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Response to Sinusoidal Drive

# Response of networks to sinusoidal drive.
Vs

=

o— V()

# Sinusoids 1s important because signals can be represented as a sum of
sinusoids.

# Response to sinusoids of various frequencies —also called as
frequency response --tells us a lot about the system.
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Sinusoids -

# Sinusoids 1s important because signals can be represented as a sum of

sinusoids. © 4
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Response to Sinusoidal Drive

# What is the response of the following amplifier to a sinusoidal drive?

é VS‘
D 1
VAN V(- I
W\ |
P (D
CGS::

Observing the amplitude of v, as the frequency of the input v, changed.
We found the amplitude of v, decreased with frequency.
We also found that v, shifted as frequency changes (phase).

o o o b

Need to study behavior of networks for sinusoidal drive.
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#® The Circuits:

= Tho 111t
-_— 111V 111pulL.

v,(t)=V.cos(ax) fort 20 V,1sreal.
=0 fort<0 WV

# Assume zero initial state: /\ /\
0 K
v-(0)=0V
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Usual Approach &

Initial
conditions

Homogeneous ¢ Expression

Path for any Process Math: solution time
‘ ) . . : R for

prqblem. cquipment, | Circuit lefeyentlal homogeneous soln Math: |\ aveform
(Linear or circuit or - [~ —Pequation Bt ficular sol t=0

) blem model particular soin —1
nonlingar) Pro or other methods | W

statement ‘

# Set up the differential equation.

# Find the particular solution, vp.

# Find the homogeneous solution , v,,.

# The total solution is the sum of the particular and homogeneous

solutions , v =vp+ vy,
# Use the initial conditions to solve for the remaining constants.
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Usual Approach

TORI!

# Set up the differential equation.

RC%+V€ =v, =V, cos(ax)

# That was easy.
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Usual Approach

# Find the particular solution, vp.

dv
RC—L+v, =V, cos(ax)
dt P i
RCdK+K—K V ot N
s Try v, =K E =K #V, cos(ax) = Noop
e Trv V,=Acos(awt) AwWRCsin(wt)+ Acos(we) V. cos(wt) = Noop
- Yy P \ J \ J \ J i \ J Y

® Try v, = Acos(wt+ @)
— AwRC sin(wt + @) + Acos(wt + @) =V, cos(arx)

— AwWRC sin(awt) cos(9) — AwRC cos(wt) sin(@) +
Acos(ax)cos(¢)— Asin(ax)sin(@) =V, cos(ax)

= 1+ @*R>C> Acos(at + + ) = V.cos(ax) where & =tan™' (wRC)
# Worked but what a trigonometry nightmare.
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Sneaky Approach

Initial
conditions

Homogeneous ¢ Expression

Path for any Process Math: solution time
) . . - for
problem: equipment, . Differential ' At
: AT O Circuit homogeneous soln Math: |\avef,
(Linear or circuit or - —jt =t uati o= SR - waveform
nonlinear) problem model equation particular soln =0 L
¢ statement l orother methods | W]
‘Dnvf:nn]r_\ﬂ
I L arcivuial
‘ | solution
l Real
part H(s
ot for Timaar L Solve (s)
Path for linear et drive . lebraic T >
problem only algeoraic Svstem functi
equation ystem function

# Instead of input: V(1) =Vcos(ax)

# Find particular solution to another input: |V, (¢) = VieSt
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Effort

ayony

sneaky approach

BaSY B . sneaky

Charles Proteus Steinmetz

German-American mathematician and
electrical engineer (1893)(1865-1923)
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Sneaky Approach

#® The new drive: v, (t)=V,e”

@ CAPT

# Find the particular solution, vpg:

dv
RC—L+v, =V.e"
df PS i
® Try solution: v, =V,e"
RC dze +V.e" =Ve" = sRCV,e" +V,e" =Ve"
t
= (SRC+1)V, =V,
v v
— V R S— _ i st
" 14sRC T T Re
> D V—z e* 18 particular solution for input v, (1) = Vl.e“
1+sRC

® FEasy!!
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Sneaky Approach

Vi e
1+ joRC

# Similarly: Vps = T particular solution for input Vv, (f) = Ve
#® We have complex amplitude V.
# Fact 1: Finding the response to Vpg = VPej “ is easy.

#® Fact 2: From Euler relation, e’ =cosax + jsin ox

v,(t) =V.cosax = Re[V.e’”]

y,__response SVp
Real Part Real Part
response
Vis > Vpg

# An inverse superposition argument, assuming system is real, linear.
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Sneaky Approach

® Let's try to find v, from vpg:

Vi (1) = VieSt

v, =Re[vy]= Re[Vpejw’]

Re Vi
1+ jwRC

Re c——
| 1+ w ' R°C~

Re Vi

e]

V14 @*R2C?

Re Vi

e

1+ w*R2C?

e

V(1-jaRC)

123

|

J¢ejwt

, tang=—-wRC

J(@i+9)

# The particular solution, v, for v,(¢) =V.cos(ax)

Vp

V.

l

cos(ax + @)

N+ @*RC
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# Recalled from Chapter 10, the homogeneous solution , th

Sneaky Approach

t
— RC
v, = Ae

# The total solution is the sum of the particular and homogeneous

solutions , v =vp+ vy :

t
Ve =VptVy = \/ 4 - cos(ax + @)+ Ae ¢ where tan g = -wRC
1+ w’R*C
V _0
® Given: v:(0)=0V =wv.= \/1+a)2iR2C2 cos(w0+ @)+ Ae % =0
® So
V.
A= —————cos(p)
V1+ @’ R*C?

Done! Phew!
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Sinusoidal Steady State (SSS)

#® The total solution :
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s National Ts 1ng Hoa Univers ty TATWAN

v N
Ve = 21 - cos(awt +¢)—cosg-e ¢ j where tan @ = —wRC
J1+@*R*C

® We are usually interested only in the particular solution for sinusoids,

1.e. after transients have died.
t

® Notice when f — o0, V. —v,ase € —0

Ve =V, = Vi cos(ax + @)

J1+ @*R3C?

# Described as: Sinusoidal Steady State (SSS)
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Sinusoidal Steady State CAPT

All information about Sinusoidal Steady Stateis contamed in V

V, = 4
1+ jowRC

A complex amplitude!

Steps (1) find the homogeneous solution (2) find the total solution and
determine remaining constants from the initial conditions were a
waste of timel

Let’s rewrite Ve — I _ 1 o/?
V., 1+joRC |1+ @*R*C?

where tan ¢ = —wRC

: Vol 1
magnitude :
V| s RC
Phase ¢ 4% =—tan~ wRC
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V.coswt
drive ‘V ‘cos[a)t +ZV ]
| particular
solution

algebraic
equation
+
complex
algebra Vel

The sneaky path!
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M agnitude Plot
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. . V
# Transfer function H(jw) =7P

# Transfer function, also known as a system function, is the ratio of
the complex amplitude of the network output to the complex

amplitude of the input.

Vol 1
V,
log
scale
} » (1)
IOQ 0, ; L
scale RC
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Curious units called “ decibels’ are used by EEs to measure electric

power, voltage, current, the gain or loss of amplifiers, and the
insertion loss of filters.

A bel (symbol B) is a unit of measure of ratios of power levels, i.c.
relative power levels.

# 1B =log,y(P,/P,) where P, and P, are power levels.
# The bel is a logarithmic measure

® | bels corresponds to a ratio of 10:1

The bel is too large for everyday use, so the decibel (dB), equal to
0.1B, is more commonly used.
® 10dB =log,,(P,/P,)

® 10 dB corresponds to a ratio of 10:1

The word decibel is a reference to powers of ten and to Alexander
Graham Bell.
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L ogarithmic M easure for Power

#® To express a power in terms of decibels, one starts by choosing a

reference power, P and writing.

reference?

Power P in decibels = 10 log,,(P/P

reference)

# Example:

4

& Express a power of 50 mW in decibels relative to 1 watt.
# P (dB)=101log,, (50x 103)=-13dB
# Use logarithmic scale to express power ratios varying over a
large range

P
dB: 10log Fl (dB)
? Note: dB is not a unit for a physical quantity since

power ratio is unitless. It is just a notation to
remind us we are in the log scale.
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Decibelsfor Measuring Transfer Function:
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Decibles provide a measure of relative power levels.
They can also be used in transfer functions.

The key is in realizing that P o % o< [?

Thus

V?: V
dB=10log 2~ |=20log| —2£

in in

* o o b

#® Transfer function

H(j@), , =20log(H(j@))

in dB
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Neper

® The "Neper" (after John Napier 1550-1617) 1s a unit based on
Naperian logarithms to the base e.

/ 1
Neper =log, Pou _ - log, Pour _ log, Vou
Pin 2 Pin Vm

# The growth 1n popularity of the deciBel, since 1929, has been so great
that 1t 1s now almost a household word throughout all branches of
Electrical Engineering and Acoustics.

#® The Neper is used in some European countries, but 1s less commonly
encountered than the dB.
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Phase Plot
Ve
V.
V, 4
Phase ¢ : ¢:47:—tan wRC

l

® Transfer function H(jw)=

v,
4

N— /
Y = L

H‘N\VV'V%’J,
o )
Ly .
~
>
v o
&
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> (VD
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|sthere an even ssimpler way to get

V7
# [etus look more closely at V)
V.
Vp = .
1+ jwRC

# Divide numerator and denominator by jwC.
1

Ve =V, {COC
—+R

jawC

#® Hmmm...looks like a voltage divider relationship

Y4
VP:Vi <
Z-+R

# Let's explore further...
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# (Consider resistor:

+

{i,

VR§R

# For resistor

O

. jot _ jot
i,=1e" and v,=Ve

— n; jor _ jor
Ve, =Ri, = Ve =Rle

V, =RI,

# For capacitor

+

{ic

Ve _— (C

7 i _ 1
i.=1e" and v.=Ve

) . |
i =CEC — [/ =CV jwe’™
dt
1
I/c:.—]c:ZCIc
jaC
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The Impedance M odel {

# For inductor:

+ Vi i, =1e’ and v, =V’
% L di - L
_ v, =L—+ = Ve =LI, jwe’™
dt
o

V,=jall, =71,
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In other words,

Capacitor
S I, _ |
S | c N T Vc — Zc]c Z 1s called impedance
S— —
S Vol | 4c 1
T LZe= :C For a drive of the form V ¢/*,
S J complex amplitude V. is related
Inductor ? 7 to the complex amplitude /-
— / .
g V=71 algebraically, by a
S gL > ;;] z S generalization of Ohm's L aw.
B l / L= ] L
Resistor
;1 Lo, Z;, and Zj, are
s 1 +71 V.=Z,1 called impedance
i ANrs ’ P
o — Z,=R
l Chapter 13 , EE2210 - Slide 27/50
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DC or operating-point variables: uppercase symbols with uppercase
subscripts (for example, V,).

Total instantaneous variables: lowercase symbols with uppercase

| ncremental instantaneous variables: lowercase symbols with
lowercase subscripts (for example, V,).

Complex amplitudes or complex amplitudes of incremental
components, and real amplitudes of sinusoidal input sources:

uppercase symbols with lowercase subscripts (for example, V).
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Back to RC Network

NN,
5 < ":;L
a £,

{ S¥(BYEY ¢ Conter for Advanced Power Technologi
# C(Circuit: l\/]\{\’ Vic N
v, (i) — V.
# [mpedance model: Z.=R
1 ]c
+ Y 1
@ []a-k
_ JoC
# To find V,
b
Z wC 1
Vp =V, ==V, = V=V,
Z.+R = 4R 1+ jawRC
JoC Done!

o All our old friendsapply! KVL, KCL, superposition...
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1 [y,
e

1%t Step: Replace the (sinusoidal) sources by their complex (or real)

amplitudes. v, = V', cos(wt) 1s replaced V.

2nd step: Replace circuit elements by their impedances. The resulting
diagram i1s called the impedance model of the network..

3'd Step: Determine the complex amplitudes of the voltages and

= -’ A Aaa va

currents in the circuit by any standard linear circuit analysis.

4th Step: Obtain the time variables from the complex amplitudes. For
example, the time variable corresponding to node variable V, 1s given
by v, (#) =|V,| cos(wt + £ V,). This step 1s usually not necessary.
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Phasor Overview

# Phasor analysis 1s first developed by Charles Proteus Steinmetz
(1865-1923) 1n 1893 while working for General Electric.

# Phasor 1s a technique which uses complex number to analyze circuits
at sinusoidal steady state;

#® Definition of phasors;
® Comparison between time domain and phasor domain;
#® Circuit Theories (KCL, KVL, ..) in the phasor domain.
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Sinusoidal Excitation %
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# Sinusoidal Excitation:

v(t)=Vcos( wt+ @)

Chapter 13, EE2210 - Slide 32/50



Lead and lag
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AL,
oF "y
3 SN b
= o 5
$
<H <
< $
r 4
i Uig -
aaasn

# Sinusoidal Excitation:
For v(t)=Vcos(at+¢,) and i(t)=I cos(at+¢;)

# The phase difference ¢= at +@,— at — @, = @,— @,

A Note that ¢,>0and ¢ <0

/V\\ //

_0
_’¢v |¢| : . : :
o | ¢>0,vleadingl, or I lagging v

¢<0,vlaggingi, or i leading v
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Special Phase Relation
SamePhase: ¢ =0

V,i

V,|

/[

AN

Inverting: ¢= '-f-n"f(+180“’§

Vi

vleading i by 90°
or i lagging v by 90°
Not vleadingi by 270
or | lagging v by 270°

Convention :

|9 < m (180"
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Phasor
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Sinusoidal Excitation:
v(t)=Vcos( wt+ @)

For sinusoidal excitation with the same frequency @, there are 2

parameters, amplitude V and phase angle ¢, left.

1o, AlIIPJLILUL ey Qlisiv @5 AW it.

What can be used to represent amplitude V and phase angle ¢ at the

same time?

Complex number
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Phasor
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1
e

# Assuming a source voltage is a sinusoid time-varying function

Sinusoidal Excitation (Time Domain) is a time function :
v(t)=V cos(at+¢)
# We can write
v(t)=Vmcos(wt+¢)=V, Re I_ej(“’”‘”)_lz Re I_Vmej‘”ej“”_lz Re I_Vej“”_l

#® Define Phasor as
V=Ve’=V Lo

# Phasor (Frequency domain) 1s a complex number:

V =Vwe’ or Val¢ =V, cos ¢+ jV, sin ¢

v(t)=V cos(axt+@) <> V=V e’ orV Lo

Time Domain Frequency domain
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Complex Numbers

: : # x 1s the real part
imaginary
t axis # 7y 1s the imaginary part
y ® 7 is the magnitude
v Rea| * 0¢1sthephase
o axis # Rectangular Coordinates: Z =x +jy
X ” ® Polar Coordinates: Z =z £6
2 2 . .
X =zcos 6 z:\/x Ty Z =z(cos @+ jsin 8)
L — 0
y =zsin 6 T L =ze!" =z/0
X
® Exponential Form: V =z &/¢ 1=1e’" =1£0°

j=1e’" =1£90°
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Addition
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# Addition is most easily performed in rectangular coordinates:

A=a+ jb
B=c+ jd
A+B=(a+b)+ j(c+d)

» Imaginary
~] AXIs

Real

v

Chapter 13, EE2210 - Slide 38/50
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Subtraction
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1,
FAaansY

# Subtraction is most easily performed in rectangular coordinates:

A=a+ jb
B=c+ jd
A-B=(a-b)+ j(c—4d)

, Imaginary
AXIs

Real

A-B

Chapter 13, EE2210 - Slide 39/50
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Multiplication

H&N\\(-V'IJVIIJJ
o )
o A
i . <
g 2 £l <

&t &
Z,
2
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# Multiplication is most easily performed in polar cog;aigates ;
A=A4e%=4 20
B=B,e’’ =B /¢
AxB=(A4,xB,)e’ % =(4 xB )Z(6+¢)

» Imaginary
AXIs

B

A XxB

»
»

Real Axis
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m m

B=B,e'" =B /¢
A A : A
—m ,j(0-9) _ Tm g _
B Bm Bm ( ¢)
Imaginary
AXIS B
A
AR Real Axis
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v (1) = 6c0s(3141+30°) V = { ) e
v,(t) = 4cos(314t+60°) V V,=4,/60"V
V=V, +V,=6£30"+4£60" =5196+j3+2+ j3.464
=7196+ j6.464 =9.67£41.9°V
~v(@)=v, (0 +v, (1) =9.67cos(314t+41.9°) V

The addition of two sinusoidal excitations can be found

with the help of the phasor diagram -

Im
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1
M

To compute phasor voltages and currents, we need to be able to

perform computation with complex numbers.

() A+B=B+A 2)A+(B+C)=(A+B)+C
(3) AxB=BxA (4) AXx(BxC)=(AxB)xC
(5) Ax(B+C)=AxB+AxC (6) (AxB)* =A°xB°®

(7) ABXAC:A(B+C) (8)(AB)C:AB><C

9) A+B=C (100 B=C-A

(11) AxB =C (12)52%

(13) BA =C (14) B=4/C

(15) A® =C (16) B =1log , C

Chapter 13 , EE2210 - Slide 43/50



CAPT

& Center for Advanced Power Technologies
* National Tsing Hua University, TATIWAN

Kirchhoff’s Laws for Phasors

# Suitable for AC steady state.

KVL:vi+v2+---+¥=0
— Vmicos (@t + ¢1)+ Vmacos (@t + ¢2)+ -+ Vi cos (wt + ¢n) =
— Re [leej¢lejwt]+ Re [szej¢2ejwt]+---+ Re [anej(p”ejwt]: 0

7t -I r\

VY
— Re|(Vi+Va+---+Vn)e/”|=0

— Vi+Vo+---+Vn=0

e il | - - m—m - m - m - — == |

_:_ L : I

| : : P | | !

A Z2 Z3 ! | !

Zser : : Zpara: Zl ZQ Zg -——- :

l | I |

I I

! , T T T ,

e I e I
Jisew =21+ L2+ L3+ - Y Zpaea =120 + 1/22 + -+
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Transfer Function

Map system input to output

Vo = H(]a))vl
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Covert an input v, (#)=V,cos(ax+¢) into phasor V,. Plug into above Eq.

Get an output V =H(jw)V;. Covert back to time domain form.

v (1) = IH(ja))IV,, cos[ax + @+ LH (jw)]

Output is scaled by |[H(j®)

ZH(jw)
0]

Shift in time by

Chapter 13,

EE2210 - Slide 45/50
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Effort
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sneaky approach
very
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The Big Picture (.
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e

V.coswt ‘Vp‘cos[a)t+LVp]

usual
circuit
model

nightmare

trig.

Chapter 13 , EE2210 - Slide 47/50



Center for Advanced Power Technologies
" National Tsing Hua University, TATWAN

TheBig Picture i CAPT

V. cos wt

usual
circuit
model

nightmare
trig.

take
real
part

V.eiot complex
drive algebra
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V. cos wt

No
Differential
Equations

No
Trigonometry

TheBig Picture

‘Vp‘cos[a)t +ZV ]

usuc.

circuit
raodel
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Sinusoidal steady state is an important characterization of a linear system. It
comprises a frequency response, which includes a gain plot and a phase plot
as a function of frequency.

By assuming complex exponential drives instead of sinusoidal drives for
linear time-invariant circuits, the differential equations describing circuit
behavior reduce to algebraic equations.

The impedance method allows us to determine with ease the steady-state
response of any linear RLC network for a sinusoidal input.

The impedance method allows us to determine with ease the steady-state
response of any linear RLC network for a sinusoidal input.

The frequency response characterizes the behavior of a network as a function
of frequency. A frequency response plot is a convenient way of summarizing
how a network behaves as function of frequency. A frequency response plot
has two graphics: the gain plot and the phase plot
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