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Response to Sinusoidal Drive
g y

Response of networks to sinusoidal drive.Response of networks to sinusoidal drive.

Sinusoids is important because signals can be represented as a sum of Sinusoids is important because signals can be represented as a sum of 
sinusoids.sinusoids.
Response to sinusoids of various frequencies Response to sinusoids of various frequencies ––also called as also called as 
frequency response frequency response ----tells us a lot about the system.tells us a lot about the system.
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Sinusoids
g y

Sinusoids is important because signals can be represented as a sum of Sinusoids is important because signals can be represented as a sum of 
sinusoids.sinusoids.
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Response to Sinusoidal Drive
g y

What is the response of the following amplifier to a sinusoidal drive?What is the response of the following amplifier to a sinusoidal drive?

Observing the amplitude of Observing the amplitude of vvoo as the frequency of the input as the frequency of the input vvoo changed.changed.
We found the amplitude of We found the amplitude of vvoo decreased with frequency. decreased with frequency. 
We also found that We also found that vvoo shifted as frequency changes (phase).shifted as frequency changes (phase).
Need to study behavior of networks for sinusoidal drive.Need to study behavior of networks for sinusoidal drive.Need to study behavior of networks for sinusoidal drive.Need to study behavior of networks for sinusoidal drive.
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Sinusoidal Response of RC Network
g y

The Circuits:

The input:The input:

0for0
real. is    0 for   )cos()(

<=
≥=

t
VttVtv iiI ω

Assume zero initial state:

0for                0        <= t

V  0)0( =Cv
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Usual Approach
g y

Set up the differential equation.

Find the particular solution vvFind the particular solution, vvPP..

Find the homogeneous solution , vvHH.

The total solution is the sum of the particular and homogeneous p g
solutions , vv = vvPP + vvHH.

Use the initial conditions to solve for the remaining constants.
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Usual Approach
g y

Set up the differential equation.

)cos( tVvv
dt

dvRC iIC
C ω==+

That was easy.
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Usual Approach
g y

Find the particular solution, vvPP.

)cos( tVv
dt

dvRC iP
P ω=+

Try

Try

dt

KvP = Noop  )cos( ≠=+ tVKK
dt
dKRC i ω

)cos( tAvP ω= Noop)cos()cos()sin( ≠+− tVtAtRCA i ωωωωTry

Try     

)cos( tAvP ω Noop)cos()cos()sin( ≠+ tVtAtRCA i ωωωω

)cos( φω += tAvP

)cos()cos()sin( tVtAtRCA i ωφωφωω =+++− )()()( iφφ

)cos()sin()sin()cos()cos(
)sin()cos()cos()sin(

tVtAtA
tRCAtRCA

i ωφωφω
φωωφωω

=−
+−−

W k d b t h t t i t i ht

)(tan     where)cos()cos(1 1222 RCtVtACR i ωδωδφωω −==+++

Worked but what a trigonometry nightmare.
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Sneaky Approach
g y

Instead of input:

Find particular solution to another input:

)cos()( tVtv iI ω=
st

iI eVtv =)(
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The Effort of Various Approaches
g y

Charles Proteus Steinmetz
German-American mathematician and 
electrical engineer (1893)(1865 1923)
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Sneaky Approach
g y

The new drive:

Find the particular solution, vvPSPS :

st
iI eVtv =)(

d

Try solution:

st
iPS

PS eVv
dt

dvRC =+

st
PPS eVv =y so u o : PPS

 s    st
i

st
P

st
P

st
i

st
P

st
P eVeVeRCVeVeV

dt
edVRC =+=+

( )( )1s   iP VVRC =+

RC
VV i

P s1
    

+
= sti

PS e
RC

Vv
1

  =

is particular solution for input

RCs1+ PS RCs1+
sti

PS e
RC

Vv
s1
  

+
=

st
iI eVtv =)(

Easy!!                              
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Sneaky Approach
g y

Similarly:                                  is particular solution for inputtji
PS e

RCj
Vv ω

ω+
=

1
  tj

iI eVtv ω=)(

We have complex amplitude VVPP.

Fact 1: Finding the response to                      is easy.tj
PPS eVv ω=

Fact 2: From Euler relation, tjte tj ωωω sincos +=

]Re[cos)( tj
iiI eVtVtv ωω ==

vI vP
response

Real Part Real Part

An inverse superposition argument, assuming system is real, linear.
vIS vPS

response
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Sneaky Approach
g y

Let's try to find vvPP from vvPSPS: st
iI eVtv =)(



== ]Re[]Re[ ωtj
pPSP

V

eVvv

( )




 −=









+

=

222

1Re   

1
Re    

ω

ω

ω
ω

tji

tji

eRCjV

e
RCj

V

−=








+
=

 +

222

222

tan   , 
1

Re   

1

ωφ ωφ
ω

ω

tjji RCee
CR

V

CR

h i l l i f










+
=



+ )(

2221
Re   φω

ω
tji e

CR
V

)()( VThe particular solution, vvPP for )cos()( tVtv iI ω=

)cos(
222

φω += tVv i
P
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Sneaky Approach
g y

Recalled from Chapter 10, the homogeneous solution , vvHH :

RC
t

H Aev
−

=

The total solution is the sum of the particular and homogeneous 
solutions , vv = vvPP + vvHH :

  H Aev

RC
t

i
HPC Aet

CR
Vvvv

−
++

+
=+= )cos(

1 222
φω

ω
 tan where RCωφ −=

Given:

So

V  0)0( =Cv 0)0cos(
1

0

222
=++

+
=

−
RCi

C Ae
CR

Vv φω
ω

So
)cos(

1 222
φ

ω CR
VA i

+
−=

Done! Phew!
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Sinusoidal Steady State (SSS)
g y

The total solution :







⋅−+=
−

RC
t

i
C etVv φφω cos)cos(

222
tanwhere RCωφ −=

We are usually interested only in the particular solution for sinusoids, 





+

C
CR

φφ
ω

)(
1 222

φ

We a e usua y e es ed o y e pa cu a so u o o s uso ds,
i.e. after transients have died.

Notice whenNotice when 0 as    , →→∞→
−

RC
t

PC evvt

)cos(
1 222

φω
ω

+
+

== t
CR

Vvv i
PC

Described as: Described as: Sinusoidal Steady State Sinusoidal Steady State (SSS) (SSS) 

Chapter 13 , EE2210 - Slide 15/50



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

Sinusoidal Steady State
g y

All information about Sinusoidal Steady StateSinusoidal Steady State is contained in VVPP

RCj
VV i

P ω+
=

1
  

A complex amplitude! 

Steps (1) find the homogeneous solution (2) find the total solution and 

RCjω+1

S eps ( ) d e o oge eous so u o ( ) d e o a so u o a d
determine remaining constants from the initial conditions were a 
waste of time!

φV 11Let’s rewrite  tan where RCωφ −=φ

ωω
j

i

P e
CRRCjV

V
2221

1
1

1 
+

=
+

=

V 1

RCV
CRV

V

P

i

P

φ

ω
1

222

tPh

1
1   :magnitude

−∠

+
=
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Sinusoidal Steady State
g y

Visualizing the process of finding the particular solution vvPP

Chapter 13 , EE2210 - Slide 17/50
The sneaky path!



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

Magnitude Plot
g y

Transfer function

Transfer function, also known as a system function, is the ratio of 
i

P

V
VjH  )( =ω

the complex amplitude of the network output to the complex 
amplitude of the input.

1:Magnitude VP =
2221

  :Magnitude
CRVi ω+

=

vvOO fall off for high frequencies!
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Bel and Decibel (dB)
g y

Curious units called Curious units called “decibels”“decibels” are used by EEs to measure electric are used by EEs to measure electric 
power, voltage, current, the gain or loss of amplifiers, and the power, voltage, current, the gain or loss of amplifiers, and the 
insertion loss of filtersinsertion loss of filtersinsertion loss of filters.insertion loss of filters.

A A belbel (symbol (symbol BB) is a unit of measure of ratios of power levels, i.e. ) is a unit of measure of ratios of power levels, i.e. 
relative power levels.relative power levels.

1B = log1B = log1010((PP11//PP22) ) where where PP1 1 and and PP2 2 are power levels.are power levels.

The The belbel is a logarithmic measureis a logarithmic measure

1 1 belsbels corresponds to a ratio of 10:1corresponds to a ratio of 10:1

The The belbel is too large for everyday use, so the is too large for everyday use, so the decibel (dB)decibel (dB), equal to , equal to 
0.1B, is more commonly used.0.1B, is more commonly used.

10dB10dB ll ((PP //PP ))10dB 10dB = = loglog1010((PP11//PP22))

10 dB corresponds to a ratio of 10:110 dB corresponds to a ratio of 10:1

The word decibel is a reference to powers of ten and to Alexander The word decibel is a reference to powers of ten and to Alexander 
Graham Bell.Graham Bell.
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Logarithmic Measure for Power
g y

To express a power in terms of decibels, one starts by choosing a To express a power in terms of decibels, one starts by choosing a 
reference power, Preference power, Preferencereference, and writing., and writing.

Power P in decibels = 10 logPower P in decibels = 10 log1010(P/P(P/Preferencereference))

Example:Example:
Express a power of 50Express a power of 50 mWmW in decibels relative to 1 wattin decibels relative to 1 wattExpress a power of 50 Express a power of 50 mWmW in decibels relative to 1 watt.in decibels relative to 1 watt.

P (dB) =10 logP (dB) =10 log1010 (50 x 10(50 x 10--33) = ) = -- 13 dB 13 dB 

Use logarithmic scale to express power ratios varying over a Use logarithmic scale to express power ratios varying over a 
large rangelarge range





 1l P ( )dB: 









2

1log10
P
P ( )dB

Note: dB is not a unit for a physical quantity since
power ratio is unitless. It is just a notation to
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Decibels for Measuring Transfer Function 
Magnitude?

g y

DeciblesDecibles provide a measure of relative power levels.provide a measure of relative power levels.

They can also be used in transfer functions.They can also be used in transfer functions.

The key is in realizing that The key is in realizing that 

ThusThus

22 IVP ∝∝









=








=

in

out

in

out

V
V

V
V log20log10dB 2

2

Transfer function

( )( ))(log20)(
dBin 

ωω jHjH =
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Neper
g y

The "The "NeperNeper" (after John Napier 1550" (after John Napier 1550--1617) is a unit based on 1617) is a unit based on 
NaperianNaperian logarithms to the base logarithms to the base ee..

Th h i l i f hTh h i l i f h d iB ld iB l i 1929 h bi 1929 h b

in

out
e

in

out
e

in

out
e V

V
p
p

p
p loglog

2
1logNeper ===

The growth in popularity of the The growth in popularity of the deciBeldeciBel, since 1929, has been so great , since 1929, has been so great 
that it is now almost a household word throughout all branches of that it is now almost a household word throughout all branches of 
Electrical Engineering and Acoustics.Electrical Engineering and Acoustics.

The The NeperNeper is used in some European countries, but is less commonly is used in some European countries, but is less commonly 
encountered than the dB.encountered than the dB.
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Phase Plot
g y

Transfer function
i

P

V
VjH  )( =ω

RCVP ωφφ 1tan:Phase −=∠= RC
Vi

ωφφ tan     : Phase −=∠=
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Is there an even simpler way to get 
VP? g yP

Let us look more closely at VVPP

RCj
VV i

P =
1

  

Divide numerator and denominator by jωC.

RCjP ω+1

1

R
Cj

CjVV iP

+
=

ω

ω
1

1

 

Hmmm…looks like a voltage divider relationship.

Cjω

L t' l f th

RZ
ZVV

C

C
iP +

= 

Let's explore further…
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The Impedance Model
g y

Consider resistor:

tjtj ωω

tj
r

tj
rRR

tj
rR

tj
rR

eRIeVRiv
eVveIi

ωω

ωω

==

==

     

  and   

For resistor rr RIV =

For capacitor

tjtjC

tj
cC

tj
cC

ejCVeIdvCi

eVveIi

ωω

ωω

ω==

==    and    

ccC ejCVeI
dt

Ci ω==    

IZIV == 1
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The Impedance Model
g y

For inductor:
tj

lL
tj

lL eVveIi ωω ==    and    

tj
l

tj
l

L
L ejLIeV

dt
diLv ωω ω==      

lLll IZLIjV == ω
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The Impedance Model
g y

In other words,

Capacitor

cCc IZV =

Cj
ZC ω

1= For a drive of the form VCejωt, 

ZC is called impedance

Inductor
Cjω

ll IZV =

C ,
complex amplitude VC is related 
to the complex amplitude IC
algebraically, by a 

lLl IZV =

LjZL ω=
generalization of Ohm's Law.

Resistor 

rRr IZV =
ZC, ZL, and ZR, are 
called impedance
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DC or operating-point variables: uppercase symbols with uppercase 
subscripts (for example, VA).

Total instantaneous variables: lowercase symbols with uppercase 
subscripts (for example v )subscripts (for example, vA).

Incremental instantaneous variables: lowercase symbols with 
lowercase subscripts (for example, va).

Complex amplitudes or complex amplitudes of incremental 
components, and real amplitudes of sinusoidal input sources: 
uppercase symbols with lowercase subscripts (for example V )uppercase symbols with lowercase subscripts (for example, Va).
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Back to RC Network
g y

Circuit:

Impedance model:

To find VVPPPP

CjV
RZ

ZVV iiP == ω
1

 1
  C

iP V
RCj

V =
1

 1  

All ld f i d l ! KVL KCL iti

R
Cj

RZ i
C

iP

++
ω
1 iP RCjω+1

Done!

All our old friends apply!  KVL, KCL, superposition…
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The Impedance Method 
g y

1st Step: Replace the (sinusoidal) sources by their complex (or real) 
amplitudes. vA = Va cos(ωt) is replaced Va.

2nd step: Replace circuit elements by their impedances. The resulting 
diagram is called the impedance model of the network..

3rd Step: Determine the complex amplitudes of the voltages and3 Step: Determine the complex amplitudes of the voltages and 
currents in the circuit by any standard linear circuit analysis.

4th Step: Obtain the time variables from the complex amplitudes. For 
example, the time variable corresponding to node variable Vo is given 
by vo (t) = |Vo| cos(ωt + ∠Vo). This step is usually not necessary.
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Phasor Overview
g y

Phasor analysis is first developed by Charles Proteus Steinmetz 
(1865-1923) in 1893 while working for General Electric(1865 1923) in 1893 while working for General Electric.

Phasor is a technique which uses complex number to analyze circuits 
at sinusoidal steady state;

Definition of phasors;
Comparison between time domain and phasor domain;
Circuit Theories (KCL, KVL, ..) in the phasor domain.
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Sinusoidal Excitation
g y

Sinusoidal Excitation:

v(t)=Vcos(ωt+φ)

There are 3 parameters: Amplitude There are 3 parameters: Amplitude VV,, angular  frequency angular  frequency ωω, and , and 
phase anglephase angle φφ

v(t) Vcos(ωt φ)

phase angle phase angle φφ

v
VV

0 ωt

φ

0
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Lead and lag 
g y

Sinusoidal Excitation:

For v(t)=Vcos(ωt+φv) and i(t)=Icos(ωt+φ i)

The phase difference The phase difference φφ == ωωtt ++φφvv−− ωωtt −− φφ ii == φφvv−− φφ ii

For v(t) Vcos(ωt φv) and i(t) Icos(ωt φ i) 

v,i
v

Note that φv > 0 and φi < 0

ωt

i

0
φv φ i

φ φ > 0, v leading i, or i lagging v

φ < 0 l i i i l di
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Special Phase Relation
I i φ ( 180o)

g y

Same Phase: φ = 0 Inverting: φ = ± π (±180o)

v,i
v

v,i
vi

ωt

v
i

0 ωt

vi

0

v,i
v φ = 90°v

i
φ 90

v leading i by 90°
or i lagging v by 90°
N t l di i b 270°

C i |φ| (180°)

ωt0 Not v leading i by 270
or I lagging v by 270°
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Phasor
g y

Sinusoidal Excitation:

v(t)=Vcos(ωt+φ)

For sinusoidal excitation with  the same frequencyFor sinusoidal excitation with  the same frequency ωω, there are 2 , there are 2 
parameters, amplitudeparameters, amplitude VV andand phase anglephase angle φφ, left., left.

v(t) Vcos(ωt φ)

parameters, amplitude parameters, amplitude VV andand phase angle phase angle φφ, left., left.

What can be used to represent amplitude amplitude VV andand phase angle phase angle φφ at the 
same time?

Complex number
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Phasor
g y

Assuming a source voltage is a sinusoid timeAssuming a source voltage is a sinusoid time--varying function varying function 
Sinusoidal Excitation (Time Domain) (Time Domain) is a time function a time function :

(t) V ( t+φ)
We can writeWe can write

v(t)=Vcos(ωt+φ)

( ) [ ] [ ] [ ]tjtjj
m

tj
mm eeeVeVtVtv ωωφφωφω VReReRecos)( )( ===+= +

Define Phasor as

( ) [ ] [ ] [ ]mmφ)(

φφ ∠== m
j

m VeVV

PhasorPhasor (Frequency domain) is a complex number:(Frequency domain) is a complex number:

φφφφ sincos mmm
j

m jVVVoreV +=∠=V

φφω φ ∠=↔+= m
j

mm VeVtVtv or       ) cos()( V
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Complex Numbers
g y

x is the real part

y is the imaginary part
imaginary 
axis

z is the magnitude

θ is the phase

Rectangular Coordinates: Z = x + jyθ

y

Real
axis Rectangular Coordinates: Z = x + jy

Polar Coordinates: Polar Coordinates: ZZ = = zz ∠∠θθ
θ

x
axis

+ 22 ( )θθ i
θ
θ

sin
cos

zy
zx

=
=







=

+=

−

x
yθ

yxz

1

22

tan

( )
θ

θθ
θ ∠==

+=
zze

jz
jZ

Z sincos

Exponential FormExponential Form: V = zz ejθ



°∠==
°∠==

°

°

9011
0111

90

0

j

j

ej
e

Chapter 13 , EE2210 - Slide 37/50

∠== 9011 jej



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

Addition
g y

Addition is most easily performed in rectangular coordinates:

d
jba +=

B
A

)()( dcjba
jdc

+++=+
+=

BA
B

Imaginary 
Axis

A + B

R lAB

A + B

Real 
Axis
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Subtraction
g y

Subtraction is most easily performed in rectangular coordinates:

d
jba +=

B
A

)()( dcjba
jdc

−+−=−
+=

BA
B

Imaginary 
Axis

Real 
Axis

AB

A B
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Multiplication
g y

Multiplication is most easily performed in polar coordinates :

φ
θ

φ

θ

∠

∠==
j

m
j

m

BBB

AeAA

)()()( )( φθ
φ

φθ

φ

+∠×=×=×

∠==
+

mm
j

mm

m
j

m

BAeBA

BeBB

BA

Imaginary 
AxisA × B

B
A × B

R l A i

A

Real Axis
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Division
g y

Division is most easily performed in polar coordinates :

φ
θ

φ
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V  )30314cos(6)(1 += ttv    V 306 o∠=1V
g y

V )60314cos(4)( o
2 += ttv V604 o∠=2V

 604306 ∠+∠=+= 21 VVV 4643231965 .jj. +++=

V  )9.41314cos(67.9)()()( o
21 +=+=∴ ttvtvtv

46461967 .j. += V 9.4167.9 o∠=

The addition of two sinusoidal excitations can be found
with the help of the phasor diagram。
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Algebra With Complex Numbers
g y

To compute phasor voltages and currents, we need to be able to 
perform computation with complex numbers.
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Kirchhoff’s Laws for Phasors
g y

Suitable for AC steady stateSuitable for AC steady state.

KVL: v1 + v2 + · · · + vn = 0
( ) ( ) ( )
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KCL: i1 + i2 + · · · + in = 0 . . . → I1 + I2 + · · · + In = 0
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Transfer Function
g y

Map system input to output

Covert an input vvi ((tt)=)=VVicoscos((ωωtt++φφ) into ) into phasor Vi. Plug into above Eq. 
io VV )( ωjH=

Get an output VVo=H(=H(jjωω))VVi. Covert back to time domain form.. Covert back to time domain form.

)](cos[)()( ωφωω jHtVjHtv io ∠++=

Output is scaled by  

io

)( ωjH

Shift in time by ω)( jH∠y
ω
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The Effort of Various Approaches
g y
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The Big Picture
g y
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The Big Picture
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The Big Picture
g y
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Differential 
Equations
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Trigonometry
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The Big Picture
g y
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Summary
g y

Sinusoidal steady state is an important characterization of a linear system. It 
comprises a frequency response, which includes a gain plot and a phase plot 
as a function of frequencyas a function of frequency.
By assuming complex exponential drives instead of sinusoidal drives for 
linear time-invariant circuits, the differential equations describing circuit 
b h i d t l b i tibehavior reduce to algebraic equations.
The impedance method allows us to determine with ease the steady-state 
response of any linear RLC network for a sinusoidal input.
The impedance method allows us to determine with ease the steady-state 
response of any linear RLC network for a sinusoidal input.
The frequency response characterizes the behavior of a network as a functionThe frequency response characterizes the behavior of a network as a function 
of frequency. A frequency response plot is a convenient way of summarizing 
how a network behaves as function of frequency. A frequency response plot 
has two graphics: the gain plot and the phase plothas two graphics: the gain plot and the phase plot
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