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Back to RC Network
g y

Circuit:

Impedance model:

To find VVPPPP
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Transfer Function
g y

Transfer function

Magnitude and Phase plots, A low pass filter.
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Bode Plot
g y

Transfer function

Bode Plot for a transfer function assuming RC = 2π×100 rad/sec.
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Quick Review of Impedances
g y

Example1:
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Quick Review of Impedances
g y

Example3:
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RCL Impedances
g y

RLC impedances as a function of frequency:
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Filters built by Combining Impedances
g y

Filters can be built by Combining Impedances :
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Series RLC
g y

To find VVrr
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Transfer Function
g y

Transfer function
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Let's study this transfer function
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Graphically
g y

Transfer function
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L blocks high freq.C blocks low freq.

At resonance ω = ω Z + Z = 0
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What about?
g y

What about taking Vlc as output?
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Another example:
g y
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AM Radio Receiver
g y
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AM Radio Receiver
g y

Receiver “Selectivity” is important — relates to a parameter “Q” of the 
filter.
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Selectivity: Look at series 
RLC in more detail g y

    :Define 0
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Quality Factor Q
ω g y

To find quality factor  0

ω
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Quality Factor Q
g y

Δω is the bandwidth, i.e. ω between magnitude fall to -3dB

We need to find
Vr 1 11 rV

That is  
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Quality Factor Q
ω g y

The quality factor  0

ω
ω
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The lower the R (for series RLC), the sharper the peak. 
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Parallel RLC
g y

To find VVpp
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Quality Factor Q
ω g y

To find quality factor  0

ω
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Quality Factor Q
g y

Δω is the bandwidth, i.e. ω between magnitude fall to -3dB

We need to find
RRVi ==== 1   iV

That is  
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Transfer Function
g y

Transfer function
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Example
g y

L = 0.1 mH, C = 1 μF and R = 10 Ω

Transfer function
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
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Magnitude and Phase plots
g y

Log scale

1
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Magnitude and Phase plots
g y

Linear scale
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Transfer Function and Q
g y

Transfer function
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Revisit of the LPF with L
g y

L = 20 mH, C = 13 nF and R = 50 Ω

Transfer function
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Time-domain Vs Frequency-domain
g y

Ω==   50   8.24 RQ

Ω==  500  48.2 RQ
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Power and Energy in an Impedance
g y

Power and energy are critical issues in the design of circuits.

The power delivered to some arbitrary impedance Z = R + jX  by a 
sinusoidal source )()( φVsinusoidal source.

In Phasor notation  

)cos()( φω += tVtv ii

φj
ieV=iV

And 

)()( θφθφ
φ

−− ==== jji
j

i eIeVeViVI
22

=
+

=
+

== ieIe
XRjXRZiI

R
X1tan   Where −=θ

Because power is not a linear function of v and i, we must be cautious 
about using impedance concepts in power calculations. 

R
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Time expressions
g y

Let's start with time expressions rather than complex amplitudes.

The current and voltage as a function of time are.

V

)cos()( φω += tVtv ii

)cos()Re()(
22

θφωω −+
+

== t
XR

Veti itj
i iI

Then, the instantaneous power is given by:  

)()( φii
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2

θφωφω ++ ttVit i )cos()cos()(
22
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== tt
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ivtp i
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]cos)22[cos(1 2

θθφω +−+= tVi

The instantaneous power for sinusoidal drive has a sinusoidal component 
at twice the frequency of the input signal, and the DC component. 

]cos)22[cos(
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+

t
XR

q y p g , p
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Average power
g y

Because the average value of cos(2ωt) is zero, the average power flowing 
into an arbitrary impedance is just the DC term of the expression below.

1 2V

The average power :

]cos)22[cos(
2
1)(

22
θθφω +−+

+
= t

XR
Vtp i

θcos
2
1

22

2

XR
Vp i

+
=

The average power in terms of complex amplitudes of voltages and

θcos
2
1

ii IVp =

The average power in terms of complex amplitudes of voltages and 
currents is one-half the product of the two magnitudes multiplied by the 
cosine of the angle between them.

The term cosθ is often called the power factor. 
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Average power
g y

The average power can also be written directly in terms of complex 
voltage and complex current.

11

Where        is the complex conjugate of       .

]Re[
2
1]Re[

2
1

i
*
i

*
ii IVIV ==p

*
iV iV

is the complex conjugate of      . *
iI iI

Using this notation, 1/2 VI∗ is often called complex power, whence the 
real part of the complex power is the average power, the “real” power,  
and the imaginary part is called reactive power. g y p p
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Pure Resistance
g y

Assume that the impedance is a pure resistance R, that is, X = 0 and φ = 0.

)]2cos(1[
2

]0cos)2[cos(
2
1)(

2

2

2

t
R

Vt
R

Vtp ii ωω +=+=

The average power dissipated in the resistor is:

22 RR

Vi
2

This is exactly one half of the power delivered by the DC voltage of the 

R
p i

2
=

same amplitude.
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Root-Mean-Square (rms) Voltage
g y

The root-mean-square voltage, abbreviated rms, which is related to the 
peak amplitude of the sinewave by the square root of two.

iVV

In terms of the rms unit, average power is :

2
i

rmsV =

R
V

R
Vp rmsi

22 )(
2

==

For non-sinusoidal voltages, the general definition of rms voltage is, as the 
name implies,

)(2 tvVrms =

Thus, the 110-V AC power from a wall socket is 110 volts rms,

Or                               volts peak.6.1552110 =×
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Pure Reactance
g y

If the impedance consists only of inductor (θ = π/2), that is, R = 0. Also 
assume that φ = 0.

222 VVV πππ

If the impedance consists only of capacitor (θ = −π/2):

)2sin(
2

)
2

2cos(
2

]
2
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2

2[cos(
2

)( t
X

Vt
X

Vt
X

Vtp iii ωπωππω =−=+−=

)2sin(
2

)
2

2cos(
2
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2
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2
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In both cases, the average power is zero.
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Pure Reactance
g y

The L's and C's absorb power for two quarters of each cycle, and deliver 
the power back to the source during the other two quarter cycles.

Power companies are not happy about this state of affairs, because they 
still must supply the power and pay for the power losses in the power losses in the 
transmission linetransmission line. 

Although there is no average power supplied to this lossless circuit in the 
sinusoidal steady state, there is energy stored on the average.
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Average Stored Energies
g y

For a capacitor, the stored energy is.







 +=== )2cos(

2
1

2
1

2
1)]cos([

2
1)(

2
1 222 tCVtVCtCvW iiC ωω

Again a DC term and a double-frequency term.

The average stored energy is

 22222

e ave age s o ed e e gy s

22

4
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2
1

2
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iiC CVCVW =





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A similar derivation for an inductor yields:

21
iL LIW = )cos()(where tIti iL ω=

4 iL LIW )cos()(where tIti iL ω
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Example
The complex amplitude of the current g yThe complex amplitude of the current
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The average power dissipated in the circuit is
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At the break frequency or corner frequency
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
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At the break frequency or corner frequency 

R
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Hence the frequency ω = 1/RC is also called the half-power frequency
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Peak Voltage in Resonant Circuit
g y

Assuming a cosine wave for the voltage source:

Assume that the circuit is being driven at its resonant frequency.Assume that the circuit is being driven at its resonant frequency.
tVtv ii ωcos)( =
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The voltage across either the capacitor or the inductor in a series resonant 
circuit is Q times the input voltage when the circuit is driven at its resonant 

iil Q
RR

jj 0 il

Q p g
frequency.  
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Stored Energy in Resonant Circuit
g y

Assuming a cosine wave for the voltage source:

The voltage across the capacitor is:The voltage across the capacitor is:
tVtv ii ωcos)( =

The energy stored in the capacitor

tQVQejVetv i
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Summary
g y

The performance of a resonant circuit is summarized by its frequency 
response. The frequency response comprises plots of magnitude and phase 
angle versus frequencyangle versus frequency.
The magnitude plot is sketched by drawing the low-frequency and the high-
frequency asymptotes. The two asymptotes intersect at the break frequency. 
The quality factor Q, the resonant frequency ω0, and the damping factor α are 
three key parameters that characterize the behavior of resonant systems.
The average power in terms of complex amplitudes of voltages and currents g p p p g
is one-half the product of the two magnitudes multiplied by the cosine of the 
angle between them. 
The bandwidth is related to the resonant frequency by the quality factor:The bandwidth is related to the resonant frequency by the quality factor:The bandwidth is related to the resonant frequency by the quality factor:The bandwidth is related to the resonant frequency by the quality factor:

 
Bandwidth

frequencyResonant =Q
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