The Digital Abstraction Abstraction

Chenhsin Lien and Po-Tai Cheng CENTER FOR ADVANCED POWER TECHNOLOGIES Dept. of Electrical Engineering National Tsing Hua University Hsinchu, TAIWAN

Chapter 5 , EE2210 - Slide 1/27

Signal Representation **Signal**

- One of the motivations for building circuits is to *process information or energy*.
- iPod, iPad, and iPhone are examples of commonplace electronic systems for processing *information*. Power supplies are example of electronic circuits that process *energy*.
- Either the *information or the energy*, is represented in the circuit by an *electrical signal*, namely a *current i* **(** *t* **)**or a *voltage v* **(** *t* **)**, and *circuit* networks are used to process these signals.
- An analog Signal: a 1-MHz sinusoidal signal with amplitude 10 V and a phase offset of $\pi\!/\!4$

Chapter 5 , EE2210 - Slide 3/27

The Digital Abstraction

- Digital abstraction is *the signal value discretization* .
- Continuous Signal

- Discrete Signal (or Digital Signal)
- Interestingly, we will see shortly that the tools learned in the previous € three chapters are sufficient to analyze simple digital circuits.

Why digital Signal?

Here is a signal averager (an analog signal processing circuit). Analog signal processing

If
$$
R_1 = R_2
$$
, $V_0 = \frac{V_1 + V_2}{2}$ This is an *Average* circuit.

Chapter 5 , EE2210 - Slide 5/27

Noise hampers our ability to distinguish between small differences in value, for example, between $3.1V$ and $3.2V$.

Chapter 5 , EE2210 - Slide 6/27

Value Discretization Mational Tsing Hua University, TAIWAN

Let's restrict values to be one of following two values. ∙

- This is just like two digits 0 and 1
- (Remember, numbers larger than 1 can be represented using multiple binary digits and coding, much like using multiple decimal digits to represent numbers greater than 9. E.g., the binary number 101 has decimal value 5.)

Why is this discretization discretization useful?

Chapter 5 , EE2210 - Slide 8/27

Digital System $\sum_{\text{Center for Advanced Power Technology} \atop \text{National University, TAVAN$

Better noise immunity

Lots of "noise margin "

Logic value for "1" : $2.5 \text{ V} \leq V \leq 5 \text{ V}$ *noise margin* 5V to 2.5V = 2.5V. *Logic value* for "0" : $0 \text{ V} \leq V < 2.5 \text{ V}$ noise margin 0V to 2.5V = 2.5V.

2.5V is called the *voltage threshold*.

Chapter 5 , EE2210 - Slide 9/27

Center for Advanced Power Technologies National Tsing Hua University, TAIWAN **Issue with Voltage threshold 2.5**

- What if the receiver receive a 2.5 V signal? How to interpret this signal? 0 or 1?
- How about create a "forbidden region" to overcome this problem?

logic value for "1" : $V_H \equiv 3 \text{ V} \leq V \leq 5 \text{ V}$ $\bm{\mathit{logic~value}}$ for "0" : \quad () V \leq V \leq 2 V \equiv V $_L$

Noise Margin

- If the sender sent V_H = 3V as logic "1", then where's the noise margin?
- How to resolve this zero noise-margin issue?
- Hold the sender to tougher standards!
- "1" for sender: $V_{OH} \equiv 4 \text{ V} \le V \le 5 \text{ V}$ for receiver: $V_{IH} \equiv 3 \text{ V} \le V \le 5 \text{ V}$ "0" for sender: $0 \vee \leq V \leq 1 \vee \equiv V_{OL}$ for receiver: $0 \vee \leq V \leq 2 \vee \equiv V_{IL}$

Chapter 5 , EE2210 - Slide 11/27

The Noise Margin **Marginia Report of Advanced Power Technologies**

"1" noise margin: $NM_1 = V_{OH}$ $-V_{\scriptscriptstyle IH}$

"0" noise margin: $\text{ NM}_0 = V_{IL}$ $-V_{OL}$ **5V** ΟH $V_{\overline{I}}H$ sender receiver Noise margins V_{IL} \bigcap ${\rm v}^{}_{\rm OL}$

Chapter 5 , EE2210 - Slide 12/27

The Static Discipline

Digital systems follow static discipline: if inputs to the digital system meet valid input thresholds, then the system guarantees its outputs will meet valid output thresholds.

The Static discipline

- The static discipline is a specification for digital devices.
- The static discipline requires devices to interpret correctly voltages that fall within the input thresholds $(V_{I\!L}$ and $V_{I\!H})$.
- As long as valid inputs are provided to the devices, the discipline also requires the devices to produce valid output voltages that satisfy the output thresholds $(V_{OL}$ and V_{OH}).

Noise Margin

The sender sends a 0 by placing $v_{OUT} = 0.5$ V on the wire. The receiver is able to interpret the value as a 0 because the received value is within the low input voltage threshold of 2 V.

The receiver is unable to interpret the signal correctly because the noise level of 1.6 V is higher than the noise margin of 1.5 V.

Chapter 5 , EE2210 - Slide 15/27

Example

- Disco's static discipline: $V_{IL} = 2 \text{ V}$, $V_{IH} = 3.5 \text{ V}$, $V_{OL} = 1.5 \text{ V}$ and $V_{OH} = 4 \text{ V}$.
- Yehaa adders can interpret all signals between 0∇ and 2∇ at their inputs as a logical 0, and all signals between 3 V and 5 V as a logical 1.
- For a logical 0, their adders produce a voltage level of 0.5 V at their outputs. For logical 1, their adders produce the voltage level of 4.5 V.
- Yehaa's adders satisfy Disco's static discipline

Example

- Disco's static discipline: $V_{IL} = 2 \text{ V}$, $V_{IH} = 3.5 \text{ V}$, $V_{OL} = 1.5 \text{ V}$ and $V_{OH} = 4 \text{ V}$.
- Yikes's adders can interpret all signals between 0 V and 1.2 V at their inputs as a logical 0, and all signals between 4 V and 5 V as a logical 1.
- For a logical 0, their adders produce a voltage level of 1.7 V at their outputs. For logical 1, their adders produce the voltage level of 4.5 V.
- Yikes's adders DO NOT satisfy Disco's static discipline.

Processing digital signals

Truth Table Representation

Chapter 5 , EE2210 - Slide 19/27

Combinational gate abstraction **Strate Experiment Combination Reserved** Power Technologies

- Outputs are a function of inputs alone.
- Digital logic designers do not have to care about what is inside a gate.

Chapter 5 , EE2210 - Slide 20/27

An OR gate. ∙ If $(A \text{ is true})$ OR $(B \text{ is true})$ then C is true else C is false

NOT gate (or called Inverter) S

Chapter 5 , EE2210 - Slide 21/27

Digital Circuits

Digital Circuits ∙

Implement: $output = A + B \cdot C$

Chapter 5 , EE2210 - Slide 22/27

What if we receive the following signal?

- Is C 11011?
- May be C is 111110011111. May be …………
- How to make sure we get (or interpret) the correct signal send by the € sender?

Clocked Digital Systems

- *Lumped circuit abstraction* that is fundamental to electrical engineering is based on lumping or *discretizing matter*.
- *Digital systems* use the digital abstraction, which is based on *discretizing signal values* .
- *Clocked digital systems are based on discretizing both signals and time*.

Chapter 5 , EE2210 - Slide 24/27

Digital Systolic Arrays

- *Digital systolic arrays* are based on *discretizing signals, time and space*.
- Systolic system works like an automobile assembly line.

Chapter 5 , EE2210 - Slide 25/27

- Digital signal is to discretize signal value ∙
	- High and Low

True or False

0 and 1

- Static discipline \bullet
	- $\rm V_{OH}, V_{IH}, V_{OL}$ and $\rm V_{II}$
- Noise Margin

 NM_1 and NM_0

Clocked digital systems and Digital systolic arrays ∙

Chapter 5 , EE2210 - Slide 26/27

My PC Hardware monitor $\frac{1}{\sqrt{2}}$ **My Enter for Advanced Power Technologies**

- Winbond W83627DHG hardware monitor
- Voltage sensor 0 1.32 Volts [0xA5] (CPU VCORE)
- Voltage sensor 1 12.04 Volts [0xD8] (+12V)
- Voltage sensor 2 3.23 Volts [0xCA] (AVCC)
- Voltage sensor 3 3.23 Volts $[0xCA]$ $(+3.3V)$
- Voltage sensor $5 \qquad \qquad$ 5.14 Volts $[0xD6] (+5V)$
- Note that the voltage for CPU core is much less than voltage for PC mother board. Why?