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Second order circuits can be characterized by circuit contain two 
independent energy storage elements.

Second order circuits can be characterized second order differential 
equationsequations .

The LC circuit.

The series R − L − C circuit.
Over damped.

Critically damped.

Under dampedUnder damped.

The Intuitive Analysis

Parallel R − L − C circuit.

The State-variable analysis
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For this inverter driving another, 
th iti i d t f th ithe parasitic inductance of the wire 
and the gate-to-source capacitance 
of the MOSFET are shown.
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Now, let's try to speed up our 
inverter by closing the switch S 
to lower the effectiveto lower the effective 
resistance.
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In addition to the speedy rising 
time. There are additional 
unexpected ringing.unexpected ringing.

Chapter 12 , EE2210 - Slide 5/59



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

LC Network
g y

To understand this, let's analyze the LC network first (instead of RLC).To understand this, let's analyze the LC network first (instead of RLC).

Node method:Node method:
di t1

dt
dvCti =)( dtvv

L
i

dt
diLvv II 

∞−

−==− )(1  

211 vddvt

 d 2

vv,, ii are state variables.are state variables.

2)(1    )(1
dt

vdCvv
Ldt

dvCdtvv
L II =−=−

∞−
Ivv

dt
vdLC =+2

2

Unit of LC is Time2vv, , ii are state variables.are state variables.
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Method of homogeneous and 
particular solutions g yparticular solutions

Find the particular solution, vvPP.

Find the homogeneous solution vvFind the homogeneous solution , vvHH.

The total solution is the sum of the particular and homogeneous 
solutions , vv = vvPP + vvHH.

Use the initial conditions to solve for the remaining constants.
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LC Circuit
g y

Solve:

vvvdLC =+
2

With input:

Ivv
dt

LC =+2

With input:

  )()( 0 tuVtvI =

And zero initial state:

  0)0( =v

Zero State Response (ZSR).

  0)0( =i
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The Particular solution
g y

Find the particular solution for IP
P vv

dt
vdLC =+2

2

Use trial and error : Try vvPP = K, .

0P0002

2

      0    VvVKVKVK
dt

KdLC ===+=+
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The Homogeneous Solution
2vd g y

Find the homogeneous solution , vvHH, for

A l ti i f thi f stAev

02 =+ H
H v

dt
vdLC

Assume solution is of this form :  H Aev =

01    0   0 22
2

2

=+=+=+ LCsAeeLCAsAe
dt
AedLC ststst

st

Characteristic equation:
dt

 012 =+LCs

1 1
Root:                                              where

i h l f

 1  0ωj
LC

js ±=±=
LC
1

0 =ω

ω0 is the natural frequency.

The homogeneous solution , vvHH:   00
21

tjtj
H eAeAv ωω −+=
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The Total solution
g y

The total solution is the sum of the particular and homogeneous 
solutions: 

U h i i i l di i

  00
210

tjtj
HP eAeAVvvv ωω −++=+=

A0)0(dV0)0( iUse the initial conditions: A 0)0(and V0)0( == iv

  0)0( 210
0

2
0

10
00 AAVeAeAVv jj ++=++== − ωω

dv   0)0( 0201
0

02
0

01
00 ωωωω ωω jCAjCAejCAejCA

dt
dvCi jj −=−=== −

2
0

21
VAA −==

V
The total solution vv :

2
  )(

2
000

0
tjtj eeVVv ωω −+−=
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The Total solution
g y

The total solution vv and i: tVVv 000 cosω−=

tCVi 000 sinωω=

The output looks sinusoidal. 

tCVi 000 sinωω

tCVi 000 sinωω=
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Write the DE for the circuit by applying the node method.

Find particular solution vvPP by guessing and trial & error. 

Find homogeneous solution vvHH by.
A h l i f h f stAAssume the solution of the form 
Obtain the characteristic equation.
Solve the characteristic equation for roots ssjj.

  st
H Aev =

q jj

Form vvHH by summing the           terms.

Total solution is vv = vvPP + vvHH, and solving for the remaining constants 
b i h i i i l di i

  ts
i

ieA

by using the initial conditions.
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Undriven LC Network
g y

The The undrivenundriven response is also the Zero Input Response (ZIR) of the response is also the Zero Input Response (ZIR) of the 
circuit.circuit.

02

2

=+ v
dt

vdLC

With zero input vvII = 0..
And nonzero initial stateAnd nonzero initial state

  )0( VvC =
0)0( =Ci

21
0

2
0

1     )0( 00 AAVeAeAVv jj
C +=+== − ωω

210201    0)0( AAjCAjCAi =−== ωω

The SolutionsThe Solutions

  0)0(Ci

221
VAA ==

tVv cosω=
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Undriven LC Network 
g y
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The Energy
g y

Total energy in the system is a constant, but it sloshes back and forth 
between the Capacitor and the inductor. 

111 222  
2
1.

2
1

2
1 that Note 222 CVLiCv CC =+
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RLC Network (Damped Oscillator)
g y

Now, let's add a resistor to the LC network and analyze the RLC Now, let's add a resistor to the LC network and analyze the RLC 
network.network.

Ivv
dt
dvRC

dt
vdLC =++2

2

Node method:Node method:
Node Node vvAA : : 

R
vvidtvv

L
A

t

AI
−==−  )(1

Node Node vv:  :  
RL 

∞−

vv
dt
dvRC

R
vvi

dt
dvC A

A −=
−==  

22
AI

AIA vv
dt

vdLC
L

vv
dt

vvd
Rdt

vdC −=
−=−= 2

2

2

2 )(1 

dvRCvdLCdvRCvdLC ++++
22
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IAAI vv
dt

RC
dt

LCvvvv
dt

RC
dt

LC =++−+−=+ 22
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Method of homogeneous and 
particular solutions g yparticular solutions

Find the particular solution vvFind the particular solution, vvPP.

Find the homogeneous solution , vvHH.

The total solution is the sum of the particular and homogeneous p g
solutions , vv = vvPP + vvHH.

Use the initial conditions to solve for the remaining constants.
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RLC Circuit
g y

Solve:

dvRvd 112

++

With input:

Iv
LC

v
LCdtLdt 2 =++

With input:

  )()( tuVtv II =

And zero initial state:

  0)0( =v

Zero State Response (ZSR).

  0)0( =i
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The Particular solution
g y

Find the particular solution for IP
PP V

LC
v

LCdt
dv

L
R

dt
vd 11
2

2

=++

Use trial and error : Try vvPP = K, .

dKRKd 11112

Vv =

III VKV
LC

K
LC

V
LC

K
LCdt

dK
L
R

dt
Kd ==++=++ 110011
2
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The Homogeneous Solution
g y

Find the homogeneous solution , vvHH, for 01
2

2

=++ H
HH v

LCdt
dv

L
R

dt
vd

Assume solution is of this form :   st
H Aev =

0101 2
2

stststst
stst

AARAAdAeRAed 00 2
2 =++=++ stststst Ae

LC
sAe

L
AesAe

LCdtLdt

012 =++ sRs

Characteristic equation:

0 =++
LC

s
L

s

q

 02 2
0

2 =++ ωαss
LCL

R 1  and  
2

     where 2
0 == ωα
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The Homogeneous Solution
g y

Characteristic equation:

22 R 12

22

02 2
0

2 =++ ωαss
LCL

R 1 and  
2

   where 2
0 == ωα

Root: 2
0

2
1 ωαα −+−=s

 2
0

2
2 ωαα −−−=s

The homogeneous solution , vvHH:   21
21

tsts
H eAeAv +=

  
2
0

22
0

2

21

tt

H eAeAv





 −−−





 −+−

+=
ωααωαα
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The Total solution
g y

The total solution is the sum of the particular and homogeneous 
solutions: 

2222 

U h i i i l di i A0)0(dV0)0( i

  )(
2
0

22
0

2

21

tt

IHP eAeAVvvtv





 −−−





 −+−

++=+=
ωααωαα

Use the initial conditions: A 0)0(and V0)0( == iv

0  )0( 21
0

2
0

1

2
0

22
0

2

=++=++=





 −−−





 −+−

AAVeAeAVv II
ωααωαα

( ) ( ) 2222 d ( ) ( )   0)0(
0

2
2
0

20

1
2
0

2
2
0

22
0

2

=−−−+−+−==





 −−−





 −+− ωααωαα

ωααωαα eAeA
dt
dvCi

( ) ( )  02
2
0

2
1

2
0

2 =−−−+−+− AA ωααωαα

If α ≠ ω0  and                                           .

( ) ( ) 02010 ωααωαα

IVA
2
0

2

2
0

2

1
2 ωα

ωαα

−

−+
−= IVA

2
0

2

2
0

2

1
2 ωα

ωαα

−

−+−
−=
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Solutions for Damped 2nd Order Circuit
g y

Let's stare at the total solution for a little bit longer…

2
0

22
0

2 tt 




 −−





 − ωαωα

 )( 00

21

tttt
I eeAeeAVtv





−



− ++=

ωααωαα

There are 3 possible cases: α > ω0, α = ω0, and α < ω0.
The case for α > ω0 is called overdamped. 

)( 21 tt eAeAVtv αα −− ++=
The case for α = ω0 is called critically  damped.

 )( 21I eAeAVtv ++=

  )( t
II teVVtv α−−=

The case for α < ω0 is called underdamped.

  )( 21
tjttjt

I
dd eeAeeAVtv ωαωα −−− ++=

 .   where 22
0 αωω −=d
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Damp:Damp:
NounNoun

1. moisture in the air; humidity.1. moisture in the air; humidity.
2. Lowness of spirits; depression.2. Lowness of spirits; depression.p ; pp ; p
3. 3. A restraint or check; a discouragement.A restraint or check; a discouragement.

Transitive verbTransitive verb
1 To make damp or moist; moisten1 To make damp or moist; moisten1. To make damp or moist; moisten.1. To make damp or moist; moisten.
2. To restrain or check; discourage.2. To restrain or check; discourage.
3. (Music). To slow or stop the vibrations of (the strings of a keyboard3. (Music). To slow or stop the vibrations of (the strings of a keyboard

instrument) with a damper.instrument) with a damper.
4. (Physics) 4. (Physics) To decrease the amplitude of (an oscillating system).To decrease the amplitude of (an oscillating system).
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Underdamped
g y

Let's look at the underdamped case more closely.

α < ω0 sincos)( 21 teKteKVtv d
t

d
t

I ωω αα −− ++=

Use the initial conditions:

 sincos)( 21 teKteKVtv ddI ωω ++

A 0)0( and  V 0)0( == iv
VKKVv ==+= 0)0( II VKKVv −==+= 11    0)0(

( )  0cos0sinsin0cos)0( 0
2

0
21

0
1 dddd

t
dd eKeKteKeKCi ωωωαωωωα αααα −−−− +−−−=

CC αα)(

The total solution for underdamped case, α < ω0, is:

I
dd

d VKKKCKCi
ω
α

ω
αωα ===+−= 1221   0)0(

  sincos)( teVteVVtv d
t

d
Id

t
II ω

ω
αω αα −− −−=
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Underdamped
g y

The total solution for underdamped case, α < ω0, is:

  sincos)( teVteVVtv d
t

Id
t

II ωαω αα −− −−=

Since the scaled sum of sines (of the same frequency) are also sines, 
let's rewrite the total solution as:

dω

let s rewrite the total solution as:

  tancos)( 10








−−= −−

d
d

t

d
II teVVtv

ω
αω

ω
ω α
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Under smaller R of 50 Ω, the 
series RLC circuit become 
underdamped and the ringing
occurs.
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Intuitive Analysis
g y

The total solution for underdamped case, α < ω0, is:

  tancos)( 10








−−= −−

d
d

t

d
II teVVtv

ω
αω

ω
ω α

Characteristic equation:

is the oscillation frequency.

 dd

01 2 =++
LC

s
L
Rs  02 2

0
2 =++ ωαss

22
0 αωω −=d

α governs the decay rate.

VI is the final steady

state value.

v(0) and i(0) gives the

initial value and slopeinitial value and slope.

Q is the quality factor

(approximately the number α
ω
2

0=Q
( pp y

of cycles of ringing) 
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Intuitive Analysis RLC Circuit
g y

The circuit:

R = 0.2 Ω, L = 100 μH,

C = 100 μF

With input:

V 1   where)()( == III VtuVtv

With initial states:

V5.0)0( =v V  5.0)0(v

A   5.0)0( −=i
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Intuitive Analysis RLC Circuit
g y

In the steady state, the capacitor behaves like an open circuit. 
Therefore, the inductor current vanishes and the input drive appears 
across the capacitor.

V  1)( =∞v

A   0)( =∞i

V  5.0)0( =v )(
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Intuitive Analysis RLC Circuit
g y

The initial trajectory of the capacitor voltage (increasing or decreasing) 
starting from its initial value of 0.5 V is:

V501 Adv
sec
V  5000

100
5.0)0(1 =−==

F
Ai

Cdt
dv

μ

Chapter 12 , EE2210 - Slide 32/59



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

Intuitive Analysis RLC Circuit
g y

Characteristic equation:

012 ++ sRs 02i e 22 =++ ωαss0 =++
LC

s
L

s 02  i.e. 0 =++ ωαss

rad/sec103Rα rad/sec101 4ω

Since α < ω We conclude that the system is under damped The

rad/sec 10 
2

 ==
L

α rad/sec 10 0 ==
LC

ω

Since α < ω0, We conclude that the system is under-damped. The 
oscillation frequency is given by

d/995022

Quality factor, Q:                     ,  i.e. the system will ring for 
i t l 5 l

rad/sec 995022
0 ≈−= αωωd

5
2

0 ≈=
α

ωQ
approximately 5 cycles. 

Chapter 12 , EE2210 - Slide 33/59



Center for Advanced Power Technologies
National Tsing Hua University, TAIWAN

Intuitive Analysis RLC Circuit
g y

Knowing the initial trajectory, we can stitch in a sinusoid that decays 
over about 5 cycles with the correct initial trajectory. 
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Undriven RLC Network
g y

The The undrivenundriven response is also the Zero Input Response (ZIR) of the response is also the Zero Input Response (ZIR) of the 
circuit. For the following circuit, If circuit. For the following circuit, If LL = 0.04 H and = 0.04 H and CC = 0.01 F, find = 0.01 F, find 

(( ) d) d ii (( ) f h f ll i) f h f ll i RR 55 ΩΩ 44 ΩΩ d 1d 1 ΩΩvvCC((tt) and ) and iiLL((tt) for the following ) for the following RR = 5 = 5 ΩΩ, 4 , 4 ΩΩ, and 1 , and 1 ΩΩ..

012
CC dvRvd 02 =++ C
CC v

LCdtLdt

Nonzero initial state:
  V 3)0( =Cv

The Equations:The Equations:

A  0)0( =Li

02500252

2

=++ C
CC v

dt
dvR

dt
vd
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Undriven RLC Network
g y

Characteristic equation::

02500252 =++ Rss 0250025 ++ Rss

100006254 22 −=− Racb

R = 5 5 ΩΩ ,                                            ,   ,                                            ,   overdamped0562510000625 2 >=−R

100  and  25 21 −=−= ss  )( 100
2

25
1

tt
C eAeAtv −− +=

R = 4 4 ΩΩ ,                                  ,   ,                                  ,   critically damped:

21 )( 21C

010000625 2 =−R

50== ss )( 5050 tt teAeAtv −− +

R = 1 1 ΩΩ ,                                                  , ,                                                  , underdamped :

50  21 −== ss  )( 21C teAeAtv +=

0937510000625 2 <−=−R

512
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Undriven RLC Network
g y

Determine the coefficient from 
Initial conditions::

R = 55 ΩΩ overdamped

  V 3)0( =Cv

dt
dvCii C

LL === )0(A  0)0(
R  5 5 ΩΩ ,  ,  overdamped

R 44 ΩΩ i i ll d d

1  4    010025-  and  3 212121 −===−=+ AAAAAA
  4)( 10025 tt

C eetv −− −=
R = 4 4 ΩΩ , , critically damped:

150  3    050-  and  3 21211 ===+= AAAAA
 )50 1(3)( 50 tetv t

C += −

R = 1 1 ΩΩ ,  ,  underdamped :

512

°===+= 5.75  1.3    0sin4.48sin 12.5-  and  3sin ϕϕϕϕ KKKK
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Overdamped
g y

R = 5 5 ΩΩ ,  ,  overdamped vC

V  4)( 10025 tt
C eetv −− −=

dt
dvCtiti C

CL == )()( 

-iL
A   ) ()( 10025 tt

L eeti −− −−=
iL
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Critically Damped vC g y

R = 4 4 ΩΩ ,  ,  Critically damped
C

V )501(3)( 50 tetv t
C += −

50 A   75)( 50t
L teti −−=

-iLiL
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Under Damped vC
g y

R = 1 1 ΩΩ ,  ,  under damped

V )5.75sin(48.4t1.3)( 5.12 °+= − t
C etv

A  sin(48.4t)55.1)( 5.12 t
L eti −−=

-iLiL
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The The RLCRLC circuit can be analyzed by KCL:circuit can be analyzed by KCL:

idLCidiL
dt
dvCi

R
vi

LL

c
L

c
s

++

++=

2

LC
ii

LCdt
di

RCdt
id

dt
LCi

dtR
s

L
LL

L
L

L

=++→

++=

11
2

2

2

For For iiss = 0 = 0 , the , the natural response natural response of the circuit can be derived:of the circuit can be derived:

011
2

2

=++ L
LL i

LCdt
di

RCdt
id
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Natural Response; RLC in parallel 
g y

AssumeAssume

idiid

Aei

L
LL

st
L

011

,

2

2
=++

=

Ae
LC

Aes
RC

Aes

LCdtRCdt
ststst

L

11

0112

2

=++→

ss

LC
s

RC
sAest

1)1(1;1)1(1,

0)11(

22
21

2

−−−−+−=→

=++→

α

LCRCRCLCRCRC

11

ω;ω

)
2

(
2

;)
2

(
2

,

2
0

22
0

2

21

−−−−+−= ααα

The solution can be expressed as follows:The solution can be expressed as follows:
LCRC
1ω and,

2
1where 0 ==α

tsts AAi
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Characteristic equation:Characteristic equation:
11111

Two distinct real roots:Two distinct real roots:

;ω1)
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1(
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22
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2 −±−=−±−==++ αα
LCRCRC

ss
LC

s
RC

s

CRL
LCCR

2
22

2
0

2 41
4

1ω >→>→>α
ss11 and and ss22 are negative real numbers.are negative real numbers.
iiLL = = AA11eess11tt + A+ A22eess22tt..
iiLL decays exponentially without any oscillations;decays exponentially without any oscillations; overover dampeddamped

LCCR 224

iiLL decays exponentially without any oscillations;  decays exponentially without any oscillations;  overover--dampeddamped ..
Double roots:Double roots:

ss11 = s= s22 = −= −αα = = 
CRL

LCCR
2

22
2
0

2 41
4

1ω =→=→=α

L
R

2
−

iiLL = = (A(A11t + At + A22)e)e−−αtαt..
iiLL decays at a moderate pace, this is referred to as decays at a moderate pace, this is referred to as criticallycritically--dampeddamped
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Characteristic equation:Characteristic equation:

;ω1)1(1011 2222 ±±++ αα

Two complex roots:Two complex roots:

;ω)
2

(
2

,,0 2
0

22
21

2 −±−=−±−==++ αα
LCRCRC

ss
LC

s
RC

s

;40ω 22
0

2 CRL <→<−α
2222ss11 = s= s22 = = 

iiLL = = ee−−ααtt(A(A11 coscos((ωωd d t) + At) + A22 sinsin((ωωd d t)).t)).

22
0

2
0

2 ωω,ωω αααα −=±−=−±− dd wherej

iiLL oscillates within a exponentiallyoscillates within a exponentially--decaying envelope; decaying envelope; underunder--dampeddamped..

Chapter 12 , EE2210 - Slide 44/59



Center for Advanced Power Technologies
National Tsing Hua University, TAIWANNatural Response; RLC in parallel g yNatural Response; RLC in parallel

Chapter 12 , EE2210 - Slide 45/59



Center for Advanced Power Technologies
National Tsing Hua University, TAIWANStep Response; RLC in parallel g yStep Response; RLC in parallel
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By KCL,By KCL,
idiididdiLdvv LLLL 1122

Characteristic equation:Characteristic equation:
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L
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LC
tuI

LC
ii

LCdt
di

RCdt
id ss

L
LL )(11

2

2

==++

Step response at steady state:  Step response at steady state:  iiLLff ==IIss

Two distinct real roots:Two distinct real roots:
ss11 andand ss22 areare negative real numbersnegative real numbers

CRL
LCCR

2
22

2
0

2 41
4

1ω >→>→>α

ss11 and and ss22 are are negative real numbersnegative real numbers..
iiLL = = AA11eess11tt + A+ A22eess22tt + + IIss

Double roots:Double roots:
R

CRL
LCCR

2
22

2
0

2 41
4

1ω =→=→=α
ss11 = s= s22 = −= −αα = = 
iiLL = = (A(A11t + At + A22)e)e−−αtαt. + . + IIss

Complex roots:Complex roots:

L2
−

;41
4

10ω 2
22

2
0

2 CRL
LCCR

<→<→<−α

ss11 = s= s22 = = 

iiLL = = ee−−ααtt(A(A11 coscos((ωωd d t) + At) + A22 sinsin((ωωd d t))t))++IIss

.ωωwhere,ωω 22
0

2
0

2 αααα −=±−=−±− ddj
4 LCCR
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When the circuit states are of primary interest, we can obtain the When the circuit states are of primary interest, we can obtain the 
equations which govern the state evolution, and hence a more direct equations which govern the state evolution, and hence a more direct 
way to determine the states themselves .way to determine the states themselves .

To find the state equations for the parallel RLC circuit shown above, To find the state equations for the parallel RLC circuit shown above, 
first, let’s chosefirst, let’s chose vvCC andand iiLL as State variables.as State variables.
T l thi i it l th it b ltT l thi i it l th it b ltTo analyze this circuit we replace the capacitor by a voltage source To analyze this circuit we replace the capacitor by a voltage source 
and the inductor by a current source.and the inductor by a current source.
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g y

To analyze this circuit, first we replace the capacitor by a voltage source and To analyze this circuit, first we replace the capacitor by a voltage source and 
the inductor by a current source.the inductor by a current source.
How to find State Equations for How to find State Equations for vvCC((tt) and) and iiLL((tt)?)?qq CC(( )) LL(( ))
Find the correspondingFind the corresponding iiCC andand vvLL for state for state vvCC((tt) and) and iiLL((tt) and excitations ) and excitations iiININ..

vC(t) iL(t) iIN

iC=dvC/dt −1/R −1 1
vL=diL/dt 1 0 0

State Equations for finding State Equations for finding vvCC((tt) and) and iiLL((tt).).
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To analyze this circuit we replace the capacitor by a voltage source and theTo analyze this circuit we replace the capacitor by a voltage source and the
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To analyze this circuit we replace the capacitor by a voltage source and the To analyze this circuit we replace the capacitor by a voltage source and the 
inductor by a current sourceinductor by a current source
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Second Order Circuits have two energy storage elements.
1

Natural frequency ω0.
Damping factor α.
Damped natural frequency

LC
1

0 =ω

22 αωω

RCL
R

2
1  :RLC Parallel  and  

2
  :RLC Series == αα

Damped natural frequency.
Quality factor.

Natural Response depends on circuit parameters and the initial conditions of

0 αωω −=d

α
ω
2

0=Q

energy storage elements; There are two energy storage elements.
Over damped, α > ω0 .

Critically damped α = ωCritically damped, α = ω0 .

Under damped, α < ω0 .

The  Intuitive method.
State-variable method.
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The The RLCRLC circuit can be analyzed by KVL:circuit can be analyzed by KVL:
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For For vvss = 0 = 0 , the , the natural response natural response of the circuit can be derived:of the circuit can be derived:
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LCdt
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L
R

dt
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Natural Response; RLC in series
g y
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The solution can be expressed as follows:The solution can be expressed as follows:
LC
1ωand,

2L
Rwhere 0 ==α

tsts eAeAv 21 +=
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Characteristic equation:Characteristic equation:
11 RRR

Two distinct real roots:Two distinct real roots:
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ω 2
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2
2
0

2 >→>→>α
ss11 and and ss22 are negative real numbers.are negative real numbers.
vvc c = = AA11eess11tt + A+ A22eess22tt..
vv decays exponentially without any oscillations; this is referred to asdecays exponentially without any oscillations; this is referred to as

CLCL4 20

vvcc decays exponentially without any oscillations; this is referred to asdecays exponentially without any oscillations; this is referred to as
overover--dampeddamped ..

Double roots:Double roots:
C
LR

LCL
R 41
4

ω 2
2

2
2
0

2 =→=→=α
Rss11 = s= s22 = −= −αα = = 

vvcc = = (A(A11t + At + A22)e)e−−αtαt..
vvcc decays at a moderate pace, this is referred to as decays at a moderate pace, this is referred to as criticallycritically--dampeddamped
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Characteristic equation:Characteristic equation:

;ω1)(01 2222 ±±++ ααRRR

Two complex roots:Two complex roots:
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Any linear combination of Any linear combination of yy11 and and yy22 will be a valid solution to the differentialwill be a valid solution to the differential
equationequation
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vvcc oscillates within an exponentiallyoscillates within an exponentially--decaying envelope, this is referred to asdecaying envelope, this is referred to as
underunder--dampeddamped
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By KVL,By KVL,

LC
vv

LCdt
dv

L
R

dt
vdv

dt
vdLC

dt
dvRCvvRiv s

c
cc

c
cc

CLLs =++→++=++= 1
2

2

2

2

Chapter 12 , EE2210 - Slide 57/59

LCLCdtLdtdtdt



Center for Advanced Power Technologies
National Tsing Hua University, TAIWANStep Response; RLC in series g yStep Response; RLC in series

LC
tuV

LC
vv

LCdt
dv

L
R

dt
vd ss

c
cc )(1

2

2

==++

Step response at steady state:  Step response at steady state:  vvccff ==VVss

Two distinct real roots:Two distinct real roots:
ss11 andand ss22 areare negative real numbersnegative real numbers
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ss11 and and ss22 are are negative real numbersnegative real numbers..
vvc c = = AA11eess11tt + A+ A22eess22tt + + VVss

Double roots:Double roots: ;41
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vvcc = = (A(A11t + At + A22)e)e−−αtαt. + . + VVss

Complex roots:Complex roots:
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