Networks Theorems

Chenhsin Lien and Po-Tai Cheng CENTER FOR ADVANCED POWER TECHNOLOGIES Dept. of Electrical Engineering National Tsing Hua University Hsinchu, TAIWAN

Chapter 3 , EE2210 - Slide 1/54

Node voltage

- A *node voltage* is the potential difference between the given node and some other node that has been chosen as a *reference node*. The reference node is called the *ground*.
- Node *c* has been chosen as ground. The upside down "T" symbol is the notation for the ground node. Nodes *^a* and *b* are two other nodes of this circuit. Their node voltages *ea* and *eb* are marked.

Although the choice of *reference node* is in fact arbitrary, it is most convenient to *choose the node that has the maximum number of circuit elements connected to it.* The potential at this node is defined to be zero V, or ground-zero potential.

Node voltages from branch variables

Center for Advanced Power Technologies

- National Tsing Hua University, TAIWAN Let us determine the node voltages from the known branch variables.
- Figure shows our circuit with a known set of branch voltages and currents. Let us determine the node voltages e_a and e_b .

$$
e_a = 2 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

\n
$$
e_b = 1.5 \text{ A} \times 1 \Omega = 1.5 \text{ V}
$$

Example

Determine the node voltages corresponding to nodes e_b and \tilde{e}_c for the circuit. L Assume that *g* is taken as the ground node.

$$
e_b = v_{be} + v_{eg} = 1 + 2 = 3 \text{ V}
$$

$$
e_c = v_{cf} + v_{fg} = -2 + 1 = -1 \text{ V}
$$

Branch variables from Node voltages

National Tsing Hua University, TAIWAN Let us determine the values of the branch variables with a known set of node voltages.

Center for Advanced Power Technologies

- Figure shows our circuit with a known set of node voltages. Let us determine the branch variables v_0 , i_0 , v_1 , i_1 , v_2 , i_2 , v_3 , and i_3 .
- Branch voltage v_{ab} and node voltages e_a and e_b is related as:

Chapter 3 , EE2210 - Slide 5/54

Example

 $+$

 v_3

Determine all the branch voltages for the circuit in Figure when the node € voltages are measured with respect to node *^e*.

$$
v_1 = e_a - e_b = 1 - 2 = -1 \text{ V}
$$

\n
$$
v_2 = e_b - e_e = 2 - 0 = 2 \text{ V}
$$

\n
$$
v_3 = e_b - e_c = 2 - 3 = -1 \text{ V}
$$

\n
$$
v_4 = e_a - e_e = 1 - 0 = 1 \text{ V}
$$

\n
$$
v_5 = e_d - e_e = 1 - 0 = 1 \text{ V}
$$

\n
$$
v_6 = e_d - e_c = 1 - 3 = -2 \text{ V}
$$

\n
$$
v_7 = e_e - e_c = 3 - 0 = -3 \text{ V}
$$

\n
$$
v_8 = e_a - e_c = 3 - 0 = -3 \text{ V}
$$

\n
$$
v_9 = e_b - e_c = 3 - 0 = -3 \text{ V}
$$

\n
$$
v_0 = e_b - e_c = 3 - 0 = -3 \text{ V}
$$

\n
$$
v_1 = e_b - e_c = 3 - 0 = -3 \text{ V}
$$

Chapter 3 , EE2210 - Slide 6/54

KCL

Consider the subcircuit as shown, let us write KCL for Node 0 directly in terms of the node voltages e_0 , e_1 , e_2 , e_3 , and e_4 , (defined with respect to some ground).

$$
i_1 + i_2 + i_3 + i_4 = 0
$$

\n
$$
\frac{e_1 - e_0}{R_1} + \frac{e_2 - e_0}{R_2} + \frac{e_3 - e_0}{R_3} + \frac{e_4 - e_0}{R_4} = 0
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_5
$$

\n
$$
i_6
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

\n
$$
i_4
$$

\n
$$
i_1
$$

\n
$$
i_2
$$

\n
$$
i_3
$$

Method 3—Node analysis Senter for Advanced Power Technologies

- The most powerful approach of circuit analysis
- Node analysis is based on the combination of element laws, KCL, and KVL.
- It is a particular application of KVL, KCL method
- 1. Select reference node (ground) from which voltages are measured.
- 2. Label voltages of remaining nodes with respec^t to ground. These are the primary unknowns.
- 3. Write KCL for all but the groundnode, substituting device laws and KVL.
- 4. Solve for node voltages.
- 5. Back solve for branch voltages and currents (i.e. the secondary unknowns)

Chapter 3 , EE2210 - Slide 9/54

Example: Step1 and 2 **Example:** $\sum_{\text{National Time Hua University, TAMWAN}}$

Chapter 3 , EE2210 - Slide 10/54

Example: Step3 National Tsing Hua University, TAIWAN

For convenience, let's use conductance

$$
G_i = \frac{1}{R_i}
$$

KCL at e_1 : $(e_1 - V_0)G_1 + (e_1 - e_2)G_3 + (e_1 - 0)G_2 = 0$

KCL at e_2 : $(e_2 - e_1)G_3 + (e_2 - V_0)G_4 + (e_2 - 0)G_5 - I_1 = 0$

Chapter 3 , EE2210 - Slide 11/54

Example: Step4 National Tsing Hua University, TAIWAN

Move constant terms to right-hand side and collect unknowns

$$
e_1(G_1 + G_2 + G_3) + e_2(-G_3) = V_0(G_1)
$$

$$
e_1(-G_3) + e_2(G_3 + G_4 + G_5) = V_0(G_4) + I_1
$$

Two equations and two unknowns \Rightarrow Solve for *e*'s

Step 4:cont

Solve \bullet

 $e_{\scriptscriptstyle 1}^{}$

$$
e_{1} = \frac{G_{3} + G_{4} + G_{5}}{G_{1} + G_{2} + G_{3}} \left[\frac{G_{1}V_{0}}{G_{4}V_{0} + I_{1}} \right]
$$

\n
$$
e_{2} = \frac{(G_{3} + G_{4} + G_{5})(G_{1}V_{0}) + (G_{3})(G_{4}V_{0} + I_{1})}{G_{1}G_{3} + G_{1}G_{4} + G_{1}G_{5} + G_{2}G_{3} + G_{2}G_{4} + G_{2}G_{5} + G_{3}G_{4} + G_{3}G_{5}}
$$

\n
$$
e_{2} = \frac{(G_{3})(G_{1}V_{0}) + (G_{1} + G_{2} + G_{3})(G_{4}V_{0} + I_{1})}{G_{1}G_{3} + G_{1}G_{4} + G_{1}G_{5} + G_{2}G_{3} + G_{2}G_{4} + G_{2}G_{5} + G_{3}G_{4} + G_{3}G_{5}}
$$

Super Node

- A floating independent voltage source is a voltage source that has neither terminal connected to ground, neither directly nor through one or more other independent voltage sources.
- It is not possible to complete Step 3 of node analysis since *i₅* is not known.
- To derive the desired statement of KCL, we draw a surface around both nodes. Nodes 1 and 2 form a super node.
- KCL for node 1 $i_1 + i_2 + i_5 = 0$
- KCL for node 2 $i_3 + i_4 - i_5 = 0$
- KCL for super node $i_1 + i_2 + i_3 + i_4 = 0$

Example

 $e + V_3$

 V_3

 $G_3 \geq$

Super node

Node 4

Node 3

- In this circuit, the voltage source having value V_3 is the only floating independent voltage source.
- Nodes 3 and 4 form a super node. £
- Node 3 is labeled with the unknown L node voltage *^e*, and so Node 4 is labeled with the node voltage $e + V_3$.

$$
G_1[e + V_3 - (V_1 + V_2)] + G_2(e - V_1) + G_3e = 0
$$

$$
e = \frac{(G_1 + G_2)V_1 + G_1V_2 - G_1V_3}{G_1 + G_2 + G_3}
$$

 V_2

 V_1

w $G₁$

₩ G_2

Node 5°

 $V_1 + V_2$

Node

Consider

Write down the node equation

$$
G_1(e-V) + G_2(e) - I = 0
$$
 Linear in *e*, *V*, *I*.

No *eV, V2, VI….*terms.

Rearrange ∙

$$
(G_1+G_2)e=G_1V+I
$$

conductance matrix node voltages = linear sum of sources G e S

Chapter 3 , EE2210 - Slide 16/54

Consider

Solve

$$
e = \frac{G_1}{G_1 + G_2}V + \frac{1}{G_1 + G_2}I
$$

Or $\frac{1}{R_1 + R_2} I$ $\frac{R_2}{R_1+R_2}V + \frac{R_1R_2}{R_1+R_2}$ $e=\frac{R_2}{\sqrt{R_1+R_2}}V+\frac{R_1R_2}{\sqrt{R_1+R_2}}$ + $\frac{2}{+R_2}V +$ = $1 + 1$ $2 - 1$ $1 + 1$ 2

In general, $e = a_1 V_1 + a_2 V_2 + \dots + b_1 I_1 + b_2 I_2 + \dots$

Chapter 3 , EE2210 - Slide 17/54

Linearity

Now we can find the branch variables v_0 , i_0 , v_1 , i_1 , v_2 , i_2 , v_3 , and i_3 .

Chapter 3 , EE2210 - Slide 18/54

- *Homogeneity* and *Superposition* ∙
- Homogeneity ∙

Superposition ∙

Chapter 3 , EE2210 - Slide 19/54

Specific superposition example: ∙

Chapter 3 , EE2210 - Slide 20/54

Method 4—Superposition methodologies

- The output of a circuit is determined by summing the responses to each source acting alone.
- To set *V* = 0, replacing Independent voltage source by a short circuit

To set *I* = 0, replacing Independent voltage source by an open circuit

Chapter 3 , EE2210 - Slide 22/54

Superposition method

- For each independent source, form a subcircuit with all other independent sources set to zero. Setting a voltage source to zero implies replacing the voltage source with a short circuit, and setting a current source to zero implies replacing the current source with an open circuit.
- From each subcircuit corresponding to a given independent source, find ∙ the response to that independent source acting alone. This step results in a set of individual responses.
- Obtain the total response by summing together each of the individual res ponses.

Chapter 3 , EE2210 - Slide 23/54

Example

For the circuit as shown below, €

Node voltages, e_1 and e_2 , can be found from the Node analysis. €

$$
e_1 = \frac{(G_3 + G_4)G_1V_1 + (G_3 + G_4)G_2V_2 + G_3I}{(G_1 + G_2)(G_3 + G_4) + G_3G_4}
$$

$$
e_2 = \frac{G_3G_1V_1 + G_2V_2 + (G_1 + G_2 + G_3)I}{(G_1 + G_2)(G_3 + G_4) + G_3G_4}
$$

Chapter 3 , EE2210 - Slide 24/54

 $\text{Let's us find } e_I$ by superposition, $\sum_{\text{Ricot} \text{ A} \text{ B} \text{ B} \text{ B} \text{ B}} \sum_{\text{Ricional Tsing Hua University}} \sum_{\text{National Tsing Hua University}}$ £

Set V_2 and I to zero to find the voltage component e_{iA} of e_i due to L source V_I acting alone.

Chapter 3 , EE2210 - Slide 25/54

The response e_{1A} to voltage source V_I can be found from the € following circuit as:

$$
e_{1A} = \frac{G_1}{G_1 + [G_2 + G_3 G_4 / (G_3 + G_4)]} V_1
$$

Chapter 3 , EE2210 - Slide 26/54

The response e_{1B} to voltage source V_2 can be found from the following circuit as:

$$
e_{1B} = \frac{G_2}{G_2 + [G_1 + G_3 G_4 / (G_3 + G_4)]} V_1
$$

Chapter 3 , EE2210 - Slide 27/54

The total response e_l by summing together each of the individual responses as:

$$
e_1 = e_{1A} + e_{1B} + e_{1C}
$$

Chapter 3 , EE2210 - Slide 28/54

Averaging Circuit

Find v_0 for the circuit as shown below: ♪

$$
v_{05} = \frac{1 \,\text{k}\Omega}{1 \,\text{k}\Omega + 1 \,\text{k}\Omega} \times 5 \,\text{V} = \frac{5}{2} \,\text{V}
$$

Averaging Circuit (cont.)

- $Circuit with 6-V source acting alone.$
- v_{06} , the response of the 6-V source acting alone, become.

$$
v_{06} = \frac{1 \,\text{k}\Omega}{1 \,\text{k}\Omega + 1 \,\text{k}\Omega} \times 6 \,\text{V} = \frac{6}{2} \,\text{V}
$$

And v_0 is sum the two partial responses.

$$
v_0 = v_{05} + v_{06} = \frac{5 \text{ V} + 6 \text{ V}}{2} = \frac{11}{2} \text{ V}
$$

Note that v_{θ} is the average of the two input voltages.

The Thévenin method National Tsing Hua University, TAIWAN

Consider:

- Let's us choose to apply a test current source to the terminals. To find the response ν by superposition.
- By superposition

$$
v = \sum_{m} \alpha_{m} V_{m} + \sum_{n} \beta_{n} I_{n} + R_{TH} i
$$

- The first two terms is independent of external excitation and behaves like a voltage source v_{TH} .
- The coefficient of the last term is independent of external excitement i ∙ and behaves like a resistor R_{TH} .

The Thévenin method National Tsing Hua University, TAIWAN

• Or
$$
v = v_{TH} + R_{TH}i
$$

As far as the external world is concerned (for the purpose of I-V L relation),"Arbitrary network N"is indistinguishable from:

Thévenin equivalent network

- Open circuit voltage at port: $\;{\it V}_{TH}$
- Resistance of network seen from port: $\ R_{\gamma H}$

Chapter 3 , EE2210 - Slide 32/54

Chapter 3 , EE2210 - Slide 33/54

Method 5: The Thévenin Method State Law Power Technologies National Tsing Hua University, TAIWAN

- Developed at 1883 by M. Leon Thévenin (1857–1926), a French telegraph engineer.
- Replace network N with its Thévenin equivalent, then solve external \bullet network E

enter for Advanced Power Technologies National Tsing Hua University, TAIWAN **A Method for Determining the Thévenin Equivalent Circuit**

- The Thévenin equivalent circuit for any linear network at a given pair of terminals consists of a voltage source v_{TH} in series with a resistor R_{TH} . The voltage v_{TH} and resistance R_{TH} can be obtained as follows:
- *1.* v_{TH} can be found by calculating or measuring the open-circuit voltage at the designated terminal pair on the original network.
- *2.*. R_{TH} can be found by calculating or measuring the resistance of the open-circuit network seen from the designated terminal pair with all independent sources internal to the network set to zero. That is, with independent voltage sources replaced with short circuits, and independent current sources replaced with open circuits. (Dependent sources must be left intact, however.)

To find current *i₁* of the circuit

Replacing network N with its Thévenin equivalent

Example

Find condition that voltage across R_5 is zero.

Replacing network N with its Thévenin equivalent

More Example (cont.) Superfor Advanced Power Technologies

The circuit is equivalent to: ∙

The condition that voltage across R_5 is zero is: ∙

$$
v_{OC} = V \left(\frac{R_3}{R_1 + R_3} - \frac{R_4}{R_2 + R_4}\right) = 0
$$
 or $\frac{R_3}{R_1 + R_3} = \frac{R_4}{R_2 + R_4}$ or $\frac{R_3}{R_1} = \frac{R_4}{R_2}$

Chapter 3 , EE2210 - Slide 40/54

The circuit is equivalent to:

The condition that voltage across R_3 is zero is:

$$
v_{TH1} = V \frac{R_2}{R_1 + R_2} = v_{TH2} = V \frac{R_5}{R_4 + R_5}
$$
 or $\frac{R_2}{R_1 + R_2} = \frac{R_5}{R_4 + R_5}$ or $\frac{R_2}{R_1} = \frac{R_5}{R_4}$

Chapter 3 , EE2210 - Slide 41/54

The Norton Method Senter for Advanced Power Technologies Theory Advanced Power Technologies

Consider:

- This time let's us choose to apply a test voltage source to the terminals. To find the response *i* by superposition.
- By superposition

$$
i = \sum_{m} \alpha_{m} V_{m} + \sum_{n} \beta_{n} I_{n} + \frac{v}{R_{N}}
$$

- The first two terms is independent of external excitation and behaves like a voltage source i_N .
- The coefficient of the last term is independent of external excitement i . and behaves like a resistor $\ R_N$.

The Norton Method Method

- Developed at 1926 by E. L. Norton, an American engineer at Bell \bullet Telephone Laboratory.
- Replace network N with its Norton equivalent.

The Norton method Γ

• Or
$$
i = i_N + \frac{v}{R_N}
$$

As far as the external world is concerned (for the purpose of *i*-*v* \bullet relation),"Arbitrary network N"is indistinguishable from:

Norton equivalent network

Short circuit current at port: $\boldsymbol{i}_N^{}$

Resistance of network seen from port: $\ R_N^{}$ \bullet

Chapter 3 , EE2210 - Slide 44/54

Method 6: The Norton Methodogies Methodogies Center for Advanced Power Technologies

Replace network N with its Norton equivalent, then solve external L network E.

Chapter 3 , EE2210 - Slide 45/54

Center for Advanced Power Technologies National Tsing Hua University, TAIWAN **A Method for Determining the North Equivalent Circuit**

- The Norton equivalentcircuit for any linear network at a given pair of \bullet terminals consists of a current source i_N in parallel with a resistor R_N . The current i_N and resistance R_N can be obtained as follows:
- *1.* i_N can be found by applying a short at the designated terminal pair on the original network and calculating or measuring the current through the short circuit.
- *2.* R_N can be found in the same manner as R_{TH} , that is, by calculating or measuring the resistance of the open-circuit network seen from the designated terminal pair with all independent sources internal to the network set to zero; that is, with voltage sources replaced with short circuits, and current sources replaced with open circuits. (Dependent sources must be left intact, however.)

$\sum_{\substack{\lambda \in \text{Center for Advanced Power Technology}\\ \lambda \text{Rational Tsing Hua University, TAINVAN}}$

To find current *I1* of the circuit

Replacing network left of aa**'** with its Norton equivalent ∙

$\textbf{The} \textbf{vennin}'$ **S** and \textbf{North}' **S** \textbf{S} and \textbf{S} \textbf{S}

- $R_{\mathit{th}} = R_N$.
- Open circuit voltage:
	- For the Thévenin's:

 $\mathcal{V}_{oc} = V_{TH}$;

For the Norton's:

 $\mathcal{v}_{oc} = I_N R_N$;

- $V{\scriptstyle_{th}} = I_N R_N$.
- Short circuit current: \bullet
	- For the Thévenin 's:

 $i_{\mathit{sc}} = V_{\mathit{TH}}/R_{\mathit{TH}}$;

For the Norton's:

 $i_{\mathit{sc}} = I_{\mathit{N}}$ *;*

$$
\bullet \quad I_N = V_{TH}/R_N.
$$

Chapter 3 , EE2210 - Slide 48/54

Maximum Power Transfer $\frac{1}{\sqrt{\frac{C_{\text{enter for Advanced Power Technology}{\text{ReUniverity, TAMWAN}}}}}$

$$
i = \frac{V_{TH}}{R_{TH} + R_L} \quad \to \quad P_L = (\frac{V_{TH}}{R_{TH} + R_L})^2 R_L
$$

To find the maximum of P L:

And

$$
\frac{dP_L}{dR_L} = V_{TH}^2 \frac{(R_{TH} - R_L)}{(R_{TH} + R_L)^3} = 0 \rightarrow R_{TH} = R_L
$$

the maximum of P_L is $\frac{V_{TH}^2}{4R_{TH}}$

Chapter 3 , EE2210 - Slide 49/54

Conclusions

Discretize matter \bullet

Physics \rightarrow EE

Lump Matter Discretization $(LMD) \rightarrow Lump$ Circuit Abstraction (LCA)

- *R*, *I*, *V* forms *Linear* networks
- Analysis methods (linear and nonlinear)
	- KVL, KCL, I-V £
	- Combination rules
	- Node method (and Mesh Method)
- Analysis methods (linear) \bullet
	- Superposition
	- Thévenin▲
	- Norton \bullet

Mesh Analysis (Loop Analysis) $\frac{1}{2}$ **Mesh Center for Advanced Power Technologies**

Mesh: A loop which does not contain any other loops within it.

- 1. Assign mesh currents $i_1, i_2, ..., i_m$ to the *m* meshes.
- 2. Apply Kirchhoff's Voltage Law (KVL) to each of the m meshes. Use Ohm's law to express the voltage relationship within each mesh in terms of mesh currentss $i_1, i_2, ..., i_m$.
- 3. Solve the *m* simultaneous equations to obtain the mesh currents i_1, i_2, \ldots, i_m .

Special Case 1

When a current source exists in one mesh, then the current of this mesh is equal to this current source.

Mesh Analysis Mesh

Special Case 2

When a current source exists between two meshes, a supermesh is defined by *excluding the current source and any components in series connection with it.*

$$
i_1R_1 + v_x = 0; -v_x + i_2R_2 = 0
$$

\n
$$
\rightarrow i_1R_1 + i_2R_2 = 0
$$

$$
(-i1) + i2 = is
$$

$$
i1R1 + i2R2 = 0
$$

Chapter 3 , EE2210 - Slide 53/54

Summary for Node and Mesh Anal ysis

- For a circuit with *b* branches and *n* nodes ▲
	- Node Analysis: $(n 1)$ equations by applying KCL to each J non-reference nodes.
	- Mesh Analysis: $m = b (n 1)$ equations by applying KVL to each meshes.