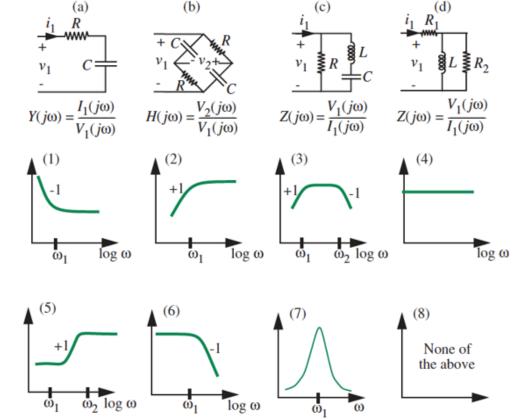
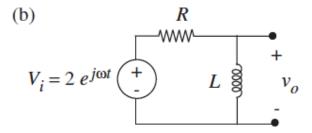
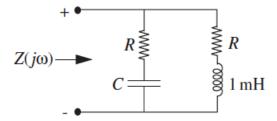
EE2210 Electric Circuits, Spring 2018 Practice problems (Lecture11-Lecture14)

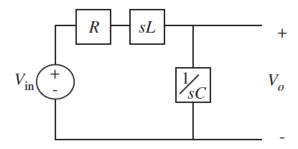

1. Find the magnitude and phase of each of the following expression:

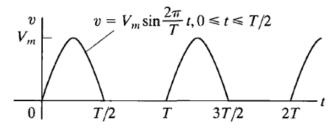
$$(8+j7)(5e^{j30^{\circ}})(e^{-j39^{\circ}})(0.3-j0.1)$$

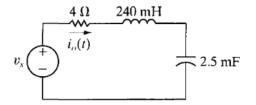

- 2. Find the real and imaginary parts of the following expressions:
- (a)

(b)
$$(3+j5) \left(4e^{j50^{\circ}}\right) \left(7e^{-j20^{\circ}}\right)$$
 (b)
$$\left(10e^{j50^{\circ}}\right) \left(e^{j20^{\circ}}\right)$$

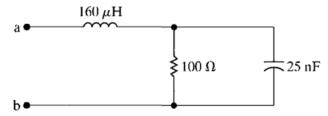

3. For each of the circuits shown in the following figures, select the magnitude of the frequency response for the system function (that is, impedance, admittance)


4. Write expressions for $H(j\omega) = V_o/V_i$, its magnitude $|H(j\omega)|$, and its phase angle $\angle H(j\omega)$, as a function of ω in the following figure.


5. The impedance of the network shown in Figure is found to be $2 \text{ k}\Omega$ and is purely real all frequencies. The value of the inductor is 1 mH as shown. What are the values of R and C?


6. The circuit shown in Figure has an input voltage $v_{inl}(t) = V_1 \cos(120\pi t)$, and L = 500 mH, $C = 80 \mu F$, and $R = 50 \Omega$. Compute the transfer function $H(s) = V_o(s)/V_{inl}(s)$.

7. Find the rms value of the half-wave rectified sinusoidal voltage shown.



8. Find the steady-state expression for $i_0(t)$ in the circuit in the following figure if $v_s = 100\sin 50t$ mV.

9.

- (a) For the circuit shown in the figure below, find the frequency (in radians per second) at which the impedance Z_{ab} is purely resistive.
- (b) Find the value of Z_{ab} at the frequency of (a).

- 10. A resistor denoted as R_L is connected in parallel with the capacitor in the circuit in the following Figure 14.7. The loaded low-pass filter circuit is shown in the following Figure 14.7.
- a) Derive the expression for the voltage transfer function $\frac{v_o}{v_i}$.
- b) At what frequency will the magnitude of $H(j\omega)$ be maximum?
- c) What is the maximum value of the magnitude of $H(j\omega)$?
- d) At what frequency will the magnitude of $H(j\omega)$ equal its maximum value divided by $\sqrt{2}$?
- e) Assume a resistance of 10 k Ω is added in parallel with the 100 nF capacitor in the circuit in Fig 14.4.

Find ω_c , H(j0), $H(j\omega_c)$, $H(j0.1\omega_c)$, and $H(j10\omega_c)$.

Figure P14.7

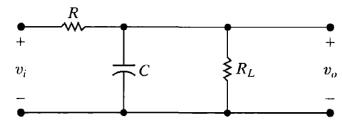
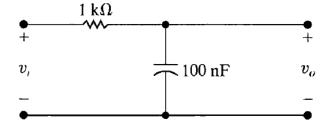



Figure P14.4

