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Overview

Excitations

First order circuits are characterized by first order differential equations.

Natural response of first order circuits:
R − C circuit;

R − L circuit.

Forced response of first order circuits:
R − C circuit;

R − L circuit.

Intuitive Method

State and Memory.
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Excitations

Step function;
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Excitations

Impulse function

Ramp function
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RC Circuit

Apply node method:
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Method of homogeneous and 
particular solutions

Find the particular solution, vCP.

Find the homogeneous solution , vCH.

The total solution is the sum of the particular and homogeneous 
solutions , vC = vCP + vCH.

Use the initial conditions to solve for the remaining constants.

Chapter 10 , EE2210 - Slide 6/37

  0for   0  t
C
I

RC
v

dt
dv CC



The Particular solution

The particular vCP solution is also called the forced response or the 
forced solution because it depends on the external inputs to the circuit.

Find the particular solution, 

vCP :any solution that satisfies the above equation.

Use trial and error : Try vCP = K, .
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Forced Response

The forced response of a circuit is its behavior (in terms of voltages and
currents) under external sources of excitation .
The forced response of a circuit depends on:

Parameters of circuit components ;
Initial conditions of energy storage components within the circuit;
Forms of external excitations.

The forced response of a circuit can be described by a non-homogeneous
differential equation.
A general solution y(x) of the linear non-homogeneous differential equation
is the sum of a general solution of the corresponding homogeneous solution
and an arbitrary particular solution.
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The Homogeneous Solution
The homogeneous solution, vCH , is also called the natural response of the 
circuit because it depends only on the internal energy storage properties of 
the circuit and not on external inputs.

Find the homogeneous solution , vCH.

Assume solution is of this form :

Characteristic equation:

The homogeneous solution , vCH:

RC is called time constant τ.
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Natural response

The natural response of a circuit is the behavior (in terms of voltages and

currents) of the circuit itself, with no external sources of excitation ;

The natural response depends on:

Component parameters of the circuit;

Initial conditions of the energy storage components within the circuit.

The natural response of a first order circuit can be described by a

homogeneous first order differential equation.
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Natural response of RC circuit

Time constant τ = RC indicates the speed of the decay.
vc decays to 36.8% of its initial value Vc0 at t = τ .
Tangent of vc at t = 0 intersects the time axis at t = τ .
Because e−5 = 0.0067, it is common to assume that the system reaches 
steady state after t = 5 τ .
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Step Response; RC circuit
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Step Response; RC circuit
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The Total solution

The total solution is the sum of the particular and homogeneous 
solutions: 

Use the initial conditions:

to solve for the remaining constants.

The total solution vC :
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RL Circuit

Apply KVL:

Chapter 10 , EE2210 - Slide 15/37

  )()( tVutvS 

0)( 
dt
diLRitv L

LS

L
tvi

L
R

dt
di S

L
L )(



0for    t
L
Vi

L
R

dt
di

L
L



The Particular solution

The particular iLP solution is also called the forced response or the 
forced solution because it depends on the external inputs to the circuit.

To find the particular solution, 

iLP :any solution that satisfies the above equation.

Use trial and error : Try iLP = K, .
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The Homogeneous Solution
The homogeneous solution, iLH , is also called the natural response of the 
circuit because it depends only on the internal energy storage properties of 
the circuit and not on external inputs.

Find the homogeneous solution , vCH.

Assume solution is of this form :

Characteristic equation:

The homogeneous solution , iLH:

L/R is called time constant τ.
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Natural response; RL circuit

Time constant τ = L/R indicates the speed of the decay.
iL decays to 36.8% of its initial value IL0 at t = τ .
Tangent of iL at t = 0 intersects the time axis at t = τ .
iL reaches steady state after t = 5 τ .
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The Total solution

The total solution is the sum of the particular and homogeneous 
solutions: 

Use the initial conditions:

to solve for the remaining constants.

The total solution iL (and vL):
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Step Response; RL circuit
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Step Response; RL circuit
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Intuitive Method
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Intuitive Method
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Intuitive Method
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Intuitive Method
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Example
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The RC Circuit

Given:
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The RC Circuit
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Notice that the capacitor voltage for t ≥ 0 
is independent of the form of the input 
voltage before t = 0.
Instead, it depends only on the capacitor 
voltage at t = 0, and the input voltage for 
t ≥ 0.



State

State: summary of past inputs relevant to predicting the future State.

Back to the simple RC circuit
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State

Let’s Rearrange the total responses

To the following form

Zero state means vC(0) = 0 and zero input means vI(t) = 0 . 
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Memory

Building a memory element (1st attemp)
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Building Memory 1st attempt

Stored value leaks away
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Building Memory 2nd attempt

Using a buffer stage to increase the input resistance seen from the 
storage node.

Better, but still not perfect.
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Building Memory 3rd attempt

Using a buffer stage to increase the input resistance seen from the 
storage node and a refresh stage to restore the data.

Does this work?

No, external value can still influence storage node.
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Building Memory 4th attempt

Using a buffer stage to increase the input resistance seen from the 
storage node and a decoupled refresh stage to restore the data.

Works!!
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Summary

First Order Circuits are modeled by first order differential equations.
Homogeneous solution         Natural response;
Non-homogeneous solution           Forced response.

Natural Response depends on circuit parameters and the initial conditions of
energy storage elements;
Forced Response depends circuit parameters, initial conditions, and forms of
external excitations.
The  Intuitive Method
State and Memory

ZSR;
ZIR.
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