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Motivation 
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The Gate to Source Capacitor 
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Capacitors, C

Chapter 9 , EE2210 - Slide 4/34



Capacitor

Ideal linear capacitor

The unit of capacitance is Coulombs/Volt, or Farads (F). Name after 
Michael Faraday  (1781-1867), an English physics and chemist.
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Element law for a capacitor

The capacitance is defined as

The element law of a capacitor can be found as:

The branch voltage of a capacitor depends on the entire past history of 
its branch current, which is the essence of memory.
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Switch and Initial Condition

t = 0 and t = 0+

Switching at t = 0

vC(0+) is the initial condition for vC.

When iC () is finite, 
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Electric Energy Storage
Associated with the ability to exhibit memory is the property of energy 
storage, which is often exploited by circuits that process energy.
The energy is stored in the form of electric field .
Electric energy wE stored in a capacitor

Unlike a resistor, a capacitor stores energy rather than dissipates it.
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i-v Behaviors of Capacitor 
Its current depends on the changing rate of voltage v.
Steady state characteristics

The capacitor is an open circuit to DC at steady state.

The capacitor is a short circuit to high frequency signals at steady state.
Assume vc = V sin(ωt),

As ω →∞, ic→∞, similar to
a short-circuit.

The voltage on a capacitor does not change abruptly. Discontinuous 

change in the capacitor voltage requires an infinite current.

For finite current, 
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The Inverter Chain

Apply node method:

Given:
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Method of homogeneous and 
particular solutions

Find the particular solution, vCP.

Find the homogeneous solution , vCH.

The total solution is the sum of the particular and homogeneous 
solutions , vC = vCP + vCH.

Use the initial conditions to solve for the remaining constants.
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The Particular solution vCP

Find the particular solution, vCP.

vCP :any solution that satisfies the original equation

Use trial and error : Try vCP = 5 V, 
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The Homogeneous Solution

Find the homogeneous solution , vCH.

vCH :solution to the homogeneous equation

by setting the input drive vI to 0.

Assume solution is of this form :

Characteristic equation:

The homogeneous solution , vCH:

RC is called time constant τ.
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The Total solution

The total solution is the sum of the particular and homogeneous 
solutions: 

Use the initial conditions:

to solve for the remaining constants.

The total solution vC :
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Capacitors, C
Parallel connection

Series connection
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Inductor, L

Chapter 9 , EE2210 - Slide 16/34



Inductor

Total Flux linkage λ

L has the units of Webers/Ampere, or Henrys (H). Name after Joseph 
Henry  (1797-1878), an American physics.
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Element law for an inductor

The inductance is defined as

The element law of a inductor can be found as:

The branch current of an inductor depends on the entire past history of 
its branch voltage, which is the essence of memory.
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Switch and Initial Condition

t = 0 and t = 0+

Switching at t = 0

vC(0+) is the initial condition for vC.

When iC () is finite, 
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Magnetic Energy Storage
Associated with the ability to exhibit memory is the property of energy 
storage, which is often exploited by circuits that process energy.
The energy is stored in the form of magnetic field .
Magnetic energy wM stored in an inductor

Unlike a resistor, an inductor stores energy rather than dissipates it.
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i-v Behaviors of Inductor 
Its voltage depends on the changing rate of current i.

Steady state characteristics

The inductor is a short circuit to DC at steady state .

The inductor is an open circuit to high frequency signals at steady state.

Assume iL = I sin(ωt),
As ω→∞,vL→∞ similar
to an open-circuit.

The current through an inductor does not change abruptly. A

discontinuous change of the inductor current requires an infinite voltage.

For finite voltage, 
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Inductors, L

Parallel connection

Series connection
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Excitations

Step function;
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Excitations

Pulse

Ramp function

Chapter 9 , EE2210 - Slide 24/34



Excitations
Impulse;

Since iC(0) = 
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Impulse
Inductor

Since vL(0) = 
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Boost converter 
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Switch Open



Boost converter 
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Switch Closed



Boost converter 

The analysis assumes the following:
The switching period is T, and the switch is closed for time DT and open for 
(1－D)T.
The inductor current is continuous (always positive).
The capacitor is very large, and the output voltage is held constant at 
voltage Vo.
Steady-state conditions exist.
The components are ideal.
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When Switch is Open 
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When Switch is Closed 
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Boost converter 
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Summary
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Fundamental Circuit Variables and 
Elements

4 fundamental circuit variables: current, i; voltage,v; charge, q; 
magnetic flux linkage, λ (φ instead λ of is adopted in this slide).

6 mathematical relations (or Elements) might be construed to connect 
pairs of these 4 fundamental circuit variables.
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