Second Order Circuits

Chenhsin Lien and Po-Tai Cheng CENTER FOR ADVANCED POWER TECHNOLOGIESDept. of Electrical Engineering National Tsing Hua University Hsinchu, TAIWAN

Chapter 12 , EE2210 - Slide 1/59

- Second order circuits can be characterized by circuit contain two independent energy storage elements.
- Second order circuits can be characterized second order differential equations .
- The LC circuit.
- The series $R L C$ circuit.
	- Over damped.
	- Critically damped.
	- Under damped. ∙
- The Intuitive Analysis €
- Parallel $R L C$ circuit.
- The State-variable analysis

The Inverter Chain Chain

 $5V$ $5V$ For this inverter driving another, the parasitic inductance of the wire and the gate-to-source capacitance of the MOSFET are shown. $50Q$ $2KQ$ $2KQ$ \overline{A} \boldsymbol{B} 000 large loop

Chapter 12 , EE2210 - Slide 3/59

Chapter 12 , EE2210 - Slide 4/59

 $2k\Omega$

With 50 Ω Load Resistance National Tsing Hua University, TAIWAN **Observed Output**

In addition to the speedy rising time. There are additional unexpected ringing.

 $\sim 50 \Omega$

Chapter 12 , EE2210 - Slide 5/59

To understand this, let's analyze the LC network first (instead of RLC).

Chapter 12 , EE2210 - Slide 6/59

Method of homogeneous and particular solutions

- Find the particular solution, v_p .
- Find the homogeneous solution , v_H .
- The total solution is the sum of the particular and homogeneous solutions , $v = v_P + v_H$.
- Use the initial conditions to solve for the remaining constants.

Zero State Response (ZSR). ₽

The Particular solution

- Find the particular solution for $LC = \frac{1}{\mu^2} + v_p = v_I$ $\frac{\partial v}{\partial t^2} + v_p = v$ d^2v $LC \frac{d^{2} + v_{p}}{dt^{2}} + v_{p} =$ 2
- Use trial and error : Try $v_P = K$, .

$$
LC\frac{d^2K}{dt^2} + K = V_0 \implies 0 + K = V_0 \implies K = V_0 \implies v_{\rm p} = V_0
$$

The Homogeneous Solution

- Find the homogeneous solution, v_H , for $LC \frac{d^2 v_H}{dt^2} + v_H = 0$ $+\,\nu_{_H}$ = $\frac{v_H}{dt^2} + v$ *LC*
- Assume solution is of this form : $v_H = Ae^{st}$

$$
LC\frac{d^2Ae^{st}}{dt^2} + Ae^{st} = 0 \Rightarrow LCAs^2e^{st} + Ae^{st} = 0 \Rightarrow LCs^2 + 1 = 0
$$

Characteristic equation: $|LCs^2 + 1 = 0$ $LCs^2 + 1 =$

8 Root:
$$
\Rightarrow s = \pm j \sqrt{\frac{1}{LC}} = \pm j \omega_0
$$
 where $\omega_0 = \sqrt{\frac{1}{LC}}$

- ω_0 is the natural frequency.
- The homogeneous solution, v_H : $v_H = A_1 e^{j\omega_0 t} + A_2 e^{-j\omega_0 t}$ $j\omega_0 t$ **t** \boldsymbol{A} $\boldsymbol{\sigma}^{-j}\omega_0 t$ $v_{H} = A_{1}e^{j\omega_{0}t} + A_{2}e^{j\omega_{0}t}$ $= A_{1}e^{j\omega_{0}t} + A_{2}e^{-j\omega_{0}t}$

The Total solution

The total solution is the sum of the particular and homogeneous \bullet solutions:

$$
v = v_p + v_H = V_0 + A_1 e^{j\omega_0 t} + A_2 e^{-j\omega_0 t}
$$

Use the initial conditions: $v(0) = 0$ V and $i(0) = 0$ A L

$$
v(0) = 0 = V_0 + A_1 e^{j\omega_0 0} + A_2 e^{-j\omega_0 0} = V_0 + A_1 + A_2
$$

\n
$$
i(0) = 0 = C \frac{dv}{dt} = CA_1 j \omega_0 e^{j\omega_0 0} - CA_2 j \omega_0 e^{-j\omega_0 0} = CA_1 j \omega_0 - CA_2 j \omega_0
$$

\n
$$
\Rightarrow A_1 = A_2 = -\frac{V_0}{2}
$$

\nThe total solution $v: \left[v = V_0 - \frac{V_0}{2} (e^{j\omega_0 t} + e^{-j\omega_0 t}) \right]$

The Total solution

The total solution *v* and *i*: $V = V_0 - V_0 \cos \omega_0 t$

 $i = CV_0 \omega_0 \sin \omega_0 t$

Summary of the Method **Method Summary** $\sum_{\text{National Tsing Hua University, TAMWAN}}$

- Write the DE for the circuit by applying the node method.
- \circledcirc Find particular solution v_P by guessing and trial $\&$ error.
- \circledcirc Find homogeneous solution v_H by.
	- Assume the solution of the form $v_H = Ae^{st}$
	- Obtain the characteristic equation.
	- Solve the characteristic equation for roots s_j .
	- Form v_H by summing the $A_i e^{s_i t}$ terms. $A_i e^{s_i}$
- $\textcircled{4}$ Total solution is $v = v_p + v_H$, and solving for the remaining constants by using the initial conditions.

Undriven LC Network \mathbf{C} **Example 18 All Power Technologies**

The undriven response is also the Zero Input Response (ZIR) of the S circuit.

$$
L \underset{\sim}{\bigotimes} \qquad \frac{i_C \blacktriangleright}{\longleftarrow} \qquad C \quad \frac{V_C}{V} \qquad LC \frac{d^2 v}{dt^2} + v = 0
$$

- With zero input $v_I = 0$. S
- And nonzero initial state \bullet

$$
v_C(0) = V \qquad v_C(0) = V = A_1 e^{j\omega_0 0} + A_2 e^{-j\omega_0 0} \implies V = A_1 + A_2
$$

\n
$$
i_C(0) = 0 \qquad i(0) = 0 = CA_1 j\omega_0 - CA_2 j\omega_0 \implies A_1 = A_2
$$

\nThe Solutions
\n
$$
A_1 = A_2 = \frac{V}{2}
$$

 $v = V \cos \omega_0 t$ $i = -CV\omega_0 \sin \omega_0 t$

Chapter 12 , EE2210 - Slide 14/59

Chapter 12 , EE2210 - Slide 15/59

The Energy

Total energy in the system is a constant, but it sloshes back and forth L between the Capacitor and the inductor.

RLC Network (Damped Oscillator)

National Tsing Hua University, TAIWAN Now, let's add a resistor to the LC network and analyze the RLC ∙ \mathcal{V} . network.

$$
LC\frac{d^2v}{dt^2} + RC\frac{dv}{dt} + v = v_I\bigg|^{V_I(t)}
$$

Node method:

$$
\begin{array}{c}\n\begin{array}{ccc}\n&\text{non } & A \\
& K & \\
& C & \\
&\end{array}\n\end{array}
$$

Center for Advanced Power Technologies

Node
$$
v_A
$$
: $\frac{1}{L} \int_{-\infty}^{t} (v_I - v_A) dt = i = \frac{v_A - v}{R}$

\nNode v : $C \frac{dv}{dt} = i = \frac{v_A - v}{R} \Rightarrow RC \frac{dv}{dt} = v_A - v$

\n
$$
C \frac{d^2v}{dt^2} = \frac{1}{R} \frac{d(v_A - v)}{dt} = \frac{v_I - v_A}{L} \Rightarrow LC \frac{d^2v}{dt^2} = v_I - v_A
$$
\n
$$
LC \frac{d^2v}{dt^2} + RC \frac{dv}{dt} = v_I - v_A + v_A - v \Rightarrow LC \frac{d^2v}{dt^2} + RC \frac{dv}{dt} + v = v_I
$$

Method of homogeneous and particular solutions

- Find the particular solution, v_p .
- Find the homogeneous solution , v_H .
- The total solution is the sum of the particular and homogeneous solutions , $v = v_P + v_H$.
- Use the initial conditions to solve for the remaining constants.

Zero State Response (ZSR).

The Particular solution

Find the particular solution for ▲

$$
\frac{d^2v_p}{dt^2} + \frac{R}{L}\frac{dv_p}{dt} + \frac{1}{LC}v_p = \frac{1}{LC}V_I
$$

• Use trial and error : Try
$$
v_p = K
$$
, .

$$
\frac{d^2K}{dt^2} + \frac{R}{L}\frac{dK}{dt} + \frac{1}{LC}K = \frac{1}{LC}V_I \Rightarrow 0 + 0 + \frac{1}{LC}K = \frac{1}{LC}V_I \Rightarrow K = V_I
$$

$$
\Rightarrow v_{\rm p} = V_{I}
$$

Chapter 12 , EE2210 - Slide 20/59

The Homogeneous Solution

- 2 d^2v *R dv* 1 $\frac{H}{2} + \frac{K}{L} \frac{dV_H}{dt} + \frac{1}{LC} V$ Find the homogeneous solution, v_H , for $\frac{u + H}{v_H} + \frac{du}{v_H} + \frac{du}{v_H} = 0$ € $+ \frac{11}{I} + -\frac{1}{I}C V_H$ = 2 *dtL*
- Assume solution is of this form : $v_H = Ae^{st}$

$$
\frac{d^{2}Ae^{st}}{dt^{2}} + \frac{R}{L}\frac{dAe^{st}}{dt} + \frac{1}{LC}Ae^{st} = 0 \Rightarrow s^{2}Ae^{st} + \frac{R}{L}sAe^{st} + \frac{1}{LC}Ae^{st} = 0
$$

$$
s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0
$$

Characteristic e quation: q

$$
\boxed{s^2 + 2\alpha s + \omega_0^2 = 0}
$$
 where $\alpha = \frac{R}{2L}$ and $\omega_0^2 = \frac{1}{LC}$

The Homogeneous Solution

Characteristic equation: €

$$
\boxed{s^2 + 2\alpha s + \alpha_0^2 = 0}
$$
 where $\alpha = \frac{R}{2L}$ and $\alpha_0^2 = \frac{1}{LC}$

• Root:
$$
s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}
$$

$$
s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}
$$

 s_1t **1** s_2t $v_{H} = A_{1}e^{s_{1}t} + A_{2}e^{t}$ The homogeneous solution, v_H : $v_H = A_1 e^{3t} + A_2 e^{3t}$ ∙

$$
v_H = A_1 e^{(-\alpha + \sqrt{\alpha^2 - \omega_0^2})t} + A_2 e^{(-\alpha - \sqrt{\alpha^2 - \omega_0^2})t}
$$

The Total solution

The total solution is the sum of the particular and homogeneous L solutions:

$$
v(t) = v_p + v_H = V_I + A_1 e^{(-\alpha + \sqrt{\alpha^2 - \omega_0^2})t} + A_2 e^{(-\alpha - \sqrt{\alpha^2 - \omega_0^2})t}
$$

Use the initial conditions: $v(0) = 0$ V and $i(0) = 0$ A (0) = $V_I + A_1 e^{x}$ + $A_2 e^{x}$ + $A_3 e^{x}$ + $A_1 + A_2 = 0$ $\pmb{0}$ 2 $\pmb{0}$ $\mathbf 1$ $\frac{2}{0}$ $\begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} -\alpha - \sqrt{\alpha^2} & 0 \\ 0 & 0 \end{bmatrix}$ 2 $=V_I + A_1 e^{-\alpha t \sqrt{\alpha^2 - \omega_0^2}}$ $\Big| 0 + A_2 e^{-\alpha t \sqrt{\alpha^2 - \omega_0^2}} \Big| 0$ $= V_I + A_1 + A_2 =$ $\left(-\alpha-\sqrt{\alpha^2-\omega_0^2}\right)$ \setminus $\int_0^{\infty} 0 dx = \sqrt{\alpha^2 - 4a^2}$ $\left(-\alpha+\sqrt{\alpha^2-\omega_0^2}\right)$ \setminus $\left(-\alpha+\sqrt{\alpha^2-1}\right)$ $v(0) = V_I + A_1 e^{(1)}$ + $A_2 e^{(1)}$ + $A_1 + A_2 e^{(1)}$ $\alpha + \sqrt{\alpha^2 - \omega_0^2}$ | 0 | $-\alpha - \sqrt{\alpha^2 - \omega_0^2}$ () ($\hat{U}(0) = C \frac{dv}{dt} = \left(-\alpha + \sqrt{\alpha^2 - \omega_0^2}\right) A_1 e^{\left(-\alpha + \sqrt{\alpha^2 - \omega_0^2}\right)\theta} + \left(-\alpha - \sqrt{\alpha^2 - \omega_0^2}\right) A_2 e^{\left(-\alpha - \sqrt{\alpha^2 - \omega_0^2}\right)\theta} = 0$ $\boldsymbol{0}$ 2 \int_{0}^{2} $\begin{array}{c|c} 0 & \sqrt{2} \end{array}$ 1 \int_{0}^{2} 2 $\left(2\right)$ $\left(2\right)$ $= C \frac{dV}{dt} = \left(-\alpha + \sqrt{\alpha^2 - \omega_0^2}\right) A_1 e^{\left(-\alpha + \sqrt{\alpha^2 - \omega_0^2}\right) \theta} + \left(-\alpha - \sqrt{\alpha^2 - \omega_0^2}\right) A_2 e^{\left(-\alpha - \sqrt{\alpha^2 - \omega_0^2}\right) \theta} =$ *dv* $i(0) = C \left(\right)$) $\left(\right)$) $_{2} = 0$ \int_{0}^{2} $\alpha_1 + (-\alpha - \sqrt{\alpha^2})$ $\begin{matrix} 2 \ 0 \end{matrix}$ $-\,\alpha + \sqrt{\alpha^2 - \omega_0^2}\,\big| A_{\!1} + \left[-\,\alpha - \sqrt{\alpha^2 - \omega_0^2}\,\big| A_{\!2} = \right]$ If $\alpha \neq \omega_0 \Rightarrow A_1 = -\frac{v}{2\sqrt{\alpha^2 - \omega_0^2}}V_I$ and $A_1 = -\frac{v}{2\sqrt{\alpha^2 - \omega_0^2}}V_I$. 2 \rm_0^2 2 $a_1 = -\frac{1}{2\sqrt{\alpha^2 - \omega_0^2}}$ $\alpha + \sqrt{\alpha - \omega}$ − $=-\frac{\alpha+\sqrt{\alpha^2-\omega_0^2}}{2\sqrt{\alpha^2-\omega_0^2}}V_I$ and $A_1=-\frac{-\alpha+\sqrt{\alpha^2-\omega_0^2}}{2\sqrt{\alpha^2-\omega_0^2}}V_I$ 2 $\frac{2}{0}$ 2 $a_1 = -\frac{1}{2\sqrt{\alpha^2 - \omega^2}}$ $\alpha + \sqrt{\alpha - \omega_0}$ $=-\frac{-\alpha+\sqrt{\alpha^2-1}}{\sqrt{2}}$

Chapter 12 , EE2210 - Slide 23/59

Center for Advanced Power Technologies National Tsing Hua University, TAIWAN **Solutions for Damped 2nd Order Circuit**

Let's stare at the total solution for a little bit longer...

$$
v(t) = V_1 + A_1 e^{-\alpha t} e^{(\sqrt{\alpha^2 - \omega_0^2})t} + A_2 e^{-\alpha t} e^{(-\sqrt{\alpha^2 - \omega_0^2})t}
$$

There are 3 possible cases: $\alpha > \omega_0$, $\alpha = \omega_0$, and $\alpha < \omega_0$. underdamped

The case for $\alpha > \omega_0$ is called *overdamped*. $v(t) = V_1 + A_1 e^{-\alpha_1 t} + A_2 e^{-\alpha_2 t}$ $= V_I + A_1 e^{-\alpha_1 t} + A_2 e^{-\alpha_2 t}$

The case for $\alpha = \omega_0$ is called *critically damped*.

$$
v(t) = V_I - V_I t e^{-\alpha t}
$$

The case for $\alpha < \omega_0$ is called *underdamped*.

$$
v(t) = V_I + A_1 e^{-\alpha t} e^{j\omega_d t} + A_2 e^{-\alpha t} e^{-j\omega_d t}
$$

$$
v(t) = V_I + K_1 e^{-\alpha t} \cos \omega_d t + K_2 \sin \omega_d t
$$

where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

criticallydamped

overdamped

Chapter 12 , EE2210 - Slide 24/59

Damp:

Noun

- 1. moisture in the air; humidity.
- 2. Lowness of spirits; depression.
- 3. A restraint or check; a discouragement.

Transitive verb

- 1. To make damp or moist; moisten.
- 2. To restrain or check; discourage.
- 3. (Music). To slow or stop the vibrations of (the strings of a keyboard instrument) with a damper.
- 4. (Physics) To decrease the amplitude of (an oscillating system).

Underdamped

Let's look at the underdamped case more closely.

$$
\alpha < \omega_0 \qquad \qquad v(t) = V_I + K_1 e^{-\alpha t} \cos \omega_d t + K_2 e^{-\alpha t} \sin \omega_d t
$$

Use the initial conditions: $v(0) = 0$ V and $i(0) = 0$ A ∙

$$
v(0) = V_I + K_1 = 0 \implies K_1 = -V_I
$$

\n
$$
i(0) = C\left(-\alpha K_1 e^{-\alpha 0} \cos \omega_d 0 - \omega_d K_1 e^{-\alpha t} \sin \omega_d t - \alpha K_2 e^{-\alpha 0} \sin \omega_d 0 + \omega_d K_2 e^{-\alpha 0} \cos \omega_d 0\right)
$$

\n
$$
i(0) = -C\alpha K_1 + C\omega_d K_2 = 0 \implies K_2 = \frac{\alpha}{K_1} = \frac{\alpha}{K_2} = V_I
$$

 ω_d ω_d

 ω_d

The total solution for underdamped case, $\alpha < \omega_0$, is: ∙

$$
v(t) = V_I - V_I e^{-\alpha t} \cos \omega_d t - V_I \frac{\alpha}{\omega_d} e^{-\alpha t} \sin \omega_d t
$$

Underdamped

The total solution for underdamped case, $\alpha < \omega_0$, is: ₽

$$
v(t) = V_I - V_I e^{-\alpha t} \cos \omega_d t - V_I \frac{\alpha}{\omega_d} e^{-\alpha t} \sin \omega_d t
$$

Since the scaled sum of sines (of the same frequency) are also sines, \bullet let's rewrite the total solution as:

$$
v(t) = V_I - V_I \frac{\omega_0}{\omega_d} e^{-\alpha t} \cos \left(\omega_d t - \tan^{-1} \frac{\alpha}{\omega_d} \right)
$$

\n
$$
2V_I
$$

\n
$$
V_I
$$

With 50 Ω Load Resistance National Tsing Hua University, TAIWAN **Observed Output**

Under smaller *R* of 50 Ω, the series RLC circuit become *underdamped* and the *ringing* occurs.

 $\sim 50 \Omega$

Chapter 12 , EE2210 - Slide 28/59

Intuitive Analysis

The total solution for underdamped case, $\alpha < \omega_0$, is:

$$
v(t) = V_I - V_I \frac{\omega_0}{\omega_d} e^{-\alpha t} \cos \left(\omega_d t - \tan^{-1} \frac{\alpha}{\omega_d} \right)
$$

- Characteristic equation: $s^2 + \frac{R}{I} s + \frac{1}{I} s = 0$ *LC s L* $s^2 + \frac{R}{I} s + \frac{1}{I} = 0$ $s^2 + 2\alpha s + \omega_0^2 = 0$
- $\omega_d = \sqrt{\omega_0^2 \alpha^2}$ is the oscillation frequency.
- α governs the decay rate.
- V_I is the final steady state value.
- $v(0)$ and $i(0)$ gives the initial value and slope.
- *Q* is the quality factor (approximately the number $Q = \frac{Q}{2\alpha}$ of cycles of ringing)

Chapter 12 , EE2210 - Slide 29/59

 $v_I(t) = V_I u(t)$ where $V_I = 1$ V

With initial states:

 $v(0) = 0.5$ V $i(0) = -0.5 A$

In the steady state, the capacitor behaves like an open circuit. \bullet Therefore, the inductor current vanishes and the input drive appears across the capacitor.

Chapter 12 , EE2210 - Slide 31/59

The initial trajectory of the capacitor voltage (increasing or decreasing) ∙ starting from its initial value of 0.5 V is:

Characteristic equation:

$$
s^2 + \frac{R}{L}s + \frac{1}{LC} = 0
$$
 i.e. $s^2 + 2\alpha s + \omega_0^2 = 0$
 $\alpha = \frac{R}{2L} = 10^3$ rad/sec $\omega_0 = \sqrt{\frac{1}{LC}} = 10^4$ rad/sec

Since $\alpha < \omega_0$, We conclude that the system is under-damped. The Since $\alpha < \omega_0$, We conclude that the system is under-damped.
oscillation frequency is given by

$$
\omega_d = \sqrt{\omega_0^2 - \alpha^2} \approx 9950 \text{ rad/sec}
$$

Quality factor, Q: $Q = \frac{Q}{Q} = \frac{Q}{Q} \approx 5$, i.e. the system will ring for imately 5 cycl $\frac{10}{2\alpha} \approx 5$ $=\frac{\omega_0}{2\alpha}$ \approx $Q=\frac{\omega_0}{2}$ approximately 5 cycles.

Knowing the initial trajectory, we can stitch in a sinusoid that decays \bullet over about 5 cycles with the correct initial trajectory.

Undriven RLC Network $\sum_{\text{Center for Advanced Power Technology}}$

The undriven response is also the Zero Input Response (ZIR) of the \bullet circuit. For the following circuit, If $L = 0.04$ H and $C = 0.01$ F, find $v_C(t)$ and $i_L(t)$ for the following $R = 5 \Omega$, 4 Ω , and 1 Ω .

$$
\begin{array}{c}\nR & L \\
\hline\nC & \stackrel{\text{d}^2}{\longrightarrow} \frac{R}{dt^2} + \frac{d^2v_C}{dt^2} + \frac{R}{L} \frac{dv_C}{dt} + \frac{1}{LC} v_C = 0\n\end{array}
$$

Nonzero initial state:

$$
v_C(0) = 3 \text{ V}
$$

$$
i_L(0) = 0 \text{ A}
$$

$$
\frac{d^2v_C}{dt^2} + 25R\frac{dv_C}{dt} + 2500v_C = 0
$$

Chapter 12 , EE2210 - Slide 35/59

Undriven RLC Network $\sum_{\text{Center for Advanced Power Technology}}$

- Characteristic equation:
	- $s^2 + 25Rs + 2500 = 0$
	- $b^2 4ac = 625R^2 10000$
- $R = 5 \Omega$, $625R^2 10000 = 5625 > 0$, overdamped $s_1 = -25$ and $s_2 = -100$ $v_C(t) = A_1 e^{-25t} + A_2 e^{-100}$ e^{-25} *t t f* $v_c(t) = A_1 e^{-2\lambda t} + A_2 e^{-2\lambda t}$ $A_1e^{-23t}+A_2e^{-t}$ $R = 4 \Omega$, $625R^2 - 10000 = 0$, critically damped: $R^2 - 10000 =$ $s_1 = s_2 = -50$ $v_C(t) = A_1 e^{-50t} + A_2 t e^{-50t}$ $R = 1 \Omega$, $625R^2 - 10000 = -9375 < 0$, underdamped: $R^2 - 10000 = -9375 <$ $s_{1,2} = -12.5 \pm j48.4$ $v_c(t) = Ke^{-12.5t}\sin(48.4t + \varphi)$

Chapter 12 , EE2210 - Slide 36/59

Undriven RLC Network **Example 2008**

Determine the coefficient from Initial conditions:

$$
v_C(0) = 3 \text{ V}
$$

$$
i_L(0) = 0 \text{ A} = i_L(0) = C \frac{dv_C}{dt}
$$

$$
R = 5 \Omega, \text{ overdamped}
$$

 $A_1 + A_2 = 3$ and $-25A_1 - 100A_2 = 0 \implies A_1 = 4$ $A_2 = -1$ $v_C(t) = 4e^{-25t} - e^{-100t}$ $=4e^{-23t}-e^{-t}$

 $R = 4 \; \Omega$, critically damped: $A_1 = 3$ and $-50A_1 + A_2 = 0 \implies A_1 = 3$ $A_2 = 150$

$$
v_C(t) = 3e^{-50t}(1+50t)
$$

R **= 1** Ω , *underdamped* :

 $(t) = 3.1e^{-12.5t} \sin(48.4t + 75.5^{\circ})$ $K\sin\varphi = 3$ and $-12.5 K\sin\varphi + 48.4 K\sin\varphi = 0 \implies K = 3.1 \; \varphi = 75.5^{\circ}$ ° $v_c(t) = 3.1e^{-12.5t} \sin(48.4t)$

 $v_C(t) = 4e^{-25t} - e^{-100t}$ V *dtdv* $i_L(t) = i_C(t) = C \frac{dV_C}{dt}$

$$
i_L(t) = -(e^{-25t} - e^{-100t}) A
$$

Chapter 12 , EE2210 - Slide 38/59

Critically Damped

R **= 4** Ω , *Critically damped*

$$
v_C(t) = 3e^{-50t}(1+50t) \text{ V}
$$

$$
i_L(t) = -75te^{-50t}
$$
 A

Chapter 12 , EE2210 - Slide 39/59

Under Damped *z*

R **= 1** Ω , *under damped*

$$
v_C(t) = 3.1e^{-12.5t} \sin(48.4t + 75.5^\circ)
$$
 V

 $i_L(t) = -1.55e^{-12.5t} \sin(48.4t)$ A

Chapter 12 , EE2210 - Slide 40/59

The *RLC* circuit can be analyzed by KCL: £

For *is = 0* , the natural response of the circuit can be derived:

Chapter 12 , EE2210 - Slide 41/59

Natural Response; RLC in parallel Cancel Dever Technologies

Assume *i Ae* $\frac{d^2 i_L}{dt^2} + \frac{1}{BC} \frac{di_L}{dt} + \frac{1}{LC} i_L$ $\frac{i_L}{2} + \frac{1}{DC} \frac{di_L}{dt} + \frac{1}{LC} i_L = 0$ $L = Ae^{st}$, 2 $+$ $+$ l $_{I}$ $=$ $\frac{1}{LC}$ Ae $\frac{1}{RC}$ s Ae *s Ae dt RC dt LC* $\rightarrow s^2 A e^{st} + \frac{1}{s^2} s A e^{st} + \frac{1}{s^2} A e^{st} = 0$ 1 1 *s s LCs RC* \rightarrow *Ae*st (s² + $\frac{1}{\sqrt{2}}$ s + $\frac{1}{\sqrt{2}}$) = 0 $1, s_2 = -\frac{1}{2 \cdot 2 \cdot 3} + \sqrt{(\frac{1}{2 \cdot 2 \cdot 3})^2 - \frac{1}{2 \cdot 3 \cdot 3}} - \frac{1}{2 \cdot 2 \cdot 3 \cdot 3} - \sqrt{(\frac{1}{2 \cdot 2 \cdot 3})^2 - \frac{1}{2 \cdot 3 \cdot 3}}$ \rightarrow S₁, S₂ = - $\frac{1}{2R}$ + $\sqrt{(\frac{1}{2R})^2 - \frac{1}{2R}}$; - $\frac{1}{2R}$ - $\sqrt{(\frac{1}{2R})^2 - \frac{1}{2R}}$ ω_0^2 ; $-\alpha - \sqrt{\alpha^2 - \omega_0^2}$ $\frac{1}{2RC}$ + $\sqrt{\frac{1}{2RC}}$ $\frac{2}{LC}$ $\frac{1}{2RC}$ $\frac{1}{2RC}$ $\frac{1}{2RC}$ $\sqrt{\frac{1}{2RC}}$ $\frac{2}{LC}$ 1 1 2 \sim 2 $\pmb{0}$ $=-\alpha+\sqrt{\alpha^2-\omega_0^2}$; $-\alpha-\sqrt{\alpha^2-\alpha^2}$ The solution can be expressed as follows: where $\alpha = \frac{1}{2RC}$, and $\omega_0 = \sqrt{\frac{1}{LC}}$

$$
i_L = A_1 e^{s_1 t} + A_2 e^{s_2 t}
$$

Chapter 12 , EE2210 - Slide 42/59

Natural Response; RLC in parallel **Fund Dever Technologies**

Characteristic equation:

$$
s^{2} + \frac{1}{RC} s + \frac{1}{LC} = 0, \quad s_{1}, s_{2} = -\frac{1}{2RC} \pm \sqrt{(\frac{1}{2RC})^{2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}};
$$

Two distinct real roots:
$$
\alpha^2 > \omega_0^2 \rightarrow \frac{1}{4R^2C^2} > \frac{1}{LC} \rightarrow L > 4R^2C
$$

- *s1* and *s 2* are negative real numbers.
- $i_L = A_1 e^{s_1 t} + A_2 e^{s_2 t}.$
- *i* decays exponentially without any oscillations; over-damped.

Double roots:
$$
\alpha^2 = \omega_0^2 \rightarrow \frac{1}{4R^2C^2} = \frac{1}{LC} \rightarrow L = 4R^2C
$$

\n**o** $s_1 = s_2 = -\alpha = -\frac{R}{2L}$

$$
\bullet \ \ iL = (A_1t + A_2)e^{-at}.
$$

 iL decays at a moderate pace, this is referred to as critically-damped

Natural Response; RLC in parallel *s* center for Advanced Power Technologies

Characteristic equation:

$$
s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0, \quad s_{1}, s_{2} = -\frac{1}{2RC} \pm \sqrt{(\frac{1}{2RC})^{2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}};
$$

Two complex roots: $\alpha^2 - \omega_0^2 < 0 \rightarrow L < 4R^2C$;

$$
\bullet \ \ s_1 = s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -\alpha \pm j\omega_d \ , where \ \omega_d = \sqrt{\omega_0^2 - \alpha^2}
$$

$$
\bullet \ \ iL = \underline{e^{-at}(A_1\cos(\omega dt) + A_2\sin(\omega dt))}.
$$

iL oscillates within a exponentially-decaying envelope; <u>under-damped</u>.

Natural Response; RLC in parallel **Exercity, TAIWAN**

Chapter 12 , EE2210 - Slide 45/59

Step Response; RLC in parallel **Step Manufally Advanced Power Technologies**

By KCL,

$$
i_s = \frac{v_c}{R} + i_L + C\frac{dv_c}{dt} = \frac{L}{R}\frac{di_L}{dt} + i_L + LC\frac{d^2i_L}{dt^2} \rightarrow \frac{d^2i_L}{dt^2} + \frac{1}{RC}\frac{di_L}{dt} + \frac{1}{LC}i_L = \frac{i_s}{LC}
$$

Characteristic equation:

$$
s^{2} + \frac{1}{RC} s + \frac{1}{LC} = 0, \quad s_{1}, s_{2} = -\frac{1}{2RC} \pm \sqrt{(\frac{1}{2RC})^{2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}};
$$

Chapter 12, EE2210 - Slide 46/59

Step Response; RLC in parallel *Response Rushal Tsing Hua University, TAIWAN* **in**

$$
\frac{d^2 i_L}{dt^2} + \frac{1}{RC} \frac{di_L}{dt} + \frac{1}{LC} i_L = \frac{i_s}{LC} = \frac{I_s u(t)}{LC}
$$

Step response at steady state: *iLf =Is*

- Two distinct real roots: $\frac{1}{R^2C^2} > \frac{1}{LC} \rightarrow L > 4R^2C$ $\frac{1}{2C^2} > \frac{1}{LC}$ \rightarrow $L > 4R^2$ 2 0 $2 > \omega_0^2 \rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{2}} > L > 4$ 4 $\alpha^2 > \omega_0^2 \rightarrow \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{2}} > L >$
	- s₁ and *s₂* are negative real numbers.

1 i.
$$
u = \frac{A_1 e^{s_1 t} + A_2 e^{s_2 t}}{a^2 e^{s_2 t}} + \frac{I_s}{aR^2 C^2} = \frac{1}{LC}
$$
 $\rightarrow L = 4R^2 C$
\n**2** $s_1 = s_2 = -\alpha = -\frac{R}{2L}$
\n**3** i. $u = \frac{(A_1 t + A_2)e^{-\alpha t}}{a^2 - \omega_0^2} + \frac{I_s}{aR^2 C^2} = \frac{1}{LC}$ $\rightarrow L < 4R^2 C$;
\n**4** $s_1 = s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -\alpha \pm j\omega_d$, where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

 $iL = e^{-\alpha t} (A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)) + I_s$

Chapter 12 , EE2210 - Slide 47/59

Step Response; RLC in parallel **Step Manufacture** Power Technologies

Chapter 12 , EE2210 - Slide 48/59

State-variable Method
 State-variable

When the circuit states are of primary interest, we can obtain the equations which govern the state evolution, and hence a more direct way to determine the states themselves .

- To find the state equations for the parallel RLC circuit shown above, first, let's chose v_C and i_L as State variables.
- To analyze this circuit we replace the capacitor by a voltage source and the inductor by a current source.

State Equations

- To analyze this circuit, first we replace the capacitor by a voltage source and the inductor by a current source.
- How to find State Equations for $v_C(t)$ and $i_L(t)$?
- Find the corresponding i_C and v_L for state $v_C(t)$ and $i_L(t)$ and excitations $i_{I\!N}$.

State Equations for finding $v_C(t)$ and $i_L(t)$.

$$
C\frac{dv_C}{dt} = i_C = -\frac{v_C}{R} - i_L + i_{IN}
$$
\n
$$
L\frac{di_L}{dt} = v_L = v_C - 0i_L + 0i_{IN}
$$
\n
$$
\begin{bmatrix} \frac{dv_C}{dt} \\ \frac{di_L}{dt} \end{bmatrix} = \begin{bmatrix} -\frac{1}{RC} & -\frac{1}{C} \\ \frac{1}{LC} & 0 \end{bmatrix} \begin{bmatrix} v_C \\ i_L \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} i_N \end{bmatrix}
$$

To analyze this circuit we replace the capacitor by a voltage source and the inductor by a current source

Chapter 12 , EE2210 - Slide 50/59

- Second Order Circuits have two energy storage elements.
	- Natural frequency ω_{0} . $\omega_{0} = \sqrt{\frac{1}{LC}}$
	- **Damping factor** α **.** SeriesRLC: $\alpha = \frac{1}{2L}$ and ParalleRLC: $\alpha = \frac{1}{2RC}$ *R* 21and Paralle \mathbb{RLC} : α = $-$ 2SeriesRLC: $\alpha = \frac{1}{\alpha}$ and ParalleRLC: $\alpha =$
	- Damped natural frequency. $\omega_a = \sqrt{\omega_0^2 \alpha^2}$
Quality factor. $Q = \frac{\omega_0}{2\alpha}$
	- Quality factor. $Q = \frac{\omega_0}{2\epsilon}$ 2 $Q = \frac{\omega_0}{\sigma}$
- Natural Response depends on circuit parameters and the initial conditions of energy storage elements; There are two energy storage elements.
	- Over damped, α > ω_{0} .
	- Critically damped, $\alpha = \omega_0$.
	- Under damped, $\alpha < \omega_0$.
- The Intuitive method.
- State-variable method.

Natural Response; RLC in series Server Advanced Power Technologies

The *RLC* circuit can be analyzed by KVL:

For *vs = 0* , the natural response of the circuit can be derived:

Chapter 12 , EE2210 - Slide 52/59

Natural Response; RLC in series Series Advanced Power Technologies

Assume $v_c = Ae^{st}$, $\frac{\partial}{\partial t} + \frac{\partial}{\partial t} v$ *R dv d* d^2v *c* $c^2 + \frac{1}{2} \frac{u \cdot v}{2} + \frac{1}{2} v^2 = 0$ 1 2 2 $\frac{c}{dt^2} + \frac{c}{L} \frac{d}{dt} + \frac{c}{LC} v_c =$ *R* 1 $\frac{1}{LC}$ Ae $\frac{1}{L}$ s Ae $s^2 A e^{st} + \frac{R}{a}$ \rightarrow *s*² Ae^{st} + $\frac{R}{s}$ *s* Ae^{st} + $\frac{1}{s}$ Ae^{st} = 0 *L LCR LR L LCR L* $s_1, s_2 = -\frac{R}{\sqrt{2}}$ *LC s L* \rightarrow *Ae*st(s² + $\frac{R}{1}$ s + $\frac{1}{1}$) = 0 $)^{2} - \frac{1}{x}$ 2($\frac{1}{2}$; $-\frac{1}{2}$) 2($\frac{1}{2}$ 2 2 1 Λ Λ ² \rightarrow S₁, S₂ = $-\frac{1}{2}$ + $\sqrt{(\frac{1}{2} - \frac{1}{2})^2 - \frac{1}{2}(\frac{1}{2} - \frac{1}{2})^2 - \frac{1}{2}}$ ω_0^2 ; $-\alpha - \sqrt{\alpha^2 - \omega_0^2}$ R 1 1 2 \sim 2 0 $=-\alpha+\sqrt{\alpha^2-\omega_0^2}$; $-\alpha-\sqrt{\alpha^2-\alpha^2}$ *LC* $\frac{1}{2L}$, and $\omega_0 = \sqrt{\frac{1}{L}}$ where $\alpha = \frac{1}{2}$, and $\omega_0 =$

The solution can be expressed as follows:

$$
v_c = A_1 e^{s_1 t} + A_2 e^{s_2 t}
$$

Chapter 12 , EE2210 - Slide 53/59

Natural Response; RLC in series Server Advanced Power Technologies

Characteristic equation:

$$
s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0, \quad s_{1}, s_{2} = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^{2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}};
$$

- Two distinct real roots: $\alpha^2 > \omega_0^2 \rightarrow \frac{R}{4L^2} > \frac{1}{LC} \rightarrow R^2 > \frac{R}{C}$ $\frac{R^2}{L^2} > \frac{1}{LC}$ \rightarrow $R^2 > \frac{4L}{C}$ R^2 1 R^2 4 4 ω $\frac{1}{2} > \frac{1}{LC} \rightarrow R^2$ $\frac{2}{0} \rightarrow \frac{R^2}{4L^2}$ $\alpha^2 > \omega_0^2 \rightarrow \frac{R}{\lambda} > \frac{1}{\lambda} \rightarrow R^2 >$
	- *s1* and *s 2* are negative real numbers.

$$
\bullet \quad v_c = \underline{A_1e^{s_1t} + A_2e^{s_2t}}.
$$

v and *s* are negative real numbers.
 $v_c = \underline{A_1e^{s_1t} + A_2e^{s_2t}}$.
 v_c decays exponentially without any oscillations; this is referred to as over-damped .

Double roots:
$$
\alpha^2 = \omega_0^2 \rightarrow \frac{R^2}{4L^2} = \frac{1}{LC} \rightarrow R^2 = \frac{4L}{C}
$$

\n**Example 24 Substituting the values:** $\alpha^2 = \omega_0^2 \rightarrow \frac{R^2}{4L^2} = \frac{1}{LC} \rightarrow R^2 = \frac{4L}{C}$
\n**Example 34 Substituting the values:** $\alpha^2 = \omega_0^2 \rightarrow \frac{R^2}{4L^2} = \frac{1}{LC}$

 v_c decays at a moderate pace, this is referred to as critically-damped

Natural Response; RLC in series Server Technologies National Tsing Hua University, TAIWAN

Characteristic equation:

$$
s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0, \quad s_{1}, s_{2} = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^{2} - \frac{1}{LC}} = -\alpha \pm \sqrt{\alpha^{2} - \omega_{0}^{2}};
$$

Two complex roots: $\alpha^2 - \omega_0^2 < 0 \rightarrow R^2 < \frac{\pi}{C}$ *L* $\alpha^2 - \omega_0^2 < 0 \rightarrow R^2 < \frac{4}{\alpha}$

$$
s_1
$$
, $s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -\alpha \pm j\omega_d$, where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

Let

$$
y_1 = e^{(-\alpha + j\omega_d)t} = e^{-\alpha t} (\cos(\omega_d t) + j \sin(\omega_d t))
$$

$$
y_2 = e^{(-\alpha - j\omega_d)t} = e^{-\alpha t} (\cos(\omega_d t) - j \sin(\omega_d t))
$$

Any linear combination of *y1* and *y2* will be a valid solution to the differential equation equation.

$$
v_c = A_1(\frac{1}{2}(y_1 + y_2)) + A_2(\frac{1}{j2}(y_1 - y_2)) = e^{-\alpha t}(A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t))
$$

vc oscillates within an exponentially-decaying envelope, this is referred to as under-damped Chapter 12 , EE2210 - Slide 55/59

Natural Response; RLC in series Series advanced Power Technologies

Chapter 12 , EE2210 - Slide 56/59

Step Response; RLC in series **Step Exercity, TAIWAN Step in** *k Center for Advanced Power Technologies*

By KVL,

LC $\frac{dV_c}{dt} + \frac{1}{LC}V_c = \frac{V}{L}$ *dv LR dt* d^2v $\frac{\partial}{\partial t^2} + v$ $\frac{dv_c}{dt} + LC \frac{d^2v}{dt^2}$ $v_s = Ri_l + v_l + v_c = RC \frac{dv_c}{dt} + LC \frac{d^2v_c}{dt^2} + v_c \rightarrow \frac{d^2v_c}{dt^2} + \frac{R}{L} \frac{dv_c}{dt} + \frac{1}{LC} v_c = \frac{v_s}{L}$

Chapter 12 , EE2210 - Slide 57/59

Step Response; RLC in series **Step Response**

$$
\frac{d^2v_c}{dt^2} + \frac{R}{L}\frac{dv_c}{dt} + \frac{1}{LC}v_c = \frac{v_s}{LC} = \frac{V_s u(t)}{LC}
$$

Step response at steady state: $v_{cf} = V_s$

- Two distinct real roots: ; 1 $\frac{1}{2}$ 4 4 $\omega_0^2 \rightarrow \frac{R}{4L^2} > \frac{1}{LC} \rightarrow R^2$ $\frac{2}{2} \rightarrow \frac{R^2}{4L^2}$ 2 *CL* $\frac{L^2}{L^2} > \frac{L}{LC}$ \rightarrow $R^2 > \frac{L^2}{C}$ $\alpha^2 > \overline{\omega_0^2} \rightarrow \frac{R^2}{2} > \frac{1}{2} \rightarrow R^2 >$
	- s₁ and *s₂* are <u>negative real numbers</u>.

Solution

\n
$$
v_c = \frac{A_1 e^{s_1 t} + A_2 e^{s_2 t}}{a^2 e^{s_1 t}} + \frac{V_s}{s}
$$

\n**Double roots:**

\n
$$
\alpha^2 = \omega_0^2 \rightarrow \frac{R^2}{4L^2} = \frac{1}{LC} \rightarrow R^2 = \frac{4L}{C};
$$

\n
$$
s_1 = s_2 = -\alpha = -\frac{R}{2L}
$$

\n
$$
v_c = \frac{(A_1 t + A_2)e^{-\alpha t}}{a^2 - \omega_0^2} < 0 \rightarrow R^2 < \frac{4L}{C};
$$

\n**Complex roots:**

\n
$$
\alpha^2 - \omega_0^2 = -\alpha \pm j\omega_d \text{ , where } \omega_d = \sqrt{\omega_0^2 - \alpha^2}.
$$

\n
$$
s_1 = s_2 = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -\alpha \pm j\omega_d \text{ , where } \omega_d = \sqrt{\omega_0^2 - \alpha^2}.
$$

\n
$$
v_c = e^{-\alpha t} (A_1 \cos(\omega_d t) + A_2 \sin(\omega_d t)) + V_s
$$

Chapter 12 , EE2210 - Slide 58/59

Step Response; RLC in series **Step Exercity, TAIWAN Step Response**

Chapter 12 , EE2210 - Slide 59/59