cos — - — cosl 

V 2 J V 2 

, a + /3\ . fa- p 
6. cosa - cos/3 = —2 sin! — - — I sin 

7. 2 sina sin/3 = cos(a - / 3 ) - cos(a + /3) 

8. 2 cosa cos/3 = cos(a - / 3 ) + cos(a + {3) 

9. 2 sina cos/3 = sin (a + /3) + sin(a - / 3 ) 

10. sin2a = 2 sina cosa 

11. cos2a = 2 cos2a - 1 = 1 - 2 sin2a 

12. cos2a = — + — cos2a 
2 2 

13. sin2a = - - - cos2a 
2 2 

tana ± tan/3 
14. tan(a ± jS) 

1 + tana tan/3 

2 tana 
15. tan2a = 

1 - tan2a 





Appendix. An Abbreviated Table 
of Integrals 

e 
1. J xeax dx = —(ax — 1) 

a-
2. J xzeaxdx = —^-(a2x2 — lax + 2) 

3. I x sinax dx = —z sinax cosax 
a1 a 

1 x • 

4. / x cosax dx = — cosax ^— sinax 
J a2 a 

f e"x 

5. / e"x sinbx dx = -= =• (a sinbx - b cosbx) 
J a2 + b2 

f eax 

6. / e"x cosbx dx = - : r (a cosbx + b sinbx) 
J a2 + blK ' 

} r dx = i 
J x2 + a2 a 

a n " 1 -
a 

dx 1 ( x 1 _, x 
8. I —~ — = —r —= H tan — 

O 2 + a2)2 2a2 Vx2 + a2 a a 

sin(a - b)x sin(a + b)x ? 7 

9. I sinax sinbx dx = ——, — — rr—» a ^ 0 
2(a - b) 2(a + 6) 

sin(a - b)x sin(a + b)x , 
10. / cosax cosbx dx = ——. — V —— r—-, ac ^ b 

2(a - b) 2{a + b) 

cos(a — b)x cos(a + b)x 7 ~ 
11. / sinax cosbx dx = — — — ——, a =£ o 

2(a - b) 2(a + b) 

x sin2ax 
12. / sin~ax ax = — ; 

2 4a 

, , x sin2ax 
13. / cos ax dx = — H : 

2 4a 

f , a > 0 ; 
14. / ^ ^ = < 0, a = 0; 

J s i n « x ^ = j f , a > 0 ; 

/o x [-f,a<Q 

). / x2sii 16. / xz sinax a\r = —r sinax - z cosax 
a a-

2 J 2x a2x2 - 2 . 
17. / x cosax ax = —z- cosax + = sinax 

a aJ 
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762 An Abbreviated Table of Integrals 

18. eax sin2 bx dx = 
a2 + 4b2 

19. eax cos2 bxdx = eu 

a2 + Ab2 

(a sinbx — 2b cosbx) sinbx + 

(a cosbx + 2b sinbx) cosbx + 

2^_ 

a 

2tf_ 
a 



Appendix H 
w.-m MWWM7" 

MHMJ ML MY-f?..JMr. Ml. 

Common Standard 
Component Values 

Resistors (5% tolerance) [fl] 

10 100 1.0 k 10k 100k 1.0 M 

120 1.2 k 12 k 120 k 

15 150 1.5 k 15 k 150 k 1.5 M 

180 1.8 k 18 k 180 k 

22 220 2.2 k 22 k 220 k 2.2 M 

270 2.7 k 27 k 270 k 

33 330 3.3 k 33 k 330 k 3.3 M 

390 3.9 k 39 k 390 k 

47 470 4.7 k 47 k 470 k 4.7 M 

560 5.6 k 56 k 560 k 

68 680 6.8 k 68 k 680 k 6.8 M 

Capacitors 

10 pF 22 pF 47 pF 

100 pF 220 pF 470 pF 

0.001/AF 0.0022/tF 0.0047 /xF 

0.01 JUF 0.022 fiF 0.047 /xF 

0.1/xF 0.22 fiF 0.47 /uF 

1 /xF 2.2 /xF 4.7 ^ F 

10 fiF 22 /xF 47 MF 

100 fxF 220 fiF 470/xF 

Inductors 

Value Current Rating 

IOJUH 3 A 

100 AtH 0.91 A 

I m H 0.15 A 

10 mH 0.04A 

763 





Answers to Selected Problems 

Chapter 1 
1.2 0.10 mm 

1.3 104.4 gigawatt-hours 

1.4 a) 121 photos 

b) 832,963 bytes 

1.10 4 sin 5000/ mC 

1.14 a) 1250 W from B to A 

b) 1200 W from A to B 

c) 5760 W from A to B 

d) 16,500 W from B to A 

1.18 a) 42.2 mW 

b) 12.14juJ 

c) 140.625/A J 

1.25 a) t = 8.453 s 

b) 15.396 W (delivered) 

c) t = 31.547 s 

d) 15.396 W (extracted) 

e) 0 J, 112.5 J, 200 J, 112.5 J, 0 J 

770 W 1.26 

1.31 2* del 2280 W 

2 P a b s = 2280W 

1.32 a) 
+ 

+ 

% 

• 
l 

b 

1 4 *>r 
+ 

— t 

1 

+ 

f k % 

i — 

k 

+ 

g 

— < i — 

1 

1 ; 
T'g 

1 u 

b) 3 A 

Chapter 2 
2.2 Interconnection is not valid, since the 10 V and 

20 V sources are connected between the same pair 

2.4 

of nodes. 

Interconnection is valid; 1700 W 

2.5 Interconnection is not valid, since the voltage 
drop between the top and bottom nodes is differ
ent due to different voltage sources in the left and 
right branches. 

2.7 Interconnection is not valid, since the voltage drop 
between the top and bottom nodes is different due 
to different voltages in the left and right branches. 

2.11 27 k a resistor 

2.13 5.6 kfl resistor 

2.14 a) A 20 A current source in parallel with a 
5 CI resistor. 

2.17 

b) 320W 

a) v(V) 

0 8 16 24 32 40 48 

b) A 24 V source in series with a 250 CI resistor 

c) 19.2 mA 

d) 96 mA 

e) 48 mA 

f) A linear model cannot predict non-linear 
behavior. 

2.18 a) 1.2 A; 0.3 A 

b) 120 V 

c) Power developed and dissipated is 180 W. 

2.19 a) 2 A 

b) 0.5 A 

c) 40 V 

d) 25W,80W,20W 

e) 125W 

2.22 a) 175W,270W,135W,400W,20W 

b) 1000W 

c) Power developed and dissipated is 1000 W. 

2.28 a) 4.5 V 

b) Power developed and dissipated is 741 mW. 

i (itiA) 
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766 Answers to Selected Problems 

2.34 a) i = 385 mA,so a warning sign should be 
posted and precautions taken. 

b) Use the following resistors: 390 ft, 47 (1, 
and 220 ft. 

2.35 

2.36 a) P a r m = 59.17 W;/> leg = 29.59 W; 

P t m n k = 7.40 W 

b) ^ m = 1414.23 s; rleg = 7071.13 s; 

'trunk = 70.677.37 S 

c) All values are much greater than a few minutes. 

2.37 a) 40 V 

b) No, 12 V/800 ft = 15 mA will cause a shock. 

2.38 3000 V 

Chapter 3 
3.1 a) 6 kfl and 12 kft, 9 kfl and 7 kft; simplified 

circuit is 

10 V 

b) 3 kft, 5 kft, and 7 kft; simplified circuit is 

3 mA 

c) 300 ft, 400 ft and 500 ft; simplified circuit is 

1200 Q 

200 mV 

3.2 a) 10 ft and 40 ft, 10011 and 25 ft; simplified 
circuit is 

60 V 

b) 9 kfl and 18 kft, and 6 kfl; simplified circuit is 

50 mA 

c) 600 ft, 200 ft, and 300 ft; simplified circuit is 
250 fl 

0.2 A 

3.3 

3.4 

3.15 

3.16 

3.18 

3.23 

3.24 

a) 

b) 

c) 

a) 

b) 

c) 

a) 

b) 
c) 

a) 

b) 

21.2 ft 

10 kft 

1600 ft 

30 ft 

5 kft 

80 fl 

66 V 

1.88 W, 1.32 W 

17,672 ft, 12,408 ft 

1200 fl, 300 ft 

1 W 

1875 ft, 3750ft, 7.5 kf 

a) 

b) 

c) 

d) 

e) 

a) 
b) 
c) 

d) 

R1) 

36 V 

2A 

0.96 A 

24 V 

6.4 V 

25 mA 

250 V 

50 V 

25 mA 

4.167 mA 
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3.31 a) 49,98012 

b) 498012 

c) 23012 

d) 5ft 

3.35 a) R,„ = 50fl; 

(25/12) 

3.53 

3.56 

3.58 

3.72 

3.73 

50 + (25/12) (k 25 

b) 2500 mcas 

c) Yes 

3.51 a) 1500 (1 

b) 28.8 mA 

c) 750 a , 276.48 mW 

d) 100012,92.16 mW 

23.2 V, 21 V 

a) A-connected R2—R3—R4 becomes Y-connected 
512—2012—4ft; equivalent resistance is 3312. 

b) Y-connected R2—R4—R>, becomes A-connected 
10012 —8012—20 ft; equivalent resistance 
is 3312. 

c) Convert the delta connection R4—Rs—Rf, to 
its equivalent wye. Convert the wye connection 
Ri—Rj — Rh to its equivalent delta. 

9012 

R{ = 1.0372ft, R2 = 1.1435 ft,/?3 = 1.212, 

R4 = 1.1435 ft, R5 = 1.0372 ft, Ra = 0.0259 ft, 

Rb = 0.006812, Rc = 0.006812 RL{ = 0.025912 

Pdiss = 624W = P d d 

3.74 a) R] = 0.426912, R2 = 0.4617 ft, R3 = 0.48 ft, 

R4 = 0.4617ft, R5 = 0.4269 ft, Ra = 0.0085 ft, 

Rh = 0.0022 ft, rtc = 0.002212, Rd = 0.008512 

b) i, = 26.51 A, /?/?, = 300 W or 200 W/m; 

i2 = 25.49 A, i\R2 = 300 W or 200 W/m; 

ib = 52 A, ilRh = 6 W or 200 W/m; 

P d d = 1548 W =P{Sss 

Chapter 
4.1 a) 

b) 
c) 
d) 

e) 

f) 

g) 

4 
11 

10 

9 

s 
6 

4 

6 

4.2 a) 8 

b) 3 

c) 4 

d) Avoid the topmost mesh and the leftmost 
mesh, which both contain current sources. 

4.3 a) 2 

b) 5 

c) 7 

d) 1,4,7 

4.4 

4.8 

4.9 

4.13 

4.17 

4.19 

4.24 

4.26 

4.27 

4.33 

4.34 

4.38 

4.39 

4.42 

4.44 

4.48 

a) 5 

b) 3 

c) -is + ij + U = 0; —/1 + /4 + /3 = 0; 

/5 — /2 — /3 = 0 

d) 2 

e) /?,/! + tf3/3 - R2i2 = 0; 

/?3*3 + R5i5 - R4I4 = 0 

120 V, 96 V 

4V 

a) -6.8 A, 2.7 A, -9.5 A, 2.5 A, -12 A 

b) 3840W 

a) 8800W 

b) 8800W 

750 W 

3.2 V 

a) -37.5 V, 75 W 

b) -37.5 V, 75 W 

c) Part (b), because there are fewer equations to 
write and solve. 

-20 V 

a) 5.6 A, 3.2 A , -2 .4 A 

b) -8.8 A , -1 .6 A, 7.2 A 

a) 17,940 W 

b) 17,940 W 

259.2 W 

2700 W 

a) 162.92 W 

b) 518.52 W 

c) Power delivered equals power absorbed. 

a) 2 raA 

b) 304 mW 

c) 0.9 mW 

740 W 
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4.51 a) 5.7 A, 4.6 A, 0.97 A, -1 .1 A, 3.63 A 

b) 5 > d e v = £ / ^ = 1319.685W 

4.52 a) The constraint equations are easier to formu
late in the node voltage method, making it the 
preferred method. 

b) 480 mW 

4.53 a) Minimize the number of equations to write and 
solve by using the mesh current method. 

b) 4mW 

c) No, since the mesh current method still minimizes 
the number of equations to write and solve. 

d) 200 mW 

4.59 a) - 1 m A 

b) - 1 mA 

4.60 a) -0.85 A 

b) -0.85 A 

4.63 60 V source, positive at the top, in series with a 
1011 resistor 

4.64 1 mA current source, with current flowing from top 
to bottom, in parallel with a 3.75 O resistor 

4.71 a) 51.3 V 

b) - 5 % 

4.74 160 V source, positive at the bottom, in series with 
a 56.4 kft resistor 

4.77 8 ft (The voltage source is zero because there are 
no independent sources in the circuit.) 

4.83 2.5 H and 22.5 O 

4.87 a) 6ft 

b) 24 W 

4.91 a) 50 V 

b) 250W 

4.96 30 V 

4.105 v{ = 39.583 V,v2 = 102.5 V 

4.106 t»i = 37.5 V,v2 = 105 V 

4.107 V] = 52.0833 V,i>2 = 117.5 V 

Chapter 5 
5.1 a) inverting 

input 

non-inverting 
input 

positive 
power supply 

output 

negative 
power supply 

b) The input resistance; in = 0 

c) The open-loop voltage gain; (vp - vn) = 0 

d) ^ = 9V 

5.2 - 1 mA 

5.3 a) -15 V (saturates) 

b) - 1 0 V 

c) - 4 V 

d) 7V 

e) 15 V (saturates) 

f) -1.08 V < va < 4.92 V 

5.8 a) Many possible designs; one uses a single 3.3 kft 
input resistor and three series-connected 
3.3 kft resistors in the feedback path. 

b) ±15 V 

5.9 a) 0 < or < 0.40 

b) 556.25 At A 

5.11 0<i?f<60kft 

5.12 a) Inverting summing amplifier 

b) - 6 V 

c) - 0 . 5 V < v „ < 2 V 

5.14 a) 14 V 

b) 3.818 V < va < 9.273 V 

5.17 a) Non-inverting amplifier 

b) 2vs 

c) - 6 V < vs < 4 V 

5.18 a) 10.54 V 

5.25 

5.26 

5.28 

5.33 

5.34 

5.43 

5.45 

b) -4.55 V < vg < 4.55 V 

c) 181.76 kft 

a) -15.1V 

b) 34.3 kft 

c) 250 kft 

20 kft 

a) 16 V 

b) -4.2 V < vb < 3 . 8 V 

19.93 kft < Rx < 20.07 kft 

a) 24.98 

b) -0.04 

c) 624.5 

a) -19.9844 

b) 736.1 jaV 

c) 5003.68 ft 

d) -20 ,0 V, 5000 ft 

a) 13.49 

b) 999.446 mV, 999.834 mV 

c) 387.78/AV 

d) 692.47 pA 

e) 13.5,1V,0V,0A 
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5.49 a) 2kf l 

b) 12 mfl 

Chapter 6 
6.1 »f(mV) 

e) v(V) 

6.4 

4 

3 

2 

1 

0 
( 

-1 

- 2 

-3 

-4 

— 

) 1 2 
l 

/*""~3 
l 
4 

1.4 

1.2 

1 F 

0.8 

0.6 

0.4 -

0.2 -

0 
0 1 

a) / = 0 

i = 50/ A 

/ = 0.5 - 50/A 

/ = 0 

b) v = 0 

v = lV 

v = -\V 

v = 0 

p = 0 

p = 50/ W 

/? = 50/ - 0.5 W 

/7 = 0 

w = 0 

w = 25/2 J 

/(s) 

/(s) 
4 

/ < 0 

0 < / < 5 ms 

5 < / < 10 ms 

10 ms < / 

/ < 0 

0 < / < 5 ms 

5 < / < 10 ms 

10 ms < / 

/ < 0 

0 < / < 5 ms 

5 < / < 10 ms 

10 ms < / 

/ < 0 

0 < / < 5 ms 

u> = 25/2 - 0.5/ + 0.0025 J 5 < / < 10 ms 

to = 0 10 ms < / 

6.16 a) -50 X 104/ + 15 V 

b) 106/V 

c) 1.6 X 106/ - 12 V 

d) 52 V 

6.17 

/(jxs) 

t (ms) 

6.21 8 H 

6.25 a) -5e~Al A 

b) -4e~4? - 6 A 

c) - e _ 4 i + 6 A 

d) 40 J 

e) 400 J 

f) 360 J 

9) 1(4)(-6)2 + j(16)(6)2 = 360 J (checks) 

6.26 2 ̂ cF, initial voltage is 25 V 

6.31 a) -20e" 2 5 'V 

b) -16<T25' + 21 V 

c) -4<T25/ - 21 V 

d) 320/AJ 

e) 2525/AJ 

f) 2205/xJ 

g) \(2 X 10"6)(21)2 + |(8 X 1()"6)(-21)2 = 

2205 /xJ 

6.39 a) 16--^ + 32/2 = 2-± 
at at 

b) -16<Tf + 32e_2f + 32e - ' - 32e~2' = 16e" 

c) 34<T' - 4e~2tV 

d) 30 V, which is consistent with the circuit's 
behavior 

6.44 a) 2721.6 mJ 

b) 2721.6 mJ 

c) 518.4 mJ 

d) 518.4 mJ 
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6.45 a) -4 .5 A 

b) No 

6.48 a) 50mH,2.4 

b) 0.2 X 10~6Wb/A,0.2 X 10 _ 6Wb/A 

6.49 0.8 nWb/A, 1.2 nWb/A 

6.51 v(t) = 0333vs(t) 

6.53 There is no difference in the output voltage for 
these two circuits. 

Chapter 
7.4 

7.5 

7.7 

7.23 

7.26 

7.35 

7.36 

a) 

b) 

c) 
d) 

e) 

a) 

b) 

c) 

d) 

e) 
f) 

9) 

h) 

i) 

i) 
k) 

I) 

a) 

b) 

c) 
d) 

a) 

b) 

c) 
a) 

b) 

c) 

a) 

b) 

a) 

b) 

c) 

d) 

7 
5 mA, 15 mA 

5 mA, - 5 mA 
5,,-20.000/ m A 

-5e-20- , )00 'mA 

The current in a resistor can change 
instantaneously. 

0 A 

160mA 

65 mA 

160 mA 

225 mA 

0A 

160e"2n"' mA 

OV 

-3.2 V 

OV 

-32e~2mV 

225 - 160e"200' mA 

2 A 

20 ms 

2e~5i)t A, -160e~5lM V, -144<T50' V 

69.92% 

1.6e~5()fmA,32<r5()' + 8V, -8<T50' + 8V 

800/d 

160/xJ,640/J 

2 4 « - « " raA 
-Se-5om + 8 0 V 

2880/d 

- 2 - 3 e - 5 0 0 , , ' A , 4 8 - 4 8 e - 5 , K , ( , ' V 

60V,0V 

- 5 mA 

0.333 mA 

5/AS 

0.333 -5.333<r2( ,a ( ,0 , ) 'mA 

7.37 

7.51 

7.53 

7.55 

7.56 

7.68 

7.69 

7.71 

7.78 

7.85 

7.87 

7.95 

7.96 

7.103 

7.104 

7.105 

a) 

b) 

a) 

b) 

c) 

d) 

e) 

5 + 15e-1000 'A 

50-450<T1 ( l o a ,V 

60 - 60e~imV 

1 - 0.6e-m)l mA 

1 + 2Ae~m)tmA 

4 - 2Ae~m' mA 

3.4 mA 

-60 + 90e~20,)0' V 

a) 

b) 

c) 
d) 

e) 

f) 

a) 

b) 

c) 

d) 

a) 

b) 

c) 
d) 

e) 

a) 

b) 

c) 
d) 

e) 

50 V 

- 2 4 V 

0.1 fis 

-18.5 A 

- 2 4 + 74<Tlt,7'V 

-18.5e-1()7 'A 

90 V 

- 6 0 V 

1000/AS 

916.3/AS 

4 - 4 < T 2 0 ' A 

80e"20fV 

2.4 - 2.4e~20' A 

1.6 - 1.6<T20'mA 

Yes 

40 - 40e"500(" mA 
1 0 e - 5 0 o o , v 

16 - \6e'5m)t mA 

24 - 24e"5000' mA 

Yes 

-5.013 V 

-5V, 0 < t < 5 s; -5£>-(U('" 5) V, 5 s < t < 

83.09 ms 

a) 

b) 

2.25 

272.1 /AS 

-1600/ + 8 V , - 1 5 + lle-2 0 0 'V, 

23 

80 

a) 

b) 

a) 

b) 

a) 

b) 

c) 

- 1600* - l le" 2 0 0 'V 

ms 

1.091 MO 

0.29 s 

8.55 flashes/min 

559.3 kH 

24.32 flashes/min 

99.06 mA 

$43.39 per year 

CO 



Answers to Selected Problems 771 

Chapter 8 
8.1 a) -10,000 rad/s,-40,000 rad/s 

b) overdamped 

c) 3125 ft 

d) -16,000 +/12,000 rad/s, 

-16,000 - /12,000 rad/s 

e) 2500ft 

8.7 a) 25 nF 

b) 2500ft 

c) 75 V 

d) 30 mA 

8.8 

8.9 

8.18 

8.19 

8.20 

8.29 

8.30 

8.31 

8.50 

e) 
-8000, (30 cos 6000? + 71.25 sin 6000?) mA 

a) 8 kft, 40 H, 625 rad/s, 500 rad/s 

b) -U-25()l + 4e~imtmA, 

O.&T250* -0.8<T10()"fmA, 

02e-25{)[ - 32e-xmt mA 

a) lkf t , l /xF,6000V/s ,8V 

b) (-3000? + 2)^5(ll l ,mA 

8.11 a) 500 rad/s, 400 rad/s, 1.5625 H,4/xF, 

- 15 mA, 60 mA 

b) 18.75e"200' - 18.75<r8()0'V 

c) 75<T200' - 7 5 ^ 8 0 0 ' mA 
800/ d) -60e-2 0 0 ' + 15(TftUUf mA 

5e~2im + \Qe-*m)<V 

\5e~25m cos 3122.5? + 721e~2mi sin 3122.5? V 

15e-4m]'V 

60 - 1 2 0 c - ™ + 15e-2iumi mA 

60 - 105e"W)00' cos 6000? - 90e"800<)rsin 6000? mA 

60 - 750,000?e"104' - 105eT104' mA 

60-80ff-8n0r + 2Off-32WfV 

8.51 60 - 120,000?e -2000( - 60e 2000( V 

8.52 60 - 60e>-200(" cos 1500? - 80<r20(K)/ sin 1500? V 

8.63 a) 0 < ? < 0.5" s: 

vn(t) = l0t2V,vlA(t) = -1.6? V; 

0.5 + < ? < ?sal: 

v0(t) = -5?2 + 15? - 3.75 V, 

vol(t) = 0.8? - 1.2 V 

b) 3.5 s 

8.64 0 < ? < 0.5 ~ s: 

va{t) = 10 - 20e"' + Hfe~*V, 

voi(t) = -0.8 + 0.8e~aV, 

0.5+ < ? < ?sal: 

Vo{t) = - 5 + 19.42ff"(t-a5) - 12.87e_2(f-a5)V, 

vo l(0 = 0.4 - 0.91e-2( '_05)V 

8.68 a) 55.23fis 

b) 262.42 V 

c) ?max = 53.63 /xs, v(tmax) = 262.15 V 

8.69 a) 40 mJ 

b) -27,808.04 V 

c) 568.15 V 

Chapter 9 
9.1 a) 80 V 

b) 500 Hz 

c) 3141.59 rad/s 

d) -0.5236 rad 

e) -30° 

f) 2 ms 

g) 166.67 ^s 

h) -80sinl0007r?V 

i) 333.33/AS 

j) 166.67jiis 

9.4 a) 600 Hz 

b) 1.67 ms 

c) 10V 

d) 6 V 

e) -53.13°,-0.9273 rad 

f) 662.64/AS 

g) 245.97^s 

2 

a) -195.72<rl066-67f + 200cos(800? - 11.87°) mA 

b) -195.72^- 1066-67/mA, 

200 cos(800? - 11.87°) mA 

c) 28.39 mA 

d) 200 mA, 800 rad/s, -11.87° 

e) 36.87° 

9.11 a) 111.8 cos(500? - 3.43°) 

b) 102.99 cos(377? + 40.29°) 

c) 161.59 cos(100? - 29.96°) 

d) 0 

9.13 a) 502,654.82 rad/s 

b) 90° 

c) -39.79 ft 

d) 0.05/AF 

e) -/39.79 ft 

9.14 a) 400 Hz 

b) -90° 

9.8 

9.9 
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9.85 

9.15 

9.24 

9.28 

9.29 

9.32 

9.37 

9.45 

9.46 

9.49 

9.55 

9.59 

9.60 

9.64 

9.76 

9.77 

9.83 

9.84 

c) 5fi 
d) 1.99 mH 

e) /5 ft 

a) 40 a /40 a 
AAA /~W~lT\ 

j VVv 

600/20° v f J 7-

b) 8.32 /76.31° A 

^ -/100 ft 

c) 8.32cos(8000f + 76.31°) A 

a) 200 /36.87° mS 

b) 160 mS 

c) 120 mS 

d) 10 A 

500 rad/s 

42.43 cos(50,000f + 45°) V 

42.43 cos(2000? + 45°) V 

2/3 ft 

227.68 / -18.43° V, (3.6 + ./10.8)(1 

2 / -36 .87° A, (100 - /50) ft 

1 0 / - 4 5 ° A, (1.6 + /3.2) ft 

188.43/-42.88° V 

/80 = 80 /90° V 

36 cos 2000 fV 

56.57 cos(10,000f - 4 5 ° ) V 

a) 0.3536 

b) 2 A 

a) 5 cos(5000f - 36.87°) A, 1 cos(5000f - 180°) A 

b) 0.5 

c) 9mJ,12mJ 

512,000/60° ft 

I 

V = ( V / 2 ) - 1 R 
o v in / m v 

a) 247.11/1.68° V 

b) -32 ft, 241.13/1.90° V 

c) -26.90 ft 

9.88 a) l{ = 24 / 0 ° A, 12 = 2.04 / 0 ° A, 

I3 = 21.96/0° A, I4 = 19.40/0° A, 

I5 = 4 .6 /0° A, I6 = 2 .55/0° A 

b) 0.42 / 0 ° A 

9.89 a) 0 A 

b) 0.436/0° A 

c) Yes; when the loads are equal, no power is lost 
to the neutral line, so the cost of power is lower. 

Chapter 10 
10.1 a) 409.58 W (abs), 286.79 VAR (abs) 

b) 103.53 W (abs), -386.37 VAR (del) 

c) -1000W (del),-1732.05 VAR (del) 

d) -250 W (del), 433.01 VAR (abs) 

10.2 a) Yes 

b) Yes 

10.15 a) 15.81 V(rms) 

b) 62.5 W 

10.18 a) 6.4 W, 4.8 VAR, 8 VA 

b) 6.4 W 

c) 4.8 VAR 

10.26 a) 0.96 lagging, 0.28; 0.8 leading,-0.6; 

0.6 leading, -0.8 

b) 0.74 leading,-0.67 

10.27 a) 1.875 + /0.625 ft 

b) 0.9487 lagging 

10.44 a) 20 + /20 ft 

b) 20 W 

c) With 22 ft and 1 mH, the load impedance is 
22 + /5 ft and the load power is 17.7 W 

10.47 a) 360 mW 

b) 4000ft,0.1/AF 

c) 443.1 mW; yes 

d) 450 mW 

e) 4000 ft, 66.67 nF 

f) Yes 

10.48 a) 4123.1 ft, 0.1/xF, 443.18 mW 

b) Yes 

c) Yes 

10.64 90 W 

10.65 a) 10 

b) 250W 

10.66 a) 28.8 ft 

b) 28.8 ft 

c) Yes 
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10.67 a) PL = 

PH = 

V1 

R\ + R2 

v\Ri + R2) 

R1R2 

PM = 
Yl 
Ri 

V2V2 

Pi. 

(Yl _ vL\(¥l\ 
(pL p¥)yp,) 

PM - PL 

b) 1125W 

10.68 36ft, 24 ft 

Chapter 11 
11.2 a) acb 

b) abc 

11.3 a) Balanced, negative phase sequence 

b) Balanced, positive phase sequence 

c) Balanced, negative phase sequence 

d) Balanced, positive phase sequence 

e) Unbalanced, due to unequal amplitudes 

f) Unbalanced, due to unequal phase angle 
separation 

11.7 vAB = 13,198.23 cos a>t V, 

vBC = 13,198.23 cos(wr + 120°) V, 

vCA = 13,198.23 cos(w/ - 120°) V 

11.9 a) 15.24 A(rms) 

b) 6583.94 V(rms) 

11.11 a) IaA = 5 / -36 .87° A, IbB = 5/83.13° A, 

IcC - 5 / -156 .87° A 

b) Vab = 216.51 / - 3 0 ° V , V b c = 216.51 /90° V, 

Vca = 216.51/-150° V 

c) VAN = 122.23/-1.36° V, 

VBN = 122.23/118.64° V, 

VCN = 122.23/-121.36° V 

d) VAB = 211.72/-31.36° V, 

VBC = 211.72/88.64° V, 

VCA = 211.72/-151.36° V 

11.12 a) 
1 + / 3 H 

20/If 
V( 

150° / + \ 
rms) \-J 

aA 

39 - /33 n 

b) 0.4 / -173.13° A(rms) 

c) 35.39/176.63° V(rms) 

11.13 21.64/121.34° V(rms) 

11.16 159.5 /29.34° V(rms) 

11.22 6120/36.61° VA 

11.24 a) 1833.46 /22° VA 

b) 519.62 V(rms) 

11.43 a) W2 ~ Wx = VL/L[cos (d - 30°) - cos (6 + 

30°)] = 2VLIL$in0sm30o = VLILsm6 

Thus, V3(W2 - Wx) = VwLILsm 0 = QT 

b) 2592 VAR, -2592 VAR, 3741.23 VAR, 

-4172.80 VAR 

11.44 197.26 W, 476.64 W 

11.52 a) 

1.70 MVA 
1.2MVAR 

1.2 MW 

b) 
1.2 MW 

11.53 a) 16.71 AIF 

b) 50.14/aF 

11.56 |Vab| = 12,548.8 V, so the voltage is below the 
acceptable level of 13 kV. Thus, when the load at 
the substation drops to zero, the capacitor bank 
must be switched off. 

11.57 PL(before) = 81.66 kW, PL(af ter) = 40.83 kW 

Chapter 12 
12.2 

12.3 

12.7 

12.9 

12.10 

12.14 

a) (t + \0)u(t + 10) - 2tu(t) + 

(t - 10)«(f - 10) 

b) -8(t + 3)u(t + 3) + 8(7 + 2)u(t + 2) + 

8(r + l)«(f + 1) - 8(f - l)u(t - 1 ) -

8(/ - 2)u{t -2) + 8(/ - 3}M(/ - 3) 

a) 5t[u{t) - u{t - 2)] + 10[«(f - 2 ) -

u(t - 6)] + (-5? + A0)[u(t - 6) - u(t - 8)] 

b) 10 sin irt[u{t) - u(t - 2)] 

c) 4t[u(t) - u{t - 5)] 

a) 1.0 

b) 0 

c) oo 

a) 26 

b) 2.25 

2/9 

at SC° 3 ) f + c,2 

M ^ 2 
b) * + J 
c) 2 

d) check 
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12.17 a) 

b) 

c) 

d) 

e) 

12.22 a) 

b) 

12.40 a) 

(.v + a)2 

CO 

2 i ~> 
S + CO 

co cos 0 + 

s2 + 

1 
-> 

sr 
sinh 0 + 

(r -
1 

v(.v + a) 

1 

.v sin 6 
-> 

of 

y[cosh 0] 

- 1) 

13.9 a) 

12.41 

12.42 

12.50 

12.55 

12.56 

s(s + a) 

[«?"' + 5e'2' + 2e-4']u(t) 

b) [6 + 4e~2t + 2e~4t + e~("]u(t) 

c) [4e'1 + 20cT'cos(2f + 36.87°)]M(?) 

d) [490 + 250e"7'cos(r - 163.74°)]«(r) 

a) [20/ - 4 + 4e-*]u(t) 

b) [250 - lOOte'1 - 250e~f]u(t) 

c) [30r - 8 + K)e3lcos(t + 36.87°) ]u(t) 

d) [20 - 2 . 5 f V - I5te~' - 20e"']«(0 

e) [16 + S9A4te~2tcos (t + 26.57°) + 

I13.14e_2rcos0 + 98.13°) ]u(t) 

c) 5'(t) - 105(f) + [3(k'_5/ + 20e~10f]«(f) 

a) / ( ( ) ' ) = 8,.f(oo) = 0 

b) /(0^) = 13,/(00) = 6 

c) / (0 + ) = 20, /(oo) = 0 

d) / (0 + ) = 250, /(oo) = 490 

0.947 

588 

Chapter 13 

13.4 a) — 
8 X 107s 

13.6 a) 

.v2 + 40,000* + 256 X 106 

b) Zero at 0; poles at -8000 rad/s and 

-32,000 rad/s 

s2 + 8000* + 25 x 106 

b) Zeros at -4000 + /3000 rad/s and 

-4000 - /30()() rad/s; pole at 0 

16 x Uf 
-^vw— 
5000 (2 

SI 
150 V-s 

b) 

'© 
-150s 

+ 

V„ 2.5 s a 

(s + 400)(.v + 1600) 

c) (SO*-*** - 200e-l60()f)«(r)V 

13.10 a) A/W-
+ 10012 

b) 

c) 
13.12 a) 

5 x 10s
 n 

s ' 

V. 

o.ob' n 

75.v2 + 812,500.v + 6875 X 

sis1 + 104v + 5 X 107) 

/ + \ 137.5 

/ 

1.25 mV 

-Hv--
^_7 
106 

[137.5 + 8().04^ 50()()'cos(5000/ + 141340) ] K ( 0 

ii, 

V-s 

R 
sC re© 4 £ 0 v. 

b) 

c) 

•48(s + 8000) 

.v2 + 8000* + 25 X 106 

2.4(.v + 4875) 

.v2 + 8000s + 25 X 106 

d) [80e"-")00fcos(3000f + 126.87°) ]u(t)V 

e) [2.5e-4mt cos(3(mt - 1 6 . 2 6 ° ) ] H ( 0 A 

13.21 a) [35 + 5.73e~' cos(7r + 167.91 ° ) ] H ( I ) V 

b) Compare solution at t = 0 and t = oo to 
circuit at t = 0 and t = oo 

13.22 a) [10 - Kk>""a5'cos0.5/]u(f)A 

b) 7.07e_OA cos(0.5r - 45°)w(r) V 

c) Compare solutions at t = 0 and t = oo to 
circuit at t = 0 and t = oo 
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13.29 a) 
652 + 6s - 18 - 9 r - 30.v 18 

s(s + 2)(5 + 3)' s(s + 2)(5 + 3) 

b) Initial values: 6 A, - 9 A; 

final values: - 3 A, - 3 A 

c) [ -3 + 3e~2' + 6e-3,]u(t)A, 

[ -3 - 3e~2' - 3e"3']u(t)A 

13.34 63.25*"ia*cos(50> + 71.57°)w(0 mA 

240(5 + 40) 
13.39 a) — 

' s(s + 20)(5 + 80) 

b) Initial value is 0. final value is 6 A 

c) (6 - 4e~m - 2e~m)u(t) A 

13.40 a) (-2e~m + 2 e ^ ) ' ) « ( 0 m A 

b) (2< -2()( 2e -h l>(0 mA 

13.42 a) 
480(5 + 2.5) 

5(5 + 4)(5 + 6) 

b) [50 + 90e~4' - \4Qe~("]u(t)V 

13.50 a) 

b) 

c) 

d) 

e) 

250 

5 + 250 

5 

5 + 250 

V 

5 + 8000 

8000 

5 + 8000 

, no zeros, pole at -250 racl/s 

, zero at 0, pole at -250 rad/s 

, zero at 0, pole at -8000 rad/s 

, no zeros, pole at -8000 rad/s 

100 
, no zeros, pole at -500 rad/s 

5 + 500 

13.62 (e - l)e" ?V 

13.63 (1 - e)e-'V 

13.77 16.97 cos (3/ + 8.13°) V 

5(5 + 30,000) 
13.79 a) 

1 (5 + 5000)(5 + 8000) 
b) (5e-5l)m - 4Ae-*m')u(t)V 

13.80 a) =1*2 
; (5 + 400)(5 + 1000) 

b) 13.13 cos(400f - 156.8°) V 

13.87 a) 0.8 A 

b) 0.6 A 

c) 0.2 A 

d) -0.6 A 

e) Q.6e~zxm'\t(t)A 

f) - 0 . 6 e - 2 x l % ( f ) A 

g) -1.6 x 1(T38(0 - 72QOe'2xliftu(t)V 

13.88 a) 80 V 

b) 20 V 

c) 0 V 

d) 325(f)juA 

e) 16 V 

f) 4V 

g) 20 V 

13.92 a) i2(0~) = *2<0+) = 0A; 

*'L(0~) = idQ+) = 35.36 A 

1440TT( 122.92 V25 - 3 0 0 0 T T \ / 2 

b) VQ = = =— + 
J (5 + 1475TT)(52 + 14,400TT2) 

300 V 2 
5 + 1475 w 

va = 252.89<Tl475jr/ + 

172.62 cos(1207it + 6.85°) V 

y„(0+) = 424.26 V 

c) V„ = 122.06/6.85° V(rms) 
d ) »„ (V) 

t (ms) 

13.93 a) -20.58^ - 1 4 7 5^ + 172.62 cos( 12()77-/ - 83.15°) V 

b) 
v„ (V) 

t (ms) 

c) Voltage spikes in Problem 13.92 but not here. 
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Chapter 14 
14.1 a) 2021.27 Hz 

b) H(jcoc) = 0.7071 / - 4 5 ° , 

H(j02a>c) = 0.981 / -11 .31° , 

H(j5wc) = 0.196/-78.69° 

c) vo((0c) = 7.07cos(12,700f - 45°)V, 

vo(02wc) = 9.81 cos(2540r - 11.31°) V, 

v0(5a)c) = 1.96cos(63,500f - 78.69°) V 

14.2 a) 31.42 ft 

b) 3419.98 Hz 

c) 33 ft, 5252.11 Hz 

14.13 a) 5.305 kft 

b) 333.86 Hz 

14.14 a) 150 ft 

b) 680ft 

14.22 a) lOOkrad/s 

b) 15.9 kHz 

c) 8 

d) 93.95 krad/s 

e) 14.95 kHz 

f) 106.45 krad/s 

g) 16.94 kHz 

h) 1.99 kHz 

14.23 a) 5 kft, 50 mH 

b) 3.52 kHz, 2.88 kHz 

c) 636.62 Hz 

14.35 a) 1 Mrad/s 

b) 159.15 kHz 

c) 15 

d) 967.22 krad/s 

e) 153.94 kHz 

f) 1.03 Mrad/s 

g) 164.55 krad/s 

h) 10.61 kHz 

14.36 a) 397.89ft, 3.17 mH 

b) 4.42 kHz, 3.62 kHz 

c) 800 Hz 

14.46 a) 0.39H,0.10piF 

b) | V W 1 = \Vm^\ = 0.707|Vpeak|, 

I^TTOHJ = I ^ W l = 0.948|Kpcak| 

c) [VUWHJ = 0.344|Vpcak| 

14.47 L = 0.225 H,C = 0.057/AF, 0.344|Vr
pcak| 

14.48 63.7 times as large as the DTMF tones 

Chapter 15 
15.6 a) R{ = 67.16 ft, R2 = 212.21ft 

b) 

+ • 

»i 

750 nF 

67.16(1 

• 

212.21 ft 

^ ^ _ 
^> b - " ^ 

15.10 a) Rx = 5.10 kft, R2 = 25.55 kft 

b) 

5.10kn 3^f 
• VA | ( 1 

T 

-VW 

25.55 kH 

v ^ ^ 
15.15 a) 1H, IF , 0.05 ft 

b) 2.5 H, 250 pF, 5 kft 

c) 250 pF 2.5 H 
O V A . 

5kn 

15.16 a) 1/0 F 

(1/0* 
b) - , 

S2 + (1/(2)5 + 1 

c) 10 kft, 6.4 H, 250 pF 

u) # 1L e-wv-v-
250 pF 

6.4 H 
10 kft: 

e) 
1562.55 

s2 + 1562.5.9 + 625 X 106 

15.30 fcl = 38.52 Hz, fc2 = 1038.52 Hz, 

RL = 30.65 ft, RH = 826.43 ft 

15.31 RL = 21.18 kft, RH = 1.18 kft; 

if Ri = 1 kft then Rf = 6 kft 

15.36 a) 3 

b) -32.65 dB 

15.38 a) First-order stage: 79.58 nF; 

second-order stage: 151.15 nF, 39.79 nF 
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b) 
159.15 nF b) 

2V, 
'77 

79.58 nF 

lkU 
— V A . — 

1 + 2 Y — 
H=I 1 - 4« 

- COS 110)()1 V 

lkft 
• — W W 
+ 

I I 

i k n lkft 

39.79 nF ;±T 

V V 
) v in . Y i,. — + -^ - sina>0/ + 7T 

2K 
—— T^ r cos Hunt V 
77 «=2A6....1 " « 2 

~ cos (nojj) 

15.39 a) First section: 3.05 kH, 20.77 kft; 
second section: 7.35 kil , 8.61 kil 

b) 

3.05 kO 

+—IM-I(-
10 nF 10 nF 

: 7.35 kO 

HHHf-
10 nF 10 nF 

: 20.77 k i l 8.61 kO 

I 
15.60 a) R = 5305 £l,aR = 10,478X1, 

(1 - a)R = 133 ft, C = 15 nF,2C = 30 nF 

b) 
15 nF 15 nF 

^ It 

c) 
J 2 + 4 X 1 0 V 

s2 + IOOTT.? + 4 X l O V 

15.61 C = 39.79 nF, |H(/w)L« = 20-01 dB, 

|#07#A)I = 17.04 dB 
15.62 Choose i?! = 100 ki l , then R2 = 400 kft, 

C, - 7.96 nF 

Chapter 16 

v 4K 16.1 a) 
1 

y\ — sin nct)Ut V 77 «=fe..." 

^ , 160 _ . 320 
16.2 + 20 sin aU 

77 W ,,=2¾... («* - 1) 
16.3 a) to(m = 31,415.93 rad/s,w„b = 157.08 krad/s 

b) /„a = 5000 Hz , / o b = 25 kHz 

c) am = 0, avb = 25 V 

d) %a = 0 for A: even; 

«>ta = -—j- sin — for fc odd; 

240 
bk& = 0 for A: even; bk.A = — - for k odd. 

irk 

akb = — - sin —— V for all k; bkb = 0 for all k. 
irk 4 

e) va(t) = 

80 £ ( 1 . nir 3 . \ 
— Y — sin —- cos «tt„f H— sin nwj V 

""«=UAA * 2 " J 
/N _ 200 " (\ . nir \ „ 

vb(t) = 25 + > j — sin —— cos nioj V 

16.11 a) 27rrad/s 

b) yes 

c) no 

d) no 

16.12 a) 62.5 Hz 

b) no 

c) yes 

d) yes 

e) yes 

f) av = 0; ak = 0 for all k;bk - 0 for k even; 

0.16 .kit 
ov = -, -, sin —— for k odd 

77½2 4 

~ V ( « T T ) 2 + 4 
16.22 a) 10 2 — — 2 cos (ncoQt - 6n) A, 

«=1.3.5. 

d„ — tan" mr 

b) 26.23 A 
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16.27 a) 41.998 cos(2000f - 0.60°) + 

13.985 cos(6000f + 177.32°) + 

5.984 cos( 14,0001 - 175.83°) V 

b) The 5th harmonic at 10 krad/s is eliminated by 
the bandreject filter whose center frequency is 
10 krad/s. 

16.28 26.83 cos(500/ + 63.43°) + 16.64 cos( 1500/ -

146.31°) + 11.14cos(2500r + 21.80°) V 

16.34 a) 59.46 W 

b) 60 W 

c) - 0 . 9 0 4 1 % 

16.35 1.85 W 

16.36 a) 74.5356 V(rms) 

b) 74.5306 V(rms) 

16.39 a) 117.55 V(rms) 

b) - 2 . 0 4 % 

c) 69.2765 V(rms) , -0 .0081 % 

V V 

b) 

|C 

1 

< 

± 
1 

1 

o 

> 

1 

10 * 

f 9 

8 
7 

6 

5 

4 

3 

2 

1 

i 

— i 

-

• 

« i 

< 
i 

—•— 

i 

! 
- 3 - 2 - 1 0 1 2 

d„(dcg) 

135 

90 

f45 

16.45 C„ = ^ . C . - / . n ±1 ,±2 , .. 

6.46 a) 480 W 

b) 68.58 V 

c) - 2 . 0 2 % 

.6.49 a) 

\ 

20 
18 
16 
14 

12 

10« 
8 
6 
4 
2 

f) 

(V) 

— < 

> 
-

-

i 

i > 

t > 
i 

—o— 

1 

- 7 - 6 - 5 - 4 - 3 - 2 - 1 ¢ 1 2 3 4 5 6 7 

-«1-1 
-90 

-135 

0t (dcg) 

135 

90 

45 

L 

16.50 a) Aa(mA) 

200 

150 
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50 

0 

180 

90.56 
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b) 
I C, | (mA) 

200 
180 

13.02 
nc^ 19-1 

6.37 7.7 9.55 • 
t f T T I 

100 

45.28 45.28 
13.02 

19.1 
9-55 7.7 6.37 0 y.DO 7.7 6 

1 T y y t 
- 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

150 

- 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5 6 

• • • 
-90° -90° • -90° 

-97.26° -101.98°_122.48' 

122^48° 101.98° 97.26° 
90° • 90° 90° 

1 150 

Chapter 17 

17.1 a) / 

b) 0 

c) 

2A COT COS(WT/2) — 2 sm(cor/2) 

of 

-20 - 1 5 - 1 0 10 15 20 

17.2 a) 
conA 

4TT 

sin(w,//4) 

(cont/4) 

b) 79.58 X l (T 3 f tv4 

c) 

, 2(« z - co1) 
17.5 a) \ ^ 

« — co 
b) -/48fl(o 

; y (a2 + co2)4 

+ a2 + (co - coa)
2 a2 + (co + co0)

2 

—ja ja 

a2 + (co - coa)
2 a2 + (co + co0)

2 

e) e-JMt" 

sin 
17.19 a) 

(co + COQ)T/2 sin 

+ 
(&j - co())r/2 

2 (co + co0)(r/2) 2 (co - CO0)(T/2) 

b) F(co) -*TT[8(CO - COQ) + 8(co + coQ)) 

17.20 a) 6e~50(u(t) m A 

b) Yes, check the initial conditions and final values. 

17.28 a) [12.5e - / - 7 .5e" 5 /]«(0 + 5e5'u(-t) V 

b) 5 V 

c) 5 V 

d) (12.5<T' -1.5e-5t)u(t)V 

e) Yes 

17.30 lcos(5000f + 90°) A 

17.40 a) [ -24e~ ' + 32e~t/2]u(t) + 8e'u(-t)V 

b) 

•5 - 4 - 3 - 2 - 1 0 
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c) 

- 5 - 4 - 3 - 2 - 1 0 1 2 

d) 900 J 

e) 320 J 

f) 95.95% 

g) 99.75% 

Chapter 18 
18.2 yn = 168.75 mS; yl2 = -156.25 mS; 

y2l = -156.25 mS;y22 = 218.75 mS 

18.3 

18.8 

18.13 

18.14 

18.29 

18.30 

18.34 

18.40 

Zn = 13ft;z12 = 12 H; 

22i = 12ft;z22
 = 16 ft 

flU = - 4 X 10~4;a12 = - 2 0 ft; 

a21 = -0.5fxS;a22 = -0.02 

gu = 12.5 fiSlgn = 1*5; 

g2l = -250;g2 2 = 50Mft 

a) yn =2QfiS;yu = 30nS; 

y2l = 5/LIS;>?22 = 20 nS 

b) yn = 20MS;)/12 = 30nS; 

y21 = 5/xS;y22 = 20 nS 

12.5 

a) 28V(rms) 

b) 11.20mW 

c) 2.88 /xW 

4 2 0 M W 

3.75 V 
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a-, b-, and c-phase current and voltage, 400,419 
Acceptance ratings, 367 
Active filter circuits, 558-603 

bandpass filters, 566-570,585-588,594 
bandreject filters, 570-573,585,588-591,594 
bass volume control, 559,591-593 
block diagrams, 567-568 
Bode plots, 560-563 
broadband filters, 567-573,594 
Butterworth filters, 578-586,594-595 
cascading identical filters, 574-577,594-595 
first-order, 560-564 
higher-order, 573-591,594 
high-pass filters, 562-563,585,594 
low-pass filters, 560-562,578-584,594 
narrowband filters, 586-591,595 
op amp filters, 560-586,594 
prototype filters, 561-566,594 
scaling, 564-566,594 

Adjoint of a matrix, 715-716 
Admittance (Y), 324,347 
Ammeter, 66-67,76 
Amplifier circuits, 98-99,105-106,118-119,144-173, 

241-244,246,289-293 
analysis of, 98-99 
integrating, 241-244,246,289-293 
mesh-current method for, 105-106 
node-voltage method for, 98-99 
operational (op amp), 144-173 
responses and, 241-244,246,289-293 
Thevenin equivalent in, 118-119 

Amplitude modulation, 659 
Amplitude plots, 742-747,751-754 
Amplitude spectrum, 630-632,647-648 

periodic functions described using, 630-632 
transition from periodic to aperiodic, 647-648 

Analog meters, 67,76 
Aperiodic functions, Fourier transform, 644,646-648,672 
Apparent power, 370,386 
Attenuation, defined, 522 
Average power (P), 363-367,373-375,380-382,386, 

410-411,415-417,419,623-627,635 
acceptance ratings, 367 
calculations of, 363-367,373-375,386 
Fourier series analysis for, 623-627,635 
maximum power (Pmax) transfer, 380-382 
measurement of, 415—417 
periodic functions, calculations with, 623-627,635 

power factor (pf), 365,386 
sinusoidal steady-state analysis for, 363-367,373-375,386 
three-phase circuits, 445-446,452-454 
two-wattmeter method, 415-417,419 
wye (Y) connected loads, in, 410-411,419 

B 
Balanced three-phase circuits, 398-427 

average power in, 410-411,415-417,419 
circuit symbols for, 401^102,407 
complex power in, 411,419 
conditions for, 403 
delta (A) connected loads,411—413 
designing characteristics of, 398,419 
electrical power, transmission and distribution of, 399, 

418-419 
instantaneous power in, 412,419 
line current, 405 
line voltage, 404-405 
neutral terminal for, 401 
phase current, 405 
phase voltage, 405 
power calculations in, 410-415 
single-phase equivalent circuits and, 403-404,419 
sinusoidal voltage phases for, 400-401,419 
sources of three-phase voltage, 401-402 
unspecified loads, 414 
voltages (v), 400-405 
wye (Y) connected loads, 410-411,413 
wye-delta (Y-A) circuit, analysis of, 407-409 
wye-wye (Y-Y) circuit, analysis of, 402-407 

Bandpass filters, 525,536-545,551,566-570,585-588,594 
active filter circuits, 566-570,585-588,594 
bandwidth (/3), 537,539-540,551 
broadband, 567-573,594 
Butterworth, 585 
cascading, 567-570 
center (resonant) frequency (w„), 536-540,551 
cutoff frequency (o»c) 538-540 
frequency response plots, 525,537 
narrowband, 586-588 
operational amplifier (op amp), 566-570,585,594 
passive filter circuits, 525,536-545,551 
qualitative analysis, 537-538 
quality factor (Q), 537,540,551,586-587 
quantitative analysis, 538-544 
relationship between frequency and time domains, 545 
series RLC circuit as, 537-545 
transfer function H(s) for, 544,551 

781 
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Bandreject filters, 525,545-549.551,570-573,585, 
588-591,594 

active filter circuits, 570-573,585,588-591,594 
Butterworth filters, 585 
cascading, 570-572 
cutoff frequency (o)c), 547-548 
frequency response plots, 525,546 
narrowband filters, 588-591 
operational amplifier (op amp) filters, 570-573,585,594 
passive filter circuits, 525,545-549,551 
qualitative analysis, 546 
quantitative analysis, 546-548 
series RLC circuit as, 546-549 
transfer function H(s) for, 549,551 

Bandwidth (/3), 537,539-540,546-548,551 
Bass volume control, 559,591-593 
Black box, 58 
Black box amplifier, 679,697 
Block diagrams, 567-568 
Bode plots, 560-563,741-757 

amplitude, 742-747,751-754 
complex poles and zeros, 749-751 
correcting, 752-754 
frequency response, 560-563 
phase angle, 747-749,755-757 
real, first order poles and zeros, 741-742 
straight-line amplitude, 742-746,752-754 
straight-line phase angle, 747-749 

Branch, defined, 90-91 
Broadband filters, 567-573,594 
Butterworth filters, 578-586,594-595 

bandpass, 585 
bandreject, 585 
design of circuits, 579-582 
high-pass, 585,594-595 
low-pass, 578-584,594-595 
order of cascading, 582-584 
transfer function H(s), 578-579 

C 
Capacitance (C), 174,182,203 

circuit parameter of, 174,182,203 
displacement current, 182 
terminal equations for, 182-186,203 

Capacitors, 174,182-189,203,319-320,469-470,498-499,506 
current (/), 182-185,203 
displacement current, 182 
energy (iv), 184-186,203 
frequency domain, 319-320 
impulse function (/) in, 498-499 
Laplace transform used for, 469-470,498-499,506 
power 0),183-186,203 
.v-domain, 469-470,506 
series-parallel combinations, 188-189,203 
switching operation, 498-499 
terminal equations for, 182-186,203,469-470,506 

voltage (v), 183-186,203 
voltage to current (v-i) relationships, 183,319-320 

Cascading active filters, 567-570,574-577,594-595 
bandpass, 567-570 
bandreject, 570-572 
Butterworth, 582-584,594-595 
identical lowpass, 574-577,594-595 
order of, 574-575,582-584,594-595 

Cascading connections, 289-293,297 
Center frequency (a>„), 536-540,546-548,551 
Characteristic determinant, 706 
Circuit analysis, 10-11,30-33,37-45,47^18,71-73,76, 

88-143,466-521,689-693 
conceptual model, 10-11 
delta to wye (A to Y) transformations, 71-73,76 
dependant-source circuits, 42-45 
ideal circuit components, 11 
impulse function K8(t) in, 498-504,506 
Kirchhoff s laws, 37-41,48,471 
Laplace transform in, 466-506 
maximum power transfer, 120-122,129 
mesh-current method, 90,99-109,129 
node-voltage method, 90,93-99,106-109,129 
nonplanar circuits, 90-91 
Norton equivalent, 115,129 
Ohm's law, 30-33,47-48,470-471 
physical prototype, 11 
planar circuits, 90-91 
.y-domain, 470-489,506 
sensitivity, resistors, 89,125-128 
simultaneous equations for, 91-93 
source transformations, 109-113,129 
superposition, 122-125,129,482-484 
terminology for, 90-91 
Thevenin equivalent, 113-119,129,479-480 
transfer function H(s) in, 488-497,506 
two-port circuits. 689-693 

Circuit theory, 6-7 
Circuits, 2-87,212-305,398-427,488-489,522-603, 

678-703. See also Amplifier circuits; Circuit analysis; 
Equivalent circuits; Ideal basic circuit elements 

active filter, 558-603 
balanced three-phase, 398-427 
constant (dc) sources, 56 
current (/),11-12,37-42 
dependent sources, 26-27,29,42-45 
electrical engineering and, 2-8 
electrical resistance, 30-33 
electrical safety of, 25,46-74 
energy and, 14-17 
first-order, 212-263 
frequency-selective, 522-603 
ideal basic elements, 12-14,24-55 
International System of Units (SI) for, 8-10 
Kirchhoff s laws, 37-̂ J-l 
models of, 10-11,17-18,34-36 
Ohm's law, 30-33 
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open,35 
parallel-connected (in parallel), 59-61,76 
passive filter, 522-557 
passive sign convention, 13 
power (/;) and, 14—17 
resistive, 56-87 
responses of, 212-305 
second-order, 264-305 
series-connected (in series), 39,58,76 
short. 35 
time invariant, 488-489 
two-port, 678-703 
variables of, 2-23 
voltage (v), 11-12 

Coefficient of coupling, 197,204 
Common mode input, 156-157 
Common mode rejection ratio (CMRR), 157-159,164 
Complex numbers, 725-730 

arithmetic operators, 727-728 
graphical representation of, 726-727 
integer power of, 729 
notation, 725-726 
roots of, 729-730 
useful identities of, 728-729 

Complex poles and zeros, 749-751 
Complex power (5), 370-374,386,411,419 
Component values, 763 
Conductance (G), 31 
Constant (dc) sources, 56 
Controlled sources, 27 
Convergence of Fourier integral, 648-650 
Convolution, 489^195,506,659-660 

Fourier transform of, 659-660 
integral for transfer function and, 489-495,506 

Cosine function, Fourier transform of, 654-655 
Cramer's method,706 
Critically damped responses, 269,277-278,283,286,297-298 
Current (i), 11-13,26-29,37-41,47-48,66-69,147-149, 

164,177-179,182-185,203,214-216,308-309,347,400, 
405,419 

a-, b-, and c-phase, 400,419 
capacitors, 182-185,203 
defined, 11-12 
displacement, 182 
electric charge and, 11-13 
inductors, 177-179,203 
input constraints, 147-148,164 
Kirchhoff s law (KCL), 37-41,48 
line, 405 
measurement of, 66-69 
operational amplifiers (op amps), 147-149,164 
RC circuits, deriving expression for, 214-216 
reference direction, 13 
sinusoidal source, 308-309,347 
sources, 26-29,47 
terminal variables, 147 

Current coil, 415 

Current-divider circuits, 63,76 
Current-division circuit analysis, 64-66,76 
Current ratios, transformers, 340-342 
Current to voltage (i-v) relationships, 177-179,182-183 
Cutoff frequency (toc), 524-525,527-528,533,538-540, 

547-548,550 
bandpass filters, 538-540 
bandreject filters, 547-548 
bandwidth, relationship to, 539 
center frequency, relationship to, 538-539 
defined, 524-525,527,550 
half-power frequency, 528 
high-pass filters. 533 
low-pass filters, 527-529 

D 
Damped radian frequency ((o(i), 274-275 
Damping factor (coefficient), 275 
d'Arsonval meter movement, 67-68 
Decibel (dB), unit of, 739-740 
Delta (A) interconnection, 71 
Delta (A) connected loads, 411-413 
Delta-to-wye (AtoY) equivalent circuits, 71-73,76 
Delta-to-wye (A toY) transformations, 326-328 
Dependent sources, 26-27,29,47,95-96,102-103 

analysis of circuits with, 95-96,102-103 
ideal circuit elements of, 26-27,47 
interconnections of, 47 
mesh-current method for, 102-103 
node-voltage method for, 95-96 

Derivatives of impulse functions, 435 
Derived units, 9 
Determinants, 706-709 
Difference-amplifier circuit, 155-159,164 

common mode input, 156-157 
common mode rejection ratio (CMRR), 157-159,164 
defined, 164 
differential mode input, 156-157 

Differential mode input, 156-157 
Differentiation, operational transforms for, 438-439,658 
Digital meters, 67,76 
Direct approach, step response analysis, 281-282 
Direct current (dc) sources, 56 
Dirichlet's conditions, 607 
Displacement current, 182 
Dot convention, 190-192,195-196,204,341-342 

ideal transformers, 341-342 
mutual inductance (M), 190-192,195-196,204 

Dual in-line package (DIP), 146 

E 
Effective value, see Root-mean-square (rms) 
Electrical circuit, defined, 6 
Electrical engineering, 2-8 

circuit theory, 6-7 
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Electrical engineering (Continued) 
communication systems, 4 
computer systems, 4 
control systems, 4-5 
overview of, 4-8 
power systems, 5 
problem solving, 3,7-8 
role of, 2 
signal-processing systems, 5-6 

Electrical power, transmission and distribution of, 399, 
418-419 

Electrical safety and, 25,46-74 
Energy (w), 14-17,179-181,184-186,197-200,203-204 

capacitors, 184-186,203 
inductors, 179-181,203 
mutual inductance and storage of, 197-200,204 
power and, 14-17 

Equivalent circuits, 71-73,76,113-119,129,159-162, 
329-332,479-480,731-738 

delta to wye (A to Y), 71-73,76 
frequency-domain, 329-332 
ideal transformers for, 731,735-738 
Laplace transform analysis of, 479-480 
magnetically coupled coils and, 731-738 
Norton, 115,129,329-330 
operational amplifier (op amp), 159-162 
7r-equivalent, 732-735 
pi to tee (77 to T), 71-73 
source transformations, 115-116,329-332 
T-equivalent, 731-732 
Thevenin, 113-119,129,329-332,479-480 
transformation of, 71-73,76 

Even-function symmetry, 611-612,634 
Exponential form of the Fourier series, 627-629,635 

F 
Faraday's law, 193-194 
Farads (F), unit of, 182 
Feedback, op amps, 147-148,164 
Feedback resistors, 291-293,297 
Filters, 522-523,550. See also Frequency-selective circuits 
Final-value theorem, Laplace transform, 455-457 
First-order active filters, 560-564 
First-order circuits, 212-263 

defined, 212,214,246 
flashing light, 213,245-246 
general solutions for, 231-236,246 
integrating amplifier, analysis of, 241-244,246 
natural response of, 212,214-224,231-236,246 
resistor-capacitor (RC), 212,214,220-224,229-236, 

239,246 
resistor-inductor (RL), 212,214-220,224-228, 

236-238,246 
sequential switching, 236-240,246 
steady-state response of, 217 
step response of, 212,224-236,246 
unbounded response of, 240-241,246 

Flashing light circuit, 213,245-246 
Fourier series, 604-643 

amplitude spectrum, 630-632 
analysis, 607-608 
application of, 619-623 
average-power calculations, 623-627,635 
coefficients, 607-616,634 
Dirichlet's conditions, 607 
exponential form of, 627-629,635 
fundamental frequency, 607,634 
harmonic frequency, 607,634 
periodic functions and, 604-607,611-616,619-627, 

630-632,634-635 
phase spectrum, 630-632 
root-mean-square (rms) value, 626-627,635 
square wave input of sinusoids, 605,632-634 
steady-state response, 619-627,635 
symmetry and, 611-616,634 
trigonometric form of, 617-618,634 
waveforms, 604-606 

Fourier transform, 644-677 
amplitude spectrum transition, 647-648 
aperiodic functions of, 644,646-648,672 
circuit applications of, 661-663 
convergence of Fourier integral, 648-650 
cosine function, 654-655 
defined, 646 
derivation of, 646-648 
elementary functions, 655 
integral, 646-650 
inverse, 647 
Laplace transforms used to find, 650-653 
mathematical properties of, 655-657 
operational, 657-661 
Parseval's theorem, 664-672 
signum function, 653 
sinusoidal steady-state response using, 663 
telephone line frequency response, 645,672 
time-domain functions of, 648-650,672 
transient response using, 662 
unit step function, 654 

Frequency ( /) , defined, 7 
Frequency domain, 312-322,329-343,441,531,545,659-660 

convolution in, 660 
defined, 313 
delta-to-wye (A to Y) transformations, 326-328 
Fourier transform and, 659-660 
impedance (Z), 320,322-332,336 
Kirchhoff s laws, 321-322 
Laplace transform and, 441 
mesh-current method, 333-334 
node-voltage method, 332-333 
Norton equivalent circuit, 329-330 
operational transforms of, 441,659-660 
passive-filter circuits and, 531,545 
phasors, 312-317,347 
reactance, 320 
sinusoidal steady-state analysis and, 312-322,329-343 
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source transformations and, 326-332 
Thevenin equivalent circuit, 329-332 
time domain, relationship to, 531,545 
transformers, 334-343 
translation in, 441,659 
voltage to current (v-i) relationships, 317-320 

Frequency regions, 530 
Frequency response, defined, 522 
Frequency response plots, 524-525,560-563 

Bode plots, 560-563 
magnitude plot, 524-525 
phase angle plot, 524-525 

Frequency scaling (kf), 564,594 
Frequency-selective circuits, 522-603 

active filter circuits, 558-603 
attenuation, 522 
circuit symbols for, 524 
filters, 522-523,550 
passive filter circuits, 522-557 

Functional Laplace transforms, 431,436^-37,459 
Fundamental frequency, Fourier series, 607,634 

G 
Gain (A), 147,151 
Graphical representation of complex numbers, 726-727 

H 
Half-power frequency, 528 
Half-wave symmetry, 613-614,634 
Harmonic frequency, 607,634 
Heating appliances, 361,384-385 
Henrys (H), unit of, 176 
High-pass filters, 524-525,532-536,551,562-563,585, 

594-595 
active filter circuits, 562-563,585,594 
Butterworth, 585,594-595 
cutoff frequency (coc), 533 
frequency response plots, 524-525 
operational amplifier (op amp), 562-563,585,594 
passive filter circuits, 524-525,532-536,551 
qualitative analysis, 532-533 
quantitative analysis, 533-536 
series RC circuits, 526-532 
transfer function H(s) for, 536,551 

Higher-order active filters, 573-591,594 
Household distribution circuit, 307,346 
Hybrid parameters, two-port circuits, 683 

I 
Ideal basic circuit elements, 12-14,24-55,174-211 

active, 27 
capacitors, 174,182-189,203 
closed loop (path), 38,48 
current (/), 26-29,37-42 
dot convention, 190-192,195-196 

electrical resistance, 30-33 
electrical safety and, 25,46-74 
inductors, 174,"l76-182,187-200,203 
mutual inductance, 176,189-200,203-204 
nodes, 37-38,48 
passive sign convention, 13,176 
passive, 27,176,203 
polarity reference, 190-196 
proximity switches, 175,200-202 
reference direction, 13 
resistors, 30-33,47-48 
self-inductance, 176-182,193-194,196-197,203 
series-connected (in series), 39 
series-parallel combinations, 187-189,203 
sources, 26-29,42-45,47 
terminal equations for, 176-186,203 
voltage (v), 26-29 

Ideal transformers, 335,338-343,347,383-384,731-738 
dot convention for, 341-342 
equivalent circuits in, 735-738 
frequency domain and, 334-343 
impedance matching using, 343 
limiting values of, 338-340 
magnetically coupled coils and, 338,731-738 
maximum power transfer with, 383-384 
polarity of, 341-342 
properties of, 338 
sinusoidal steady-state analysis, 335,338-343,347 
voltage and current ratios, 340-342 

Identity matrix, 714-715 
Ignition circuit, 265,294-296 
Impedance (Z), 320,322-332,336,343,347,380-381 

admittance ( Y), 324,347 
combined in series and in parallel, 322-326 
delta-to-wye (A to Y) transformations, 326-328 
frequency domain source transformations, 326-332 
matching using ideal transformers, 343 
maximum power transfer with restricted, 380-381 
Norton equivalent circuit, 329-330 
reflected (Z,),336,347 
susceptance, 324 
Thevenin equivalent circuit, 329-332 
voltage to current (v-i) relationships, 320 

Improper rational function, 444,453^154,459 
Impulse, defined, 433 
Impulse function KS(t), 433-435,459,498-504,506 

capacitor circuit analysis and, 498-499 
circuit analysis using, 498-504,506 
circuit symbols for, 498 
defined, 433-434 
derivatives of, 435 
inductor circuit and, 499-501 
Laplace transform and, 433-435,459,498-504,506 
moment function (unit doublet), 435 
sifting property, 434 
sources, 501-504 
strength (K) of, 433 
switching operations for, 498-501,506 
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Impulse function K8(t) (Continued) 
unit 5(0,433-434,459 
variable-parameter function, 433-434 

Impulsive sources, 501-504 
Independent sources, 26,29,47 
Indirect approach, step response analysis, 281 
Inductance (L), 174,176-182,189-200,203-204 

circuit parameter of, 174,176,203 
Faraday's law, 193-194 
mutual, 176,189-200,203-204 
self, 176-182,193-194,203 

Inductors, 174,176-182,187-200,203,318-319,468-469, 
499-501,506 

behavior of, 174 
circuit symbol for, 176 
current (i) in, 111-119,203 
energy (vv) in, 179-181,203 
frequency domain, 318-319 
impulse function (I) in, 499-501 
Laplace transform used for, 468-469,499-501,506 
power (p) in, 179-181,203 
i-domain, 468-469,506 
series-parallel combinations, 187-188,203 
switching operation, 499-501 
terminal equations for, 176-181,203,468-469,506 
voltage (v) in, 176-177,203 
voltage to current (v-i) relationships, 176-177, 

318-319 
Infinite frequency, 530 
Initial-value theorem, Laplace transform, 455-457 
Input constraints, 147-148,165 
Instantaneous power, 362-363,386,412,419 
Integer power of complex numbers, 729 
Integrals, 646-650,761-762 
Integrating amplifiers, 241-244,246,289-293,297 

cascading connections, 289-293,297 
feedback resistors and, 291-293,297 
first-order circuits with, 241-246 
response analysis of, 241-244,246 
second-order circuits with, 289-293,297 
sequential switching and, 243 

Integration, operational transforms for, 439-440,658 
Integrodifferential equations, 442-443 
Interconnected two-port circuits, 694-697 
International System of Units (SI), 8-10 
Inverse Fourier transform, 647 
Inverse Laplace transforms, 444-454,459 

distinct complex roots of D(s), 447-449 
distinct real roots of £)(5), 445-446 
improper rational function, 444,453-454 
partial fraction expansion, 444-454 
proper rational functions, 444-453,459 
rational function F(s), 444,459 
repeated complex roots of D(s), 451-453 
repeated real roots of D(s), 449^451 

Inverse of a matrix, 716 
Inverse phasor transform, 314-316,347 
Inverting-amplifier circuit, 150-152,160,164 

K 
Kirchhoff s laws, 37-41,48,321-322,471 

closed loop (path) for application of, 38 
current (KCL), 37-41,48,321-322 
frequency domain, 321-322 
nodes, 37-38 
s-domain applications of, 471 
voltage (KVL), 38,40-41,48,321 

L 
Laplace transform, 428-521,650-653 

applications of, 442-444,472-484 
circuit analysis and, 466-521 
complete circuit response using, 429,458^159 
convolution integral, 489-495,506 
defined, 430,459 
final-value theorem, 455^4-57 
Fourier transforms found using, 650-653 
frequency domain and, 441 
functional transforms, 431,436-437,459 
impulse function K8(t), 433-435,459,498-504,506 
initial-value theorem, 455-457 
inverse, 444-454,459 
lumped-parameter circuit applications, 442-444,459 
mutual inductance, analysis of a circuit with, 480-481 
natural response using, 472-473 
one-sided, 430-431 
operational transforms, 431,437^442,459 
pairs, 436-437 
partial fraction expansion, 444-454,459,486-489,506 
poles (roots), 454-455,486 
rational functions F(s), 444-454,459 
s-domain, 443-455,468-489,506 
sinusoidal sources and, 429,458-459 
steady-state sinusoidal response, 495-497,505-506 
step function Ku(t), 431-432,459 
step response using, 473-478 
superposition, use of in .s-domain, 482-484 
surge suppressors, 467,505 
Thevenin equivalent, use of in s-domain, 479-480 
time domain translation in, 440-443 
time-invariant circuits and, 488,506 
transfer function H(s), 484^197,506 
transient response using, 475—476,506 
unilateral, 430-431 
unit impulse function 5(0,433-434,459 
unit step function K K ( 0 , 4 3 1 , 4 5 9 

zeros (roots), 454-455,486 
Line current, 405 
Line spectra, 630 
Line voltage, 404-405 
Linear simultaneous equations, 705-724 

Cramer's method,706 
determinants, 706-709 
matrices, 709-724 
solution of, 705-724 
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Loads, 62,410-414 
balanced three-phase circuits and, 410-414 
defined, 62 
delta (A) connected,411-413 
power calculations and, 410-414 
unspecified, 414 
wye (Y) connected, 410-411,413 

Loop, 38,48,90-91 
closed, 38,48 
defined, 90-91 

Low-pass filters, 524-532,550,560-562,574-584,594-595 
active filter circuits, 560-562,578-584,594 
Butterworth, 578-584,594-595 
cascading identical, 574-577,594-595 
cutoff frequency (<wc), 527-529 
frequency regions, 530 
frequency response plots, 524-525 
operational amplifier (op amp), 560-562,578-584,594 
passive filter circuits, 524-532,550 
qualitative analysis, 526-527 
quantitative analysis, 528-529 
relationship between frequency and time domains, 531 
series RC circuits, 530-531 
series RL circuits, 526-529 
transfer function H(s) for, 531,550 

Lumped-parameter system, 6-7,442-444,459 

M 
Magnetic coupling, see Mutual inductance 
Magnetically coupled coils, 235-236,338,731-738 

equivalent circuits for, 731,735-738 
ideal transformers and, 338,731-738 
^-equivalent circuit, 732-735 
step response of, 235-236 
T-equivalent circuit, 731-732 

Magnitude plot, 524 
Magnitude scaling (km), 564,594 
Matrices, 709-724 
Maximum power transfer, 120-122,129,378-384,386 

average power (Pms.x) absorbed, 380-382 
circuit analysis and, 120-122,129 
ideal transformer, 383-384 
impedance (Z) restricted, 380-381 
sinusoidal steady-state analysis and, 378-384,386 

Measurement, 8-10,66-70,76 
ammeter, 66-67,76 
analog meters, 67,76 
current, 66-69 
d'Arsonval meter movement, 67-68 
digital meters, 67,76 
International System of Units (SI), 8-10 
resistance, 69-70 
voltage, 66-69,76 
voltmeter, 66-67,76 
Wheats tone bridge, 69-70,76 

Memory, transfer function concept of, 494-495 
Mesh, defined, 90-91 

Mesh circuit, step response of, 476-478 
Mesh-current method, 90,99-109,129,190-192,333-334 

amplifier circuit analysis using, 105-106 
circuit analysis using, 90,99-109,129 
defined, 100 
dependent sources and, 102-103 
equations, 99-102,190,192 
frequency-domain circuits, 333-334 
mutual inductance (M) and, 190-192 
node-voltage method, comparison of, 106-109 
sinusoidal steady-state analysis using, 333-334 
special cases of, 103-104 
supermesh, 104 

Meters, see Measurement 
mho, unit of, 31 
Models, 10-11,17-18,34-36. See also Equivalent circuits 

circuit, 17-18,34-36 
conception of, 10-11 
construction of, 34-36 
flashlight, 34-35 
mathematical (circuit), 11 
physical prototypes, 11 

Moment function (unit doublet), 435 
Mutual inductance (M), 176,189-200,203-204,480-481 

Laplace transform analysis of a circuit with, 480-481 
circuit parameters of, 189-190,194-196,203-204 
coefficient of coupling and, 197,204 
dot convention for polarity, 190-192,195-196,204 
energy (w) storage and, 197-200,204 
mesh-current equations for, 190-192 
self-inductance and, 196-197,204 

N 
Narrowband filters, 586-591,595 

bandpass filters, 586-588 
bandreject, 588-591 
quality factor (Q) and, 586-587 
twin-T notch, 588-589 

Natural response, 212,214-224,231-236,246,266-279, 
285-289,297,472-473 

critically damped voltage, 269,277-278,286,297 
defined, 212,246 
forms of RLC circuit, 270-279 
general solution for, 231-236 
Laplace transform, using, 472-473 
method of calculating, 232 
overdamped voltage, 269,271-273,286,297 
parallel RLC circuit, 266-279 
resistor-capacitor (RC) circuits, 220-224,231-236,246, 

472-473 
resistor-inductor (RL) circuits, 214-220,231-236,246 
resistor-inductor-capacitor (RLC) circuits, 266-279 
series RLC circuits, 285-289 
time constant, 216-217,221-222,246 
underdamped voltage, 269,274-277,286-288,297 

Negative (acb) phase sequence, 400 
Negative feedback, op amps, 147-148 
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Neper frequency (a), 268,286 
Neutral terminal, 401 
Nodes, 37-38,48,90-91 

circuit description by, 37-38,48 
defined, 90-91 
essential, 91 

Node-voltage equation (VN), 402-403 
Node-voltage method, 90,93-99,106-109,129,332-333 

amplifier circuit analysis using, 98-99 
circuit analysis using, 90,93-99,106-109,129 
defined, 93 
dependent sources and, 95-96 
equations, 93-94 
frequency-domain circuits, 332-333 
mesh-current method, comparison of, 106-109 
sinusoidal steady-state analysis using, 332-333 
special cases for, 96-97 
supernode, 97-98 

Noninverting-amplifier circuit, 153-154,160-161,164 
Nonplanar circuits, 90-91 
Norton equivalent circuits, 115,129,329-330 

circuit analysis of, 115,129 
defined, 115 
frequency-domain, 329-330 
impedance (Z) in, 329-330 
source transformations used for, 115,329-330 

Numerator determinant, 706-707 

0 
Odd-function symmetry, 612-613,616,634 
Ohm (O), unit of, 31 
Ohm's law, 30-33,47-48,470-471 

electrical resistance and, 30-33,47-48 
s-domain applications of, 470^471 

Ohmmeter, 145 
One-sided Laplace transform, 430-431 
Open circuit, 35 
Operational amplifiers (op amps), 144-173,560-586, 

594-595 
bandpass filters, 566-570,585,594 
bandreject filters, 570-573,585,594 
broadband filters, 567-573,594 
Butterworth filters, 578-586,594-595 
cascading identical filters, 574-577,594-595 
circuit symbol for, 146 
currents (/),146-150 
difference-amplifier circuit, 155-159,164 
dual in-line package (DIP), 146 
equivalent (realistic model), 159-162,164 
feedback, 147-148,164 
filters, 560-577,594 
first-order filters, 560-564 
gain (/1), 147,151 
high-pass filters, 562-563,585,594 
higher-order filters, 573-591,594 
input constraints of, 147-148 
inverting-amplifier circuit, 150-152,160,164 

low-pass filters, 560-562,578-584,594 
noninverting-amplifier circuit, 153-154,160-161,164 
resistance, 145,162-163 
scaling, design of using, 565-566 
simplified, 146-159,164 
strain gages for, 145,162-163 
summing-amplifier circuit, 152-153,164 
terminals, 146-150 
transfer characteristics of, 146-147,165 
voltages (v), 146-150,164 

Operational transforms, 431,437-442,459,657-661 
addition, 438,658 
amplitude modulation, 659 
convolution, 659-660 
defined, 431 
differentiation, 438-439,658 
Fourier, 657-661 
frequency domain functions, 441,659-660 
integration, 439-440,658 
Laplace, 431,437-442,459 
multiplication by a constant, 437,657 
scale changing, 441,659 
subtraction, 438,658 
time domain functions, 440-441,659-660 
translation, 440-441,659 
types of, 442,660 

Overdamped responses, 269,271-273,282,286,297-298 

P 
Parallel-connected circuits, 59-61,76,187-189,203 

capacitors, 188-189,203 
inductors, 187-188,203 
resistors, 59-61,76 

Parallel RLC circuits, 266-285,297-298 
characteristic equation for, 267,269-270,297 
circuit symbols for, 266,280 
critically damped responses, 269,277-278,283,297-298 
direct approach for, 281-282 
indirect approach for, 281 
natural response, 266-279,297 
Neper frequency (a) for, 268 
overdamped responses, 269,271-273,282,297-298 
resonant radian frequency (wo), 268-269 
step response, 280-285,298 
underdamped responses, 269,274-277,283,297-298 

Parameters of two-port circuits, 680-688,698 
Parseval's theorem, 664-672 

filter applications of, 667-668 
Fourier transform and, 664-672 
rectangular voltage pulse application of, 668-670 
time-domain energy and, 664-672 

Partial fraction expansion, 444^154,459,486-489,506 
distinct complex roots of D(s), AA1-AA9 
distinct real roots of D(s), 445-446 
improper rational function, 444,453-454 
inverse Laplace transforms in, 444-454,459 
repeated complex roots of D(s), 451-453 
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repeated real roots of D(s), 449-451 
time invariant circuits, 488-489 
transfer function H(s) in, 486-489,506 

Partitioned matrices, 717-719 
Passband frequencies, 524-525,550 
Passive circuit elements, 27,176,203,317-320 

frequency domain, 317-320 
ideal sources, 27 
inductors and capacitors as, 176,203 

Passive filter circuits, 522-557 
bandpass filters, 525,536-545,551 
bandreject filters, 525,545-549,551 
bandwidth (0), 537,539-540,546-548,551 
center (resonant) frequency (o)a), 536-540,546-548,551 
cutoff frequency (<uc), 524-525,527-528,538-540,550 
defined, 525-526 
filtering capabilities of, 525-526 
frequency response and, 522 
frequency response plots, 524-525 
high-pass filters, 524-525,532-536,551 
low-pass filters, 524-532,550 
magnitude plot, 524 
passband, 524-525,550 
phase angle plot, 524 
pushbutton telephones, 523,550 
quality factor (Q), 537,540,546-548,551 
relationship between frequency and time domains, 

531,545 
stopband, 524-525,550 
transfer function H(s) for, 531,536,544,549,551 

Passive sign convention, 13,176 
Path, 38,48,90-91 

closed, 38,48 
defined, 90-91 

Period, sinusoidal sources, 308 
Periodic function, 604-607,611-616,619-627,630-632, 

634-635 
amplitude of, 630-632 
average-power calculations with, 623-627,635 
defined, 604,607 
excitation, 619 
Fourier coefficients in, 607,611-627 
Fourier series application of, 619-623 
phase spectra of, 630-632 
root-mean-square (rms) value of, 626-627,635 
steady-state response using, 619-627 
symmetry, 611-616,634 
waveforms, 604-606 

Periodic waveforms, 604-606 
Phase angle (</>), 308 
Phase angle plots, 524,747-749,755-757 
Phase spectrum, Fourier series and, 630-632 
Phasor diagrams, 344-346 
Phasors, 312-317,347 

defined, 311 
inverse transform, 314-316,347 
transform, 313-317,347 

7t-equivalent circuit, 732-735 

Pi (77-) interconnection, 71 
Pi to tee (77 to T) equivalent circuits, 71-73 
Planar circuits, 90-91 
Polarity, 15-16,190-192,195-196,204,341-342 

algebraic references, 15-16 
dot convention for, 190-192,195-196,204,341-342 
ideal transformers, 341-342 
mutual inductance, 190-192,195-196,204 
voltage and current ratios, 341-342 

Poles (roots), 454-455,486,741-742,749-751 
Bode plots and, 741-742,749-751 
complex, 749-751 
rational function F(s), 454-455 
real, first order, 741-742 
transfer function H(s), 486 

Ports, defined, 678 
Positive (abc) phase sequence, 400 
Potential coil, 415 
Power (/?), 14-17,31-32,48,179-181,183-186,203, 

410-415,419 
algebraic signs of, 15-16 
average (P), 410-411,415-417,419 
balanced three-phase circuit calculations for, 410-415 
capacitors, 183-186,203 
complex (S), 411,419 
delta (A) loads and, 411-413 
energy and, 14-17 
inductors, 179-181,203 
measurement of, 415-417,419 
polarity references, 15-16 
resistors and, 31-32,48 
wattmeter, 415-417,419 
wye (Y) loads and, 410-411,413 

Power calculations, 360-397,445^146,452-454,623-627,635 
apparent power, 370,386 
average (real) power (P), 363-367,373-375,386, 

623-627,635 
capacitive circuits, 365 
complex power (5"), 370-374,386 
heating appliances, 361,384-385 
inductive circuits, 364-365 
instantaneous power, 362-363,386 
maximum power transfer, 378-384,386 
periodic functions, 623-627,635 
power factor (pf), 365,386 
reactive factor (rf), 365,386 
reactive power (£?), 363-367,373-375,386 
resistive circuits, 364 
root-mean-square (rms) value, 368-369 
sinusoidal steady-state analysis, 360-397 
three-phase circuits, 445-446,452-454 

Power factor (pf), 365,386 
Power systems, see Balanced three-phase circuits 
Primary winder, transformers, 335 
Proper rational functions, 444-453,459 
Prototype filters, 561-566,594 
Proximity switches, 175,200-202 
Pushbutton telephone circuits, 523,550 
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Q 
Quality factor (£>), 537,540,546-548,551,586-587 

active (narrowband) filter circuits, 586-587 
passive filter circuits, 537,540,546-548,551 

Quarter-wave symmetry, 614-615,634 

R 
Rational functions F(s), 444-455,459. See also Partial 

fraction expansion 
defined, 444 
improper, 444,453-454,459 
inverse Laplace transform using, 444-455,459 
partial fraction expansion of, 444-454,459 
poles of, 454-455 
proper, 444-453,459 
zeros of, 454-455 

RC circuits, see Resistor-capacitor (RC) circuits 
Reactance, 320 
Reactive factor (rf), 365,386 
Reactive power (0,363-367,373-375,386 
Real models, see Equivalent circuits 
Real power, see Average power 
Real, first order poles and zeros, 741-742 
Reciprocal two-port circuits, 687-688,698 
Rectangular-pulse waveforms, 604,606 
Rectangular voltage pulse, 668-670 
Reflected impedance (Z,.), 336,347 
Resistance (R), 30-33,47-48,69-70,113-115,145,162-163 

conductance (G) and, 31 
measurement of, 69-70 
Ohm's law, 30-31,47 
operational amplifiers (op amps), 145,162-163 
resistors as models of, 30-33,47-48 
strain gages for, 145,162-163 
Thevenin equivalent (Rjh), 113-115 

Resistive circuits, 56-87 
constant (dc) sources, 56 
current-divider, 63,76 
current-division analysis, 64-66,76 
delta to wye (A to Y) equivalent, 71-73,76 
load. 62 
measurement of voltage and current in, 66-69 
parallel-connected (in parallel), 59-61,76 
pi to tee (IT to T) equivalent, 71-73 
rear window defroster grid, 57,73-75 
resistors, 58-61 
series-connected (in series), 39,58,76 
voltage-divider, 61-62,76 
voltage division analysis, 64-66,76 
Wheatstone bridge, 69-70,76 

Resistor-capacitor (RC) circuits, 212,214,220-224, 
229-236,239,246,472-473,530-536 

circuit symbol for, 214 
cutoff frequency, 533 
defined, 212 
general solution for responses of, 231-236,246 

high-pass filters, behavior of as, 532-536 
Laplace transform, using for analysis of, 472-473 
low-pass filters, behavior of as, 530-531 
natural response of, 220-224,231-236,246,472^173 
qualitative analysis of series, 532-533 
quantitative analysis of series, 533-536 
s-domain, 472-473 
sequential switching, 236,239 
step response, 229-236,246 
time constant (T), 221-222,246 
unbounded response, 240-241 
voltage (v), deriving expression for, 221-222 

Resistor-inductor (RL) circuits, 212,214-220,224-228, 
236-238,246,526-529 

circuit symbol for, 214 
current (/), deriving expression for, 214-216 
cutoff frequency, 527-529 
defined, 212 
general solution for responses of, 231-236,246 
low-pass filters, behavior of as, 526-529 
natural response of, 214-220,231-236,246 
qualitative analysis of series, 526-527 
quantitative analysis of series, 528-529 
sequential switching, 236-238 
steady-state response, 217 
step response, 224-228,231-236,246 
time constant (r), 216-217,246 
transient response, 217 

Resistor-inductor-capacitor (RLC) circuits, 264-305, 
473-476,537-549 

bandpass filters, behavior of as, 537-545 
bandreject filters, analysis of as, 546-549 
characteristic equation for, 267,269-270,297 
critically damped voltage response, 269,277-278 
cutoff frequency, 538-539,547-548 
ignition circuit, 265,294-296 
Laplace transform, analysis of using, 473-476 
natural response of, 266-279,285-289,297 
overdamped voltage response, 269,271-273,297 
parallel, 266-279,473-476 
qualitative analysis of series, 537-538,546 
quantitative analysis of series, 538-544,546-549 
.v-domain, 473-476 
series, 285-289 
step response of, 287-289,297-298,473-475 
transient response of, 475-476 
underdamped voltage response, 269,274-277,297 

Resistors, 30-33,47^18,58-61,76,89,125-128,291-293, 
297,317-318,468,506 

black box, 58 
circuit symbol for, 30 
electrical resistance and ,30-33,47-48 
feedback, 291-293,297 
frequency domain, 317-318 
integrating amplifiers with, 291-293,297 
Laplace transform used for, 468,506 
parallel-connected (in parallel), 59-61,76 
power terminals of, 31-32,48 
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s-domain, 468,506 
sensitivity analysis, 89,125-128 
series-connected (in series), 58,76 
voltage to current (v-i) relationships, 317-318 

Resonant frequency, see Center frequency (o)0) 
Resonant radian frequency (co()), 268-269,286 
Response, 212-305,429,458-459,472-478,495-497, 

505-506,522,661-663 
complete, 429,458-459 
first-order circuits, 212-263 
flashing light circuit, 213,245-246 
Fourier transform for, 661-663 
frequency, 522 
general solutions for, 231-236,246 
ignition circuit, 265,294-296 
integrating amplifiers, 241-244,246,289-293,297 
Laplace transform used for, 429,458-459,472-478, 

495-497,505-506 
multiple mesh circuits, 476-478 
natural, 212,214-224,231-236,246,266-279,285-289, 

472^173 
parallel RLC circuits, 266-279,473^176 
resistor-capacitor (RC) circuits, 212,214,220-224, 

229-236,239,246,472-473 
resistor-inductor (RL) circuits, 212,214-220,224-228, 

236-238,246 
resistor-inductor-capacitor (RLC) circuits, 264-305, 

473^175 
second-order circuits, 264-305 
sequential switching, 236-240,246 
series RLC circuits, 285-289 
sinusoidal, 495-497,505-506,663 
steady-state, 217,495^197,505-506,663 
step, 212,224-236,246,280-289,297-298,473^178 
transfer function and, 495^197,505-506 
transient, 217,475-476,506,662 
unbounded, 240-241,246 

RL circuits, see Resistor-inductor (RL) circuits 
RLC circuits, .see Resistor-inductor-capacitor (RLC) circuits 
Root-mean-square (rms) value, 309-311,368-369, 

626-627,635 
periodic functions, 626-627,635 
power calculations and, 368-369 
sinusoidal sources, 309-311 

Roots of complex numbers, 729-730. See also Poles; Zeros 

S 
.y-domain, 443-455,468-489,506 

capacitor in, 469-470,506 
circuit analysis in, 470-489,506 
circuit symbols for, 468^-70 
inductor in, 468-469,506 
inverse Laplace transform and, 443-444,506 
Kirchhoff s laws and, 471 
Laplace transform and, 443-444,468^184,506 
mutual inductance in,480-481 
Ohm's law in, 470-471 

partial fraction expansion in, 444-454,486-489,506 
poles (roots) in, 454-455,486 
resistor in, 468,506 
responses of circuits in, 472-484 
superposition, use of in, 482-484 
terminal voltage-current equations in, 468-470,506 
Thevenin equivalent, use of in, 479-480 
transfer function H(s) in, 484-489,506 
zeros (roots) in, 454-455,486 

Safety, electrical circuits, 25,46-74 
Scale-change property, operational transforms, 441,659 
Scaling, 564-566,594 

frequency (kf), 564,594 
magnitude (k,n), 564,594 
op-amp filter design using, 565-566 

Second-order circuits, 264-305 
characteristic equation for, 267,269-270,286,297 
critically damped responses, 269,277-278,283,286, 

297-298 
defined, 266, 
general solution for responses of, 266-270 
ignition, example of, 265,294-296 
integrating amplifiers and, 289-293,297 
natural response of, 266-279,285-289,297 
overdamped responses, 269,271-273,282,286,297-298 
parallel RLC, 266-285,297 
resistor-inductor-capacitor (RLC) circuits, 264-305 
second-order differential equation for, 266-270 
series RLC, 285-289,297-298 
step response of, 281-289,297 
underdamped responses, 269,274-277,283,286-288, 

297-298 
Second-order differential equations, 266-270 
Secondary winder, transformers, 335 
Self-inductance, 176-182,193-194,204 
Sensitivity analysis, resistors, 89,125-128 
Sequential switching, 236-240,246 

resistor-capacitor (RC) circuits, 236,239 
resistor-inductor (RL) circuits, 236-238 

Series-connected (in series) circuits, 37-39,48,58,76, 
187-189,203 

capacitors, 188-189,203 
inductors, 187,203 
nodes, 37-39,48 
resistors, 58,76 

Series RLC circuits, 285-289 
characteristic equation of, 286 
circuit symbols for, 285-286 
critically damped response, 286 
natural response, 285-289 
Neper frequency (a), 286 
overdamped response, 286 
resonant radian frequency (w0), 286 
step response, 285-289,297-298 
underdamped responses, 286-288 

Short circuit, 35 
Siemens (S), unit of, 31 
Sifting property, 434 
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Signum function, Fourier transform of, 653 
Simultaneous equations, 91-93 

current analysis using, 92-93 
determination of number of, 91-92 
systematic approach using, 92-93 

Single-phase equivalent circuits, 403-404,419 
Sinusoidal response, 311-312,347,495-497,505-506,663 

Fourier transform for, 663 
steady-state analysis and, 311-312,347 
steady-state component of, 31 
surge suppressors, 505 
transfer function H(s) and, 495-497,506 
transient component of, 312 

Sinusoidal sources, 308-311,347,429,458-459 
complete circuit response and, 429,458-459 
current, 308-309 
period, 308 
phase angle (<£), 308 
root-mean-square (rms) value of, 309-311 
sources, 308-311,347 
steady-state analysis, 308-311,347 
voltage, 308-310 

Sinusoidal steady-state analysis, 306-359,360-397 
delta-to-wye (A-to-Y) transformations, 326-328 
frequency domain, 312-322,329-343 
heating appliances, 361,384-385 
household distribution circuit, 307,346 
ideal transformer, 338-343,347 
impedance (Z), 320,322-332,336,343,347 
Kirchhoff's laws, 321-322 
mesh-current method, 333-334 
node-voltage method, 332-333 
Norton equivalent circuit, 329-330 
passive circuit elements, 317-320 
phasor diagrams for, 344-346 
phasors, 312-317,347 
power calculations, 360-397 
reactance, 320 
response, 311-312,347 
source transformations, 329-332 
sources, 308-311,347 
Thevenin equivalent circuit, 329-332 
transformers, 334-343,347 
voltage-to-current (V-I) relationships, 317-320 

Sinusoidal voltage phases, 400-401,419 
Source transformations, 71-73,109-116,129,326-332 

circuit analysis using, 109-116,129 
defined, 110 
delta-to-wye (A to Y), 326-328 
equivalent circuits, 71-73 
frequency domain, 326-332 
impedance (Z) and, 326-332 
Norton equivalent circuits, 115,329-330 
Thevenin equivalent circuit, 115-116,329-332 

Sources, 26-29,42-45,47,56,401^102,429,458-459,501-504 
active element of, 27 
complete circuit response and, 429,458-459 

constant (dc),56 
controlled, 27 
dependent, 26-27,29,42^15,47 
ideal current, 26-29,47 
ideal voltage, 26-29,47 
impulsive, 501-504 
independent, 26,29,47 
interconnection of, 28-29 
Laplace transform and, 429,458-459,501-504 
passive element of, 27 
sinusoidal, 429,458-459 
three-phase voltage, 401-402 

Square waves, 604-606,632-634 
formation of, 604,606 
sinusoid input as, 605,632-634 

Steady-state analysis, see Sinusoidal steady-state analysis 
Steady-state response, 217,467,495-*97,505-506,619-627. 

635,663 
direct approach to, 621-623 
first-order circuits, 217 
Fourier series analysis, 619-627,635 
Fourier transform for, 663 
Laplace transform analysis and, 467,495-497,505-506 
periodic functions used for, 619-627 
sinusoidal, 495-497,505-506,663 
surge suppressors and, 467,505 
transfer function H(s) and, 495-497 

Step function Ku(t), Laplace transform, 431-432,459 
Step response, 212,224-236,246,297-289,297-298,473^78 

critically damped, 283,298 
defined, 212,246 
direct approach, 281-282 
general solution for, 231-236,246 
indirect approach, 281 
Laplace transform, analysis of using, 473^178 
magnetically coupled coils and, 235-236 
method of calculating, 232-235 
multiple mesh circuit, 476^478 
overdamped, 282,298 
parallel RLC circuits, 280-285,473^75 
resistor-capacitor (RC) circuits, 229-236,246 
resistor-inductor (RL) circuits, 224-228,231-236,246 
resistor-inductor-capacitor (RLC) circuits, 280-285 
series RLC circuits, 285-289 
underdamped, 283,288,298 

Stopband frequencies, 524-525,550 
Summing-amplifier circuit, 152-153,164 
Supermesh, 104 
Supernode, 97-98 
Superposition, 122-125,129,482^184 

circuit analysis using, 122-125,129 
defined, 122 
Laplace transform and, 482-484 

Surge suppressors, 467,505 
Susceptance, 324 
Switches, 175,200-202,236-240,246,467,498-505 

arcing, 176 
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capacitor circuit operation, 498^99 
first-order circuits, 236-240,246 
impulse functions created by, 498-504 
impulsive sources for, 501-504 
inductor circuit operation, 499-501 
Laplace transform and, 467,498-505 
proximity, 175,200-202 
sequential switching, 236-240,246 
surge suppressors, 467,505 

Symmetry, 611-616,634,688,698 
even-function, 611-612,634 
Fourier coefficients, effects of on, 611-616,634 
half-wave, 613-614,634 
odd-function, 612-613,616,634 
quarter-wave, 614-615,634 
reciprocal two-port circuits, 688,698 

T 
T-equivalent circuit, 731-732 
Tee (T) interconnection, 71 
Telephone line frequency response, 645,672 
Terminals, 30-33,35-36,146-150,164,680 

circuit connections, 35-36 
current (/) input constraints, 147-148,164 
operation amplifiers (op amps), 146-150,164 
resistor power and, 31-32 
two-port circuits, 680 
variables (voltage and current), 146-147 
voltage (v) input constraints, 147-148,165 

Terminated two-port circuits, 689-693 
Thevenin equivalent circuits, 113-119,129,329-332,479-480 

amplifier circuit using, 118-119 
circuit analysis of, 113-119,129 
defined, 113 
finding equivalent of, 114-115 
frequency-domain, 329-332 
impedance (Z) in, 329-332 
independent sources used for, 117-118 
Laplace transform, analysis of using, 479^180 
resistance source (/?jh), 113-115 
s-domain, use of in, 479-480 
source transformations used for, 115-116,329-332 
voltage source (Vn,), 113-115 

Three-phase circuits, see Balanced three-phase circuits 
Time constant (T) , 216-217,221-222,246 

resistor-capacitor (RC) circuits, 221-222,246 
resistor-inductor (RL) circuits, 216-217,246 

Time domain, 440-443,531,545,648-650,659-660,664-672 
convolution in, 659-660 
energy, 664-671 
Fourier transform and, 648-650,659-660,664-672 
frequency domain, relationship to, 531,545 
integral for, 648-650,672 
integrodifferential equations for, 442-443 
Laplace transform and, 440-443 
operational transforms, 440-441,659-660 

Parseval's theorem for, 664-672 
passive-filter circuits and, 531,545 
translation in, 440-441,659 

Time invariant circuits, 488-489,506 
Transducers, 145 
Transfer function H(s), 484-497,506,531,536,544,549, 

551,578-579 
active-filter circuits, 578-579 
Butterworth filters, 578-579 
circuit analysis, 488^197,506 
convolution integral and, 489-495,506 
defined, 484 
Laplace transform circuit analysis and, 484-497,506 
memory and, 494-495 
partial fraction expansion, use of in, 486-489,506 
passive-filter circuits and, 531,536,544,549,551 
poles and zeros of, 486 
steady-state sinusoidal response and, 495^-97,506 
time invariant circuits, 488-489,506 
weighting function, 494-495 

Transformation, see Source transformation 
Transformers, 334-343,347,731-738 

defined, 335 
dot convention for, 341-342 
equivalent circuits and, 731-738 
frequency domain and, 334-343 
ideal, 335,338-343,347,731-738 
limiting values of, 338-340 
linear, 335-338,347 
primary and secondary winders for, 335 
reflected impedance (Z r), 336,347 
sinusoidal steady-state analysis, 334-343,347 
voltage and current ratios. 340-342 

Transient response, 217,475-476,506,662 
circuit analysis of, 212 
Fourier transform for, 662 
Laplace transform for, 475-476,506 

Translation, operational transforms for, 440-441,659 
Transmission parameters, two-port circuits, 683 
Triangular waves, 604,606 
Trigonometric form of Fourier series, 617-618,634 
Trigonometric identities, 759 
Twin-T notch filter, 588-589 
Two-port circuits, 678-703 

analysis of, 689-693 
black box amplifier, 679,697 
conversion of parameters, 684-686 
hybrid parameters, 683 
interconnected, 694-697 
parameters of, 680-688,698 
reciprocal, 687-688,698 
symmetric, 688,698 
terminal equations for, 680 
terminated, 689-693 
transmission parameters, 683 
z parameters, 681,689-692 

Two-wattmeter method, three-phase circuits, 415^117,419 
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U 
Unbounded response, 240-241,246 
Underdamped responses, 269,274-277,283,286-288, 

297-298 
parallel RLC circuits, 269,274-277,283,297-298 
series RLC circuits, 286-288 

Unilateral Laplace transform, 430-431 
Unit doublet (moment function), 435 
Unit impulse function 8(/), 433-434,459 
Unit step function Ku(t), 431,459,654 

Laplace transform of, 431,459,654 
Fourier transform of, 654 

V 
Variable-parameter function, 433-434 
Voltage (v), 11-13,26-29,38,40-41,47,66-69,113-115, 

146-150,164,176-177,184-186,203,221-222, 
308-310,347,400-405,419,468-470,506 

a-, b-, and c-phase, 400,419 
capacitors, 183-186,203,469-470,506 
defined, 11-12 
electric charge and, 11-13 
gain (,4), 147 
inductors, 176-177,203,468-469,506 
input constraints, 147-148,165 
Kirchhoff s law (KVL), 38,40-41 
line, 404-405 
measurement of, 66-69 
negative (acb) phase sequence, 400 
node-voltage equation (VN), 402^103 
operational amplifiers (op amps), 146-150,164 
positive (abc) phase sequence, 400 
RC circuits, deriving expression for, 221-222 
reference direction, 13 
resistors, 468,506 
s-domain equations for, 468-470,506 
sinusoidal phases, 400-401,419 
sinusoidal source, 308-310,347 
sources, 26-29,47,401-402 

terminal variables, 146 
Thevenin equivalent (^T h), 113-115 
three-phase, 401^105 
transfer characteristics of, 146-147,164 

Voltage-divider circuits, 61-62,76 
Voltage division circuit analysis, 64-66,76 
Voltage ratios, transformers, 340-342 
Voltage to current (v-i) relationships, 176-177,183,317-320 

capacitors, 183,319-320 
frequency domain, 317-320 
impedance (Z) of, 320 
inductors, 176-177,318-319 
reactance of, 320 
resistors, 317-318 

Volt-amp reactive (VAR), unit of, 365,386 
Voltmeter, 66-67,76 

W 
Watt (W), unit of, 365,386 
Wattmeter, defined, 415,419 
Waveforms, 604-606 
Wavelength (y), defined, 7 
Weighting function, transfer function concept of, 494-495 
Wheatstone bridge, 69-70,76 
Wye (Y) connected loads, 410^111,413,419 
Wye (Y) interconnection, 71 
Wye-delta (Y-A) circuit, analysis of, 407-409 
Wye-wye (Y-Y) circuit, analysis of, 402^407 

Z 
z parameters, two-port circuits, 681,689-692 
Zero frequency, 530 
Zeros (roots), 454-455,486,741-742,749-751 

Bode plots and, 741-742,749-751 
complex, 749-751 
rational function F(s), 454-455 
real, first order, 741-742 
transfer function H(s), 486 



Periodic Functions 
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Fourier Transforms of Elementary Functions 

F(a>) 

8{t) (impulse) 

A (constant) 

sgn(r) (signum) 

u(t) (step) 

e-ff'«(f)(positive-time exponential) 

eatu(—t) (negative-time exponential) 

e-0''' (positive- and negative-time exponential) 

ei«i4 (complex exponential) 

cos corf (cosine) 

sin io0t (sine) 

1 

2TTA8((O) 

2//v 

TT8(CO) + 1/ja) 

\/{a + joy) 

l/(fl - /») 

2a/(a2 + or) 

2TT8(CO — OJQ) 

7r[8((0 + (OQ) + 8(d) — (Of))] 

JTT[S((0 + (OQ) ~ 8((0 ~ &>o)] 

fit) 

Kf(t) 

fi(t) - /,(/) + /3(0 

dnf(t)/dtn 

f{x)dx 

fiat) 

fit ~ a) 
e'^f(t) 

f(t) COS ft>0f 

/ x(\)h(t - \)d\ 
J-co 

/1(0/2(0 

Operational Transforms 
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KF((o) 
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F(o>)//6» 
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F(<w - 6>0) 
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