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Chapter 1

The Circuit Abstraction

Exercises

Exercise 1.1 Quartz heaters are rated according to the average power drawn from a 120
volt AC 60 Hz voltage source. Estimate the resistance (when operating) a 1200 watt
quartz heater.

NOTE: The voltage waveform for a 120 volt AC 60 Hz waveform is
v(t) = V2 120 cos(2m60t)

The factor of /2 in the peak amplitude cancels when the average power is computed.
One result is that the peak amplitude of the voltage from a 120 volt wall outlet is about
170 volts.

Solution:

2

Power = 1200 watts =7 -v =4 - R= %
1200 =

2

<

; Where v is average value of sinusoidal voltage,

=

v(t) = V2 - 120 cos(1207t)

Average value of a sinusoidally oscillating signal is the peak value divided by /2.

Therefore v = 120

1202
R= 1200

Therefore
R =120
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ANS:: R =120
Exercise1.2

a) The battery on your car has a rating stated in ampere-hours which permits you to es-
timate the length of time a fully charged battery could deliver any particular current
before discharge. Approximately how much energy is stored by a 50 ampere-hour
12 volt battery?

b) Assuming 100% efficient energy conversion, how much water stored behind a 30
meter high hydroelectric dam would be required to charge the battery?

Solution:

Energy

a) Power =1i-v==;
me

Energy = i-v - (time) = (50 ampere — hours)(12 volts) = 600 ampere —
hour — volts

600ampere — hour — volts - 3600 seconds/hour = 2.16 x 10° Joules

b) Potential Energy — Electrical Energy; assume 100% efficiency
m-g-h=2.16 x 10%Joules
_ 108
m = 2.16 X ok
g =

10m
52

h = 30m, height of water, assuming that there is enough water in the dam such that
the height does not change as some of the water is taken out

mass = 14,400 kg of water
ANS:: (a) 2.2 x 10° Joules, (b) 7200 kg, or about 8 tons.
Exercise 1.3 In the circuit in Figure 1.1, R is a linear resistor and v = V¢ a constant
(DC) voltage. What is the power dissipated in the resistor, in terms of R and Vp?
Solution:
Power =1 -v
Buti =v/R (Ohm’s Law), so

E_U_VDC2
R~ R

Power =

. V3
ANS:: Yoo



< +
Py

Figure 1.1:

Exercise 1.4 In the circuit of the previous exercise (Figure 1.1), v = V¢ coswt, a Sinu-
soidal (AC) voltage with peak amplitude V4 and frequency w, in radians/sec.

a) What is the average power dissipated in R?

b) What is the relationship between Vpc and V¢ in Figure 1.1 when the average

power in R is the same for both waveforms?

Solution:

Figure 1.2:

a) If peak voltage is V¢, then

Vac = V2 Vpe

where V¢ is the average amplitude of the voltage signal.

Average Power =

(Vaverage)2 _ VYDC'2 _ (VAC/\/i)2

2
Vac

R R R
b) If peak voltage is V4¢, then

Vac = V2 Vpe

where V¢ is the average amplitude of the voltage signal.

~ 9R
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ANS:: (3) V2./2R (b) Vac = V2 Ve

Problems

Problem 1.1 Determine the resistance of a cube with sides of length [ cms and resistivity
10 Ohm-cms, when a pair of opposite surfaces are chosen as the terminals.

Problem 1.2 Sketch the v — 7 characteristic of a battery rated at 10V with an internal
resistance of 10 Ohms.

Problem 1.3 A battery rated at 7.2V and 10000 joules is connected across a lightbulb.
Assume that the internal resistance of the battery is zero. Further assume that the resis-
tance of the lightbulb is 100€2.

1.

2.
3.
4.
5.

Draw the circuit containing the battery and the lightbulb and label the terminal
variables for the battery and the lightbulb according to the associated variables dis-
cipline.

What is the power into the lightbulb?
Determine the power into the battery.
Show that the sum of the power into the battery and the power into the bulb is zero.

How long will the battery last in the circuit?

Problem 1.4 A sinusoidal voltage source

v = 10stnwt

is connected across a 1k resistor.

Make a sketch of p(t), the instantaneous power supplied by the source.
Determine the average power supplied by the source.

Now, suppose that a square wave generator is used as the source. If the square wave
signal has a peak-to-peak of 20V and a zero average value, determine the average
power supplied by the source.

Next, if the square wave signal has a peak-to-peak of 20V and a 10V average value,
determine the average power supplied by the source.



Chapter 2

Resistive Networks

Exercises

Exercise 2.1 Find the equivalent resistance from the indicated terminal pair of the net-
works in Figure 2.1.

® ® ®
10 z 20 =20 1Q
; § 20%20
40 Z 30
® [ L
(@ (b)
R R R R
W o

MW
Py

— 2R 2R 2R

(©)
Figure 2.1:

Solution:
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a)
5-5
= =—— =250
Rrg =515 515 5
b)
Reo=2||(1+2]|2)=2(|2=1Q
c)
4R?
2 2R= — =
R||2R iR R
Therefore

Rpg=R+R=2R
ANS:: (a) 2.5 (b) 12 (c) 2R

Exercise 2.2 Determine the voltages v, and vz (in terms of vg) for the network shown
in Figure 2.2.

- +
¥ 6 VA 3 VA i
VS +
- , L
+ VAl _
VB
. +
Va
Figure 2.2:
Solution:
KVL:
1)

vg+6vy —vp =0



UB :’l)5+6’UA

()

vg — 6V —3vy — 204 —v4 =0

v = 121}A

12UA = vg + 6’UA

6va = vg
VA = 6
B = 2U5

ANS:: VoA = U5/6, vp = 2vg

Exercise 2.3 Find the equivalent resistance between the indicated terminals (all resis-
tances in ohms) in Figure 2.3.

5Q
[ 4 AMMAM— ®
S10q 2100 =20 %39 $60
[ 2 ®
() (b)
@ ®
20
4Q 20 4Q 30
MW—
20 1Q 20 1Q
[} @
(c) (d) Difficult
Figure 2.3:
Solution:

a) Rpg =5+ 10|10 = 100



b) Rrg = [2]/3]]|6 = 12

d) Apply test voltage: Rpq = Yest

ttest

4
- 3 £°
Viest | = Vi Va
. 5 1
-0
Figure 2.4:

(Utest - Ul) + (0 - Ul) (UQ - vl)

=0
4 2 * 3
(Utest - UQ) + (Ul - 02) (0 - UQ) =0
2 3 1
v = UVtest Vo = Vtest
1 3 ) 2 3
Substitute these expressions into the equation below:
itest + (Ul - Utest) + (UZ - Utest) — 0

4 2

(¥
'test — REQ — QQ
Ytest

ANS:: (a) 1092 (b) 19 (c) 292 (d) 29

CHAPTER 2. RESISTIVE NETWORKS

Exercise 2.4 Determine the indicated branch voltage or branch current in each network

in Figure 2.5.
Solution:

Q) v=i-R=3-2=06wvolts



i 10kQ
3A + - MW
+
+
v=2Q — J
% 6V— =20 30V vV Z 20kQ
@
(b) ©
i |
1A
: 1pA
z2MQ 10KO " = 2M0 2 5o
] [
(d) 30V f
§20 kQ =20kQ )
(e)
Figure 2.5:
b) i:%:—?)amps

c) KVL: 30 — (10,000 + 20,000) = 0
1 =1 milliamp = 1mA

V' =20,000 -7 = 20 volts

d) ¢ = 1uA ; current follows path of “short circuit”

}_
\ 4

P

sov(?) % 20KQ = 20KQ

Figure 2.6:

e) i :%‘;

Rpg = 10k + 20k||20k
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R., = 20kQ

i1 = 1.bmA

KVL.: (right loop)

i5(20, 000) — (20, 000) = 0

7 =19

11—1—1=0
This impliesi; = 2i
2i = 1.5mA
1=0.75mA

(1) 1A 2MQ 2MQ

Figure 2.7:

f) KCL: 1pA + &8 + -4 =

2MQ T 2MQ T
e1 = lvolt

=08 = 0504

2MQ

ANS:: (a) 6V (b) -3A (c) 20V (d) 1A (e) .75mA (f) -5 nA

Exercise 2.5 Find the equivalent resistance at the indicated terminal pair for each of the

networks shown in Figure 2.8.
Solution:

a)
REQ :R1+R2+R3

b)

Rgg = Ri||R2+ Rs =

Ri1R; + R3(R; + Ry)

R+ R,
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Ry Ry
W
=R, Re 2R Ry =Ry
——W—— - | —
(@ Rs (b) (©
Ri2 iR,
ReZ =Ry .
(d) o (e
Figure 2.8:
c)
Ri(Ry + R3)
Rgo = Ry||Ry+ R3 = ———=
wq = Il + Ry Ry + Ry + Rs
d)
RiR, RsR,
Rpq = Ry||Ry + Rs||Rs = +
pQ = Il | Ry + || Ry Ri+R, Rs+Rs
e)

(R1 + R2)(Rs + Ry)

Rpg = (1 + B)[|(Bs + ) = R, + R, + Rs + R,

W ANSE (@ Ry By Ry, (0) B 0) R O 25 + £ ©
1+R2)(R3+ R4

Ri+Ra+R3+Ry

Exercise 2.6 In the circuit in Figure 2.9, v, 4, and R, are known. Find R,.

v =5V

1 =40pA
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o—P
+
v Ry 2 Ry =
Figure 2.9:
R, = 150k€2
Solution:
KCL:
it 0-V N 0-Vv 0
R, R,
Ry = 750k€2
ANS:: 750 k Q

Exercise 2.7 In the circuit in Figure 2.10, v, = 6V, R; = 10082, Ry, = 252, and R3 =
50€2. Which of the resistors if any, are dissipating less than 1/4 watt?

Figure 2.10:
Solution:
i) 100Q e
———MWW— >
GVCD 250 50Q
ip i3
Figure 2.11:
KCL:

(6V — 61) (O — 61) (0 — 61) _
1009 + 250 + 50Q 0
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6
e1 = —volts

7
. 6V — €1
= = . ],Zl ‘Zl
1 1000 0.05143
. €1 — 0
= = 0.03429A
19 550 0.03429
. €1 — 0
= =0.01714A
"= 7500

Power in 1002 resistor = P (100)
P(100) = i,% - 100 = 0.264 watts

P(25) = iy” - 25 = 0.0294 watts
P(50) = i3% - 50 = 0.0147 watts

R, and R; dissipate less than 1/4 watt of power.
ANS:: R, and R;

Exercise 2.8 Sketch the i-v characteristics for the networks in Figure 2.12. Label inter-
cepts and slopes.

LI ' i i 5Q i
+ j + + +
v 210Q v 5V v oV v £60
«———————— . PR
(b) (©)

(a (d)

i 5Q
.’—————'I= ﬁAAf¢¢

AAMA
VWW
N

2A

(€)
Figure 2.12:

Solution:
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a) See Figure 2.13

10Q

< + 0

(@

b) See Figure 2.14

—+

<

sV

(b)

c) See Figure 2.15

CHAPTER 2. RESISTIVE NETWORKS

v = i(10)
1
1= —0
10
i
s+
,+
1 1
1 10
| | | | | | | | | \Y
I I I I I I I I I
3 3 6 9
_1__
_2__
_3__
Figure 2.13:
v=2>5
i
s+
T
T
| | | | | | | | | Vv
| | | | | | | | |
3 2 -1 1 2 3 4 |5
_]___
_2__
3
Figure 2.14:

v=>5+2



+

<

2V

(©

d) See Figure 2.16

AMAMA
VYWV
3

e) See Figure 2.17

i=(v/4)+ (v/5+2)

i=—
20

1 2
1= -v— =
) )
3/5
2/5
U5
| | | | |
| | | | |
4 3 2 -1
15
-3/5]
Figure 2.15:
v =101
1
1 = 10’0
i
3
o
1T
| | | | |
| | | |
-3
1T
27
3
Figure 2.16:

v+ 2

15
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CHAPTER 2. RESISTIVE NETWORKS

i 50
‘—P A‘('\v'\v'\v'\v’k
+ -

Vv £4Q
(e
Exercise 2.9

I
-40/9 -20/9 20/9 40/9
AT

2

-3

Figure 2.17:

a) Assign branch voltages and branch current variables to each element

in the network in Figure 2.18. Use associated reference directions.

iA
+

Va

B

Figure 2.18:

b) How many linearly independent KVL equations can be written for this network?

¢) How many linearly independent KCL equations can be written for this network?

d) Formulate a set of KVL and KCL equations for the network.

e) Assign non-zero numbers to each branch current such that your KCL equations are

satisfied

f) Assign non-zero numbers to each branch voltage such that your KVL equations are

satisfied.

g) As a check on your result, you can draw on the fact that power is conserved in
a network that obeys KVL and KCL. Therefore calculate the quantity Y v,i,. It

should be zero.



Solution:

a) See Figure 2.19.

@ «— o+
N _ _
v [2] v [N
| te |1
=
+‘E'— °T
Ve e
Figure 2.19:

b) 2
c) 3

d) KVL:
1)

)

KCL:
1)

)

(3)

e) Satisfy KCL.:

iga=1ip =1 = .2A

Va+Ve+Ve+Ve=0

Ve-Vp=0

’iB—’iC—’iD:O

i4—1tg=0
—ia4+1tg=0
ic=1A ip = —0.8A
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f) Satisfy KVL:
Vp = =2V, Vo= =2V
Vi =2V, Vg =1V
Va=-1V

g) Power conservation:
S iV, =0

Check:

02x2+02x(-1)+02x1+1x(-2)+(—0.8)(—2) =0V

0 =0V so, correct

ANS:: (b) 2 (c) 3 (d) (Depending on your assignment of branch variables, your answer
may be different). KVL: V4 + Vg + Ve + Ve =0,V —Vp =0KCL: ig —ic —ip = 0,
’LA—ZB:0,—’LA+ZE:0(G)’LA:ZB:ZE:2A ic=1A ip = —0.84
O Vp=-2V,Voe==2V, Vg =2V, Vg =1V, Vy = -1V

Exercise 2.10 A portion of a larger network is shown in Figure 2.20. Show that the
algebraic sum of the currents into this portion of the network must be zero.

Solution:

Prove: 14+ ig+ic =0

Use KCL at node A (X is a fraction of i that flows to the left at node B):
iB+Xic+iA+(1—X)ic=0

ta+ip+ic=0



>

//
Tic

Figure 2.21:

19
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Problems

Problem 2.1 A pictorial diagram for a flashlight is shown in Figure 2.22. The two bat-
teries are identical, and each has an open-circuit voltage of 1.5 volts. The lamp has a
resistance of 5$2 when lit. With the switch closed, 2.5 volts is measured across the lamp.

What is the internal resistance of each battery?

* / Switch
L (B

Battery = Battery #—

J

Figure 2.22:

Solution:
Redraw circuit:

15V

2.5V

famp V C> ] s

1.5V

(A )
[\S)
Y

Figure 2.23:

Use a voltage divider relation to find R;:
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Famp 31, _ o5y

Rlamp + 2RI
> -3V =25V
5+2R;
Ry =0.5Q

ANS:: 0.5€2

Problem 2.2 Determine the current ¢, in the circuit in Figure 2.24 by working with resis-
tors in series and parallel.

A

210

04a(h) 202

2Q 20

Figure 2.24:

Solution:

The circuit simplifies to 2€2 in parallel with 2Q2. The current divides into 0.2A for each
branch. On the right branch, the current divides evenly again among the 22 resistors. So
io = 0.1A.

ANS:: 0.1A

Problem 2.3 Find the resistance between nodes A and B in Figure 2.25. All resistors
equal 1€2.

Solution:

One possible way to solve this problem is by using vertical symmetry. The current
going in and out of the radial branches must be equal in magnitude. In fact, the radial
resistors may be detached from the middle node completely. The circuit simplifies to §Q
202, and 2Q all in parallel. Resulting resistance is = £.

See example 4 in section 1.5 for an alternative approach also using symmetry.
ANS:: 10
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B
Figure 2.25:

Problem 2.4 For the circuit in Figure 2.26, find values of R, to satisfy each of the fol-
lowing conditions:

a) v=3V
b) v=0V
c) i=3A

d) The power dissipated in R; is 12 watts.

3Q
12v Ry

Figure 2.26:

Solution:

a) \oltage divider. Solve 12V 3% = 3V
Ry =1Q

b) v =i % R;. Since the current is not 0, the resistance must be zero.
R =0

c) Solves = 34 = &V — 12V

Req  3Q+R;
R, =1Q
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d) Power dissipated in Ry = 12W = 4 + v where v = 12V * 3 and i = 32}~

3+R1
Rl = 3Q

ANS:: (@) Ry =12 (b) Ry =0(c) R, =192 (d) R, = 39

Problem 2.5 Find the equivalent resistance Ry at the indicated terminals for each of the
networks in Figure 2.27.

R, ARl
iR, RE RE RsZ =R, T Rs Rz  Rss
Rs
(@) (b) (©) (d)
Ry, R3
R, Ry
(e)
Figure 2.27:
Solution:

a) RT:R1+R2+R3

b) RT == :llﬁ
R TRy TRy
_ Ri1RsR3
Ry = RiR2+R1R3+R2R3
C) RT - _ 1

1 1
R2+R3+§1

_ Ri1R>+R1R3
Ry = Ri+R>+R3

d) Rr =R+ —R}zz_i_Rﬁg

— 1
e) Rp = —0———~—
R1+Ry R3+Ry

Ry = BiRstRiRa+RyR3+ Ry Ry
T Ri+Ro+R3+Ra
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ANS:: (a) Ry = Ry + Ry + Ry (b) Ry = g fafelfo - (c) Ry = Bufatfula (q)

_ RoR3 — RiR3+Ri1R4+RoR3+RoRy4
Ry =R + Ry+Rs3 (&) Rr Ri+Ry+R3+Rs4

Problem 2.6 In each network in Figure 2.28, find the numerical values of the indicated
variables (Units are Amperes, Volts and Ohms).

2V
—+

Vs |:

1A 4+ Y -4A
i N I3=5A iy

] 1Q :

V3 =5V

A
VWW
1 < +

Figure 2.28:

Solution:
Top figure, v; =4V — 1V =3V, vy =3V + 2V =5V, 4, = =34

Bottom figure, since 5V is in parallel across the 1€ resistor, all 5A of I3 go through
the resistor. v = 5V, i; = 0A

Top: v; = 3V, vy = 5V, i = —3A, Bottom: v = 5V, 4; = 0A.
ANS:: Top: v; = 3V, vy = 5V, i; = —3A, Bottom: v = 5V, i; = 0A.

Problem 2.7 For the circuit in Figure 2.29, determine the current i3 explicitly in terms of
all circuit parameters.

AMAN AMAN

VYW VYVVVy
Ry Rs
+ =
Vv EE R2 |3
Figure 2.29:
Solution:
— RoR
RT - Rl + R22+R33
= L — v(R2+R3)
T = Ry — RlR2+R1R3+R2R3
ig = —ZT % R2—|—R3
ja = — VR
3 R1Ry+R1R3+R2R3

s vR
ANS:: 3 = RiR>+R1R3+R2R3
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Problem 2.8 Determine explicitly the voltage v in the circuit in Figure 2.30.

AAAA
VVVYVY

R, -
| D RiZ SRy V3
Ry +
¢VVVV¥
Figure 2.30:
Solution:
_ RiR2+R1R3
Rr = Ry + Ri+Ro+R3
i — RiRy+R1R3
\oltage across current source is not zero. Vr = I % (R4 + B )
Ri1Ro+ R R3 R
i VI _ — R1+Ro+R3 3
Using voltage divider, —vs = I Ry * R & i
— _ RiR>+R1R3 R3
Vs = Ix R1+R2+R3 Ro+R3
ANS:: vg = — ] 5 BafodBills y Ry

Ri+R2+R3 Ro+R3

Problem 2.9 Calculate the power dissipated in the resistor R in Figure 2.31.

4Q

AAAAA
VVVYVY

AAAA
VVVYVY

2Q=R

AMANA

VWWW
=
Q

Vvvv.
N
@)

I

Figure 2.31:

Solution:

The equivalent resistance is 252, so %A of current is split between the 22 and 4%
resistors. Therefore, 1A current goes through R.
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Power = 2W
ANS:: Power = 2W

Problem 2.10 Design a resistor attenuator to make v, = v;/1000, using the circuit con-
figuration given in Figure 2.32, and resistor values available in your lab. This problem is
underconstrained so has many answers.

R, Ry

ORI

Figure 2.32:

AAAAA
YVYVY
AN
VYWV
<
o

Solution:

Here is one possibility with the resistors available in lab Kits.

Ry = 220k€2, Ry = 56012, Ry = 340€) = 33082 4+ 1012, R4 = 22052

ANS:: Ry = 220k, Ry, = 56082, Ry = 3402 = 33092 + 1052, Ry = 22052

Problem 2.11 Consider the network in Figure 2.33 in which a non-ideal battery drives a
load resistor Ry. The battery is modeled as a voltage source Vg in series with a resistor
Rs. The following are some proofs about power transfer.

Rg
AVA‘/\/\/\VA
Vg i RL
\ \ /
Source Load
network
Figure 2.33:

a) Prove that for Rg variable and R, fixed, the power dissipated in Ry in maximum
when Rg = 0.

b) Prove that for R fixed and Ry variable, the power dissipated in Ry, is maximum
when Rs = Ry, (“matched resistances”).
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c) Prove that for Rs fixed and Ry, variable, the condition that maximizes the power
delivered to the load Ry, requires that an equal amount of power be dissipated in the
source resistance Rg.

Solution:

a) Power dissipated in resistor R :

P = IgircuitRL
V2
P=—35__R
(Rs + R)? *
% V2
P —0) = 7SR = —S
|rs=0 (0+R.)?> " Ry
2
Vs R, =0

e R+ R )P

So, power dissipated in R; maximum when Rg = 0. Otherwise power in Ry,
decreases as Rg increases.

b)
P = ICZircuit
V2
P=—"5__R
(Rs + R)? "

R

Maximize with respect to Ry :

dP _ (Rs+Rp)*(V§) — (ViRL)(2(Rs + Ri)) _
dRL N (RS + RL)4 a

ng B QVSZRL
(Rs + RL)2 N (RS + RL)3
(Rg + Ri)V? = 2V?R,,

— Rs = Ry, (when this holds power maximized in Ry,)

c) Maximum power in circuit is dissipated when Rg = Ry:

Vg

P Ty

Rp
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VZ
Pcircui = 7 9
"7 (Rs + Ry)?
V2
P(R, = Rs) = —2-
(. = Rs) AR

PRS = Pcircuit - PRL:RS
V2 V2 VZ VQ V2

Ppc = _ — _
RS~ R¢+ R, 4Rg 2Rs 4Rs 4Rg
N———
Rs=Rp

Problem 2.12 Sketch the v-i characteristics for the networks in Figure 2.34. Label inter-
cepts and slopes.

[ iy i
+ + + 4Q
Y, 3Q Y, 4Q 2A v 8V
i .—>—/\i AW— i*
+ + 40 i + I i
v 3A v $30 v 240 230
Figure 2.34:
Solution:
a) See Figure 2.35
v=231
iz
3
b) See Figure 2.36
v=4(i +2)
v,
Ty
c) See Figure 2.37
v=41+8
(v—18)




+

<
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4Q

Figure 2.35:

Figure 2.36:
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\Y} 8Vv 2T

Figure 2.37:

+

3A

<

-3 amps

Figure 2.38:
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i
3
40 1
Y, 3Q 2 1 .
- 1 3
| | | | | | | | \Y
| | | | | | | |
8 - 2 2 4 6 8
1
21
_3__
Figure 2.39:
d) See Figure 2.38
e) See Figure 2.39
v="T1
P
7
f) See Figure 2.40
. RiR, 12
SR +Ry, T
7
1= —0
12

Problem 2.13

a) Find i, i5, and i3 in the network in Figure 2.41. (Note that 73 does not obey the
standard convention for current direction).

b) Show that energy is conserved in this network.
Solution:

a) An easy way to do this problem is by superposition.

i = ’UARQ + ’UAR3 — ’UBRQ
"7 R,Ry + RyRs + R, R
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4Q

3Q

CHAPTER 2. RESISTIVE NETWORKS

Figure 2.40:

Figure 2.41:
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iy = UARg + ’UBR1
> RiRy+ RyRs + R\ R;
i = ’UBRQ + ’UBRl - ’UAR2
7 RiRy + RoR;y + Ry Ry
b) KVL and KCL imply:
Vg + V] = Vg (2.1)
Vg + V3 = Up (22)
il + 7;3 = ig (23)

We wish to show that
vat1 + vBls L 101 + davs + 1303

substitute (3) for i,

= V4t + VBl3 ; 1101 + (’il + ig)UQ + 233
rearrange

= V4l + VB3 . (v1 4+ v2)i1 + (v + v3)i3
substitute (1) and (2)

= vl + UBig g VAl + UB’ig

Note: Power and, more generally, any sum of products of currents and voltages
will always be zero. Note that we did not use any information other than KVVL and
KCL. The currents and voltages don’t even have to belong to the same network.
This powerful theorem is known as Tellegen’s Theorem.

. - wvaRs4vaR3z—vBRy ; __ vaR3+vpR; - __ vpRatvpR1—vaRo
ANS: Q) i = R mmi Ry 2 = Mt il 3 = Bilat RyRet Fi Ry
Problem 2.14 Assume that you have an arbitrary network of passive two-terminal resis-
tive elements in which the i-v characteristic of each element does not touch either the
v-axis or the i-axis, except that each i-v characteristic passes through the origin. Prove
that all branch currents and branch voltages in the network are zero.

Solution:

Assume that there is a voltage across any element. Therefore, since the v-i charac-
teristic is such that it intersects the axes at only the origin, there is a current through
that element. The element thus consumes power. Due to the conservation of power rule,
some element must be producing that power. This contradicts the assumption that all
the elements are passive. Therefore there cannot be any voltage across any element, and
consequently no current through any element either.
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Problem 2.15 Solve for the voltage across resistor R, in the circuit in Figure 2.42 by
assigning voltage and current variables for each resistor.

Ry R3
AVW\N A‘/\/\N\lh
v RoZ R,Z
Figure 2.42:

Solution:
Label currents and voltages (see Figure 2.43).

i Ry Rs i3
+V; - yi2-Va+ Yig
+ +
v RSv, Ruzvs |
Figure 2.43:
From KCL:
1) 2'2 == ’il + 7;3
2) I =i3+1y4
From KVL:

3) —v+v+vy=0

4) U3—’U4+U2:O

From Ohm’s Law:

5) v = ilRl
6) Vo = iQRQ
7) V3 = 7;3R3

8) Vg = i4R4
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Solving for v4, the voltage across Ry:
vRoRy + IRVRyRy + IR{RsRy + IR, R3 R,
Vg =
* RiRy+ RiRs + RiR, + RyRs + RoRy

ANS V4 = VRoR4+IR1 RoR4s+IR1 R3Ra+IRoR3 Ry
V4 RiRo+R1R3+R1Ry+RaR3+RaRy

Problem 2.16 Find the potential difference between each of the lettered nodes (A4, B, C,
and D) in Figure 2.44 and ground. All resistances are in ohms.

Solution:

Figure 2.45:
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Redraw circuit (see Figure 2.45)
From KCL:

1) 2A =4y + iy + 13

2) i3 = iy + is

3) ig = i1 + is
4) iy =iy + iy

5) 2A = ig + iy

From KVL:

1) 2047 — 20ig = 0

2) 1500, — 15045 = 0

3) 100iy — 100i, = 0

4) 15071 + 2515 — 5049 — 1007, = 0

Solve for currents: 4, = 14,4 = £A, i3 = 1,40 = $A, 45 = 14,156 = 1,07 = 1,
7:8 = 1, ’ig =1

Find voltages relative to ground (D):
1
vap = 150i5 + 25ig = 150(5) +25(1) = 100V

UBD = 25’&8 =25V
Vop = 5019 =50V

vgp = 0V sincethe20Qresistorsareshorted.

ANS:: VAD = 100V, UVBD = 25V, VUcp = 50V, VED = oV

Problem 2.17 Find the voltage between node C and the ground node in Figure 2.46. All
resistances are in ohms.
Solution:
Since the network to the right of the 25¢2 resistor is not grounded, there is no loop for
current to flow through it. Therefore, apply a voltage divider to the left loop:
409

— 1 —9
VoD = 100+ 350 1 85 00V = 29V




85 Q A

I
350

100V C’)

D,
200V CD

Grounded node

Figure 2.46:

Note that node D is at 200V :

vp =200V = ve = vep +vp = 200V + 25V = 225V

ANS:: vo = 225V

37
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Chapter 3

Network Theorems

Exercises

Exercise 3.1 Write node equations for the network in Figure 3.1. Solve for the node
voltages, and use these voltages to find the branch current . To minimize errors and
facilitate answer-checking, it is helpful to obtain literal expressions before substituting
numerical values for the parameters.

V = 2 volts Rs; = 30 R =20 R;=20 Ry,=140Q R5 = 1Q

Rl R3
Rs
R2 T> R4
Figure 3.1:

Solution:
Node equations:

V—e 0—e e — €
L 1, & 1

=0
R, Ry Rs
V—€2 0—62 €1 — €9

=0
Ry, | R | R

39
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vV CD € e €
R; ! R,
Figure 3.2:
Solving the above two equations,
e = 113207V
es = 0.98113 V
. €61 — €2
= =0.15094 A
7 R
7= E A
53

ANS:: 8/53 A

Exercise 3.2 Find the Norton equivalent at the indicated terminals for each network in

Figure 3.3.

Ro
AV’VWVA

Ry
W
+
v

Figure 3.3:

Solution:
Left network:
Rr = 3||2=1.2 Q when 5 V source is made a short circuit.
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I = 5/3 A when the indicated terminals are connected with a wire (“shorted”) since
then no current flows through the 2 € resistor.

Right network:

Rr = R; + Ry, when the Vj source is shorted and the Is source is made an open
circuit.

Ry Vo

[=——F . ¢4+ ———— by superposition
R+ Ry S R+ Ry Yy superp
~~ —_——
current contribution
divider from Vo
for when Is =0
Ww=0

ANS:: Left: 1.2Q,5/34, Right: Ry + Ry, 22T + 22

Exercise 3.3 Find the Thévenin Equivalent for each network in Figure 3.4.

<
v v
()
P
w
<
—
>
A
o
‘IVWAV
o
<

Figure 3.4:

Solution:

Left network:

Rr = R, + R, when Is is made an open circuit.

Voc = Is R, since no current flows through R; in the open circuit case.

Rr = Rsl||(R: + R»2) when I current source is made an open circuit.
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Since Vo = R3- (current through R3) by Ohm’s Law,

~ Is Ry

" R +Ry+Rs
current  di-
vider relation
for fraction of
Is that will
flow through
Ry and R3

Voc R

ANS:: Left: Voo = IsRy, Ry = R + Ry , Right: Voo = sk

Ri+Rat+Ry U1 =
R3||(Ry + Ry)

Exercise 3.4 Find v, in (a) and (b) by superposition in Figure 3.5.

31A

30
A\IA\IA\IA\IAVA A\I’\\I’\\I’\\I’\\IA hd T _> AVAVAVAVAVA
4kQ kQ + 20
z 3kQE
L S e
5 A ] % 2Q Vo230

Figure 3.5:
Solution:
iy
MWW >
3 i
— 2 —
31A D § 2 2 éé 3 Vo
+
Figure 3.6:
(a):

1. Set voltage source to zero (short circuit):

U():O
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2. Set current source to zero (open circuit):

3000
=10V ———
Yo 3000 + 2000
—_——
voltage divider
vg = 6 Volts

vo = 0 + 6V [superposition]
vg = 6 Volts

(b):

1. Set current source to zero (open circuit):

213 }
=|— 162V =12 Voltssince 2||3 =1.2
=2 312+3 o |
N— ———

voltage divider

2. Set voltage source to zero (short circuit):

2
" 312]3+2
—_——

current divider

. . 2 .
vg =3 - (—iy) = —12 Volts ig = [34-—2] -1 =4 A

vo =12+ (—12) [superposition]
Vo = 0
ANS:: (a) 6V (b) OV

Exercise 3.5 Use superposition to find the voltage v in the network in Figure 3.7.
Solution:
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Q 10
1Q 2Q L
+ 20 Eg * 1A §>1 Q 1A
Vv 10 1V
Figure 3.7:
1 1 1 1
~~~ SN~ ——
fromleft  from from right
current voltage current
source source source
ANS:: 1/3V

Exercise 3.6 Determine (and label carefully) the Thévenin equivalent for the network in

Figure 3.8.
Ry =2kQ Ry = 1k

iop = 3 coswt (in MA)

i R
._F I‘V’\V’\V’\V’\V‘l
+
\Y RZ% G) io
Figure 3.8:

Solution:

Voc = 3 cos wt [volts] since no current flows through R; in the open-circuit case.

Rr = R, + Ry, = 3 k£, when 4, current source set to zero (open circuit)

ANS:: Voo = 3 cos wt volts, and Ry = 3 kQ

Exercise 3.7 Determine and label carefully the Norton equivalent for the network in Fig-

ure 3.9.



45

5kQ
a L4 AVAVAVA\IA\IA
2kQZ (A)ama
b pe Avl\vl\vAvAvA
1kQ
Figure 3.9:
Solution:
2k
Isc=|—=————|-4mA=1mA
s¢ l2k+5k+1k] " m

~ /

current divider

Rr =5k + 2k + 1k = 8 k2, when current source is “open-circuited”

ANS:: Isc = 1 mA, and Ry = 8 kQ

Exercise 3.8 Find the Thévenin equivalent for the circuit at the terminals AA’ in Fig-
ure 3.10.

A

Figure 3.10:

Solution:
Ry = 1kQ + 2k || 2kQ = 2k when voltage source is short-circuited.

Voc = 5 Volts, by voltage divider since no current flows through 1££2 resistor in the
open-circuit case.

ANS:: Ry = 2kQ and Voc =5 Volts

Exercise 3.9 The resistive network shown in Figure 3.11 is excited by two voltage
sources v (t) and ve(t).
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2Q 2Q
VA A\II\N\/‘VA

i(t)

wo(t) 10 (vt

A

Figure 3.11:

a) Express the current i(¢) through the 12 resistor as a function of v, (¢) and vo(?).

b) Determine the total energy dissipated in the 1€ resistor due to both v, (¢) and vs(?)
from time 77 to time 75.

c) Derive the constraint between v;(¢) and v,(t) such that the value for b) can be
computed by adding the energies dissipated when each source acts alone (i.e. by
superposition).

Solution:
)
0= | 1] 0100+ 1) = § () + a(0)
0
Energy = 11—6 /T 1T2 (1 (t) + vo(t)) dt
0

T:
For superposition to apply, / ’ vy - vg - dt =0 [orthogonal]
T1

ANS:: (3) i(t) = L (vi(t) +va(t)) (b) Energy = & [ (v1(t) + va(2))°dt () fr vi -
Vg * dt=0

Exercise 3.10 Find the Norton equivalent at the terminals marked zz in the circuit in
Figure 3.12.
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X X
20 o
|O:3A<D 210 (DV0=5V =20
Figure 3.12:

Solution:

Rr=2||1+4]|2=2Q when both sources are “shut off”

Isc = \1/ + \0/ =1 A, by superposition
when when
voltage current
source  source
shut off  shut off

ANS:: Rr =2Qand Isc ==1 A

Exercise 3.11 Find the Thévenin equivalent for the circuit in Figure 3.13 at the terminals
AA'.

6 Q
AvAv \\ ° -A
12V 30 E 1A
=A’
Figure 3.13:

Solution:
Rr=613=20Q
Voo =4V +2V =6 Volts

Find Vo by superposition:
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MWW o A
6 |+
12V =3 Ve
[ sx
Figure 3.14:
When current source is off:
3
= (——) 12V =4Volt
Voe (3 n 6) 1% Volts

——
voltage divider

MW - o A
6 I +
3 (1)1A Vg
o A
Figure 3.15:

When voltage source is off:

1 = (—6 ) -1A:2A
3+6 3

current divider

Voc =11 - 32 =2 Volts

ANS:: Rr =2 Q and Voc = 6 Volts

Exercise 3.12 In the network in Figure 3.16, find an expression for v,.
Solution:
By superposition,

R, ) ( R, )
= 0y - I ‘R
V2 = s (R1+R2 TS\ R T R 2

~ - ~ vl

voItageHivider currentdivider
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V-
Ry 3

AVA N\N\ Q IV\N\N\
NG

0

Figure 3.16:

ANS: vy = vs - (72 ) + Is (525 ) - Re

Exercise 3.13 The networks in Figure 3.17 are equivalent (i.e. have the same v-i relation)
at terminals A — A’. Find vy and Ry.

Figure 3.17:

Solution:
Right network is Thévenin Equivalent of left network.
Rr = R, since no current flows through R; when I3 is shut off.

vr = Voc = Is - Ry + vz, by superposition.

ANS:: Rr = Ryand vy = I3 - Ry + v3

Exercise 3.14 For each of the circuits in Figure 3.18 give the number of independent
node variables needed for a solution of the problem by the node method.

Solution:

a) 3 node variables

b) 3 node variables
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a
R2 U R4
A VA IV\NV\VA
R | O s
Ry I S
Figure 3.18:

ANS:: (a) 3 (b) 3

Exercise 3.15 For the circuit shown in Figure 3.19, write a complete set of node equa-
tions for the voltages v,, v, and v.. Use conductance instead of resistance. Simplify
the equations by collecting terms and arranging them in the “standard” form for n linear
equations in n unknowns. Do not solve the equations.

Figure 3.19:
Solution:
(1)
(g1+93+95) Va—9g3- +0-v.=g1- V
2)
—g3- Vot (93+94) Vb —ga- ve=1
3)

0-Vg—0gs- v+ (g2+0ga+gs): ve=92-V

ANS:: (1) (g1+93+95) va—9g3- v6+0- ve = g1+ V', (2) —g3- Va+(g3+94) Vp—94- Ve =
I,(3)0-va—gs- v+ (92+94+06)- ve=92-V
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Exercise 3.16 For the circuit shown in Figure 3.20, use superposition to find » in terms
of the R’s and source amplitudes.

Vi

()
Ry /Ry

V2 o |

Figure 3.20:
Solution:
Redraw:
R, ¥ °
/®./ _ Vv,
! MWW
R,
Figure 3.21:
Superposition:
1.
Vs, V4 off; I on:
V' = 0 since no current through Rs
2.
V5 on; Vi and I off:
Ry
V=-o 2V
R+ Ri|[Rs
voltagevdivider
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MW

R,

Figure 3.22:

Figure 3.23:

“ () grrg

Ry

+<I

Figure 3.24:
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Vi on; V5 and I off:

__BellR
R1+R2HR3
Superposition:
R2||R3 R2
V=W o5 Vo o
! R+ Ry || Rs ? Ry + Ry || Ry
. R R
ANS::V =1] - #‘2”3&_%' #12\\33

Exercise 3.17 Find the Thévenin equivalent of the circuit in Figure 3.25 at the terminals
indicated.

Figure 3.25:
Solution:
O
O
Figure 3.26:
To find Ry, shut off 2 sources:
Ri(Ry + R3)
Rr=R Ro+ R3)= —————
=Rl (B + Bs) Ri+ Ry + R;

To find V¢, use superposition:
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Hle?

+
Vgc R,

R,

Figure 3.27:

1.

Shut off V:
Ry

R
U R T Ro+ Ry
RR,- I

Voo =iy« Ry = —2" 1
0 = M= B Ry + Rs

AAAAA o

Figure 3.28:

Shut off I:
(Re+ R3)- V

" Ri+Ry+R;

ocC

_RiRy- I+ (Ro+R3) V

.
0c R, + Ry, + Rs

.. __ Ri(R2+R3) _ RiRy- I+(R2+R3)V
ANS:: RT T Ri+Ro+R3’ VOC Ri+Ra+Rg3

Exercise 3.18 In the circuit shown in Figure 3.29 there are 5 nodes, only 3 of which
are independent. Take node E as a reference node, and treat nodes A, B, and D as the
independent nodes.

a) Write an expression for v, the voltage on node C, in terms of v 4, vg, vp, and V4.
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Figure 3.29:

b) Write a complete set of node equations which can be solved to find the unknown
voltages in the circuit. Do not solve the set of equations but do group them neatly.

Solution:

a) ve =vp+ Vi

b) (91+ 92+ 94) - va— g2+ v — grvp =0
—g2- Va+(g2+93+05) vB—gsvp =93 Vi
—01- Va—93VB+ (1 +935+9s) vp=gs Vi

ANS:: (A)vec=vp+Vi(0) (g1 +9go+94) - va—ga- vs§— g1vp =0, —ga- va+
(go+9s+9g5) vB—gsvp=gsVi,—g1- va—gsve+ (g1 +93+gs)- vp=93 V1

Exercise 3.19 Consider the circuit in Figure 3.30.

s00 2V |
ww—@—«—:A’

L

0-5A<D %10093%9% Y

Figure 3.30:

a) Find a Norton equivalent circuit for this circuit at terminals A — A’
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b) Find the Thévenin equivalent circuit corresponding to your answer in Part a).
Solution:

a) Ry = (100 + 50) || 300 = 100 ©

100
100 + 50 + 300

Voc=<

~

) - (05 A)

Current divider:

-300+( —300 ) 95 1/
300 + 100 = 50

2
VOC = 16§ Volts

From this, one can find the short-circuit current:

v
Iso = 28 = 1/6 Amperes

Rt
b) The open-circuit voltage was found in the previous part.

ANS:: Ry =100 ©, Voc = 162 Volts, Isc = 1/6 Amperes

Exercise 3.20 Measurements made on terminals B — B’ of a linear circuit in Fig-
ure 3.31(i), which is known to be made up only of independent voltage sources and current
sources, and resistors, yield the current-voltage characteristics shown in Figure 3.31(ii).

a) Find the Thévenin equivalent of this circuit.

b) Over what portions, if any, of the i-v characteristic does this circuit absorb power.

Solution:
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-4 4 5
— A I IV>

L, vV
—+ -20
-+ -30
(if)

Figure 3.31:

a) Voc = —3 Volts (voltage when current, : = 0)
1 3V
= = =150
slope  0.02 A

We find Power =1 - v

b) In quadrants 1 and 3, the product 7 - v is positive. Thus, the circuit absorbs power

within this range.

ANS:: () Voc = —3 Wolts, Ry = 150 €2, (b) In quadrants 1 and 3

Exercise3.21

a) Write in standard form the minimum number of node equations needed to analyze

the circuit in Figure 3.32.

MWWWW——FWWW—

(D

Ry Rs

Ry ()1

Rs

i
MW —2

Figure 3.32:
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Figure 3.33:

b) Determine explicitly the current 4.

Solution:
a)
_ (e2 —e1)
y=—-
Ry
Thus we need to find e,, e;.
G = R% , etc.
Node equations: Standard form:
(1) Ate;:
vV — -
Q+I+M=O = e (—ga—9g1)Teaga=—Vygo—1
Ry Ry
(2) At ey:
0—e el —e
( i 2 —I‘f'(lTALQ):O = e1- gitex—gi—g3)=1
b) We find that:
e Ig—V gogs
2

9192+ 93 92 + 3 ga
I(9192+9392+9394) — g2 (I =V Gy) (94 + g3)
9s- (94 92+ g3 92 + g3 9a)
—(V-g92-93)+1- (92+93))
92 94+ 92 g3+ g3 g4
—gs- (V- g2- g3+1- (92+93))
92 94+ 92 93 + g3 94

€1 =

(e2—e1) =

1y =
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ANS:: (@) e; (—go—gs) +e2 g1 ==V go—I,and e; - g4 + ea(—gs — g3) = I, (b)
—9g4- (V- g2- g3+1- (92+93))
g2 94+92 93+9g3 g4

1y =
Exercise 3.22

a) Find the Thévenin equivalent of the circuit in Figure 3.34.

|
Ry R .
W @ WA ' A
|
= +\V = |
R () ER =Rs |
|
AW MW AW N
Ry Rs Re |

Figure 3.34:

b) Find the Norton equivalent of the circuit in Figure 3.35.

R, R, |
A\/\/\N\/A A\/\/W\/\ ]_ 1
I
+ < I
! CD C) v =R
I
AW l1
Rs !
Figure 3.35:

Solution:

a) Rr = R¢ + R; + Ry, since the current source cuts off the subcircuit to its left, for
the purpose of determining the Thevenin resistance.

Voc =1+ Rg
b) Rr = Ry || (Re + Rs), since no current flows through R,

_ Vv
ISC " Ro+R3
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ANS:: (a) Rr = Rg + R; + Ry and Voc =1 - Rs, (b) Rr = Ry H (R2 + Rg), and
Isc =V/(Rs + Rs)

Exercise 3.23

a) Find the Norton equivalent of the circuit in Figure 3.36.

I
i

v oRE mE (D RE I

ww—i 1
R, !
Figure 3.36:
b) Find the Thévenin equivalent of the circuit in Figure 3.37.
I Ry |
I
+ < < I
V<> RE R R |
I
4

Figure 3.37:

Solution:

a) Rr = Rg + Ry
I, =V/(R¢ + Ry)

b) Rr = (Rs || Rs) + R4
Voc =1 (Ry || R3)

ANS:: (a) Rr = R6 + R7, Isc = V/(R(; -+ R7), (b) Rr = (R2 H Rg) + Ry, VOC =
I (R, || Rs)
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Exercise 3.24 Find the Thévenin equivalent circuit as seen from the terminals a — b in
Figure 3.38.

10 kQ

WWW

a

10mAG 10kQ§ ZVC-D

b

L

Figure 3.38:

Solution:
Ry = 10k9) || 102 = 5k
By superposition,

10k
Voo = (10mA)[10kS || 10kS2] + (~2V) (ﬁ) _ 49V olts

ANS:: Rr = 5k, Voo = 49 Volts

Exercise 3.25 Find the node potential E in Figure 3.39.

8 kQ Ly
+
5V C_) 8 kQ % 0.4kQ % G> 25 mA
1
Figure 3.39:

Solution:

E = 0.8V + 0.8V 4 0.8V = 2.4V, by superposition.
ANS:: 2.4 \olts
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Exercise 3.26 For the circuit in Figure 3.40, write the node equations. Do not solve, but
write in matrix form: source terms on the left, unknown variables on the right.

Solution:

Figure 3.41:

QD V- -g=v(g1+92+91) —vp- ga
Q) Vg3 —1=4v4 (—g4) + vs (g3 + 9a)

ANS:: V- g1 =, (g1+92+94) — V- gs,and V- g3—1I = 4v, (—ga)+vp (93+94)

Exercise 3.27 Find v; by superposition for the circuit in Figure 3.42.
Solution:
Superposition:
1.

V off, I on
’Ui:I' (R2 ||R1)
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Figure 3.43:

MWy
Rs

Figure 3.44:

Ry

Figure 3.45:
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R, v,
W\, )
Y% CD Rs %% Ry
Figure 3.46:
V on, I off P
v=VE R,

Rle R2
o () e ()
Y R + R, R + R,

ANS: vy =1 (ftf2) 4 v . (Fh)

Problems

Problem 3.1 A fuse is a wire with a positive temperature coefficient of resistance (in
other words, its resistance increases with temperature). When a current is passed through
the fuse, power is dissipated in the fuse, which raises its temperature.

IOQ) % Fuse

Figure 3.47:

Use the following data to determine the current I, at which the fuse (in Figure 3.47)
will blow (i.e., its temperature goes up without limit).
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Fuse Resistance:

R=1+aT Ohms

a = .001Q/degrees C

T = Temperature rise about ambient

Temperature rise:

T =3P

g = (2%5) degrees C' /W atts
P = power dissipated in fuse

Solution:
R=1+aBP Ohms
R =1+ aBIiR Ohms
R = k;—ﬁlg Ohms
1—aBli=0

Iy = 15 amps

ANS:: 15 amps

Problem 3.2

a) Prove, if possible, each of the following statements. If a proof is not possible,
illustrate the failure with a counter-example and restate the theorem with a suitable
restriction so it can be proved.

i) Ina network containing only linear resistors, every branch voltage and branch
current must be zero.

i) The equivalent of a one-port network containing only linear resistors is a linear
resistor.

b) To demonstrate that you understand superposition, construct an example which
shows explicitly that a network containing a nonlinear resistor will not obey su-
perposition. You may select any nonlinear element (provided you show that it is
not linear) and any simple network containing that element.

Solution:

a) i) Thisis true. Assume that there is a nonzero branch voltage. That must cause
a nonzero branch current, due to the » — 4 relationship of a linear resistor.
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Therefore the resistor consumes power. Something must be producing this
power, but linear resistors cannot produce power, so our hypothesis falls apart.
Therefore there are no nonzero branch voltages or branch currents.

ii) This is true. This is the mathematical definition of linearity.

A

Figure 3.48:

b) Consider the nonlinear resistor with the 7+ — » relation shown in Figure 3.48, which
is given by i« = Kwv3. Let a voltage v; be applied across the resistor. A current
i1 = Kwv? flows through the resistor. Similarly, a voltage v, produces a current
iy, = Kwv3. Suppose a voltage v3 = v; + vy is applied. The i — v relation tells
us the resultant 73 is Kvi = K(v; + v9)®. However, superposition tells us 43 is
i1 + 1o = Kv} + Kv3, which in general is not equal to what the = — v relation says.

Problem 3.3 Find V; in Figure 3.49. Solve by (1) Node Method, (2) Superposition. All
resistances are in Ohms.

20 20
AVWV\VA AVWv\lA b

SVCD sazea(h) 605 v

Figure 3.49:

Solution:
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(1) Node Method
Label the nodes e; and e, as shown in Figure 3.50.

20 il 20 &
MW | —WW——8 _o|_
8V C) 40 = 6A <f> 6QE
o
Figure 3.50:

By the node method, we obtain the following two equations:

8V—-er __ el ex—€e1
2 Ohms 4Ohms+6A+2Ohms_0

e1—ex _ e =0
2 Ohms 6 Ohms

Thus, Vo = ey = 8.57V

(2) Superposition
Find the voltage due to each source independently, as shown in Figure 3.51 and
Figure 3.52.

r— - — — — — — — a
| r____—Il
|ZQ |ZQ ||<—8Q
A i A —o
I | II+
| |
| |
+
w(D) | e | eeZ i
N L _ T4 éQ
[ 1
o

Figure 3.51:

Vo = (8 V) (s2me_60hms _ 3 431/

2+% Ohms 8 Ohms

2 Ohms
Voo = (6 )(ﬁ—gng on (6 Ohms) =514V
Vo =Vor+ Ve =857V

ANS:: 857V
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z 8Q

30
r— - - — — — — — 1 r— — — — "1
I 2Q I l 20 I
| WA | A o
I | I |
I = | I -
| 405 6A<f> . BQE | Vyp
| | Rt
| | :
Lo - |

Figure 3.52:

Problem 3.4 Consider the figure you used for the previous problem (Figure 3.49). Find
the Norton equivalent of the network as seen at the terminals on the right.

Solution:
Remove the sources to find R7, as shown in Figure 3.53.

r— - - - - — A
| 20 ' 20
| AMAW — W O
| | +
| | I
| 40 % | 60
| F 3
| | ]
I | o
L - - — — — _I
4
-0
3
Figure 3.53:
ms 4 ms
Ryy = & 65;12 Ohms) — 2,14 Ohms
IN= Rpg = Rom = A

The Norton equivalent is shown in Figure 3.54.
ANS:: 2.14 Ohmsand 4 A

Problem 3.5
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+O

4A<f> 21405 Vo

Figure 3.54:

a) Find R.,, the equivalent resistance “looking into” the terminals on the right, of the
circuit in Figure 3.55.

R R R
W ——
RE 2RZ 2RE ORE < Ryg="?
Figure 3.55:

b) Find the Thévenin equivalent, looking into the terminals on the right of the circuit
in the figure in Figure 3.56.

1Q 1
VA\IA\IA\IA\IAV VAVA \l VVVVVY +
1A(h)  10% 20 20 205 \,
Figure 3.56:
Solution:
a) See Figure 3.57.
R, =R
b) Check out Figure 3.58.
VrH = Voo = (2 Ohms)(l A) 1 Ohms 2 Ohms 2 Ohms _ 125V

1432 Ohms 2+ Ohms 2+3 Ohms

RTH =10Ohm
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(410
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e e
|||“|r R _; . R | | R | |
i) " 5 R G-
Il | | |
Il | ! I
I | L
1R 2RE | I2RE 12RE | Vo
I||||_L__ “E -1 _[4 | | | [ |
g S |
'LLL:_::T:::?T :_:::% R I
2R R 2R R 2R R
Figure 3.57:
e e o )
| s

WWW
N
Q

W

205R 105R 22R 117R 3R
Figure 3.58:
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ANS:: (a) Req = R, (b) VT = 125V, Rryg = 10hm

Problem 3.6 Find v; for I = 3 amps, V' = 2 volts in Figure 3.59. Strategy: to avoid
numerical errors, derive expressions in literal form first, then check dimensions.

I
U VVVVV
0 3Q e
s 'WVV\V 1 — V
Vi % 2Q £2Q
Figure 3.59:

Solution:
Use the node method. Label the nodes as shown in Figure 3.60.

I
-~ 20
S Gl
20 3Q —iv
+ € WY (S) -
Vi2Q 2Q
Figure 3.60:
Node equations:
LI B S
90 T2 T % T
1 1 1 1 1
—61(ﬁ) + eg(ﬁ + ﬁ + 3_Q) — 63(3—9) =0
1 1 1 1%
_623_Q+63(3_Q+ﬁ) _I+ﬁ
Solvingwith I =3Aand V = 2V
e = —ﬁV

19
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2
=V
2= 19
92
€3 = EV
Thus, 56
; — = —— ~ —2.
v; =€ 19V 95V
ANS:: -2.95V

Problem 3.7 For the circuits in Figures 3.61(i) and (ii):

a) Find v, for R; = R.
b) Find v, for R; # R

c) Find the Thévenin equivalent for the network to the right of points AB, assuming
R, = R.

Figure 3.61:

Solution:

a) By symmetry, vo = 0 in both cases.

b) For (i), we can use two voltage dividers:
Vo = V(ﬁ - %)
Note that the R; = R case reduces to part a.

For (ii), we must use the node method (See Figure 3.62).



73

A
V()
B
Figure 3.62:
e1—V ej—e er __
R S+ G =0
R g =0

o _ V(R-R:
S0,v0 = €1 — €2 = Jpag

c) By symmetry, no current flows across the middle resistor for (ii), so we can replace
it with an open circuit. Therefore, cases (i) and (ii) are identical. The equivalent
resistance of the four resistors can be easily found, so in both cases, Rry = R and

VTH = 0.

ANS:: () 0, b) i) V(72 — 1), ii) 222 ¢) Ry = R, Vi = 0.
Problem 3.8

a) Determine the equation relating i to v in Figure 3.63.

i 1Q 4Q
‘_>_VAVAVA\IA\IAV vl\vl\vl\vl\vl\v
+
v 20 G 2A £30
Figure 3.63:

b) Plot the i-v characteristic of the network.
c) Draw the Thévenin equivalent circuit.

d) Draw the Norton equivalent circuit.
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Solution:

a) See Figure 3.64.

O
+

v 220 C‘ 2A

MW
\‘
Q

Ai =20 <¢ 2A =70

Figure 3.64:
In(i),i=0,s0v = —(2 A)@PmallTOlms — _3 77y,
.. . 4 Opms
In(ii),v = 0,507 = (2 A) T Ohms = 1.22 A.

Hence, by linearity, v = (2.55 Ohms)i — 3.11 V
b) See Figure 3.65.

11V >

Figure 3.65:



c) See Figure 3.66.

2.56Q
—\WW——=—e
+
CD 311V v
N
Figure 3.66:
d) See Figure 3.67.
i
<0
+
1.20A 25605 v
o
Figure 3.67:

ANS:: (a) v = (2.5560hms)i — 3.11V

Problem 3.9 In Figure 3.68, find v, via (a) superposition, (b) the node method.

10 S
VVVVVV +
+ <
v (D) sz ealy) 40
Figure 3.68:

Solution:

a) See Figure 3.69.
Find the voltage due to each source. So,
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r—— - - - - — — al
| T
19, | 20 i| 30
| ' | +
| : :|
+ | |
Y 6Q 40
Ao<> | § lL____é' o 0
Lo 4 - — — —
°
______ 1 r— — — — "7
10 | | 2Q i |
A AN
| | %
| | |
= | | = |
6Q 8A ; 4Q Vo2
; C>| §|°
| | |
| ! o
______ | Lo - — — —
6 6Q
20
=

Figure 3.69:
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30hms 40hms __ Ag
T3 Ohmms 244 Ohms — 2 VOIts

8 ms
—7—6+goghms(—4 Ohms) = —4 volts
7

vo1 = (Ag volts)
Vo2 = (8 A)
Vo = Vo1 + Vo2 = % — 4 volts

b) See Figure 3.70.

10 il 20 &
AV | W $<—e
AO\CD 6Q = 8A <¢> 4
°

Figure 3.70:

er—e1 _ _ e Ag—e1 __
2 Ohms 8 A 6 Ohms + 1 Ohm =0
e1—es ) =0

2 Ohms 4 Ohms

vo = ez = 42 — 4 volts
ANS:: 48 — 4 volts
Problem 3.10 Use the following three different methods to find ¢ in Figure 3.71:

1) Node Method
3V

- + AMMA
VVVVVY

60 60 30 (* 2A

Figure 3.71:

2) Superposition

3) Alternate Thévenin/Norton Transformations
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e €
a v @ 3. |

Figure 3.72:

Solution:

1) See Figure 3.72.

From the node diagram, we get:
eo—eq e + 3 Volts—eq =0

3 Ohms 6 Ohms 6 Ohm

e e1—ez __
24 3Ohms+30hm_0

y — €1 —
So, 7 = oL = -Damps

2) See Figure 3.73.

From each source, we get:

_ 3V 6 Ohms
" 9 Ohms 6+6 Ohms

. 3 Ohms 6 Ohms
2 = (2 A) 3+6 Ohms 6+6 Ohms

S0,1 =11 +12 = .5 amps

11 = .167 amps

= .333 amps

3) See Figure 3.74.

“Nortonize” the parts of the circuits on either side of the wire whose current we are
finding, and simplify:

So, i = (1.5amps)/ frac3 Ohms3 + 6 Ohms = .5 amps
ANS:: .5 amps

Problem 3.11 A student is given an unknown resistive network as illustrated in Fig-
ure 3.75. She wishes to determine whether the network is linear, and if it is, what its
Thévenin equivalent is.

The only equipment available to the student is a voltmeter (assumed ideal), 100 k<2
and 1 M test resistors that can be placed across the terminals during a measurement
(Figure 3.76).
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Figure 3.73:
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r—— - — = A r—— - - - - — A
| 3V |
30

| 4@| 3Q |

| L |

I | L

6Q= 6Q 302 2A<f>
T | |

| | |

L - — — — — | L - - — — — — — — |

1.5AQ> 3Q %L 6Q

Figure 3.74:

Resistive
network

Unknown
network

Figure 3.75:
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L e — — —
. +
Resistive Voltmet
network v R oltmeter
e g
Test resistor
Unknown
network
Figure 3.76:

The following data were recorded:
Test Resistor \Voltmeter Reading

Absent 1.5v
100&52 0.25v
1MQ 1.0v

What should the student conclude about the network from these results? Support your
conclusion with plots of the network v-i characteristics.

Solution:

Let us assume that the network is linear and that the Thévenin equivalent voltage of
the network be denoted V- and resistance Rry.

Without the test resistor, the measured voltage of 1.5V is the open circuit voltage.
Thus Vg = 1.5V.

With a 100k resistor, the voltage measured across the test resistor is

1.5V100&

02 = ————«—
100k + Rry
Thus Rry = 500k.

With a 1M resistor, the voltage measured across the test resistor is

1L5VIM
500k + 1M

This is corroborated by our measurement. Thus, the network is a linear network, and can
be represented by Vg and Rry.

1V

Problem 3.12

a) Devise an electrical circuit of voltage sources and resistors that will “calculate”
the balance point (center of mass) of the massless bar shown in Figure 3.77, for 3
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b)
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arbitrary masses hung at 3 arbitrary places along the bar. We want the circuit to
generate a voltage which is proportional to the position of the balance point. Write
the equation for your network, and show that it performs the required calculation.
(Work with conductances and superposition for a simple solution.)

|
Mass A Mass B MassC

Figure 3.77:

Extend your result in part a) to two dimensions, that is, devise a new network (which
will have more voltage sources and more resistors than above) that can find the cen-
ter of mass of a triangle with arbitrary weights handing from its three corners. The
network will now have to give you two voltages, one representing the x coordinate
and the other the y coordinate of the center of mass. This system is a barycentric
coordinate calculator, and can be used as the input for video games, or to simulate
trichromatic color vision in the human eye.

Solution:

a)

See Figure 3.78.

Gé ng’ Gé
s WD e

Figure 3.78:

The center of mass of the bar is given by the equation ., = Tugitmazatmiz,

mi1+ma2+m3 !

where m; and x; are the mass and position of the i** hanging object, respectively.
Analogously, in Figure 3.78, the conductances represent the masses, and the volt-

ages represent the positions. Thus, vo = GULERIREEA a5 needed.
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b) See Figure 3.79.

O O
+ +
Gé Gé Gé Gy % G, % G3 §
Vox Voy
() W@ wOw() =) =)
o o
Figure 3.79:
Similar reasoning as in part a.
Problem 3.13

a) Find the Thévenin equivalent for the network in Figure 3.80 at the terminals CB.
The current source is a controlled source. The current flowing through the current
source is 31, where 3 is some constant. (We will discuss controlled sources in

more detail in the later chapters.)

Iy
VsCD 10kQ £ By CD 100 kQ

C

+

Figure 3.80:

b) Now suppose you connect a load resistor across the output of your equivalent circuit
as shown in Figure 3.81. Find the value of Ry which will provide the maximum

power transfer to the load.

Solution:

a) Ry = 100kOhms
vr = voc = (100 kOhms)(—Broei—) = —108Vs
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Ry
VA‘/W\IAV C
“()
B
Figure 3.81:

b) P=1I’R = R(+2+-)? = VAR, (Rr + Ry) 2

RT+RL
To maximize P, we write P as a function of R, and set its derivative with respect
to Ry, equal to zero. So,

P’(RL) = V%[(RT + RL)_2 — QRL(RT + RL)_g] =0
= R = Rr

ANS:: (a) Rryg = 100412, v = —10ﬂV5 (b) R;, = Rr

Problem 3.14 You have been hired by the MITDAC Corporation to write a product de-
scription for a new 4-bit digital-to-analog-converter resistance ladder. Because of mask
tolerances in VLSI chips, each resistor shown in Figure 3.82 is guaranteed to be only
within 3% of its nominal value. That is, if Ry is the nominal design resistance, then each
resistance labeled R can have a resistance anywhere in the range (1 & .03)R, and each
resistance labeled 2R can have a resistance anywhere in the range (2 4 .06) Ry.

You are to write an honest description of the accuracy of this product. Remember
that if you overstate the accuracy, your company will have many returns from dissatis-
fied customers, whereas if you understate the accuracy, your company won’t have any
customers.

NOTE: Part of this PROBLEM is to describe what the problem is: How should accu-
racy be specified? Is there an error level that is clearly unacceptable? Does your product
avoid that error level? Is there an obvious “worst case” that can be easily analyzed? Have
fun. And remember, common sense is an important ingredient of sound engineering.

Solution:

There are several approaches to this problem. This approach analyzed the circuit piece
by piece to determine the effective error we can expect from the circuit.

Given: 3% tolerance, implies that R = (1 &+ 0.03) Ry, 2R = (2 £ 0.06) Ry.
Accuracy of 2R||2R: high: 2.06/|2.06 = 1.03, low: 1.94(|1.94 = 0.97.
So the error for 2 2R resistors in parallel is 3%.
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2R

AW
WA
>

R R R
AMAWA AW AW
+
2R 2R 2R 2R
2R
Vl V2 V4 V8

Figure 3.82:

Accuracy of R + R: high: 1.03 + 1.03 = 2.06, low: 0.97 + 0.97 = 1.94.
So the error for 2 R resistors in series is 6%.

R R R
W W VWA °
2R +
=2R = 2R =2R = 2R ' = 2R v,
8
(@)
@
2R +
(6%)
R v
Vg (3%) A
.
(b)
Figure 3.83:

First, consider the highest-order bit (vg) in isolation (see Figure 3.83(a)). We can
simplify this circuit, keeping track of the effective errors incurred by taking the resistances
in parallel and in series. The resulting simplified circuit is shown in Figure 3.83(b), with
the effective errors of each resistor parenthesized.

We can now find the following voltage divider for v 4, considering the extreme error
cases (high/low) in resistance values:

Vap 1+ 0.03 ~ 1+40.03
vg 2—0.06+1+0.03 3-—0.03

=0.38
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VAL _ 1-0.03 — 032
Ug 3+ 0.03

Now consider the lowest-order-bit (v1) in isolation (see Figure 3.84. Again, we find
voltage-divider relations:

€3 R € R € R
° MV " YW ® VW @
2R +
= 2R 2R 2R =R
Vi
o
Figure 3.84:
1 .
VAh _ + 0.03 — 0515
€1 2
1-—0.
var 17008 4 e
€1 2

And by symmetry:

€1 €9 €3
Var €11 €9y
€1 €2 €3

Noting the similarity at e3 to Figure 3.83(b):

€3.n  VUAn
U1 Ug
€31 VA,
(%1 Ug

We can now find the bit-conversion accuracies of the lowest-order bit:

VA,h VUA,n €1,n €2n  €3,h

= (0.515)30.38
V1 €1 €2 €3 U1

DAL DAL B S B (.485)30.32
(%1 €1 €2 €3 U
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Generalizing to a bit of order n:

YAk _ .38 (0.515)3"
Vgn

UAzl 3—n
YAl _ .32 (0.485)
Vgn

Now consider the circuit as a whole. The worst case error-wise will be when all bits
are “on”. In this case:

1—0.515%
van =038 Vi (1+0.515+0.515 +0.515°) = 038 - Vi ——— = 0728V,

1 —0.485%

=0.32-V,-(1+0.4 4852 +0.485%) =032 -V} ——
va; = 0.32- V- (1+0.485 + 0.485% + 0.485%) = 0.3 Vh1_0.485

= 0.587 -V}

As a point of comparison, the error-free case is: v, = gvh =0.625-Vj,.

Error high:
0.728 — 0.625
—— =16.5
0.625 %
Error low: 0.587 — 0.625
bbby - |
0.625 6.1%

Problem 3.15 You have a 6 volt battery (assumed ideal) and a 1.5 volt flashlight bulb,
which is known to draw 0.5 amps when the bulb voltage is 1.5 volts (in Figure 3.85).
Design a network of resistors to go between the battery and the bulb to give v, = 1.5 volts
when the bulb is connected, yet insures that v, does not rise above 2 volts when the bulb
is disconnected.

+
6V__;__ ? Vs @)

Figure 3.85:

Solution:
See Figure 3.86.
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r— - - — — — A
I I
I I
+
6V<> | 1Q é 13Q é
| I
1 2.250 |
F— MWW ]
Lo J
Figure 3.86:

The resistance of the bulb is Ry = ¥ = 3 Ohms.

(1 Ohm)(3 Ohms)

When the bulb is connected, vs = (6 V' T3 Ohms 15V
5= )2.250hms+w

When the bulb is disconnected, vs = (6 V) g = 1.85 V

Note: This scheme is not very practical, but it is simple.



Chapter 4

Analysis of Nonlinear Circuits

Exercises

Exercise 4.1 Consider a two-terminal nonlinear device (Figure 4.1) whose v-i character-
istic is given by:

ia= f(va) (4.1)
+ * iA
Va

Figure 4.1:

Show that the incremental change in the current (Ai4 = i,) for an incremental change
in the voltage (Av, = v,) at the DC operating point V4, I is given by:

_ df(va)

d?}A

Vg,
va=V4g

(Hint: Substitute i4 = I4 + i, and v4 = V4 + v, in Equation 4.1, expand using
Taylor Series, ignore second order and higher terms in v,, and equate corresponding DC
and small signal terms.)

Solution:

89
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iA = f(UA);iA = IA—F’ia;UA = VA +Ua
Taylor series expansion (at V4, 14):

. d
IA+Za:f(VA)+d—f (UA—VA)+
VAlvg=Vy

L1d'f
2! dv?

(UA — VA)2 + ...

va=Va

with: v, = va — Vy, and ignoring high-order terms:

d
IA+Za:f(VA)+—f Vg,
dvy va=Va

Equating DC and small-signal components, we have: DC:

In= f(Va)

Small-signal:

o

q Va

dUA UA:VA

Exercise 4.2 Suppose the two-terminal nonlinear device from the previous exercise (Fig-
ure 4.1) has the following v-i characteristic:

ia= f(va) = cxvi +cyva +cz for vy >0, and f(vy) =0 otherwise

a) Find the operating point current I 4, for an operating point voltage V4, where V4 > 0.

b) Find the incremental change in the current ¢, for an incremental change in the volt-
age v, at the operating point V4, I4.

c) By what fraction does i, change for a y percent change in v,,.

d) Suppose the nonlinear device is biased at 1 instead of V4, where V} is y percent
greater than V4. Find the incremental change in the current (z}) for an incremental
change in the voltage (v,) at this new bias point. By what fraction is 7/, different
from the 4, calculated in part (b).

e) Find the incremental change in the current i,., for an incremental change in the
parameter cy (given by Acx = ¢;) from its nominal value of C, assuming the
operating point v-i values are V4, 1 4.

Hint: Observe that if 74 depends on the parameters x 4, and yp, in other words,

g = f(anyB)a



then the incremental change in i 4 for an incremental change in y is given by

. _ 6f(‘rAayB)
Layb = 57 Yb
Y yB=YnR
Solution:
a)
Iy = f(Va)
=CxVi+CyVy+Cy
b)
1, = i v
¢ dUA va=Va ¢

= [2¢,v4 + Cylu,=v, - Va

g = Vg - [2ex V4 + cy]

c) Foray% change in v, : v, = (1 + % )va,

i = vl - [2¢,Va + cy]

i = (1+ —L)(2ex Vi + ey)va

100
i Yy
la 14 2
1g + 100

= S0 i, also changes by y%. This is expected since i, = f(v,) is linear.

d) Incremental change at new bias point:

1 Y

in = va(2exVy + cy)

Different from part (b):
it (2exVi+cey) v,

ia (2cxVa +cy) - v,
_ 2cx (14 §55)va +cy
2cx V4 4+ cy
_ (QCXVA + Cy) + (QCXVA)(T%)
(2¢xVa + cy)
i' QCXVA(lg_O)

4 -1
ia + QCXvA + Cy

91
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af(CX, Cy, CZ)

acX CX:CX

iacm - *Cx

= [,0124]6)(:0)( " Cx
= cx - (va)®
At operating point:
iacm =Cx - (VA)2

ANS:: () cxVZ + CyVa+ Cz (b) vy - [2exVa + cy] (€) Y% (d) 3, = v, (2ex V) +

2cx 'V,
ey), =1+ 220G (0) ., = cx - (Va)?

Exercise 4.3 The nonlinear device (NLD) in the circuit in Figure 4.2 has the v — ¢ char-
acteristics shown. Find the operating point i, and v, for R = 91012.

ip(MA).-: 1
-5_10_'. .................... E .....
VVVVVA ID - :. e L o o e [ [ | J E
1 + ’ -
10V—- NLD®| Vp gl A
-
B o Boiiiio 10. - Vp.(V)
Figure 4.2:
Solution:
KVL:

10V —ip- 910 —vp =0
ip=—11- vp+10.99mA

Draw this load line on graph.
Intersection of itand NLD i — v plot is operating point.

Up = 5.7V
ANS:. ip =4.7TmA,vp =5.7TV
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Exercise4.4

a) Plot the 74 vs. v, characteristics for the nonlinear network shown in Figure 4.3.
Assume the diode is ideal.

i r— - - = = = — — = = ~ = — 7
A ~ N |

+ o—p |/| A N
! 1kQ N
| B g
Va | 1kQ % — 1V |
| |
° ! |
L _I

NLD
Figure 4.3:

b) The nonlinear network from part (a) is connected as shown in Figure 4.4. Draw the
load line on your i — v characteristic from part (a), and find 7.

kQ T
35V NLDY VT
Figure 4.4:
Solution:
i A(MA)
ol - -1
slope 200
?
oper. %
1 1L point ‘90'4/,)
/ © p S|0pe = __l_
/ 1000
Ly : : : » V,(volts)
T 05 1 2 3 3 5\/4
slope = 1000 .

Figure 4.5:
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a) vy > 1: Diode on

R —
471000/ 1000
v4 < 1: Diode off
iy = A
471000
b) Load line:
KVL:
3.5V — iy (1000) — vy = 0
i = 3.5 — Ur
T 1000

Operating point occurs at intersection, and we find that

iT =2mA

ANS:: (b) iz = 2mA

Exercise 4.5 Consider two identical semiconductor diodes, each of which has an 7 — v
relation:

ip = Ig(evP/VrH _ 1) (4.2)

a) Find the relation of i to v for the pair connected in parallel as shown in Figure 4.6a.

|
o I/l e
> =
11
@ (b)

Figure 4.6:

b) Find the relation of 7 to v for the pair connected in series as shown in Figure 4.6b.

Solution:
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a) The currents add, so the i-v graphs may be vertically added - so if the two devices
are identical, the output is merely twice the output of each individual device, since
we would replace the vertical coordinate 4 with 3.

i=ip1+ipp=2- I, (eQ'VD/KT - 1)

b) Here, the two devices are in series, so the voltages add. Since the two devices are
identical, the horizontal addition is the same as replacing the original v coordinate
with 2.

2

= I, (VKT 1)
ANS: (@)i =2 I (eq-VD/KT - 1), (b)i = I, (eq-VD/ZKT _ 1)
Exercise 4.6 For the circuit in Figure 4.7, find the input characteristic, ¢ versus v, and the

transfer characteristic i, versus ». I is fixed and positive. Express your results in graphs,
labeling all slopes, intercepts, and coordinates of any break points.

+oe—p '|>I
io
v R R, G |
Figure 4.7:
Solution:
Note: when diode is on,
. i R,
= (I -
io = (I +1) R iR
But
;= V (R + Ry)
N R, R,

IR n V({+H) By

1o =

2 Ri+Ry, @Wh+L,)H Ry
LV, LR
2_R2 R+ Ry

as graph shows.

R I- Ry
ANS:: iy = ¥ 4 LB
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A |2
A I
! OFF M o
S i _ 1
© . slope = 0 | Kslope "R,
slope = ——— I R —+ |
R, IR 1
/ (R lIRy) R, +R, ~ |
/ I
— > V ' » V
'1 | | Ll
;X IR, IR,
1 OQQ \
slope = = “ / Intercept at
1 / v=(RIRy)D
$
Figure 4.8:

Exercise 4.7 For the circuit in Figure 4.9 and the values shown below, sketch the wave-

form of i(¢). On your sketch, show when the ideal diode is on and when it is off.

v; = 10sint Vo =5V R =10

[ R
+ .—> VW\/\/\V
\V4
Vi
+____ A
Figure 4.9:
Solution:
Diode on:
i(t) = (Vi(t) + 5V)/R
Diode off:

i(t) =0



Figure 4.11:

Av,+)
10 —
Lo/
ol _%j_ B ‘&‘j o
101 OFF
Figure 4.10:
Ai+)
15
S_m m
\ \ >t
51 OFF OFF
-10 —|—
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ANS:: Diode on: (i(t) = Vi(t) + 5V')/R; Diode off: i(t) = 0

Problems

Problem 4.1 Consider the circuit containing a nonlinear element N as shown in Fig-
ure 4.12. The i-v relation for N is given by:

14 = CQUi 4+ cva+cg for vg >0, andiy =0 otherwise

MWW
R 'A
+
A N Va
Figure 4.12:

a) Solve for i, and v, using the analytical method.

b) Find the operating point values of the nonlinear element’s voltage and current for
vy = V7, where V7 is positive.

c) Find the incremental change in i4 (given by i,) for an incremental change in v;
(given by v;).

d) Determine the incremental change in the voltage across the resistor R for an incre-
mental change in the input v; (given by ;).

e) Find the incremental change in ¢4 for a 2% increase in the value of R.

f) Find the incremental change in ¢4 for an incremental change in v 4 at the bias point
Va, L.

g) Suppose we replace the source vy with a DC voltage V7 in series with a small time
varying voltage v; = v,coswt. Determine the time varying component of i 4.
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h) Suppose we now replace v; = V; + v;, where V; = 10 volts and v; = 1 volt.

1) Find the bias point DC current I 4 corresponding to V; = 10 volts.

ii) Find the value of 4, corresponding to v; = 1 volt using small signal analysis.
iii) Find the value of i 4 using small signal analysis. (Use i4 = 14 + i,).
iv) Find the value of i 4 using the analytical method for v; = V; + v; = 11 volts.
v) Now, find the exact value of the i, using i, =i — I 4.
vi) What is the error in the value of 7, computed using the small signal method?

Solution:

a) Va4 = V1 — iAR
va = vr — R(covy + c1va + ¢p)
RCQU% =+ (R01 + 1)’UA + (RC() — ’U[) =0

_ —(Re1+1)£4/(Re1+1)2—4Rca(Reo—vr)
Va = 2Rco

Re1+1)2—4Rea(Reo—vr) —(Re1+1 i
va = V/(Re1+1) gzléc;() vr)—(Re1+1) for v; > Rey; Va4 = V; otherwise

2Rcyvr+Rey+1—4/(Rei+1)2—4Re(

Rco— . .
©")for v, > Reg: ia = 0 otherwise

A= 2R2cy
b) V, = V/(Re1+1)?—4Rea(Reo—Vr)—(Rey +1)
A= 2Rco
I, = 2RcyVi+Rey+1—4/(Re1+1)2—4Rea(Reo—Vr)
A= 2R2%co
C) ilav — 11_%(1 _ 1
i V/(Re1+1)2+4R2coca+4Re2Vr
d) v, =i, R
Nvy R Nig\ __ 1 _ 1
Av; ( Av; ) \/(Rcl +1)244R2coca+4Rea Vy
. . 1 _ A/(1L.02Re1+1)2—4.08Re2(1.02Rco—vr) —(1.02Re1 1)y 1 _
e) Nig = g 2¢5(1.02R)2 ) z(vr
\/(Rcl+1)274RCQ(Rc07111)7(R01+1))
2¢co R2

f) %4 = 92¢)Vy+c1;Va>0

dv g

g) Incremental model of N is a resistor r

__(dig\—-1 __ 1
'nN = (dvA ) T 2caVa+ter
/l' — V; — Vo COs wi
@ Rtrn R+ i

\/(Rc1+1)2—4R02(Rco—VI)—1
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h) i) I, = 20Rca+Re1+1—+/(Re1+1)2—4Rey(Reo—10)

- 2R2¢y
. . 1
“) /[’a = R+ R
V/(Re1+1)2~4Rey (Reg—10)—1
i) 74 - I + iy -
20Rco+Re1+1—4/(Re1+1)2—4Rcy(Reo—10) i 1
2R262 R+ R

V/(Re1+1)2~4Rep (Reg—10)~1

22Rco+Re1+1—+/(Re1+1)2—4Res(Reg—11)
2R2¢y

2Rcy—/(Re1+1)2—4Rca(Reo—11)+4/(Re1+1)2—4Rea (Reg—10)
2R2¢y
vi) error is: L —
R+
\/(Rcl +1)2—4Recy(Reg—10)—1
2Rcy—/(Re1+1)2—4Rey(Reo—11)+4/(Re1+1)? —4Rez(Reo—10)

iV) 1A =

V) lg =

2R2cy
. 2R Rei+1—+/(Re1+1)2—4Rea (R .
ANS:: (a)iy = —eevrfiat \/éRﬁlcj) e(Beovr) for 4, > Regiia = 0 oth-
. Re1+1)2—4Reo(R Rei+1 .
erwise, v, = V(Rei+1) ;“éc;" o) (Rt for 4, > Rcy, V4 = Vi otherwise
_ /(Re1+1)2—4Rey(Reo—Vi)—(Re1 +1) _ 2RcsVi+Rei+1—4/(Rei+1)2—4Res(Reo—Vp)
(b) Vf - 2Rca  a = 2R%cy
P | 1
(€ 2= = L - . ) (@)

V/(Re1+1)2+4R?coca+4Rea Vi V/(Re1+1)2+4R?coca+4Re2 Vi

/(1.02Re1 +1)2—4.08 Rea (1.02Rco—vy ) —(1.02Re1 +1)

: — _ _ 1 _
() Aia = 102R(UI 2¢2(1.02R)? ) R(UI
\/(Rcl +1)2—4Rea(Reo—vr)—(Re1+1) dig __ . = 1
2c2 R? ) (f) A = 26Vatc; Va2 0(Q)ry = 2coVater’
. — N () I, — 20Rca+Re1+1—1/(Re1+1)2—4Res(Reo—10)
e = i ( ) () In = 2R%c;
V/(Re1+1)2~4Rep (Reg—Vy)~1
N 1 oy . 20Rea+Rei+1—4/(Rei+1)2—4Rca(Reo—10)
(i) i, = o R (iii) 14 = 2R2%cy +

/(Re1+1)2~4Rep (Reg—10)—1
1 .\ . 22Rcs+Rei+1—y/(Rei+1)2—4Res(Reo—11) .
Rt R (IV) A = 2RZc, (V) g =
\/(Rcl+1)2—4R02(Rco—10)—1
2Rca—/(Re1+1)2—4Rey(Reo—11)+4/ (Re1+1)2—4Rey(Reo—10)
2R2¢o

H 1
V/(Rey+1)2—4Rep (Reg—10)~1

2Rcs—/(Re1+1)2—4Res(Reo—11)+4/ (Re1+1)2—4Res (Reo—10)
2R2¢cy

Problem 4.2 The circuit shown in Figure 4.13 contains two nonlinear devices and a cur-
rent source. The characteristics of the two devices are given. Determine the voltage, v,
for (a) is = 1 amp, (b) is = 10 amps, () is = 1 cos t (in amperes).

Solution:

(See Figure 4.14)



i1(A)
A

-1
-1 /
| Vv (V)
1

+-1

Figure 4.13:
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i2(A)

_ '1 2KV(V)

Figure 4.14:
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a) 2
b) 11

ig(t) = cost

AWOANAN
_ZHU_l__UZH t

v(t)

A
—-2n 2h =t
21
Figure 4.15:

c) See Figure 4.15.
ANS:: (a) 2 (b) 11

Problem 4.3 A plot (hypothetical) of the v-i characteristics, (terminal voltage as a func-
tion of the current drawn out, and NOT its associated variables) for a battery is shown in
Figure 4.16(a).

a) If a 2 ohm resistor is connected across the battery terminals, find the terminal volt-
age of the battery and the current through the resistor.

b) A light bulb is a nonlinear resistance because of self-heating effects. A hypothetical
i-v plot is shown in Figure 4.16(b). Find the bulb current and bulb voltage if the
lamp is connected to the battery.
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\Vj I
WA @ A
37 2+
2__
1+
14
R S+
O] 1 2 3 4 51(A) 1 23 4 5,4,
@ (b)
Figure 4.16:

c) Devise a piecewise-linear model for the battery which is reasonably accurate over
the current range 0-2 amp.

d) Use this piecewise-linear battery model to find the battery voltage and bulb current
if the bulb and 2 ohm resistor are connected in series to the battery.

Solution:

a) i ~ 1.4 amps; v ~ 2.8 volts

b) 7 ~ 1.9 amps; v = 2.9 volts

Ryy |
—
——W—o0
a
Vih=3V
Vi, + Ry = 0.1 ohms
- 0<i<2amps
al
L 4
Figure 4.17:

c) see Figure 4.17. Vg = 3 volts; Ry = 0.1Q

d) ¢ ~ 1 amp; v = 3 volts

ANS:: (a) i ~ 1.4 amps; v ~ 2.8 volts (b) 7 ~ 1.9 amps; v ~ 2.9 volts (d) 7 = 1 amp;
v & 3 volts
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Problem 4.4

a) Assuming the diode can be modeled as an ideal diode, and R; = R,, plot the
waveform v,(t) for the circuit in Figure 4.18, assuming a triangle wave input. Write
an expression for v, (t) in terms of v;, R; and Ry.

b) If the triangle wave has a peak amplitude of only 2 volts, and R; = R,, a more
accurate diode model must be used. Plot and write an expression for v, assuming
that the diode is modeled using an ideal diode in series with a 0.6 volt source. Draw
the transfer curve v, versus v;.

A Vi R
v ® +
Vi RZ%% ZX Vo
>
t o
Figure 4.18:
Solution:
A
1
Rin = §R1
A VYW ® +
/KVVI\ Vo 1
l f» Vin = 5V, CD A Vo

Figure 4.19:

a) see Figure 4.19. v, = %v,- for v; > 0, and v, = 0 otherwise

b) See Figure 4.20. v, = %vi for v; > —1.2, and v, = —0.6 otherwise

ANS:: (a) v, = %vi for v; > 0, and v, = 0 otherwise (b) v, = %vi for v; > —1.2, and
v, = —0.6
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1
" SRy
v — MWy ® +
/K N o.w@
S Vi (7 Vo
_/ -06t---- v 2 ZS
-2 -
A"
21
-1 4
f i Vi
— - -0.6
2L
Figure 4.20:
A A,
Z
(mA) R =1kQ
VZ 8 v :-
A AV 50 mV AC
4 -2 vz (V) N Vo
— — T v(H)1ovoc
-4 .
_8 1

Figure 4.21:
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Problem 4.5 Figure 4.21 is an illustration of a crude Zener-diode regulator circuit.

a) Using incremental analysis, estimate from the graph an analytical expression for v,
in terms of V and Aw.

b) Calculate the amount of DC and the amount of AC in the output voltage using the
Zener diode characteristic to find model values. Numbers, please.

c) What is the Theévenin output resistance of the power supply, that is, the Thévenin
resistance seen looking in at the v, terminals.

Solution: Assume 20mA/V for forward bias, 40mA/V for reverse breakdown.

a) v, = 0.024Av
b) DC: 4.5V AC: 1.2 mV
c) 259

ANS:: (a) v, = 0.024Av (b) DC: 4.5 V AC: 1.2 mV (c) 25%2

Problem 4.6 The terminal voltage-current characteristic of a single solar cell is shown in
Figure 4.22a. Note that this is a sketch of the terminal voltage as a function of current
drawn out (i.e. not the associated variable convention). An array is made by connecting a
total of 100 such cells as follows: Ten solar cells are connected in series. Ten sets of these
are made. These ten series strips are then connected in parallel (see Figure 4.22b).

If a 3 ohm resistor is connected across this new two-terminal element (the 100 cell
array), determine the terminal voltage across and the current through the resistor.

Solution:

The act of combining 10 in series causes the graph to stretch vertically by a factor
of 10, and the act of combining 10 in parallel stretches it horizontally by 10. So one
intersects this new graph with a line of slope 3, and gets the approximate intersection
point of (1.7,5.1)

V =5.1volts; I = 1.7 amps
ANS:: V = 5.1 volts; I = 1.7 amps

Problem 4.7 The junction field-effect transistor (JFET) with the specific connection
shown in Figure 4.23a (gate and source shorted together) behaves as a two-terminal de-
vice. The vp — ip characteristics of the resulting two-terminal device shown in Fig-
ure 4.23b saturates at current Ipss for vp greater than a voltage Vp, called the pinch-off
voltage. In the two-terminal configuration shown, the JFET characteristic is



3 v 1 2 9 10
T A ) .
© 0.6V- linear region 1
2 : ' 2
5 OBV4+------------T= ' --.:-..... - 3
ke '\, non-linear region 4 v
(O] ! .
g o\ '
S 025V N 9
T Co linear region
£ X . -~ 10
= i t i — |

0.1A O02A 025A03A

current drawn out
@ (b)
Figure 4.22:

tp = Ipss [Q(UD/VP) — (UD/VP)2] for vp < Vp

and

ip = Ipss for vp >Vp

As illustrated in Figure 4.23c, this two-terminal device can be used to make a well-
behaved dc current source, even starting with a ripple-containing power supply (depicted
as vg), as would be obtained from ordinary rectifier circuits. Suppose the voltage source
vg has an average value Vg and a 60 Hz “ripple component”, v, = a cos wt as shown in
Figure 4.23d.

a) First assume that there is no ripple (e = 0). Find the current 7 through the resistor
R as a function of Vg for a value of R = 1k€). At what value of Vg does the
current stabilize at I55? How would this value change if R were doubled in value?
Explain.

b) Now assume ¢ = 0.1V and R = 1k€). Make reasonable approximations to find
the current waveform when Vg = 5V, Vs = 10V, and Vg = 15V. Determine in
each case the average value of the current 7 and the magnitude and frequency of the
largest sinusoidal component of the current.

Solution:
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(@

Vb

(©)
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ip A
Ipss T
| | -,
0 VP 2Vp D
(b)
Vs A
WY N
| 4 a
R
7 -
0 21 411

W
(d)

Figure 4.23:
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2 avivg

2__
+2Vp) RIDSS

2
2Vs— (gl +2vp)+\/(R,VSS
a) i =

stabilizes at Ipss when VS >Vp+ IpssR

for Vg < Vp + IpssR; The current

b) IDSS = 5mA, Vp =5V

When Vg = 5V, taperage = 3.1mA, largest sinusoidal component has frequency w,
magnitude 0.056m A

When Vg = 10V, t4yerage = DmA, largest sinusoidal component has frequency 2w,
magnitude 0.002m A

When Vg = 15V, 4gperage = 5mA, N0 sinusoidal component present

ANS:: Assume Ipss = 5mA and

v2 v2 4v2v,
P P P’S
s (grpgs t2VR)t (RI—SSHVP)LRI DSS

Vp =5V. (@i = for Vs < Ve + IpssR (b)
Vs = 5V taverage = 3.1mA, Vg = 10V zavemge = 5mA, Vs = 15V} igperage = DmA

Problem 4.8 The current-voltage characteristic of a photovoltaic energy converter (solar
cell) can be approximated by

i=L(e"Vrn — 1) — I,

where the first term characterizes the diode in the dark and I, is a term that depends on
light intensity.

i
- .—»—
+

R VXZMSunIight

. ——

Figure 4.24:

Assume I; = 10~? and assume light exposure such that I, = 1073 A.

a) Plot the i-v characteristic of the solar cell. Be sure to note the values of open-circuit
voltage and short-circuit current. (Note, however, that the characteristic is clearly
nonlinear. Therefore, Thévenin or Norton equivalents do not apply.)
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b) If it is desired to maximize the power that the solar cell can deliver to a resistive
load, determine the optimum value of the resistor. How much power can this cell
deliver?

Solution:

AN

Isc: _|2

Figure 4.25:

a) See Figure 4.25. Isc = —I1; Voo = Vry 1n(% +1)

b) Roprrvuy = 30 ohms; Maximum power = 2.6 mW
ANS:: (b) Roprimua = 30 ohms; Maximum power = 2.6mW
Problem 4.9

a) A nonlinear device has i-v characteristics shown in Figure 4.26. Assuming that S
is an ideal voltage source, which connection, (i), (ii) or (iii) consumes most power?
What if S is an ideal current source?

b) Another crazy device, C, with v-i characteristics as shown in Figure 4.27, is intro-
duced. If device A and device C are connected in series across an ideal voltage
source of 6 volts, what is the current flow in the circuit? (You can either solve it
analytically or graphically.)

Solution:

a) ii) consumes the most power. If S is a current source, i) consumes the most power.
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vVa=K iA2 fori,=20

i va=0 fori, <0
. A A
Tyla whereK = 1.0 V/A2
VA A
-
Va
_|>_| | |
+ N . -
A

(9 v W) W

- -

(i) n Asin series (i) n Asin parallel (i) n B'sin parallel, each
Bis n As in series
Figure 4.26:
A iC (A)
. 4t
+ |C
Ve| C ul

y

5 lIO 1I5 Ve (V)

Figure 4.27:
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b) 1 Ampere
ANS:: (a) ii; if S current source, i (b) 1 Ampere

Problem 4.10 In the circuit in Figure 4.28, assume v; = 0.5V and v, = A, cos wt, where
A, = 0.001V. Assume further that Vg = 25mV.

Figure 4.28:

a) Find the current ¢ if only the v; source is connected (i.e., with the v, source shorted
out).

b) Find the current 7 if only the v, source is connected.

c) Find the current  if both sources are connected as shown. Is superposition obeyed?
Explain.

d) Based on your answer in c) discuss the dependence of the amplitude of the sinu-
soidal component of the current on the amplitude A,. How big can A, be before
significant generation of harmonics will occur?

HINT: Taylor’s theorem is relevant to this problem.
Solution:

a) i = 10_9(exp(%) - 1)

b) i = 107° (exp (2222 _q)

C) i = 1‘:],g(exp(O.SJrO.OOI cos(wt)) _ 1)

Vru

d) The dependence of the sinusoidal component of the current on the amplitude A,
is nonlinear. However, for sufficiently small A, the relationship approximates a
linear dependence. When A, = 0.001, harmonics make up approximately 2% of
the sinusoidal component.
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ANS: (a) i = 10°(exp(22) — 1) (b) i = 10~%(exp(22 2ty — 1) (¢) i =

Vru

Vrue

Problem 4.11 This problem concerns the circuit illustrated in Figure 4.29:

Ry Rs ip

V| CD % R, D1 Vp % R4

Figure 4.29:

Ry =1.0kQ2 Ry, =1.0kQ2 R3=0.5kQ2 R, =1kQ

For Dy :ip = Ig(e?»/Vrn — 1) with Ig = 1 x 107°A and Vi = 25mV.

a) Find the Thévenin equivalent circuit for the circuit connected to the diode.

b) Assume that for bias point determination the diode can be modeled by an ideal

diode and a 0.6 volt battery. What are vp and ip when v; = 4 volts?

¢) Find a linear equivalent model for this diode valid for small signal incremental

operation about the bias point determined from part b.

d) Use your model of part c) to find vy(t) if v; =4 + 0.004 cos wt volts.

Solution:

) Rru =0.5kQ Voc = Jur

b) vp = 0.6V, ip = 0.8MA

C) 7a = P exp(72) = 9.44 X 107*Q

d) vy = 7.55 x 1072 coswt

ANS:: (a) Rrg = 0.5kQ,VOC = iv[ (b) Vp = 06‘/,2D = 0.8mA (C) Td =

VI exp(7r2) = 9.44 x 107*Q (d) vy = 7.55 x 107 coswt

Vru
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Problem 4.12 Consider the circuit in Figure 4.30. The voltage source and the current
source are the sum of a dc-level and an ac-perturbation:

v=V 4+ Av
1=14+ Al

such that V' = 30V (dc), I = 104 (dc), Av = 100mV (ac), Ai = 50mA (ac).

N Ry
Y A o

| C*) :2; Ry Z(l) \_/0

Figure 4.30:

The resistors have the following values: Ry = R, = 1/2 ohm. The nonlinear element
Z has the characteristic:

. 2
1o = Uy + Vg

Find, by incremental analysis, the DC and AC components of the output voltage v.

Remark: You can assume in your analysis that the nonlinear element is behaving as a
passive element, i.e., is consuming power.

Solution: DC component: 5V

AC component from current source: 0.002V

AC component from voltage source: 0.008V
ANS:: DC:5V, AC from current:0.002V", AC from voltage: 0.008V

Problem 4.13 The circuit shown in Figure 4.31 contains a nonlinear element with the
following properties:

= 10_41)]2V when vy >0
in = 0 when vy <0
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IN +< N
Vi +
+ R §VOUT
VB; )
Figure 4.31:

where 7y is in amps, and vy is in volts.
The output voltage, voyr, Mmay be written approximately as the sum of the two terms:

vout == Vour + Vout (4.3)
Where Vo1 is a dc voltage produced by Vg and v, is the incremental voltage pro-
duced by the incremental voltage source v;.

Assuming that v; = 1073sin wt volts and V3 is such that the nonlinear element
operates with Vi = 10 volts, determine the incremental output voltage v,.;.

Solution:
(note: must label resistor value)

Vout = ﬁm—f‘ sin(wt)
ANS:: vy = RJﬁOOlO_?’ sin(wt)

Problem 4.14 Consider the diode network shown below.

For purposes of this problem, the i, — vp characteristics of all of the diodes can be
accurately represented as

ip = IseP/P™V) where Ig = 1mA/e®
Do not use a piecewise-linear model.

a) First assume that As = 0. (Thus Av; = Awv, = 0). What are the operating-point
values of voltages V; and V5?

b) Now assume that Ai is non zero, but small enough so that incremental analysis can
be used to determine Av; and Awv,. What is the ratio Av; /Avg ?
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NOMRO ' L Vs ++Av2
1mA 1mA<D /A VARV VR B

:

Figure 4.32:

Solution:

a) Vi =625mV; Vo = 1.25V

b) L

ANS:: (a) Vi = 625mV; Vs = 1.25V, (b) £.



Chapter 5

The Digital Abstraction

Exercises

Exercise 5.1 Write a Boolean expression for the following statement: “Z is TRUE if
either X or Y is FALSE, otherwise Z is FALSE”. Write a truth table for this expression.

Solution:

N
I

>
+
=~

_ RO O
R O or
o r P PN

ANS: Z=X+Y

Exercise 5.2 Write a Boolean expression for the following statement: “Z is FALSE if
either X or Y is FALSE, otherwise Z is TRUE”. Write a truth table for this expression.

Solution:
Z=X+Y
Z=X+4+Y=XY

ANS:: Z = XY

117
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A ==l
R O PFr oK
R O O Ol

Exercise 5.3 Write a Boolean expression for the following statement: “Z is TRUE if no
more than two of W, X, and Y are TRUE, otherwise Z is FALSE”.

Solution:
In this case, “no more than 2” = “not all 3”, so:

7 =WXY
ANS:: 7 =WXY

Exercise 5.4 Consider the statement: “Z is TRUE if at least two of W, X, and Y are
TRUE, otherwise Z is FALSE”.

a) Write a Boolean expression for the above statement.

b) Write a truth table for the function Z.

c) Implement Z using only AND, OR, and NOT gates. The inputs W, X, and Y are
available. Each gate may have an arbitrary number of inputs. (Hint: A sum-of-
products representation of the Boolean expression will facilitate this implementa-
tion.)

d) Implement Z using only AND, OR, and NOT gates. Each gate may have no more
than two inputs. As before, the inputs W, X, and Y are available.

e) Implement Z using only NAND and NOR gates. (Hint: a NAND gate or a NOR
gate with its inputs tied together behaves like an inverter).

f) Implement Z using only NAND gates. (Hint: Use De Morgan’s laws.)
g) Implement Z using only NOR gates. (Hint: Use De Morgan’s laws.)
h) Repeat part (d) and attempt to minimize the number of gates used.

1) Repeat part (d) and attempt to minimize the number of gates used, assuming that
the inputs are available both in their true and complement forms. In other words,
assume that in addition to W, X, and Y, the inputs W, X, and Y, are also available.
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Solution:
a)
Z=WX+WY +XY+WXY

WIlX|Y | Z
0|l0|0]O
Oo(0|1]0
0Ol1/0]0
0Ol1|1]1
1{0]0]|0
1 0|11
1 1101
11111

b)

c) See Figure 5.1 for logic diagram.

W

i

Figure 5.1:

d) See Figure 5.2 for logic diagram.
e) See Figure 5.3 for logic diagram.

f) Only NAND:

Z=WX)WY)(XY)(WXY)

See Figure 5.4 for logic diagram.



120 CHAPTER 5. THE DIGITAL ABSTRACTION

Figure 5.2:

Figure 5.4:
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g) Only NOR:

Z=W+X)+W+V)+ Y +X)+(W+X+Y)

See Figure 5.5 for logic diagram.
D=
z

Figure 5.5:

X

h)
Z=WX+WY +XY +WXY

=WX(1+Y)+ WY + XY
—WX+WY + XY
Z=W(X+Y)+XY

See Figure 5.6 for logic diagram.

w

v O—

Figure 5.6:

i) Solution: same as (h)

ANS: (@) Z=WX + WY + XY + WXY
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Exercise 5.5 Represent the decimal number 4 as an unsigned, three-bit binary number
and as an unsigned, four-bit binary number. Unsigned numbers do not include a sign bit.
For example, 11110 is the unsigned, binary representation of the decimal number 30.

Solution:

Unsigned 3-bit: 100
Unsigned 4-bit: 0100
ANS:: 100, 0100

Exercise 5.6 Consider the functions F'(A, B,C) and G(A, B, C) specified in the truth
table given in Table 5.1.

A[B|C]|F(A B,C) |G, B,O0)
0[0]0 1 0
0[0]1 0 0
0[1]0 0 0
011 0 1
1(o0]o0 1 0
1(0]1 1 1
1010 0 1
1011 1 1

Table 5.1: Truth table for Exercise 5.6

a) Write a logic expression corresponding to the functions F(A, B,C) and
G(A, B, C).

b) Implement F'(A, B, C') with logic gates.
c) Implement F'(A, B, C) using only 2-input gates.

d) Implement F'(A, B, C) using only 2-input NAND gates. Hint: Use De Morgan’s
laws.

e) Repeat parts b) through d) for the function G(A, B, C).

Solution:

a)

F=A-B-C+A-B-C+A-B-C+A-B-C
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If we simplify F, combining the first pair and the second pair,

and
G=A-B-C+A-B-C+A-B-C+A-B-C

We can combine the first and last terms,
G=A-B-C+A-B-C+B-C

b) See Figure 5.7 for logic diagram.
A >_
B 4|><>—‘ @— F
o

Figure 5.7:

c) Same as part (b)

d) Using our simplified version of F', De Morgan’s laws, and the fact that a NAND
gate with logical signal X tied into both inputs produces X,

F=(B-C)-(A-0)

See Figure 5.8

O Ol w

Figure 5.8:
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¥
wiwilw,

Figure 5.9:

A o >_|\
| ‘5%» )
e~ D)

Figure 5.10:
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e) Implement G(A, B, C) with logic gates. See Figure 5.9
Implement G(A, B, C) using only 2-input gates. See Figure 5.10
Implement G(A, B, C) using only 2-input NAND gates.

G = (BO)(A((BO)(BO)))
See Figure 5.11
. =D,
tD’—}I) -
B e -
"‘ED-—)Q

) )

Figure 5.11:

ANS: (@ F=B-C+A-CA-B-C+A-B-C+B-C
Exercise 5.7 Consider the four logic expressions below.

|
]

1. (A+ B)( +C)+C-D

D)(D+B+A)

Q)

2. (A-

Sy

+

-D+A-C-D

o

3. A+

4. (A+C)+B+D)+A-C-D

a) Give an implementation using gates for each of the logic expressions above.
b) Write the truth table for each of the four expressions.
c) Suppose you know that A = 0. Simplify the four expressions under this constraint.

d) Simplify the four expressions assuming that A and B are related as A = B.
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Solution:

a) 1. Asimplification of the expression would be

F=(A-B-C-D)

See Figure 5.12(1)

2. Using De Morgan’s laws, the fact that X - X = 0, the fact that X - X = X, and
the distributive law,

F=(A-

A

5 Al

+B+D)(D-B-A)

S

See Figure 5.12(2)
3. Using the fact that X + X - Y = X and De Morgan’s,

F=A+B+D

See Figure 5.12(3)
4. Using the fact that X + X - Y = X + Y and De Morgan’s,

F=A-C+B+D+A-C

See Figure 5.12(4)

b) See Table 5.2

¢) 1) BCD
2) BD
3) B+D
4 BCD

d)

1) BCD

2) 0
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—
—

2)

4)

Figure 5.12:

Table 5.2:

A/ B|C|D|F

Fy

Fy

Fy
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3) 1
4) BCD

ANS:: (¢) BCD, BD, B+ D, BCD (d) BCD, 0, 1, BCD

Exercise 5.8 A logic gate obeys a static discipline with the following voltage levels:
Vi = 3.5V, Vog = 4.3V, Vi, = 1.5V and Vp;, = 0.9V. (a) What range of volt-
ages will be treated as invalid under this discipline? (b) What are its noise margins?

Solution:

(a)
Devices must produce output voltages within the following ranges:
Valid range for low outputs:

Vor <v=0.9<w

Valid range for high outputs:

Vog > v=43>v

Devices must interpret correctly input voltages within the following ranges:
Valid range for low inputs:

ViL<v=15<vw

Valid range for high inputs:

ViE>v=35>v
(b)

NMy=ViL —Vor=15-09=0.6

ANS:: (a) “0” outputs: 0.9 < v, “1” outputs: 4.3 > v, “0” inputs: 1.5 < v, “1” inputs:
3.5>wv,(b) NMy=0.6and NM; = 0.8
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Exercise 5.9 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vi, = 1.5V, Vo, = 05V, Vig = 3.5V, and
Vou = 4.4 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?
d) What is the lowest voltage that can be output by an inverter for a logical 1 output?
e) What is the highest voltage that must be interpreted by a receiver as a logical 0?
f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise? If so, determine
the noise margins.

Solution:

a) See Figure 5.13

Vout

Figure 5.13:

b) See Figure 5.14
C) VOL = 0.5V
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Vout

44 — — — D\— - —

05F———+——

Figure 5.14:
8) V}L =1.5V

g) Yes. The noise margins are given by:

NMOI‘/}L—VOL:15—O5:1V

NM, =Voy — Vig =44 —35=09V
ANS:: (¢) 0.5V (d) 4.4V (e) 1.5V (f) 3.5V (g) Yes. NM, = 1V and NM; = 0.9V

Exercise 5.10 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vi, = Vo, = 0.5V and Vig = Vog = 4.4 V.

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?
d) What is the lowest voltage that can be output by an inverter for a logical 1 output?

e) What is the highest voltage that must be interpreted by a receiver as a logical 0?



131

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

g) Does this choice of voltage thresholds offer any immunity to noise?
Solution:

a) See Figure 5.15

b) See Figure 5.16

Figure 5.16:

C) VOL = 0.5V
d) Vog = 4.4V
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E) Vip = 0.5V
f) Vig = 4.4V
g) No.

ANS:: (c) 0.5V (d) 4.4V (e) 0.5V (f) 4.4V (g) No

Problems

Problem 5.1 Derive a truth table and a Boolean expression that describes the operation
of each digital circuit shown in Figure 5.17.

Solution:
For truth tables, see Table 5.1 (parts a-b), and Table 5.1 (parts c-f).

S
Sy
Q
S

PP RPPRPPRPPRPPRPPO0OO0O0O0O0O0O0O
PP PP O0OO0O0OO0ORRPRPLPPOOOO
PP OORRFRPOORRFLPROORERLOO
POFRPORORORPRORORORO
PRrPrPPRPOOORrOOCOROOON
cororrrroorooor ol

a) AB-CD=AB+CD=AB+CD

by AB-CD=AB+CD=AB+CD
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}D?
(b)

A —

—

A —
E_
C —1
D—

C_.

C_.

(d)

(©

A

C—

(f)

(€)

Figure 5.17:

Zy

Ze

Lo | Zq

Al B|C
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¢) AB-BC = AB + BC

d) AB-B-BC=AB+B+BC=B~+C

e) A+B+B+C=(A+B)-(B+C) = AB+AC+BB+BC = AB+AC+BC

) A+B-B+C =1

ANS:: () AB +CD (b) AB+CD (c) AB+ BC (d) B+C () AB+ AC + BC ()
1

Problem 5.2 Draw an output voltage waveform for the circuit in Figure 5.17c in response
to the input voltage waveforms shown in Figure 5.18. Assume that the gates in the circuit
obey the static discipline with Vog = 4V, Vig = 3V, Vo = 1V, and Vi, = 2V.

BV {rrre ey
Y

3V

2V

1V

Figure 5.18:

Solution:
For Circuit 5.17c, the output is given by

7Z = AB+ BC

There are 7 different states, where a state transition occurs when one of the three
inputs changes by itself. For example, the first state is when A and C' are low and B is
high, the second state is when A and B are high, and C is low, and so on. The output
in the first, second and fifth states is low (below 1V), while the output in the remaining
states is high (above 4V).
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Problem 5.3 The truth table for a “ones count” circuit is given in Table 5.3. This circuit
has four inputs: A, B, C, and D, and three outputs OUT,, OUT;, and OUT,;. Together,
the signals OUT,, OUTy, and OUT, represent a 3-bit positive integer OUT,OUT,0OUT,.
The output integer OUT,OUT10U T, reflects the number of ones in the input. Using only
NAND, NOR and NOT gates, design an implementation for the circuit. Each gate may
have an arbitrary number of inputs.

o
Sy
Q

oUT, | OUT; | OUT,
0 0 0

POPRPORFRPRORFRORPROROROR OUY

PR P RPRPRPRPRPRPO0OO0OO0OO0OO0OOOO

rLPOORFRPRPFPOORFRPRPFPLPOOPRFR,EFR OO

PP RPRPRPOO0OO0OORRLPRRPRERLOOOO
i =ReNeleNoNoloNoNoNoNoNoNe N
ORPRRPRRPRRPRPRRPRORRLRRLROR OO
ORPFRPOFRPROORRFPOORORR

Table 5.3:

Solution:

See Figure 5.19 for logic diagram.

Using sum-of-products,

oUT, = ABCD

OUT, = A-BCD+ABCD+ABCD+ABCD+ AB-CD+ ABCD+ ABCD +
ABC-D+ ABCD+ ABCD = ACD+ BCD +BCD+ ABC +AB-CD+ ABC-D

OUTy=A-B-CD+A-BCD+ ABC-D+ ABCD + AB-C-D+ ABCD +
ABCD + ABCD

ANS:: OUT, = ABCD, OUT, = ACD + BCD + BCD + ABC + AB-CD +
ABC -D,0OUTy = A-B-CD+ A-BCD + ABC -D + ABCD + AB-C - D +
ABCD + ABCD + ABCD

Problem 5.4 A four-input multiplexer module is shown in Figure 5.20. The multiplexer



CHAPTER 5. THE DIGITAL ABSTRACTION

136

Out 1

m |

<m0 < oA

Out 0

Figure 5.19:
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has two select signals S; and S,. The value on the select signals determines which of
the inputs A, B, C, and D appears at the output. As illustrated in the figure, A is selected
if S15p1s 00, B if S;S;y is 01, C if 5,5, is 10, and D if S;S; is 11. Write a boolean
expression for Z in terms of S1.Sy, A, B, C, and D. Implement the multiplexer using only
NAND gates.

A—00

B——» 01

c—»10

D—»11

2
5150

Figure 5.20: A four-input multiplexer module. The “2” beside the wire corresponding to
the select signals is a short-hand notation indicating there are two wires present.

Solution:
Boolean expression:

Z = AS; - Sy + BS1Sy + CS1Sy + DS1Sy

See Figure 5.21 for logic diagram.

Problem 5.5 A four-input demultiplexer module is shown in Figure 5.22. The demulti-
plexer has two select signals S; and Sy. The select signals determines on which of the
outputs (OUTO, OUT1, OUT2, or OUT3) the input IN appears. As illustrated in the fig-
ure, IN appears at output OUTO if 515, is 00, at OUTL if 515, is 01, at OUT2 if 515y
is 10, and at OUT3 if S1.S; is 11. An output is O if it is not selected. Write a boolean
expression for each of the outputs in terms of S1.5; and IN. Implement the demultiplexer
using only NAND gates.

Solution:
See Figure 5.23 for logic diagrams.

Boolean expressions:
OUTO=IN-S,-S,
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SO >
|
e

} z

il
\
<

Figure 5.21:
00 OuUTO
01 OuUT1
—
N 10 OouT2
11 ouT3
2
S
Figure 5.22:

- _ s o b our
;10_}—[)@ ouTO §0_>@ |:>o

Figure 5.23:
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OUT1=1IN-5;-5,

OUT2=1IN-S,-5;

OUT3=1IN-5,-50

ANS:: OUT0 = IN -5, -S;, OUT1 = IN - S-Sy, OUT2 = IN - S, - Sy,
OUT3=1IN-S;-50

Problem 5.6 Implement the “greater-than” circuit depicted in Figure 5.24 using NAND
gates. A and B represent one-bit positive integers. The output Z is 1 if A is greater than
B, otherwise Z is 0.

A— |

>

5— | z

Figure 5.24:

Solution:
Zislonlyif Ais1andB is0. The resulting expression is then:

7 =AB

See Figure 5.25 for logic diagram.

mhasis

L

Figure 5.25:
ANS:: Z = AB

Problem 5.7 Implement the 4-input “odd” or “odd parity” circuit depicted in Figure 5.26
using NOR gates. In this circuit, the output Z is high if an odd number of the inputs are
high, otherwise the output Z is low. How would you use the 4-input “odd” circuit module
shown in Figure 5.26 to implement a 3-input “odd” circuit. If this cannot be done, discuss
why not.
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Figure 5.26:

Al | A2 | A3 | A4\ Z
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Solution:
Boolean expression:

7 =A3-A2-A1- A0+ A3-A2-A1- A0+ A3-A2- A1- A0+ A3- A2- A1- A0+
A3-A2-A1- A0+ A3-A2- A1- A0+ A3- A2- A1- A0+ A3 - A2- Al1- A0

This circuit can be implemented in the same way as the previous problems, using sum
of products and NAND gates. This same circuit module can be used to implement a 3-
input “odd” circuit by tying one of the A inputs to ground. Incidentally, you could also
make a 3-input “even” circuit by tying one of the A inputs to hi.

ANS:: 7 = A3-A2-A1- A0+ A3-A2- Al1- A0+ A3- A2- A1- A0+ A3- A2- Al -
A0+ A3-A2-A1- A0+ A3-A2-A1- A0+ A3 - A2- A1- A0+ A3 - A2 A1- A0

Problem 5.8 Figure 5.27 depicts a 4-input majority circuit module. The output Z of this
circuit module is high if a majority of the inputs are high. Write a boolean expression for
Z in terms of AQ, A1, A2, and A3. How would you use the 4-input majority circuit mod-
ule shown in Figure 5.27 to implement a 3-input majority circuit and a 2-input majority
circuit. If either of these cannot be done, discuss why not.

A0—
Al— - .
AD Majority S
A3—
Figure 5.27:

Solution:
Boolean expression:

7 =A0-A1-A2- A3+ A0-A1-A2- A3+ A0- A1-A2- A3+ A1- A2- A3

Use NAND gates and sum-of-products to implement the Boolean expression. A 3-
input majority circuit can be implemented by tying one input to HI. A 2-input majority
circuit can be implemented by tying one input to ground and another input to HI.

ANS:: Z = A0- A1-A2- A3+ A0-Al1-A2- A3+ A0- Al- A2- A3+ A1 - A2- A3

Problem 5.9 Figure 5.28 illustrates a two-bit grey code converter. Its outputs OUTO,
OUT]1, are equal to the inputs when the INO, IN1 are 00 or 01. However, when the inputs
INO, IN1 are 10 and 11 the outputs OUTO, OUT1 are 11 and 10 respectively. Implement
the grey code converter using 2-input NAND gates.
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— ™ OUTO

— > O0UT1

Al | A2 | A3 | A4 | Z

Figure 5.28:

IN O—

IN 1——

INO | IN1 | OUTO | OUT1
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Solution:

Boolean expressions:
oUT0=1INO

OUT1=1INOIN1+ INOIN1

ANS:: OUT0 =INO,OUT1 =INOIN1+INOIN1

Problem 5.10 Figure 5.29 illustrates input-output voltage transfer functions for several
one-input one-output devices. For the voltage thresholds Vo7, Vi, Vor, and Vig as
shown, which of the devices can serve as valid inverters?

A
5V
Vour [Tttt
VoH
__——_——: .............. E
I
VoL - =B
I TR o P ——— A
--------------------- 5 F L
0 Vii Vg 5V

Figure 5.29:

Solution:
Only C is valid according to the static discipline.

Problem 5.11 Suppose we wish to build a two-bit adder circuit (Figure 5.30) that takes
as input a pair of two-bit positive integers A; Ay and B; By and produces a two-bit sum
output S1.5, and a carry out bit C;. Write a truth table and a boolean expression for the
carry out bit in terms of the inputs.

Now, suppose we wish to build a two-bit adder circuit (Figure 5.31) that takes as input
a pair of two-bit positive integers A; Ay and B; By, and a carry-in bit Cy, and produces
a two-bit sum output S;S, and a carry out bit C;. Write a truth table and a boolean
expression for the carry out bit in terms of the inputs.

Solution:
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I\
S S

Ci<«— Adder

Figure 5.30:

B\
S %

Figure 5.31:

C,<+— Adder <—Cy

G

By

B,

Ao

Ay
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i

Co

By

B,

Ao

Ay
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C1 = A1 AyB, By + A1 AgB By + A1 B

01 = A_lAQBlB() + AlAOEBO + AlBl + BlB()C() + Alec() + AlB()C() + A()BlCO

ANS:: C; = A_1A0B1B0 + AlA()EBO + A1 By + B.B,Cy + AlA()C() + AlB()C() +
AoB1Cy

Problem 5.12 Suppose we have two logic families named NTL and YTL. The NTL fam-
ily of logic gates operates under the static discipline with the following voltage thresh-
olds: Vi, = 1.5V, Vor, = 1.0V, Vig = 3.5V, and Vo = 4V. The YTL family, on
the other hand, is characterized by the voltage thresholds: V;;, = 0.8V, Vo, = 0.3V,
Vig = 3.0V, and Vo = 4.5V. Will a YTL inverter driving the input of an NTL inverter
operate correctly? Explain. Will a NTL inverter driving the input of an YTL inverter
operate correctly? Explain.

Solution:

A YTL inverter driving an NTL inverter will operate correctly because all valid out-
puts of the YTL are valid inputs for the NTL.

On the other hand, an NTL inverter driving a YTL inverter will not operate correctly
since a valid low output of the NTL between 0.8V - 1V would fall into the forbidden
region (0.8V - 3V) of the YTL.

Problem 5.13 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vor, = 0.5V, Vi, = 1.6 V, Vog = 4.4 V and
Vim=32W

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

c) What is the highest voltage that can be output by an inverter for a logical 0 output?
d) What is the lowest voltage that can be output by an inverter for a logical 1 output?
e) What is the highest voltage that must be interpreted by a receiver as a logical 0?

f) What is the lowest voltage that must be interpreted by a receiver as a logical 1?
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g) When transmitting information over a noisy wire, buffers can be used to minimize
transmission errors by restoring signal values. Consider the transmission of data
over a noisy wire which picks up a maximum of 80 mV symmetric peak-to-peak
noise per centimeter. How many buffers are needed to transmit a signal over a
distance of 2 meters in this noisy environment?

h) How large are the 0 and 1 noise margins for a buffer in this logic family? Now
consider three buffers connected in series and behaving as a single buffer. What are
the noise margins for this new buffer?

Solution:

a) Any input below V;;, must produce an output less than or equal to Vp,, and any
input above V;; must produce an output greater than or equal to V.

See Figure 5.32 for graph.

Buffer

Vou=4.4V -

VOL: 0.5V

VI =18V Vy=3.2V

Figure 5.32:

b) See Figure 5.33 for graph.
c) 0.5V
d) 4.4V
e) 1.6V
f) 3.2V
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9)

h)

CHAPTER 5. THE DIGITAL ABSTRACTION

Inverter

VOH: 4.4V |

VoL =05V -

V”_: 1.6V V|H: 3.2V

Figure 5.33:

2 meters = 200 cm which translates into 16V of noise peak-to-peak centered at 0,
meaning our signal could be plus or minus 8 volts from the desired. The smaller
noise margin is N M, which equals 1.1 volts. % is 7 something so we need 8
buffers in between the sender and receiver.

NMy=Vip,—Vor =11V

NM, =Vog —Vig =12V

If we look at what happens with a triple-buffer at the sender side and at the receiver
side, we realize that the noise margins stay the same. Basically this means we
are not allowed any more noise during transmission than with a single buffer. If we
look at the low noise margin, the minimum voltage the triple-buffer is guaranteed to
output for a “low” is still Vo, = 0.5V (any logic gate under this static discipline) and
likewise, the maximum voltage the receiving triple-buffer is guaranteed to interpret
as a “low” is still V7, = 1.6V giving us a 0 noise margin of 1.1V

ANS:: (c) 0.5V (d) 4.4V (e) 1.6V (f) 3.2V (@) 8 (f) NMy = 1.1V, NM,; = 1.2V,
unchanged

Problem 5.14 Many manufacturing flaws in digital circuits can be modeled as stuck-at
faults. The output of a gate is said to suffer from a stuck-at 1 fault if the output is a 1
irrespective of its input values. Similarly, a stuck-at O fault at an output causes the output
to produce a 0 at all times.
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a) Consider the circuits shown in Figure 5.34 with one or more faults. Write an expres-
sion for each of the outputs in terms of the input variables for the given faults. (Hint:
As an example, the output of the faulty circuit in Figure 5.34a will be independent
of the input variable C).

A—1 A—
> >
B— B— v
C— C—1
<Stuckatl
(b)
A A
B—Stuck at 1 7 B —— Stuck at 0 a
C—1 C
Stuck at 1 Stuck at 0
(c) (d)

Figure 5.34:

b) Suppose we are given the faulty circuit in Figure 5.35a where the output of NAND
gate N2 is known to have a stuck-at fault. However, we do not know whether it is a
stuck-at 1 fault or a stuck-at O fault. Further, as illustrated in Figure 5.35b, suppose
that we have access only to the inputs A, B, and C, and the output Z. In other words,
we are unable to directly observe the output X of the faulty NAND gate N2. How
would you go about determining whether N2 suffers from a stuck-at 1 fault or a
stuck-at O fault.

A A —

B PR
B— v 7

C PR

cC— N

Stuck at X
(@) (b)
Figure 5.35:

Solution:
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a) a) Z=AB
by Z=1
c) Z=A
d Z=A
b) The boolean for a stuck at 1 is Z = AB. The boolean for a stuck at 0 is Z = 1 One

possible testis A=1, B = 1. If the output Z = 1, then it is a stuck at O fault. If the
output Z = 0, then it is a stuck at 1 fault.

ANS:: Q) Z=AB(0)Z=1@)Z=AWd)Z=A



Chapter 6

The MOSFET Switch

Exercises

Exercise 6.1 Give a resistor-MOSFET implementation of the following logic functions.
Use the S model of the MOSFET for this exercise (in other words, you may assume that
the on-state resistance of the MOSFETS is 0).

1. (A+ B)-(C+ D)

Solution:

1. (A+ B)-(C + D)

2.A-B-C-D
Using DeMorgan’s laws, we can transform the expression into

A+B+C-D

See Figure 6.1

151
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RL RL utput
C—L| A_|B_| Outp

Figure 6.1:

3. ¥ - M(X-W)X-Y -W)
Solution:
Using DeMorgan’s laws, we can transform the expression into

Y W+X W+X+W+Y

RL Qutput
ML B g o™
4 xJuw 1wy wy

Figure 6.2:

See Figure 6.2

Exercise 6.2 Write a boolean expression that describes the function of each of the circuits
in Figure 6.3.

Solution:
a) OUT = A
b) OUT=A+B=A-B

¢) OUT =A-(B+0)

d) OUT=(A+B+0)-EN

ANS:: (a) OUT = A (b) OUT = A- B (¢) OUT = A-(B+C) (d) OUT =
(A+B+C)-EN




153

Vs *Vs
;2 Ry
§R1 [ ouT §R3 ouT %Rs
Al L A—L I—J_B
1 1
@ )
v é ’s
R, Avs A ouT
ouT
A—r| §R Al
T = e
B
T f - o

(©) (d)
Figure 6.3:
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A

:

——O0 OUT

Vs

-

IN

Figure 6.4:

Exercise 6.3 Figure 6.4 shows an inverter circuit using a MOSFET and a resistor. The
MOSFET has a threshold voltage V- = 2V. Assume that Vs = 5V and R;, = 10k. For
this exercise, model the MOSFET using its switch model. In other words, assume that the
on-state resistance of the MOSFET is 0.

a) Draw the input versus output voltage transfer curve for the inverter.

b) Does the inverter satisfy the static discipline for the voltage thresholds Vo, = 1V,
Virb = 1.5V, Voy = 4V and Vi = 3V? Explain. (Hint: To satisfy the static
discipline, the inverter must interpret correctly input values that are valid logic sig-
nals. Furthermore, given valid logic inputs, the inverter must also output valid logic
signals. Valid logic O input signals are represented by voltages less than V., valid
logic 1 input signals are represented by voltages greater than V4, valid logic 0
output signals are represented by voltages less than V1, and valid logic 1 output
signals are represented by voltages greater than V)

c) Does the inverter satisfy the static discipline if the V; specification was changed to
Vi = 2.5V? Explain.

d) What is the maximum value of V;; for which the inverter will satisfy the static
discipline?

e) What is the minimum value of V;g for which the inverter will satisfy the static
discipline?

Solution:

a) See Figure 6.5 for transfer curve.
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Vout

0 VT=2 > Vin

Figure 6.5:
b) Yes, the inverter satisfies the static discipline, as illustrated in Figure 6.6. If the

input is less than V;p, then output is always greater than Vo g. Similarly, if the input
is greater than V7, then the output is always less than V..

Vout
A i :
> ; :
Vou{----- - - - - - -
av ! !
1 1
| -
1V | |
: ' > V.
VIL Vr=2 ViH n
1v 3V
Figure 6.6:

c) No. A case where this would not work is in the input voltage range: 2 < v;, < 2.5.
Under the new voltage threshold, input voltages in this range should be interpreted
as a logical 0. However, since V7 is at 2V, these would result in v,,; = 0, which is
also a logical 0, thereby breaking the static discipline for an inverter.

d) The maximum value of V7, is the threshold voltage V. So Vi, < 2.

e) The minimum value of Vg is also the threshold voltage V7, because voltages
greater than or equal to V7 will be interpreted as a logical 1. So V;; > 2.
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ANS:: (b) yes (c) no (d) 2 (e) 2

Exercise 6.4 Consider, again, the inverter circuit shown in Figure 6.4. The MOSFET has
a threshold voltage V7 = 2V. Assume that Vs = 5V and R; = 10k. For this exercise,
model the MOSFET using its switch-resistor model. Assume that the on-state resistance
of the MOSFET is Ron = 8k.

a) Does the inverter satisfy the static discipline which has voltage thresholds given by
Vor = Vi, = 1V and Vo = Vg = 4V? Explain.

b) Does the inverter satisfy the static discipline for the voltage thresholds Vo, =
Vip = 2.5V and Vo = Vig = 3V? Explain.

c) Draw the input versus output voltage transfer curve for the inverter.

d) Is there any value of V;;, for which the inverter will satisfy the static discipline?
Explain.

e) Now assume that Ron = 1k and repeat parts (a), (b), and (c).
Solution:

a) First find the relevant threshold output and input values for the inverter:
The output high voltage is 5.
The output low voltage is

Fon 5.8 _99

Vg TWON__ _
* Ron + Ry 18

The lowest input voltage recognized as a logical 1 is

V=2V

The highest input voltage recognized as a logical 0 is less than 2V,
With Vor, = Vi, =1V and Vor = Vig =4V

No, the static discipline is not satisfied. A failure case is for an input voltage which
is greater than Vo = 4V (i.e., a valid 1). Since this high input voltage is greater
than the threshold, the inverter output voltage is 2.2V, which is greater than Vo =
1V. But this is not a valid 0. Valid 0 outputs would be outputs that are less than 1V.
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Vout

S5V

2.2V

I > Vin
VT: 2

Figure 6.7:

b) With Vor, = Vi, = 2.5V and Vor = Vig = 3V:

No. Now we have a failure case when the input is, say, 2.3V (i.e., a valid 0). But
since 2.3 > V7, the output will be 2.2V. For a valid inverter the output should have
been a valid 1. Thus, this violates the inverter’s static discipline.

c) See Figure 6.7 for transfer curve.

d) No. The lowest value the inverter output ever reaches is 2.2V, which is still higher
than 2V. Thus the inverter output can never turn the MOSFET in a receiving inverter
off. This implies that we will never be able to satisfy the discipline.

E) a) Rony = 1k

Ron 1
————)=5.-— =045
R0N+RL) 11

With VorL =V =1V and Vog = Vig =4V
Yes, we satisfy the static discipline. For valid 0 input (< V7), then output is
always a valid 1 (> Vppg). For valid 1 input (> V;g), the output is always a
valid 0 (< Vor).

b) With Vor, = Vi, = 2.5V and Vor = Vig =3V

No. Counter case is if the input is 2.3V which is < V;, (valid 0), then it will
produce an output 0 as well (i.e., < Vo).

Vor = Vs - (

c) See Figure 6.8 for transfer curve.

ANS:: (a) no (b) no (d) no (e-a) yes (e-b) no
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Vout

sV

0.45V

| Lt/
Vy=2 in

Figure 6.8:

Exercise 6.5 Compute the worst-case power consumed by the inverter shown in Fig-
ure 6.4. The MOSFET has a threshold voltage V; = 2V. Assume that Vs = 5V and
R;, = 10k. Model the MOSFET using its switch-resistor model, and assume that the
on-state resistance of the MOSFET is Roy = 1k.

Solution:
Power dissipated:

VE
Power =Vgl = ——2
5" 7 R. + Ron
1
=5 (—
((10 + 1)103)
=22TmW

ANS:: 2.27 mW

Exercise 6.6 Consider again the circuits in Figure 6.3. Using the switch-resistor model
of the MOSFET, choose minimum values for the various resistors in Figure 6.3 so each
circuit satisfies the static discipline with voltage thresholds given by Vi, = Vo, = Vs/10
and Vig = Vog = 4Vs/5. Assume the on-state resistance of the MOSFET is Rox and
that its turn-on threshold voltage V- = Vs /9.

Solution:
There are two critical constraints.

First, the valid low input and output voltage thresholds must be less than V. The
given parameters satisfy this constraint irrespective of the resistor values.
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Second, the output low voltage produced by the inverter must be lower than V. Let
us check this second constraint for each circuit.

a) For this circuit, the following constraint must be satisfied

Ron

Vor > Vg ——m—
or 5 Ron + Ry

With Vg, = ¥

10"
1 Ron

> T
10 Ron + Ry
10R0N < RON + Ry

R, > 9R0N

Similarly,
Ry > 9R0N

b) Similarly to part (a),
Rs; > 9RonN
Rs > 9RonN

Ry > 9RON

The same constraint applies to R, because the relevant worst case scenario in one
in which only one of the MOSFETS associated with R, is on.

c) Similarly to part (b),
R; > 9RonN

For Rg, the worst case scenario is when two ON MOSFETS appear in series with
resistor Rg, and the third MOSFET is off.

R(; > 9RON,eff

where

Ronesr = Ron + Ron = 2Ron
Re¢ > 18Ron
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d) Similar to part (c), in the worst case scenario, there are three ON MOSFETSs (those
with input signals A, B, and EN:

Rg > 9RON,eff
Ronesr = Ron + Ron + Ron = 3Ron
Rg > 27TRon

ANS:: (a) R; > 9RoNn, R2 > 9RoN (b) Rs > 9RoN, Ry > 9Ron, Rs > 9RoN (C)
R¢ > 18Ron, R7 > 9RoN (d) Rg > 27TRon

Exercise 6.7 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vo, = 0.5V, Vi, = 1.6 V, Vo = 4.4 V and
Vim=32W

a) Graph an input-output voltage transfer function of a buffer satisfying the voltage
thresholds given above.

b) What is the highest voltage that can be output by an inverter for a logical 0 output?
c) What is the lowest voltage that can be output by an inverter for a logical 1 output?
d) What is the highest voltage that must be interpreted by a receiver as a logical 0?

e) What is the lowest voltage that must be interpreted by a receiver as a logical 1?

f) What is the 0 noise margin provided by this logic family?

g) What is the 1 noise margin provided by this logic family?

h) What is the minimum voltage gain the buffer must provide in the forbidden region?
Solution:

a)
Vor =0.5,Vip = 1.6, Voir = 4.4, Vig = 3.2

See Figure 6.9 for transfer function.
b) highest for logical 0: Vo, = 0.5V
c) lowest for logical 1: Vo = 4.4V

d) highest interpreted as logical 0: V;;, = 1.6V
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Figure 6.9:

e) lowest interpreted as logical 1: V;z = 3.2V

f)
NMy=Vi, —Vor =16 —05=1.1V

9)

h) Minimum gain: enough to go Vo = Vpg at the output for an input transition
Vi = Vig. In other words,

VOH — VOL o 4.4 —-0.5 o

= =24
Vie — ViL 3.2—1.6

ANS:: (b) 0.5 (c) 4.4 (d) 1.6 (€) 3.2 (f) 1.1 (g) 1.2 (h) 2.4

Problems

Problem 6.1

a) Write a truth table and a boolean equation relating the output Z to A, A4, B, and C,
when these are input to the circuit shown in Figure 6.10.
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e
o
__Figure_6_.10:

Figure 6.11:
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b) Suppose the circuit in Figure 6.10 suffers a manufacturing error which results in a
short between the pair of wires depicted in Figure 6.11. Write a truth table and a
boolean equation relating the output Z to A, A, B, and C, for the resulting circuit.

Solution:
a) See table.
A|A|B|C|Z
0/1|]0|0 |1
0/1|]0|1 |1
0(1|1]0]0
O(1(1(1/0
1710000
110010
110[1]|0]0
1/0(1|1]0
A|lA|B|C|Z
0/1|]0|0 |1
0(1|0|1]0
oj1(1]01|0
O(1(1(1/0
1710000
110010
110[1]|0]0
1/0|1]1]|0
b)

ANS:: (@) Z=A+ B (b) Z = ABC

Problem 6.2 A specific type of MOSFET has V; = —1V. The MOSFET is in the ON
state (a short exists between its drain and source) when vgs > V. The MOSFET is in
the OFF state (an open circuit exists between its drain and source) when vgs < Vr. ()
Graph the ¢pg Vversus vgg characteristics of this MOSFET. (b) Graph the ipg versus vpg
characteristics this of the MOSFET for vgg > Vi and vgg < V.

Solution:
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iDs ips

Ronl~ I

ON

Y

Ves>= -1

f- Ves< -1

> vss P> Vps
@ (b)

Figure 6.12:

a) See Figure 6.12(a)

Graph of ipg versus vgs: ips = 0 for vgs < —1 and ips = vps/ Ry, fOr ves >
—1.

b) See Figure 6.12(b)

Graph of ipg versus vpg in an ideal MOSFET: For vgs < V7, ipg VErsus vpgs is
zero for all vpg. For vgs > Vr, ips is zero until vpg > 0, when ipg increases
linearly with a slope of 1/R,,

Problem 6.3 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vo, =1V, Vi, =13V, Vog =4 V,and Vg = 3
V. Consider the N-input NAND gate design shown in Figure 6.13. In the design R = 100k
and Ron for the MOSFETSs is given to be 1k. Vi for the MOSFETS is 1.5V. What is the
maximum value of N for which the NAND gate will satisfy the static discipline? What is
the maximum power dissipated by the NAND gate for this value of N?

Figure 6.13:

Solution:

\oltage value at Z will equal Vs during a logical 1. During a logical 0, Vs is divided
between N Rox and R. Therefore, we require
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Vz—o < Vor
_ NxR
Vz—o = Vs * NeRon 1100k = g
(Vs —1)NRon < 100k
100k
N S (Vs—l)RON
Maximum power dissipation when all switches on.
V2
Pryax = 100k+NRoxn
o AT _ 100k _ Vi
ANS:: N = (Vs—1)Ron'' PMAX " 100k+NRonN

Problem 6.4 Consider the N-input NOR gate shown in Figure 6.14. Assume that the on-
state resistance of each of the MOSFETs is Rpy. For what set of inputs does this gate
consume the maximum amount of power? Compute this worst-case power.

Vs
R
¢ r—Z
SRS ﬂ Anﬂ
Figure 6.14:
Solution:
Maximum power is consumed when all inputs are high. The equivalent on parallel on
2
resistances decreases to zero for higher N. Py 4x = %S
ANS:: Pyax = %5

Problem 6.5 Consider the circuit shown in Figure 6.15. We wish to design the circuit so
it operates under a static discipline with voltage thresholds Vor, Vir, Vor and Vig. As-
sume that the on-state resistance of each of the MOSFETS is Roy and that the MOSFET
threshold voltage is V. Assume that the given values satisfy the constraints Vg > Vg
and V;;, < V. For what values of n and m does this gate operate under the static disci-
pline? What is the worst case power consumed by this circuit?

Solution:
We can assume that Vg > Vg and Vi < V.
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Vs
R
*® Z
A L Ay A1
A12 _| A22 _| Amz _|
Az L A Az
Arn _”:<L Aon _H:AL Amn _|[<L
Figure 6.15:

To satisfy the static discipline,

VsnR()N
Vor < —————
oL = nRony + R
n < VoLl

~ (Vs = Vor)Ron

Value m may be any value greater than O under the static discipline because each
parallel branch contributes only parallel resistances when on.
Worst case power is when all n MOSFET’s are ON. Equivalent pull-down resistance
V2

approaches zero as m increases. Pyax = &

ANS:: n < %, m:any value, Pyax = Ké% as m becomes large
Problem 6.6 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vo, = 0.5V, Vi, = 1V, Vpy = 4.5V, and
Vig = 4.0V.

a) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the above voltage thresholds using an n-channel MOSFET and a re-
sistor. The MOSFET has R, = 1kQ and Vr = 1.8 V. Recall, Rox = R,(L/W).
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Assume Vg = 5V and Ry for a resistor is 500 2. Further assume that the area
of the inverter is given by the sum of the areas of the MOSFET and the resistor.
Assume that the area of a device is L x W. The inverter should take as little area
as possible with minimum size for L or W being 0.5 yum. Graph the input-output
transfer function of the inverter. What is the total area of the inverter? What is its
maximum static power dissipation?

Solution:

a) See Figure 6.16.

Figure 6.16:

b) The relevant issue in the design is to ensure that the output low voltage produced
by the inverter is lower than or equal to V..

Therefore, to find the respective (L/W) ratios:

_ Ron
= X — ftON
VOL VS Ron+Rpy

L
i)
L
R (2% )+ R ()

Vpu

0.5=5x

To minimize area, L,q = 0.5 um and W, = 0.5 ym
Use the last equation to minimize the Area equation.
Area = LpgWpa + Lpuy W,

Ly, = Wya = J5 pm
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ANS:: (b) Totalarea = \% pm? and Power = VZ/(Ron + Rpy)

Problem 6.7 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vo, = 0.5V, Vi, = 0.9V, Vog = 4.5V and Vig =
4V. Using the switch-resistor MOSFET model, design a 2-input NAND gate satisfying
the static discipline for the above voltage thresholds using three n-channel MOSFETS as
illustrated in Figure 6.17 (the MOSFET with its gate connected to a voltage V4 and drain
connected to the power supply Vs serves as the pull-up). V4 is chosen such that V4 >
Vs + V. The MOSFETS have R, = 1kQ and Vi = 1.8 V. Recall, Rox = R.(L/W).
Assume Vs = 5 V. Further assume that the area of the NAND gate is given by the sum of
the areas of the three MOSFETSs. Assume that the area of a device is L x W. The NAND
gate should take as little area as possible with minimum size for L or W being 0.5 ym.
What is the total area of the NAND gate?

Vs
Y Ly
L @
Z
_ L,
A4| VTZ
L
= ——
W3
Figure 6.17:

Solution:
Using the same steps as in the previous problem:

The relevant issue in the design is to ensure that the output low voltage produced by
the inverter is lower than or equal to V..

Therefore, to find the respective (L/W) ratios:

_ Ron
VOL - VS X Ron+Rpy

L
R

L L
R (2%)+Ro (32

0.5=5x

18 + ) =
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18(L2W3+L3W2) — Ly

WaWs3 W

The ratios remain the same:

Wy =05, Ly =3/V2

Ly =1L =05 W, =W;=1/12y/2
ANS:: Area = —

3
V2 T 2vs

Problem 6.8 Remember that a NAND gate can be implemented as a circuit with two
n-channel MOSFETSs and a pull-up resistor Ry,. Let us call it the NAND circuit shown
in Figure 6.18. These NAND circuits are used by Penny-Wise Computer Corporation in
their computer boards. In one ill-fated shipment of computer boards, the outputs of a pair
of NAND circuits get shorted accidentally resulting in the effective Circuit X shown in
Figure 6.18.

a)
b)

c)

d)

r— — — — "

NAND

circuit : E
NAND :

circuit

LEIT

|

Circuit X

Figure 6.18:

What logic function does Circuit X implement? Construct its truth table.

If we connect n identical NAND circuits together in parallel forming Circuit Y as
shown in Figure 6.19, what is the general form of the logic function it implements?

If for each MOSFET, R,, = 5009, R;, = 100k, and V1 = 1.8V, how many
NAND circuits can we connect in parallel and still satisfy the static discipline for
the voltage thresholds given by: Vi, = Vor,0.5 Vand Vig = Vog = 4.5 V.

We now connect 10 identical NAND circuits together and have the resulting Circuit
Y satisfy the static discipline for the voltage thresholds in Part c) with Ry, = 500 €2.
Give specifications on the dimensions of the MOSFETS such that total MOSFET
area is minimized. As before, assume that the area of a device is L x W. Assume
that R, = 1k and no resistor dimension or MOSFET gate dimension should be
smaller than 0.5 yum. For what inputs does Circuit Y dissipate maximum static
power, and what is that power?

Now, suppose choose a static discipline with voltage thresholds given by: Vo, =
0.5V, Vi1, =16V, Vog = 4.4V and Vig = 3.2 V. As before, each MOSFET has
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r—— - — = A
11 —H NAND |
lo 11 circuit

ls —+  NAND
ly — 1 circuit

I °
| ) SR
I hd I
lan-—+  NAND I
lon, — 1 circuit |

Circuit Y

Figure 6.19:

Ron = 50092, Ry, = 100kS2, and Vr = 1.8V. How many NAND circuits can we
connect in parallel and still satisfy this static discipline?

f) Repeat part (d) assuming the voltage thresholds given in part (e).
Solution:

a) Shorting the two NAND circuits is like putting two R;’s in parallel above the output
line and two pairs of MOSFETS in parallel where each pair is in series.

Circuit X should implement the following logic function

A-B+C-D

b) The logic function has the following form

Il '12+13'I4-I-...-I-12n_1 'IZn

c) The only relevant threshold that we have to consider is V.. Thus, taking just one
NAND gate on, the following must be satisfied

We now have two MOSFETS in series giving us an R., of 1k(2. Our worst case with
n circuits would have only 1 of n NAND gates on but we can’t change the fact that
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A[B|C[D]F(A,B,C,D)
0/0[0]0 1
0lo|o0]1 1
0olo|1]0 1
0lo|1]1 0
ol1]/0]0 1
0/1]0]1 1
ol1]1]0 1
0l1]1]1 0
1/0(0]0 1
1/0(0]1 1
110110 1
1/0[1]1 0
1/1]01]0 0
1/1(0]1 0
1/1]1]0 0
10111 0

there are n Ry ’s in parallel giving an equivalent of Rp/n resulting in the following
equation.

R.,

Vor > — <1y,
"= Ry/n+Reg °

Plugging in the values, we see this equation is satisfied forn <11.11son =11

d) Again looking at one NAND circuit, it must satisfy the following equation where
Reg=2R,, = ZKQ% since there are two MOSFETS in series

R
Vor > ——4__ .
"= R4 Reg °

Substituting the values, we get that 2* > 360

L =0.5pum and W = 180 pm

1000 25
Fon = 360 9

To maximize the static power, we want the equivalent R,,, and Ry, to be as small as
possible since
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Vs

Power Dissipation = —=——
P Ron + RL

If we turn all inputs on, the equivalent R,, has 10 pairs of MOSFETS in parallel
which gives 0.56€2 and the 10 Ry, resistors in parallel gives 5012.

Power Dissipation = 0.49W

ANS: @ A-B+C-DMO) - I, +13- 14+ ...+ Iy 115, (c)11(d) L = 0.5 um
and W = 180 pym. Power = 0.49W

Problem 6.9 Consider a family of logic gates which operates under the static discipline
with the following voltage thresholds: Vor, = 0.5V, Vi, = 1.6 V, Vog = 4.4 V and
V=32V

a) Graph an input-output voltage transfer function of an inverter satisfying the voltage
thresholds given above.

b) Using the switch-resistor MOSFET model, design an inverter satisfying the static
discipline for the above voltage thresholds using an n-channel MOSFET with R, =
1kQ and Vp = 1.8 V. Recall, Ry, = R,(L/W). Assume Vs = 5V and Ry for a
resistor is 500 €2. Further assume that the area of the inverter is given by the sum
of the areas of the MOSFET and the resistor. Assume that the area of a device is
L x W. The inverter should take as little area as possible with minimum size for L
or W being 0.5 um. Graph the input-output transfer function of the inverter. What
is the total area of the inverter? What is its static power dissipation?

Solution:

a) See Figure 6.20

b) Basically, we need to sift through the given information to see what is important.
When the MOSFET is off, there is no current flowing, thus the power dissipated
is zero, and the output is just V. When the MOSFET turns on, the output must
become less than or equal to V.. A voltage divider relationship results in the
following equations

R
Vor > ———V.
or = RL+R0n 5



|\|/T | V
\I/IIL V;H 5 l

Figure 6.20:

Substituting,

1000
0.5 > B "
1000 + 5002

After lots of algebra,
Lr . w > 18
Wr L

173

If we make each ratio a bit above 1/18 or about 4.25 and use the minimum dimen-

sion of 0.5 um, we get the following values for our design

MOSFET L=05pm and W = 2.125pum

Resistor L =2125pum and W = 0.5 ym
Total Area = 2.125 ym?®
R, = 23552
Ry = 2.125k2
Vs

Maximum Static Power Dissipation = —2——
P R,, + Rp,

= 10.6mW
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Chapter 7

The MOS Amplifier

Exercises

Exercise 7.1 Determine the voltage vo across the voltage-dependent current source
shown in the circuit in Figure 7.1 when

W

°+
Vo
Vi =f(v)
Figure 7.1:
Solution:
VS =0+ Vo
v=Ri=Rf(v)=£F
v® = RK

175
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v = (RK)s
Vo = VS —_ (RK)%
ANS:: vo = Vg — (RK)3

CHAPTER 7. THE MOSAMPLIFIER

Exercise 7.2 Consider the circuit containing the dependent current source shown in Fig-

ure 7.2.

w@ T

iD * Vo

Figure 7.2:

a) Determine vp interms of vy if ip = K;vg. What are the units of K?

b) Determine vp interms of v; if ip = Kyip. What are the units of K,?

c) Determine vo in terms of v; if ip = K3v%. What are the units of K3?

d) Determine vo in terms of vy if ip = K4i%. What are the units of K,?

Solution:

a) Vo = —Ri Ky vy

K is in units of =2 or Siemens.

b) Vo = —RLKﬂB

Vo = 7—1‘2;},{}]{2@1

K, has no units.

C) Vo = —RLKg’U?B
Vo = —RLK?,U%

K3 has units of 27Peres

volts?
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d) Vo = —RLK4’I:2B = —RLK4(§—II)2

_ 7RLK4U%
Vo = R
I
1
amperes

K, has units of

. HI. 1 —RL K .
ANS:: (a) vo = —RpKyvy, units: 2722 OF Zhms (b) vo = ="z 2L, units: none (c)
o ~RLK L
vo = —RpK3vj, units: 222 (d) vp = ;% 297 units: ampleres

Exercise 7.3 The resistance R in the circuit shown in Figure 7.3 depends on the voltage
across resistor Rg. Determine vp if

R=—
UB
Ra
+
RB VB
(D) -
R=f(vg)
Figure 7.3:

Solution:

— RpVs
v = 7€
B R4+RB+U_

UBRA + UBRB + K= RBVS

_ RpVs—K

VB = RAo+Rp
. _ RpVs—K
ANS:: VB = Ra+tRp

Exercise 7.4 A MOSFET is characterized by the following equation

. K
ips = 5(?)05 - VT)2

in its saturation region. A MOSFET operates in the saturation region for

Ups > vgs — Vr and wvgs > Vp
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Express the vpg > vgs — Vo constraint in terms of ipg and vpg.

Solution:
21 2
25 = (vgs — Vr)
5
L3 =vgs — Vr
2ips
UDs > K

Exercise 7.5 The MOSFET in Figure 7.4 is characterized by the equation

. K
ips = E(UGS - VT)2

in its saturation region according to the SCS model. The MOSFET operates in the satu-

ration region for
vps > vgs — Vr and wvgs > Vr

The MOSFET operates in its triode region for

Vps < Vgs — Vr and vgs > Vr

Suppose the MOSFET is characterized by the SR model in its triode region. In other

words,
Ups

ips =
Ron
in the triode region. Assume that Ry is a constant with respect to ipg and vpg, but its
value is some function of vgg. Further suppose that ipg = 0 when vgs < V7.

L +
1Q§VR
+

—S° (*) 5sin(at)
v |

Figure 7.4:
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a) For vgg = 5V, what value of Ry makes the MOSFET ipg Vversus vpg character-
istic continuous between its triode and saturation regions of operation.

b) Plot vg versus vp for the circuit shown in Figure 7.4. This circuit is useful in
plotting the MOSFET characteristics. Assume that K = 1mA/V? and Vo = 1V,
Use the value of Roy calculated in (a). Use a volt scale for v and a millivolt scale
for vg.

Solution:

a) Boundary between triode and saturation regions iswhen vps = vgs — Vpr = 5—Vr
At this point, ipg = £(5 — Vr)?

_ v _ 5—V;
Fov =305 = Tevep
Rox = 162w
b) RON = 50012
MOSFET is in triode region for vp < 4wolts. In triode region, vp = %. In
saturation region, vg = 8mV..
[
10mV—
- |
-5V 5V vp
-10mV —
\J
Figure 7.5:

See Figure 7.5.
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ANS:: () Rony = m

Exercise 7.6 Consider the MOSFET amplifier shown in Figure 7.6. Assume that the
amplifier is operated under the saturation discipline. In its saturation region, the MOSFET
is characterized by the equation

] K
ips = 3('0(}‘5 — Vr)?

where ipg is the drain-to-source current when a voltage v is applied across its gate-to-
source terminals.

Vs

R
D Yo
3,&| *iDS
V| ) S
1

Figure 7.6:

a) Draw the equivalent circuit for the amplifier based on the SCS model of the MOS-
FET.

b) Write an expression relating vp to ipg.
c) Write an expression relating ips to v;.
d) Write an expression relating vo to vy.

e) Suppose that an input voltage V7 results in an output voltage V. By what factor
must V; be increased (or decreased) so that the output voltage is doubled.

f) Suppose, again, that an input voltage V; results in an output voltage V. Suppose,
further, that we desire an output voltage that is 2V,. Assuming that both the input
voltage and the MOSFET do not change, what are all the possible ways of accom-
plishing the desired doubling of the output voltage.

g) The power consumed by the MOSFET amplifier in Figure 7.6 is given by Vgips,
assuming that no current is draw out of the v, terminal. Which of the alternatives
for doubling V, from parts (e) and (f) will result in the lowest power consumption.



Figure 7.7:

Solution:

a) See Figure 7.7.
b) vo = Vs — Rrips

C) ips = %(v; — VT)2 for v; > Vi ips = 0 otherwise

d) vo = V& V)2 for vy > Vi vo = Vs otherwise
e) Vo = Vs — ELE(V; — V)2
2Vo = Vg — (NVI —Vr)?
%—ﬂsz(N%—W)
22 (Vs — 2Vp) = (NV; — Vi)?

N%—W:Jﬁﬂ%—ﬂm

wor (Vs—2Vo)+Vr

N = v ;2Vo < Vs

Scale V; by factor N

f) Vo =Vs— EEL (Vi — V)2

This can be accomplished by changing Vs, R, or by changing both.

By changing R:
2Vo = Vg — KELNR (V; — V)2

_ 2Vs—4Vo
Ng = KR (Vi—Vp)?

181
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Scale Ry, by factor Nx. This will only work if 2V, < Vg
By changing Vs:
2Vo = NgVs — £l (v — Vp)?

KRp

2Vo+ (Vi—Vr)?
Ng = 2Vs

Scale Vs by factor Ng
By changing Vs and Ry:
Scale Vs by factor X and scale Ry, by factor Y where

KR Y

X = 2ot = (WimV)” This will only work if 2V < XV

g) The alternative from part e results in the lowest power consumption.

ANS:: (b) vo = Vs — Rrips (C) ips = %(’U} — VT)2 for vr > Vriipg =0 otherwise

2w (Vs—2Vo)+ Vs
(d) vo = Vs— &5 (v —Vr)* forv; > Vi o = Vs otherwise (€) N = W :
Qe

Exercise 7.7 Consider, again, the MOSFET amplifier shown in Figure 7.6. Assume that
the amplifier is operated under the saturation discipline. The MOSFET in doctored so
its threshold voltage is 0. In other words, the saturation region of the MOSFET is now
characterized by the equation
'ps = E{UGS

where ipg is the drain-to-source current when a voltage vgs is applied across its gate-
to-source terminals. The following questions relate to the large-signal analysis of the
amplifier.

a) Derive the relationship between the output voltage v, and the input voltage v;.

b) Derive the range of valid input voltages. Under the saturation discipline, valid input
voltages are those which result in saturation region operation of the amplifier. De-
termine the corresponding range of output voltages (vo) and output currents (i pg).

c) Suppose we wish to amplify an AC input signal »;. Assume that v; has a zero
DC offset. Draw a circuit showing how a separate DC input voltage V; can be
used to bias the amplifier in a region where saturation region operation is achieved
for both positive and negative excursions of »;. Assuming the v; has symmetric
positive and negative swings, how would you choose the input operating point for
the amplifier which allows a maximum peak-to-peak voltage range for v;. What is
the corresponding output operating point (vo and ips).
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Solution:

a) vo = Vs —ipsRy

KRL’U%

’UOZVS— 5

VIR R Va1
b) 0 S (% S K_Rf

V1I+2KRVs—1
KRy, S Vo S VS

- 1+ KR Vs—+14+2K R Vg

L

Vs
R
(D
"D
Figure 7.8:

c) See Figure 7.8.
An operating point that is in the middle of the range of valid inputs allows a maxi-
mum peak-to-peak voltage range for v;.

_ V142KR; Vs—1
V} - 2KRy,

_ 3KR;Vs—1+IT2KR.V5
Vo = 4K Ry,

I _ 1+KRVs—+v14+2KR Vg
DS — 4KR}

ANS: @) vo = Vg — %L”? 0) 0 < ips < 1+KRLV5;(\I€%+2K7RLVS ©V, =

V1+2KRpVg—1 V _ 3KRpVsg—1++V142KR Vg I _ 1+KRpVs—+v142KR Vg
2KRy, Vo — 1KRy, v Ips = 4KR%
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Exercise 7.8 The three terminal device shown in Figure 7.9a is called a bipolar junction
transistor (BJT). Figure 7.9b shows a piecewise linear model for the device, in which the
parameter 3 is a constant. When

ig >0

and
veg > v — 0.4
the emitter diode behaves like a short circuit, the collector diode like an open circuit, and
the collector current is given by
ic = Pigp
Under the above constraints, the BJT is said to operate in its active region. For the rest of
this exercise, assume that 5 = 100.

C =+
Ic
B I
V,
- CE
VRE Ie
E

@ (b)
Figure 7.9: (a) A bipolar junction transistor. B stands for base, E for emitter and C for

collector. (b) A piecewise linear model for the BJT

a) Determine the collector current i for a base current iz = 1uA and vep = 2V
using the model in Figure 7.9b.

b) Sketch a graph of i versus vog for ip = 1uA. using the model in Figure 7.9b. In
drawing this graph, assume that the current source turns off for

veg < vpg — 0.4
Solution:
a) Sinceig > 0and vor > 0.2V, the BJT operates in its active region.

ic = Bip = 100pA
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b) The graph of i versus vcg Will look like this:
For veg from 010 0.2V, i = 0.
Then, for vog greater than 0.2V, ic = 100uA.

ANS:: (a) ic = 100 A

Exercise 7.9 Consider the bipolar junction transistor (BJT) amplifier shown in Fig-
ure 7.10. Assume that the BJT is characterized by the large signal model from Exer-
cise 7.8, and that the BJT operates in its active region. Assume further that Vs = 5V,
R;, = 10k, Ry = 500k, and ,8 = 100.

Figure 7.10:

a) Draw the equivalent circuit for the BJT amplifier based on the large signal BJT
model from Exercise 7.8.

b) Write an expression relating vo t0 ic.
c) Write an expression relating i¢ to v;.
d) Write an expression relating i to ip.
e) Write an expression relating vo to vy.

f) What is the value of v, for an input voltage v; = 0.7V? What are the corresponding
values of iz, i and ig.

Solution:

a)
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b)
vo =Vs —icRg
c)
ic = Bip = BX 1_%10'6
d)
ig =1p(f+1)
€)
vy — 0.6
vo = Vs — — 7 BR;,
1
Or, substituting known values
vo = 6.2 — 2uy

f) vo = 4.8V, i5 = 0.2uA, ic = 20uA, and ip = 20.2uA.

ANS:: (b) vo = Vg —icR (C) ic = ﬂ% (d)ig = ZB(ﬂ + 1) (€) vo = 6.2 — 2v;
() vo = 4.8V, i = 0.2uA, ic = 20uA, and i = 20.2A.

Exercise 7.10 In this exercise you will perform a large signal analysis of the BJT ampli-
fier shown in Figure 7.10. Assume that the BJT is characterized by the large signal model
from Exercise 7.8. Assume further that Vs = 5V, R;, = 10k, Ry = 500k, and 3 = 100.

a) Write an expression relating vo to v;.

b) What is the lowest value of the input voltage v; for which the BJT operates in its
active region? What are the corresponding values of i3, i¢, and vp?

c) What is the highest value of the input voltage v; for which the BJT operates in its
active region? What are the corresponding values of i3, i, and vp?

d) Sketch a graph of vp versus v; for the parameter values given above.

Solution:



187

a)
v = Ve — vr ]—%10.6ﬂRL
Or, substituting known values
vo = 6.2 — 2u1
b)
vy = 0.6V

The BJT goes into cutoff if v; goes any lower.
The corresponding values of ip, i, and vp are as follows. iz = 0, ic = 0, and
Vo = 5V.

c) As vy increases, the BJT enters saturation when the collector diode gets forward
biased. This happens when the base voltage is greater than the collector voltage by
0.4V. In other words, when vog = vgr — 0.4, or when vog = vo falls to 0.2V. The
corresponding value of v; is obtained by solving

vo =0.2=6.2 - 2u;
Solving, we get v; = 3V. In other words, when v; rises to 3V, the output falls to

0.2V, and the BJT goes into saturation.

The corresponding values of ip, ic, and vo are as follows. ig = 24/5uA, ic =
480uA, and vp = 0.2V.

d) A graph of vp versus v; is made up of three straightline segments.
In the first segment, v, is at 5V for v; ranging from 0V to 0.6V.
In the second segment, v, decreases linearly from 5V to 0.2V as v; increases from
0.6V to 3V. In other words, the second segment follows the equation
vo = 0.2 =6.2 — 2u;

for vy = 0.6V tov; = 3V.
In the third segment, v stays at 0.2V for v; greater than 3V.

ANS:: (a) vo = 6.2 — 205 (b) vy = 0.6V,ig =0, ic =0, and Vo = 5V. (C) vy = 3V,
ip = 24/5“/4, o= 480/1114, and vo = 0.2V.
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Problems

Problem 7.1 Consider the MOSFET voltage divider circuit shown in Figure 7.11. As-
sume that both MOSFETS operate in the saturation region. Determine the output voltage
Vo as a function of the supply voltage Vs, the gate voltages V4, and V3, and the MOSFET
geometries Ly, W7 and Ly, W5. Assume that the MOSFET threshold voltage is V7, and
remember, K = K,,*".

AVs

Vo
B L

Figure 7.11:

Solution:

Since the current through both MOSFETs must be the same, 1}, is forced to a value
such that this is the case.

KnWQ 2 KnWI . . 2

o (Ve = Ve)’ = S (Va = Vo = Vi)
_ WaLy 2
Vo=Va—Vr LW, (Vg = Vr)

ANS:: Vo = Vi — Vi — /125 (Vig — V)2

Problem 7.2 An inverting MOSFET amplifier is shown in Figure 7.12, together with an
ips-vps Characteristic for the MOSFET. This characteristic is simpler than the SCS model
presented in this chapter. The characteristic is simply the standard MOSFET characteristic
with the triode region compressed onto the Y axis.
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Alternatively, this characteristic can be viewed as describing ideal switch behavior that
is extended to exhibit a saturating drain-source current. In other words, for vgg < Vi,
the MOSFET behaves like an open switch with ipg = 0. For vgs > Vi, the MOSFET
behaves like a closed switch with vpg = 0 provided that ipg < %(UGS — V)2, However,
once ipg reaches %(vgs — Vr)?, which is the maximum current the MOSFET can carry
for a given vgs, MOSFET operation enters a saturation region in which the MOSFET
behaves as a current source of value £ (vgs — Vir)?. Saturated operation is as described
by the saturation model given in Figure 7.12.

Vs
R
g P *
Y/
Vi S ouT
. n-channel MOSFET n-channel MOSFET model
Ips characteristic for the saturation ggon
+
Closed switch Saturation rgion \> « Vbs ,
behaior on the Vesz Vr >Wes— V)
iDS axis /

Vs <Vt

Open switch behaor
on thevpg axis

Figure 7.12:

a) Determine voyr as a function of vy for 0 < vpy.
b) What is the lowest value of vy for which voyr = 0?

c) Assumethat Vs = 15V, R = 15 k), Vo = 1 V and K = 2 mA/V2. Graph vour
versus vy forOV < vy < 3 V.

d) On the input-output graph, identify the regions over which the MOSFET behaves
as an open circuit, behaves as a short circuit, and exhibits saturated behavior.

Solution:
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a)

b)

d)

CHAPTER 7. THE MOSAMPLIFIER

When there is current going through R, the current is limited by two quantities:
either *5 or £ (vgs — Vir)?, whichever is lower. If the limit is Vs /R, then the MOS-
FET is in the closed-switch region. If the limit is £ (vqs — Vir)?, then the MOSFET
is in the saturation region.

open-switch region For vgs < Vi, the MOSFET is open, therefore voyr = V5.

saturation region When vgg begins to exceed Vi, the quantity vgs — Vi is still
small, so the current is limited by %(vgs — V)2 This current determines the
output voltage, which is given by vour = Vs — £E (v — Vi)

closed-switch region ipg increases until it reaches % at some gate voltage Vix.,.
Now wvpg drops to zeros, and both ipg and vps are no longer affected by the
increase in vgs.

In summary,
Vs 0<wun<Vp
vour = Vs — Ef(uin — V)2 vr < uiny < Ving
0 ‘/iNT S VIN S ‘/iNMAx

The lowest value of vy for which voyr = 0 occurs when vy is at the transition
between the saturation region and the closed-switch region. At this point, the satu-
ration region current limit and the closed-switch region current limit are the same,

. Vs K
ips = ES = E(VINT - VT)2

Solving for Vix,, we get

2V%
Ving = K—}S% +Vr

Combining the results of part (a) and (b), we obtain the following equations.

15 0 S VIN S 1
YVouT = 15 — 15(1)11\] — 1)2 1 S VIN S 2
0 2<wun<3

The graph is shown in the figure.

Region 1 is the open switch region, where voyr = V5 = 15. Region Il is the satu-
ration region, where voyT drops according to Vs — %(UIN — Vr)? . The MOSFET
enters the closed-switch region when vy = Vin, = 2. In this region, voyr = 0.
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VouT

15

10

ANS:: (D)Ving = /25 + Vrp

Problem 7.3 A two-stage amplifier is shown in Figure 7.13. It is constructed by cascad-
ing two one-stage amplifiers of the type seen in Problem 7.2. In analyzing this amplifier,
use the MOSFET model described in Problem 7.2 and illustrated in Figure 7.12.

Vs Vs

R R
= =

+
[ + 04[ Vout
VIN VMID ]
_i '

Figure 7.13:

a) The fact that a second amplifier stage is connected to the first amplifier stage does
not change the operation of the first stage. That is, the relation between vy and
vrn here is the same as the relation between vy and vy in Problem 7.2. Why?
What terminal characteristic of the second MOSFET must change in order for this
not to be true?

b) Derive the relation between vymp and vy for 0 < vy, and the relation between
vouT and vy for 0 < vy < Vs. Hint: see Problem 7.2.
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c) Derive the relation between voyr and vy for 0 < vy

d) Determine the range of input voltages for which both MOSFETSs operate under the
saturation discipline. What are the corresponding ranges for vyip and voyr?

e) Using the numerical parameters given in Problem 7.2, graph vour versus vy for
vy for 0V < vy < 3 V. Compare this graph to the input-output graph found in
Problem 7.2, and explain the differences.

Solution:

a) The second amplifier does not change the operation of the first because its input
draws no current. If the second amplifier drew current from the first, then the out-
put of the first amplifier would be affected by the input resistance of the second
amplifier.

b) There are three modes of operation for each amplifier. The cutoff and the satura-
tion modes will be considered, and the triode mode will be ignored for now. In
saturation, the equations derived in Problem 8.2 remain valid, as does the threshold
voltage. We must also figure out the threshold between the saturation and triode
regimes. The MOSFET is in saturation when Vps > Vs — V. This implies that
vMID > Uin — Vo, Or that Vs — K—QR(’UIN - VT)2 > vy — V. This ImplleS that

—1++1+2KRVs

<V
N < V7 A+ KR

Let us define Vix,, to be this threshold.
A similar calculation can be made for vour VS. vmID.

For the first amplifier,

Vs 0<wun <Vp
o =14 Vs — EE(ow — Vr)? Vi <o < Ving
f(viw) Ving < vinv < ViNngax

For the second amplifier,

Vs 0 <ovmmp < Vr
vour =3 Vs — EE(vmn — Vi)? Vi < wwin < Vi,
f(vmip) Vamr < v < VMIDyax
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c) This part is trickier.

First of all, if vy < V7 then vyp = Vi, so the second FET will be either in
saturation or triode, depending on the value of R. Let us find the condition for
saturation.

1 1 2Vs

Vs < Vr - ke \Vrer T kR

Simplifying this, one gets:

2Vp
KR< ———
— (Vs —Vp)?

Let us assume that R is large enough that if v;y < Vi, the second FET will be in
triode. Then, while the first FET is in saturation, we can find the minimum value
for which the second FET also enters saturation.

S DY B R
ML =TT TR TV K2R T KR

Substituting in for vyp and simplifying, we get that

2V¢ A% 2 4 8V4
UINSVT-i‘\I - =+ _\/K4R4+ -

KR KR ' K2R? K3R3"

Now, we can prove that the second FET entered saturation before the first FET left
it. We prove that the value just derived is less than the boundary condition for the
first FET to leave saturation.

This expression:

P EACREI S _\/ 4, 8%
""\KR KR K?R* \K'R' K3R¥
Must be less than this expression:

. 1+ 1 +2VS
T KR K?2R? " KR’

This simplifies to
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—2Vr <0.
KR —

This is always true for NFETS, which is what we are using, so we have proven that
there will be a range for which both FETs are in saturation. Next, either the first
FET will enter triode, or the second will enter cutoff. Since we are not dealing with
the triode region, it is easier to assume that the second will enter cutoff while the
firstis still in saturation. Therefore, we want to have both of the following equations
satisfied:

B N L
NS T R TV KR T KR

KR
Vs — T(UIN — Vr)? < Vi

We find the threshold condition for these two inequalities by setting the lower and
upper bounds of vy the same. Simplifying, we get that

KR > 2(‘/57_2‘@
Vi

We now have two conditions on K R that must both be met. For now, assume that
Vr = 2V and Vs = 5V. Therefore, we must make KR > 2. We will choose
K =2x 103 and R = 1k.

We must now calculate the final branch of our voltage transfer graph, which is when
both inverters are in saturation. Substituting previously derived equations, we get
that

KR KR
vour = f(un) = Vs — T(VS - T(UIN —Vr)? = Vp)?

In summary, if

3 2Vs 2V 2 \/ 4 8Vs
Vir =V + \l KR kKR KR KR KR



195

([ C uin < Vp
glun) Ve <wuw <Vy

2Vx 2V;
vour = { J(vx) VH<vIN<VT+m
%o Vit B TS on <Vi+\/odm+ B

Vs Vi+\om + 25— 25 < Ui

C'is aconstant, and g is an undetermined function, since both would require the use
of triode equations.

d) This is the third region in the previously calculated transfer function.

KR KR

vour = f(uin) = Vs — —(Vs 5 — vy — V)2 = V)2

This holds when

2Vs 2T \/ . 2V 2V
KR KR K2R2 K*R* K3R3— W="TTVKR KR

e) Using the formulas derived in part (c), we find

C 0 S VIN S 2
_ g(UIN) 2 S VIN S 2.43
YOUT =4 15— 5515 — B(yy — 2)2 — 2)2. 243 < upy < 2.56
15 2.56 S VIN

This is shown in Figure 7.14.

Note that the transition region of this two-stage amplifier is much narrower than
that of the single-stage amplifier earlier. This is because when the second amplifier
is saturated, the first amplifier is also saturated. Since vyp IS the output of the first
stage, its range maps into a much smaller range of vy values.

ANS (d) \/ZVS - % + K2R2 \/ K4R4 + 1(8523 < VIN > < (% + 2VS

Problem 7.4 Consider again the two-stage amplifier shown in Figure 7.13. Suppose that
the MOSFETS are characterized by the following equation in their saturation region:

K ,

7;DS = —
2 GS
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| |
|
Il
al Il
Il
Il
3l |
Lo
Ll
Il
2= Ll
Ll
T
1= Bl
— ||

I v

| | | |l N

% 1 2 3 4 el

Figure 7.14:

In other words, the threshold voltage Vr = 0. Furthermore, the MOSFETS operate in
their saturation region when

vps > vas and wvgg > 0

Show that there is only one input voltage for which both stages simultaneously operate
under the saturation discipline. What is that input voltage?

Solution:
KR
vmip = Vs — —UIQN
2
KR
VouT = VS - 7”1%/{1[)

For the saturation discipline to hold for both, the following inequalities must all be met:
UMID = VIN, VoUuT > UMD, ViN > 0, vpm > 0. SUbStitUting the equations from above,

KR KR
Vs — TUI%/HD > Vs — TUIQN

2 2
VIN 2 UMD
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Therefore since vmmp > 0, we find that VIN > UMID and UMID > VIN, SO Upyp Must equal
vy for both MOSFETS to both adhere to the saturation discipline. Solving the equation

N = Vs — %%I?N, we find that this occurs when
. V1+ 2KRVs
N KR

ANS:: ppy = =HRVIE2RIS

Problem 7.5 Consider the “source-follower” or “buffer” circuit shown in Figure 7.15.
Use the SCS MOSFET model (with parameters Vi and K) to perform a large-signal
analysis of this circuit according to the following steps.

A VS A VS

b ! | Equivalent
|

. |
G |: o l ip ! SCS quel
S Y ; (saturation)
L + ¥ L +
YIn ? R % VouT YIN <> R % Vout
RS *

Figure 7.15:

a) Assuming that the MOSFET operates in its saturation region, show that voyr is
related to vry according to

J@/RK) + (v — Vi) —/2/RK]
> .

Vout =

b) Determine the range of vy over which the assumption of saturated MOSFET oper-
ation holds. What is the corresponding range for voyr?

Solution:

a) By Ohm’s law,

vouT = ipR
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Figure 7.16:

Substitute in the formula for the current source:
K
Vout = E(UGS - VT)ZR

Substitute for vgs = vin — Vour:

RK

VouT = T(UIN — VoutrT — VT)2

Letv, = vin — Vot and o = RLK:

2 2
Q- VouT = Vg — 2UsVouT + VouT

This can be solved using the quadratic formula to obtain:

2v, + o £ Va2 + du,o
5 .

VouT =

This simplifies to:

1 1 \? 2
vour = UiN — V1 + K + \/(R—K) + (vin — VT)R—K

We will determine which root to use in part (b).
Check the formula given in the problem by expanding it algebraically:

lm_ﬁr
. ,

Vout =

(o + 4v,) — 2v/a? + dv,a +
4 3

VouT =

20, + @ — Va? + dv,a

2

VoutT =
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b) Two conditions must be met for the MOSFET to remain in saturation:
vgs > Vr (7.1)
Ups = vgs — Vr (7.2)
In addition, we require that Vs > vour > 0V and % > i > 0A.

Condition (1) requires that vgs = vy — vouTt > V. The minimum value of voyr
iSOV (ip = 0A). Then we require that vy > V.

Note that condition (1) also requires that

Ny — V- 1\?
viN > vout + Vr = UIN+RK \/IN T+<RK)

0> \/UIN_UT 1 )2
RK RK

Thus we must take the negative root in the formula for voyr:

2

i (7.3)

UOUT—UIN—VT+——\/ +UIN—UT)

RK
Condition (2) I'eqUireS that vps > vgs — Vo = Vs — vout > vin — vout — V.
Then we require that Vs + Vi > .

To be thorough, check that this value of vy will not cause voyr to exceed Vs.
The maximum value of voyr is Vs (ip = %).
Vs K

ip = R E(UGS — Vrp)?

/ 2
sun=Vs+Vp+ VSRK

Hence voyT Will not exceed Vg while the MOSFET is in saturation.
ANS:: (b) Vi < vy < Vg + Vp

Problem 7.6 This problem studies the use of a mythical MOSFET-like device called a
ZFET to construct an amplifier as shown in Figure 7.17. The ZFET operates in its satura-
tion region when vgg > 0 and vpg > 0. In this region, the drain-source terminal relation
is ips = Kwvdg, where K is a constant having units of A/V3. When vpg = 0, the ZFET
exhibits a short circuit between its drain and source terminals, and is said to operate out-
side its saturation region. Similarly, the ZFET exhibits an open circuit for vgs < 0 as it
again operates outside its saturation region. Finally, the gate terminal always exhibits an
open circuit. These characteristics are summarized in the figure, beneath the symbol for
the ZFET.
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ZFET Symbol

CHAPTER 7. THE MOSAMPLIFIER

ZFET Amplifier

VIN G

Figure 7.17:
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a) Assuming saturated operation of the ZFET, determine voyr as a function of vyy.
b) Over what range of vy will the ZFET operate in its saturation region?

c) Assumethat Vg =10V, Ry, = 1 kQ and K = 0.001 A/V3. Sketch and clearly label
vourt as a function of vy for =1V < vy <3 W

d) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of Vy = 7 V. Why or why not?
Assume that Vi, = 2 W.

e) Given the parameters of part (c), can the amplifier can be used as an inverter that
provides a valid output high voltage threshold of Vi = 7 V. Why or why not? This
time around, assume that V;, = 1 V.

Solution:

a) Using a single KVL equation, we get that Vs — vg — voyr = 0, Where vy is the
voltage drop across the resistor. This is given by the current through the ZFET
(since it is the same as the current through the resistor) multiplied by the resistance.
Therefore, we get that

3
VouT = VS - KRUIN

b) First of all, vy > 0. Then, voyr < 0, so if we substitute O into the previously
determined formula, we get that

VS 3
< —_— .
0w < (RK)

¢) RK = 1. For the saturation region, vour = 10 — vi. This is shown in figure 7.18.

d) No. The output that corresponds to Vi, = 2 is voyr = 2, so for some values less
than Vi, a value that is less than V3, so it cannot be used as an inverter.

e) Yes. In this case, the device can be used as an inverter, since the output correspond-
ingto Vi, = 1iswoyr = 9, so for all values that are less than V;,, a value that is
greater than V3 will result.

ANS:: (@) voyr = Vs — KRvd (0) 0 < vy < (g—f()g (d) no (e) yes
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L CA VouT

| | | LN
4 6 8 1

Figure 7.18:

+VS-_L

Figure 7.19:
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Problem 7.7 Consider the difference amplifier circuit shown in Figure 7.19. Notice that
the difference amplifier is powered by +Vs and —Vs5 power supplies. Assume that all
MOSFETSs operate under the saturation discipline, and, unless indicated otherwise, are
characterized by the parameters K and V7.

a) Determine vo and vg for the connection shown in Figure 7.19a. In this figure, the
gates of the MOSFETSs are connected to ground.

b) Consider the difference amplifier version shown in Figure 7.19b. In this figure, a
MOSFET implementation of a current source replaces the abstract current source
from Figure 7.19a. Determine values for V3 and W/ L such that the circuit in (b) is
equivalent to that in (a).

c) The difference amplifier in Figure 7.19c is driven by two input voltages v1x and v
as shown. Assume that the input voltages satisfy the following constraint v;y, =
—urg at all times. Determine voa, vog, and v as a function of vy4.

Solution:

a) Because both FETSs are identical, we know that vgs = 0 — vs and 2ip = I =
K (—vs — Vr)2. Solving for vs,

—2K Vi — \JAK?VZ — 4K?V2 + 41K
2K

Vg =

Simplifying, vs = -V — \/% vo can be found using KVL: vg = V5 — %.

b) The current through the new mosfet must be equal to the current of the old current
source, ip = %(UGS — Vr)? = I, where Ky = % The gate to source voltage
of the new MOSFET is vgs = Vg + V5. Substituting and letting K be the K value
associated with the transistors of part a.,

KW
2L

(Ve + Vs — VT)2 = K(—vs — VT)2

Therefore I = 25 and Vg + Vs = —vs, or Ve = Vo + /& — V&,

c) Using MOSFET characteristics and KVL, vox = Vs — £EL (y4 — vg — V)% and

vop = Vs — K?L (—via — vs — V)% By KVL, vo = voa — vog. Substituting for

voa and vop using the above equations and cancelling, vo = 2K Ry via (vs + V)2

ANS: (@) vs = —Vi — [, vo = Vs — BL () W = 2K vy = Vo + /T — Vi
(©) vor = Vs — K (va — vs — V)2, vop = Vs — K2 (—va — vs — V)2, vo =

QKRLUIA(US + VT)2
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Problem 7.8 Consider the amplifier circuit shown in Figure 7.20. The amplifier is pow-
ered by a +V5 and a — V5 power supply.

+Vs'1

_VS.|.,:L

Figure 7.20:

a) Determine vo and ip as a function of v; under the saturation discipline. Assume

that the MOSFET parameters K and V7 are given.

b) Determine the range of valid input voltages for saturation region operation. Deter-
mine the corresponding valid range for vo and ip.

c) Determine the output voltage when the input is grounded. In other words, for v; =
0.

d) Determine the value of v for which v; = vg in terms of Vs, Ry, and the MOSFET
parameters.

Solution:

a) Using a single Kirchoff voltage loop, we get that Vs — vg — vpgr + V5 = 0. We
can also get that ip = £ (viy + Vs — Vi)™
Since vggr = wour and wvg = ipRy, we can substitute, to get that
vour = Vs — %(UIN + Vs — V)2

b) The two threshold conditions are Vg > Vi and Vpg > Vigs — V.

For the threshold between saturation and cutoff: vy + Vs > V. The MOSFET is
off at this point, so ip = 0 and voyt = Vs.

For the threshold between saturation and triode:
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KR
Vs — T(UIN + Vs —Vr)? > o + Vs — Vi

Simplifying this, one gets that the saturation range is

VIFOVeKR 1
“Ve<un < Vp— S
Vr=VssowsVr—Vs+ ——% KR

For the upper bound, the current and output voltage can be found by substituting
into the saturation equation. The current is:

K ( -1, VT 2‘VST(R)2

D=5 \KR KR

This can be simplified to:

1
i = o (1+ VaKR — /14 215KR).

The voltage can be found by finding the voltage drop across the resistor and sub-
tracting it from the supply voltage.

1 EE—
UOUT:VS—K—R(1+V5KR— 1+2‘/3KR)

We must first determine which region we are in. If V5 < VT then we are in cutoff
and voyTr = V5. This is not very likely for our purposes, since our supply voltages
are at least 3 volts usually, and MOSFET threshold voltages tend to be below 2.5
volts. (For lower supply voltages, lower threshold voltages are used too.)

However, if the following condition exists, then we are in triode:

1+2VsKR—-1

— >
Vs —Vr 2 KR

Using the values Vs = 5V and Vr = 2V, we can find a a suitable threshold for KR.
Solving the quadratic equation results in the possibilities K R < 0 (not possible) or
KR > g Therefore, if we want to be in saturation for the chosen voltages, then we
have to choose KR < 3.

If we are in saturation, then by substitution:

KR
vouTt = Vs — T(Vs — V)2
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d) For this, assume that we are in saturation.

This can be solved for vy, resulting in:

vmm = Vr — Vs —

CHAPTER 7. THE MOSAMPLIFIER

RK
vmmp = Vs — T(UMID + Vs — VT)Q-

VI+4KRVs — 2KRVq

KR+

KR

ANS:: (a) ip = %('UIN + VS - VT)Q, VouT = VS - %(’UIN + Vs — VT)2 (C) VouT =

Vs = R (Vs = V)2 (d) o = Vir — Vs — g + YK

RVs—2K RV

KR

Problem 7.9 Consider the current mirror circuit in Figure 7.21.

-

Vs

Re

i

—L

Ove w,
Ly
(b)
Figure 7.21:

Vs
i

-

—iL

a) Referring to Figure 7.21a, determine Iy, as a function of I assuming both MOSFETs
operate under the saturation discipline. Both MOSFETSs have the same values for
K, and V. Does I, change if V7, changes? What are the conditions under which

L, =17

b) Now consider Figure 7.21b. The current I can be increased either by increasing
Vs or decreasing Rc. Assuming that either Vs or Rc may be changed, and that
Wy/Ly = Wy/Ly = W/L, determine the range of values of I for which both
MOSFETSs operate under the saturation discipline. Assume both MOSFETSs have
the same values for K,, and V7.

Solution:
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a) We know that vqs = V5 — I Rc. Therefore, substituting appropriate parameters,
I = KHWZ(VS — IRc — V)2, The equation for Iy, can not change if V4, changes
as Vi is not present anywhere in the equation for I7,. Logically this is so because
a MOSFET’s drain to source current is only dependent on its input voltage, its
threshold voltage, and its geometric parameters, of which only its input voltage can
be changed, and V71, can have no effect on this MOSFETSs input voltage due the con-
figuration of the circuit. As the input voltages for both MOSFETS are equivalent,

H Wi _ We
I1, will equal I when I = Ik

b) To operate under the saturation discipline, vgs > Vir and vps > vgs — V. Substi-
tuting into the first inequality from parta., Vs — IR > Vpor I < VS Yz for both
MOSFETs. Given that for MOSFET 1 vgs = vpg, the second mequallty always
holds for that MOSFET. For MOSFET 2, vpg = V4, — I1,R;,, where we know that
I = I,. Substituting and solving, I > J—VL Finally,

ANS:: (b) Yo ¥e > T > YoV Vi

—Rp,

Problem 7.10 Consider the circuit shown in Figure 7.22. Assume that the MOSFET
operates under the saturation discipline.

s p o
Vo
Rs G Rp
1% el
Figure 7.22:

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine vo and ip in terms of Rp, Rs, Vs, and the MOSFET parameters K and
Vr.

Solution:

a) See Figure 7.23.
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Ip

Vo
Rs Rp
1Y el
Figure 7.23:

b) By KVL, vgs = Vs — Rsip and ip = %(Vg — Rgip — VT)Q. Expanding, 0=
KR%? — (KRs(Vs — Vo) + 1)ip + £ (Vs — V)2 From here we can solve for ip,
and substitute into the equation vo = Vs — Rpip.

_VS_VT+ 1 \/QKRS(VS—VT)+1

=R TKmT KR?

R
vo = Vs — K—Ez(KRS(‘/S’ — Vi) + 1+ /2K Rs(Vs — Vi) + 1)
S

. , _ V2K Rs(Vs—Vr)+1
ANS:: (b) ip = ¥ 4 by 4 VZERUETN g = Vo — oy (K Rs(Vs — Vi) +

14+ \/QKRS(VS — V) +1)

Problem 7.11 Consider the “common-gate amplifier” circuit shown in Figure 7.24. As-
sume that the MOSFET operates under the saturation discipline.

s p b
Vo
V| G RD
l + VS - +VS' ’1
Figure 7.24:

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine vg and ip in terms of v;, Rp, Vs, and the MOSFET parameters K and
V.
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c) Determine the range of values of v; for which the MOSFET operates under the
saturation discipline. What is the corresponding range of vo?

Solution:

a) See Figure 7.25.

Vo
v Rp
1% el
Figure 7.25:

b) There is only one relevant current, and it passes through the MOSFET, so we as-
sume that the MOSFET is in saturation and use the relevant formula.

. K
ip = E(Vs — UIN — VT)Z-

Then, using a Kirchoff voltage rule, we can find that

KR
vour = Vs — B 2 (Vs — UIN — VT)Q-

¢) Again, we must consider the boundaries for saturation: Vgs > Vg and Vps >
Vas — V.

For the boundary between saturation and cutoff:
Vs —uin 2 V.

And for the boundary between saturation and triode:

KR
Vs — T(_UIN + Vs = Vi)’ —uw+ Vs > Vs — oy — V.

These two can be simplified to get
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2
Vo =V — K—R(V5+VT)§UIN§VS—VT-

The output conditions can be found by substituting into the previously derived for-
mula. Simplifying results in

—Vr <wvour < Vs.

ANS:: (b) ip = £ (Vs — viv — V)%, vour = Vs — EE2 (Vg — vy — V)2 (€) =V <
vour < Vs

Problem 7.12 Consider the MOSFET circuit shown in Figure 7.26. Determine the value

of v in terms of the other circuit parameters. Assume the MOSFET is in saturation and
is characterized by the parameters K and V.

Vs
Rl RL
V,
VA o
Ro
Figure 7.26:

Solution:

Due to the fact that the gate of a MOSFET has no input current, we can determine
the Thevenin equivalent of the voltage divider produced by Vs, Ry, and R, to find v and
then substitute appropriate parameters into the KVL equation vo = V5 — Ryip.

_ KRL RQVS 9
Vo = Vé 9 (R1 T R2 VT)
ANS:: vo = Vg — %(% —Vi)?
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1

Figure 7.27:

Problem 7.13 Consider the MOSFET circuit shown in Figure 7.27. Determine the value
of v in terms of the other circuit parameters. Assume the MOSFET is in saturation and
is characterized by the parameters K and V.

Solution:

Due to the fact that the gate of a MOSFET has no input current, we can determine
the Thevenin equivalent of the voltage divider produced by Vs, Ry, Rr and Rg to find
v = &fgiﬁ%. If the current through Ry, is i, the current produced by the MOSFET
is ip, and the current through Ry is ig, by KCL it = ig + ip. By KVL, Vs — Rpit =
(Rp + Rg)ir, Which is equal to vo. Solving for it in terms of iz and substituting into our
KCL equation, we can solve for iy.

‘/5 B (RF + RG)iR ) K RGVS ,
- o5 -V
RL ZR+ Q(RL+RF+RG T)
o 05T S (reimg — V)’
: RL + RF + RG
Finally, because vo = ix (Rr + Rr), We find that
RF + RG KRL RG’VS \
Vo RL+RF+RG(S 5 (RL+RF+RG 7)°)
ANS:: vo = g s (Vs — 5 (mrifmime — V1))

Problem 7.14 Figure 7.28 shows a MOSFET amplifier driving a load resistor Rg. The
MOSFET operates in saturation and is characterized by parameters K and V. Determine
vouT Versus vy for the circuit shown.

Solution:
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Figure 7.28:

First of all, assume that the circuit is in saturation. Call the three currents as follows:
through resistor Ry,: I, through the MOSFET: I, and through resistor Rg: I5. All three
of them point from higher voltage to lower, so therefore I; = I, + I3. This is shown in
Figure 7.29.

Figure 7.29:
The three currents can be determined in terms of vy, vouT, and MOSFET parameters:

vout = I3RE,

Vs — IRy, — VouT,

K
IQ = E(UIN — VT)Q.

Substituting this into the KCL equation and solving for voy, We get

2

Vi — KEL (vix — VT)2 B 2VsRy — KRRy (viNy — VT)z
1+ g_; - 2(Ry, + Rg)

VoutT =



213

However, this only applies for when the MOSFET is in saturation. We must find the
range of vy for which this holds valid. The boundary between saturation and cutoff is
merely vy > V. The boundary between saturation and triode can be found as follows.

2VSRE — RERLK(UIN - VT)2

> — Vr.
Q(RL+RE) Z VIN T

Solving this for vy, one gets the following boundary conditions for saturation:

Ry + Ry \/ )2 2Ws
Ve < < V= — — .
TSUNS VT p K2 " ®.) T KR

For the cutoff region, we can find the output voltage through a simple voltage divider
relation, since no current flows through the MOSFET:

Rg

Vout = Vsm-

The voltage transfer characteristic for triode region will not be considered for this
problem.

. _ 2VsRg—KRgRp(vin—V7)?2
ANS:: VoUuT — 2(Ri+ Rp)

Problem 7.15 Determine voyT Versus vy for the circuit shown in Figure 7.30. Assume
that the MOSFET operates in saturation and is characterized by the parameters K and V.
What is the value of voyT when vy = 0?

Solution:

Start off with the following KVL equation, where vgp, vrrT, and vgs are the voltages
across Rp, the MOSFET, and Rg, respectively.

Vs —vrp — vrrT — URs + V5 = 0.

This is shown in Figure 7.31.

Since the voltage across a resistor is equal to the current through it times the resistance,
and there is only one relevant current in the problem, we can rewrite the equation as
follows:

2‘/5 - Z(RD + Rs) = VFET-

Now, we must find the current. Assume that the MOSFET is in saturation - we will
find the boundaries for this assumption to be valid in a bit.
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+Vs'1

Rp
V| ‘_|
Vo
Rs
Vet
Figure 7.30:

Figure 7.31:
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K
1= E(UIN - ZRS + Vé - VT)Z.

We solve for i to get

Z._'UIN+VS_VT+ I 2(vix + Vs — Vi) i 1
B Rs K R? KR} K2RY

Now, we must find the boundary conditions for the saturation region. For the boundary
between saturation and cutoff, there is no current flowing through the MOSFET, so there
is no voltage drop across the resistors, so we simply have

vy > Vp — Vs,
Now, for the boundary between saturation and triode, we have this equation.
v+ Vs — Vr =1Rp.

Let vx = v; + V5 — Vi, and substitute in for i:

UX—QVS: 2’Ux_ 1 _U_X_ 1
Rp KR: K?R: Rs KRZ

We solve this for vx since that is in terms of v; and constants.

2V 4 2Vs 1 L 4Vs 4V
Rp ' RsRp  KRpR3 K?2RIR: ' KRZRZ, ' KRiRp
2
1 1
(RD +RS)

Now, solve for Viy, and find the boundaries of the saturation region:

Vx =

Vi=Vs <M

2 2 3
2VsR3 + 2VsRsRp — 2 — % n 4VSF1i’SRD 4 4V§(RD

(RD + Rs)2

Vi<Vr—Vs+

Now, to actually find voyr. Using a KVL equation, we can find that voyt = iRs — Vs.
In cutoff, vouyr = —Vjs since there is no current through the resistors. In saturation,
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1 _ 2('UIN+‘/S —VT) n 1
K Rs KRs K?R?

vouT = UIN — VT +

When there is an input voltage of zero, the system could be in cutoff, saturation, or
triode. For typical values of V5 and Vi, the device will not be in cutoff. But if it were, the
output voltage would be — V4.

For values of V5 = 5V, and V1 = 2V, we can find a relation between Rg, Rp, and K
that allows the device to avoid the triode region.

If we substitute into the boundary condition, we get this relation:

10Rg 1 Rg 1 40
< _ R el e
3 (K Rp K2 + K(

R R .
— Rs+ Rp (Rs -+ RD)2 s+ D))

Further analysis is optional - we can assume that the device is in saturation for Viy =
0. If this is the case, then

1 2(Vs = V- 1
vour = —Vr + —J (Vs — Vi)

K Rs KRy KR

. - . 1 _ 2(’U1N+VS—VT) 1
ANS:: VouT — VIN VT + KRs \/ KRs + KQRg

Problem 7.16 Determine v Vversus vy for the circuit shown in Figure 7.32. Assume that
the MOSFET operates in saturation and is characterized by the parameters K and V7.
What is the value of vo when vy = 0?

Solution:

Most of the work has already been done in the previous problem. The boundaries for
cutoff, saturation, and triode remain the same, as does the current. All that changes is the
output voltage.

Using a KVL equation, we find that voytr = V5 — ¢Rp. This is shown in Figure 7.33.
In cutoff, vour = V5. In saturation, we get that

R
UOUT=VS—R—]SD(UIN—VT+VS)+

Ry 2R2 (vixy + Vs — V1) R},
KR KR} K?RE



Rp
Vo
Rg
et
Figure 7.32:

Figure 7.33:
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For an input voltage of zero, we will assume that the system is in saturation since the
cutoff calculation is simply the rail voltage vour = Vs, and the triode calculations are
unnecessarily terrible. In saturation,

Ro  |2R3(Vs— Vi) | R}
KR? KR} K2RE

R
vour = Vg — R—D(—VT +Vs) +
S

2R (V5—V; R2
ANS:: voyr = Vs — 22 (Vo + Vs) + Iﬁgé — \/ Dﬁ(;g o 4 "R

Problem 7.17 Determine v versus vy for the circuit shown in Figure 7.34. Assume that
the MOSFET operates in saturation and is characterized by the parameters K and V7.

AVs
SR
Ry
Vo
V| Rl I:
Figure 7.34:

Solution:

First of all, define vg to be the gate voltage. Also, define three currents i, o, and i3
to be the currents flowing through Ry, Ry, and the MOSFET, respectively. Define i3 to be
flowing towards ground, and let i; + i, = 43. This is shown in Figure 7.35.

The gate voltage can be found through a voltage divider rule since no current flows
from between R; and R, to the gate.

R, N R,
Vg = 50 —
TR 4R, N R+ Ry, OV

In cutoff, the output voltage and the input voltage are related by a voltage divider rule:

Vs(Ry + Re) + VinRL
Ri + Ry + Ry,

VouT =
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Figure 7.35:

In saturation, we have an extra current to worry about. We substitute into our original
KCL equation to get

2

VS—UOUT+U1N—UOUT:£< Ry S R, ’ —V)
Ry Ry 2 \R + Ry, TR+ R, OV T

We can solve this for voyr, but it ends up being quite monstrous. Let Rt = R; + Rs.

v _ RQRTVT . RQUIN _ R’2I‘ _ RT T \/L+M+N
out R? R.  KR.R, KR oKRiR, '

with the following subexpressions:

L= R%(Rr+ Rp)?%,

M = K2R%R%VT(R1 - Rz)(QUINRl - VTRT)a

N = 2K (VsRLR?R% — VrR1RyRA(Ry + Ry + Ry) + vinRLRIR%(RL + Ry)).

The boundaries for which the device is in saturation can be found by evaluating vg >
Vr and vout > vg — vr. This evaluation is even more complicated than the previous
equation, since vg is given in terms of voyT, and needs to be put in terms of vyy. In terms
of both vy and voyT, the boundary conditions are derived much more easily.

Between saturation and cutoff:
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R,

+ i >V
v v
R1+R21N R1+R2OUT_T
Between saturation and triode:
R+ R,
VouT = VIN — U
Ry

Problem 7.18 Consider the BJT circuit called the “common-collector amplifier” shown
in Figure 7.36. This BJT amplifier configuration is also called the source follower circuit.
For this problem, use the piecewise linear BJT model from Exercise 7.8. Assume that the
BJT operates in its active region.

Figure 7.36:

a) Draw the active-region equivalent circuit of the BJT source follower by replacing
the BJT by its piecewise linear model.

b) Assuming active region operation, determine vp interms of v;, R;, Rr and the BJT
parameter 3.

¢) What is the value of vo when GRg >> R;?

d) Compute the value of v giventhat v; = 3V, Ry = 10k, Rz = 100k, 5 = 100, and
Vg =10V.

e) Determine the range of values of v; for which the BJT operates in its active region
for the parameter values given in (d). What is the corresponding range of vo?

Solution:
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b)

Vo = ZERE
ig(3+1)Rg
w0 t08) (5 4 1) Ry

(’U[ —0%0 - 06)(ﬂ + 1)%
__Ur=Y.6

Ry
N CE=y 3=

c) When SR >> Ry,

1)0%1)]—0.6

d) Substituting into
v Vr — 0.6
o= 7 R’
1+ irs
we have
3—0.6

= 10k
1+ (100+1)100k

vo

Or,
vo & 2.4V
e) Atthe low end, v; > 0.6, so that the BJT is not in cutoff.

At the high end, v; must not be too large, or else the BJT will enter saturation. The
BJT enters saturation when
UBrg = VUcg + 0.4

Or, substituting for vgg and vog
0.6 = VS — Vo + 0.4

In other words, when
VS —vo = 0.2

We know
Vo = V15 — 0.6

Therefore, we need to solve for v; from
VS — V7 — 0.6 =0.2

Or,
Vr = 9.2V
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Thus the constraints on v; for active region operation are
0.6 <wvy <92V
The corresponding constraints on v are

0<vo <86V

ANS:: (b) v = Wﬂoﬁ)%) (©) vo = v; — 0.6 (d) vo = 2.4V (€) 0.6 < v; < 9.2V

and 0 < vp < 8.6V

Problem 7.19 Consider the compound three terminal device formed by connecting two
BJTs in the configuration shown in Figure 7.37. The three terminals are labeled C’, B’
and E'. The two BJTs are identical, each with 3 = 100. Assume that each of the BJTs
operates in the active region.

Cl
B’
B
B
El
Figure 7.37:

a) Draw the active-region equivalent circuit of the compound BJT by replacing each
of the BJTs by the piecewise linear model shown in Exercise 7.8. Clearly label the
C', B and E' terminals.

b) In the configuration shown, the compound device behaves like a BJT. Determine
the value of the current gain ' for this compound BJT.

c) When the base current ig: > 0, determine the voltage between the B’ and E’ termi-
nals.

Solution:

a)
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b) The current gain of the new device is given by
g=(B+2)p

c) When the base current iz > 0, both transistors are in their active region. In this
situation, the voltage between the B’ and E’ terminals is 1.2V.

ANS:: (b) 3’ = (B +2)3 (c) 1.2V
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Chapter 8

The Small Signal Model

Exercises

Exercise 8.1 Consider the amplifier shown in Figure 8.1. The MOSFET operates in its
saturation region and is characterized by the parameters V- and K. The input voltage
vy comprises the sum of a DC bias voltage V; and a sinusoid of the form v; = A sinwt.
Assume that A is very small compared to V7. Let the output voltage vo comprise a DC
bias term V, and a small-signal response term v,,.

Vs

R

Vo

Asin(wt) (1)
v, e

Figure 8.1:

a) Determine the output operating point voltage V,, for the input bias of V7.

b) Determine the small signal gain of the amplifier.
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c) Draw the form of the input and output voltages as a function of time, clearly show-
ing the DC and time-varying small-signal components.

Solution:

a) Vo =Vs— EEL(V; — V)2
b) small signal gain = §2,,_v, = —K Ry (V; — Vr)

c) See Figure 8.2.

ANS:: (a) Vo = Vo — £E2.(V; — V)2 (b) L2, _y, = —KR(V; — V1)

dvr

Exercise 8.2 Develop the small signal model for a two-terminal device formed by a
MOSFET with its gate tied to its drain, operating under the saturation discipline, with
parameters Vr and K.

Solution:

ips = %(UGS - VT)2

ips = 5(vps — Vr)

s s=vps = K (Vs — Vr)

The small signal model is resistor 74, = L

K(VD5—VT) '

ANS:: resistor r4, = m

Exercise 8.3 Develop the small signal model for a two-terminal device formed between
the drain and source terminals of a MOSFET with a 2 volt DC source connected between
its gate and source terminals (Vgs = 2V). Assume the MOSFET operates under the
saturation discipline. Assume further that V; = 1 volt for the MOSFET.

Solution:
ips = 5(vas — Vr)?

ips=502-17?=%

In other words, the two-terminal device formed between the drain and source termi-
nals of the MOSFET is a current source with current (K /2). Thus, the small signal model
of the two-terminal device is an open circuit.

ANS:: Current source ipg = % so that the small signal model is an open circuit



vV, + A=
v, /W
V| 'A*
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0
0

Vgi—

Vo + AKR (V| - V1)

Vol

Vo - AKRL (V) - V)i

e
|
s

)
=

s
|
s

Figure 8.2:



228 CHAPTER 8. THE SMALL SIGNAL MODEL

Exercise 8.4 Consider the MOSFET amplifier shown in Figure 8.3. Assume that the
amplifier is operated under the saturation discipline. In its saturation region, the MOSFET
is characterized by the equation

) K
ips = E(UGS — Vr)?

where ipg is the drain-to-source current when a voltage vgs is applied across its gate-to-
source terminals.

Vs
R
v,
5 o
% *iDS
V| ) s
1

Figure 8.3:

a) Write an expression relating vo to v;. What is its operating point output voltage Vo,
given an input operating point voltage of V;? What is the corresponding operating
point current Ipg?

b) Assuming an operating point input voltage of V7, derive the expression relating the
small signal output voltage v, to the small signal input v»; from the relationship
between vo and v;. What is the small signal gain of the amplifier at the input
operating point of V;?

c) Draw the small signal equivalent circuit for the amplifier based on the SCS model
of the MOSFET assuming the operating point input voltage is V7.

d) Derive an expression for the small signal gain of the amplifier from the small signal
equivalent circuit. Verify that the gain computed from the small signal equivalent
circuit is identical to the gain computed in part (b).

e) By what factor must Ry change to double the small signal gain of the amplifier?
What is the corresponding change in the output bias voltage?

f) By what factor must V; change to double the small signal gain of the amplifier?
What is the corresponding change in the output bias voltage?
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Solution:

a) Vo = VS — KézL (U] — VT)2

Vo = Vs — EE(V; — Vp)?
Ips = 5(Vi — Vr)?

b) %2lo=v; = —K Ry (Vi — V1)
Vo = —KRL(V} — VT)UZ'
The small signal gain is = —KRrp (Vi — Vr).

.
o % Y
+ I ds RL 0
Vi
[ T @

Figure 8.4:
c) See Figure 8.4.

d) Vo = —’idsR = —KRL(V} - VT)UZ'
=—KRy,(V; —Vr)

Yo
v

e) To double the small signal gain, Ry must double. This will decrease Vy by
KRy, (‘/I _ VT)2

2
f) 2(V; —Vr) = (XVr = Vr)
20V — 2V = (XVi — Vi)
To double the small signal gain, scale V; by X = %
The output bias will decrease by 2K Ry, (V; — V)2 to Vs — 2K R, (V; — Vi)?

ANS: () Vo = Vs—EEL(Vi—Vr)?, Ips = £ (Vi—V7)? (b) vo = —K R (Vi—Vr)v;,
w = —KRy (Vi —Vr) (d) 32 = —KR.(V; — Vr) (e) Ry, doubles (f) scale factor: X =

V4
2Vi=Vr

Vi

Exercise 8.5 Consider again the MOSFET amplifier shown in Figure 8.3. Assume as be-
fore that the MOSFET is operated under the saturation discipline, and that its parameters
are Vr and K.
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a) What is the range of valid input voltages for the amplifier? What is the correspond-
ing range of valid output voltages?

b) Assuming we desire to use voltages of the form A sin wt as AC inputs to the ampli-
fier, determine the input bias point V; for the amplifier which will allow maximum
input swing under the saturation discipline. What is the corresponding output bias
point voltage V?

c) What is the largest value of A that will allow saturation region operation for the bias
point determined in (b)?

d) What is the small signal gain of the amplifier for the bias point determined in (b)?

e) Suppose A is small compared to V;. Write an expression for the small signal output
voltage v, for the bias point determined in (b).

Solution:

a) vas > Vr
vgs — Vr < upg
— Vp < Vg — BB (v; — Vp)?
) TS Vs 5 (vr T)

VI+2KRVs—
VTSUISVT‘FmTisl

Vo = VS — K§L (U[ - VT)2

VI+2KRVs—1
KRy S Vo S VS

b) To maximize input swing, pick V; in the center of the range of valid input voltages.

_ VIT2ERRL V51
Vi=Vr+ 2KR;,

_ 3KRpVs+VIT2KRLVs—1
Vo = 4KRy

V1+2KRVs—1
C) A S 2KRy,

d) 2 =—-KR.(V; - V1)
v — 1=VIH2KRVs

Vg 2

e) v, =4(1 —/1+2KR;Vs)sin(wt)

2
V1+2KRVs—1 _ 3KRpVs+V14+2KRVs—1 V1+2KRpVs—1 1-vV14+2KR Vg
Vr + 2KRy, Vo = 4KRy, (©) 2KRy, (d) 2 €)

vo = 4(1 — 1+ 2KRVs)sin(wt)

ANS:: (@) vy — Vi < Vg — EBe(y; — V)2, %ﬁvgil <wo <Vs(b) Vi =
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Exercise 8.6 Consider once more the MOSFET amplifier shown in Figure 8.3. Assume
as before that the amplifier is operated under the saturation discipline, and that its param-
eters are Vi and K.

a) Using the small signal circuit model of the amplifier, and assuming an input bias
voltage V7, determine the small-signal output resistance of the amplifier. That is,
determine the equivalent resistance of the amplifier at the output port of its small-
signal model with »; = 0.

b) Develop a Thévenin equivalent model for the small signal amplifier as observed at
its output port.

c) What is its input resistance? That is, determine the equivalent resistance of the
amplifier at the input port of its small-signal model.

Solution:

a) Toutput = RL

WWW J

R
g(l _ JT+ 2KR_Vg)sin(wt)

Figure 8.5:

b) See Figure 8.5.
Tin = R,

Voe = 5 (1 — /T + 2K R V) sin(wt)

C) Tinput = OO

ANS:: (@) routput = R, (0) min = Rrp, voe = 2(1 — V1 +2KRVs)sin(wt) (c)

Tinput = OO

Exercise 8.7 Consider the common emitter BJT amplifier shown in Figure 8.6. The input
voltage vy comprises the sum of a DC bias voltage V; = 0.7V and a sinusoid of the form
v; = Asinwt, where A = 0.001V. For the values shown, you may assume that A is very
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small compared to V;. You may further assume that the BJT always operates in its active
region. Figure 8.7 shows a small signal model for the BJT operating in its active region.
Let the output voltage vo comprise a DC bias term V; and a small-signal response term
V-

Vo
B = 100

0.001 V sin(wt)

Figure 8.6:
C
C + ic
Ic .
i Bip
+
VBE e
E
e
E
(a) BJT (b) BJT small signal model
Figure 8.7:

a) Determine the output operating point voltage V,, for the input bias of V; = 0.7V.
b) Draw the small signal equivalent circuit for the amplifier.
c) Determine the small signal gain of the amplifier.

d) What is the value of v,, the small signal component of the output, given the small
signal input shown in Figure 8.6.



e) Determine the small signal input and output resistances of the amplifier.
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f) Determine the small signal current and power gain of the amplifier, assuming that
the amplifier drives a load Ro = 50k that is connected between the output node

and ground.

Solution:

a) We determine the operating point using a large signal analysis of the BJT amplifier.
Since a specific large-signal model of the BJT is not suggested, we will go ahead
and use the large-signal model of the BJT (in its active region) suggested in the text
book. (The text book gives an example of an operating point calculation for a BJT

amplifier in the large-signal amplifier chapter.)
The relation between V, and V; can now be derived as

Vi—0.6
Ry

Vo=Vs—BRL

(The above formula is also derived in the text book in one of the BJT examples in

the large signal amplifier chapter).
Substituting known values

Vo =10V
b)
c) Load Ry, is 50k.
/l)‘
o — —— R
v RIB L
Or v
— = —50
(%)
d)
v, = —50 X 0.001 sin wt
Or
v, = —0.05 sin wt
e)

T; :RI = 100k

TOZRL:50]€
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f) Load is now R; = 50k in parallel with Rp = 50k.

A current 4, at the input results in a current
ic = ﬂzb

through the collector terminal. This current divides between R, and R, according
to the current divider relation. The current gain is given by the ratio of 7, and the
current through Rp. We must also add on a minus sign since the direction of i, is
opposite to that of i.. Thus the current gain is given by

i

= —BRL/(RL + Ro)
b
For the parameter values given

fe = _50

(2

The power gain is the product of the voltage gain and the current gain. The absolute
value of the voltage gain with R, added in parallel with R;, will be cut in half from
50 to 25.

Thus, the power gain is given by

Polo _ (—25) x (=50) = 1250
V; 1p

ANS:: (@) Vo = 10V (c) =50 (d) v, = —0.05sinwt (6) r; = 100k and r, = 50k (f)

to _

i

—50 and :’}—‘:i—z = 1250

Problems

Problem 8.1 This problem studies the small-signal analysis of the MOSFET amplifier
discussed in Problem 7.3 (Figure 7.13) in the previous chapter.

a) First consider biasing the amplifier. Determine Viy, the bias component of vy, SO

that vour is biased to Voyt where 0 < Vour < Vs. Find Vyap, the bias component
of vyp in the process.
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b) Next, let vix = Vin + v Where vy, is considered to be a small perturbation of vy
around Vix. Make the substitution for vry and linearize the resulting expression for
vouT. Your answer should take the form voyt = Vour + Vour, Where v, takes the
form vy = Gvy,. Note that v,y IS the small-signal output and G is the small-signal
gain. Derive an expression for G.

c) For what value of Viy is voyr biased to Vour = Vs/2? For this value of Viy,
evaluate G, using the numerical parameters given in Problem 7.2 in the previous
chapter. You should find that this gain is the slope of the input-output graph from
Problem 7.3 in the previous chapter evaluated at the bias point.

Solution:

a)
Vurp = Vs—IhR
= Vs —05KR(Vix — vr)?

Vour = Vs — IR
= VS — 05KR(VM1D — UT)2

From above we can solve for Vi,

2(Vs — V¢
Vam = —( SKROUT) + vr
Similarly,
2(Vs — VA
Vi = R s
_ s 2w [ 8% 8Vour
- \KR KR K3R3  K3Rp3 T

b) Letvy = Vin+vin, We first solve for the current i1, going through the first amplifier,

iy, = SK(Vin+ vin —vr)’

SK (Vix — vr)? + Kvi(Vin — vr) + 5K},
SK(Vin — UT)2 + Kvip(Vin — vr)

= Iy +1}

Q
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vymrp 1S related to 47, by the following equations:

UMID = Vs - (I]II) + iii)R
= Vs — 5KR(Vix —vr)? — RKvy,(Vix — vr)

Now we solve for the current %), which goes through the second amplifier,

it, = .5K(vmmp — vr)?

B5K(Vs — 5KR(Vix — vr)? — RKvin(Vin — vp) — vr)?
SK[Vs — 5KR(Vix — vr)? — vp]?

— [Vs = BKR(Vix — vr)? — vr][RK?(Vix — v1)]vin

+ 5K3R*(Vix — vr) 202,
5K[Vs — 5KR(Vix — vr)? — vr]?

— [Vs = 5K R(Vix — vr)? — vr][RK?(Vix — v1)]vin

Q

Finally we relate voyr t0 vy,

vour = Vs—ipR
= Vs — .5KR[Vs — 5KR(Vix — v1)? — vp]?
+ K*R?[Vs — 5KR(Vix — vr)? — vr](Vin — vT)vin
Vour + Vout
= Vour + Gnin

where Gm = KQRQ[VS — 5KR(ViN — UT)2 — ’UT](VEN — UT).

¢) Recalling the equation derived in part (a), we get that

Vs |2 2 [ 4lg v
2 " \kr kr \Vrksp™'T

We substitute this into the formula for gain, getting that

Vs 2Vs  2Vp 4Vs
— K2 2 e o -
Gn = K°R ( KR) (J KR KR K3R3)

The parameters given previously were Vs = 5V, Vpr = 2V, and KR = 30. From
these parameters, we can find a numerical value of G,,, which turns out to be ap-
proximately 136.




237

ANS:: (a) VM = v/ 2(‘/81_(7‘;0[”) + v, Vin = \ 2(‘/51_(7‘1/%\“])) +ur (b) Gm = KZRQ[VS -
5KR(%N — ’UT)2 — UT](ViN — ’UT) (C) 136

Problem 8.2 Consider again the buffer described in Problem 7.5 (Figure 7.15) in the
previous chapter. Perform a small-signal analysis of this circuit according to the following
steps. Assume that the MOSFET operates in its saturation region and continue to use the
SCS MOSFET model with parameters Vr and K.

a) Draw the small-signal circuit model of the buffer.
b) Show that the small-signal transconductance g,, of the MOSFET is given by
9m = K(VIN — Vour — VT)
where Vix and Voyr are the bias, or operating-point, input and output voltages,
respectively.

c) Determine the small-signal gain of the buffer. That is, determine the ratio v,y /vig.

d) Determine the small-signal output resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the output port of its small-signal model with
Vin = 0.

e) Assume that Vo = 1V, K = 2 mA/V?, R = 1 kQ and V5 = 10 V. Under this
assumption, design the input bias voltage to satisfy the following two objectives.
First, MOSFET operation must remain within the saturation region for |v;,| < 0.25
V. Second, the output resistance of the small-signal model must be minimized.

f) Again assume that Vi = 1V, K = 2 mA/V?, R = 1 kQ and V5 = 10 V. For
Vin = 3V, compute the small-signal gain and output resistance.

g) Determine the small-signal input resistance of the buffer. That is, determine the
equivalent resistance of the buffer at the input port of its small-signal model.

Solution:

a)

b) Use the formula for the MOSFET large-signal current source (in saturation):

. K
ip = E(UGS - UT)2
Expand this formula in a Taylor series for vgs = Vigs +vgs (Total Signal = LARGE-

SIGNAL + small-signal).
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L
Y N
>Id_gmvs' -e -
: ------------ g__: +Vgs [ +
—® I
v C-D - * ° 'amImYes 2R Vo
" R% Vout Vin

. K K v?
ID + 19 = [E(UGS — UT)2:| + Ugs [2 * E(UGS — ’UT) + TgS[K] + ...

where the bracketed terms are evaluated at the large-signal bias point vgs = Vgs.
Then Ip = £(Vgs — vr)?. Ignoring higher-order terms, iq = gmv,s Where
m = K(VGS - UT) = K(VIN — Vour — UT) (8.1)

¢) Using small-signal equivalents, voy; = iqR = gmUgs R = gm (Vin — Vour) R.

Vout _ ng

an = =
g Vin 1 + ng

(8.2)

d) Connect v, to ground. Apply vt at the output and measure iies;. NOte that vy
and 7.s¢ appear to be anti-associated variables, but they will be associated variables
for the equivalent resistance we are measuring.

V, |
o+ gS_= :t.ea Py
I--—- --------- | +
e (T = OV
LN\ M =R Viest
Vin:0V i
R °
Using KCL,
. . Vtest
14 + Ttest = ;

Note that i = gmUgs = gm(—Vtest) When vy, is grounded.

g v +Z _ Utest
T Ym Vtest test —
R
Vtest _ R

Rout - (83)

itest B 1 + ng
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e) To minimize the output resistance for a fixed value of R, we need to maximize g.,.
9m = K(VIN — Vour — VT)

Substitute in the formula for Voyr:

1 1 2 \? 2
Vv (VIN_VT+R—K_§\/(R—K> +4(VIN_UT)R—K) i

gm =K (\/(RLK)Q + (Vin — VT)RLK - RLK>

To maximize gn,, maximize Vix.
Choose Vixy = ViN-max — Vin-max = V8 + VT — Vin-maz = 10V + 1V -0.25V = 10.75V

I _
K

f) Find Vour using equation (3) (derived in Exercise 5-1).

Vour =1V
Find g,, using equation (4).
_omA
9m = vV
Plug-and-play using equations (5) and (6):
ain = g
g =3
Ry = 333.32

g) The input resistance is infinite since the gate of a MOSFET has infinite input
impedance.

ANS:: (c) <=L (d) 1+me (e) 10.75V (f) gain = 2, Roy = 333.32 (g) infinite

+ng

Problem 8.3 This problem studies the small signal analysis of the ZFET amplifier from
Problem 7.6 (Figure 7.17) in the previous chapter. Assume that the amplifier is biased at
an input voltage Viy such that the ZFET exhibits saturated operation; the corresponding
bias output voltage is Vour. For this case, derive the small-signal voltage gain voys /vi, Of
the amplifier.

Solution:

Referring to Problem 7.6, the large signal output is Voyr = Vs — K RV;. Taking the
derivative of this with respect to 1y, one gets that
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dVour
dVin

= —3RKV{.

This is, by definition, equal to the small-signal gain v,y /vin-
ANS:: —3RKV}%

Problem 8.4 The circuit shown in Figure 8.8 delivers a nearly constant current to its load
despite the fact that the power supply is noisy. The noise is modeled by the small signal
vs Superimposed on the constant supply voltage V5. Thus, Vs and v, are the large-signal
and small-signal components of the total power supply voltage vs, respectively. I1, and ;
are the large-signal and small-signal components of the load current i1,, respectively. The
noise vy in the power supply voltage satisfies v; < Vg, and is responsible for the presence
of 7 in 1.

Load
Re
V. . .
s D IL = IL + Il
Current source
& load Vs Gl
Vs Nonlinear
resistor
i A
— -0
+
Nonlinear _ 1
resistor D - Slope = Ry
v
. -
0 Wy

Figure 8.8:
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The current source contains a MOSFET which operates in its saturation region such
that ipg = %(vgs — Vr)2. The current source also contains a nonlinear resistor whose
terminal characteristics are described graphically below. Assume that Vs > Vy > V.

a) Assume vs = 0. Determine Vs, the large-signal component of vgg, in terms of Ry,
Ry, Wy and Vs.

b) Following the result of Part (a), determine Iy, in terms of Ry, Ry, Vx, Vs, K and
V.

c) Now assume that vs # 0. Draw a small-signal circuit model for the combined
circuit comprising the power supply, current source and load, with which #; can be
found from v,. Clearly label the value of each component in the circuit model.

d) Using the small-signal model from part (c), determine the ratio ; /vs.
Solution:

a) We know that vgs = vy = Vs — Rix, S0 iy = %. Substituting into the first
equation, vgs — Vg — RB(VG;i;VN). Solving,

Vi _ VsRx + VxRg
Gs Rx + Rp
b)
K VsRy + VnERp 9
I = —(2———— VW
r=5l Rx + Rp 7)

c) See Figure 8.9.

WA,

% C) * S i

2z

vV

Figure 8.9:
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1
Ry U8

d) Using Thevenin equivalents, vy, = T = Ry Given that i, = K(Vgs —
Ry

Vir)?vgs, We can solve for ¢, and then divide through by v to find the ratio j}—l

. VsRn+VNRB
ﬂ _ K( RpRn+1 VT

Vs N RBRN + 1

VsRN+VNRB
( RpRN+1 VT

ANS:: (a) Vs = BixtVshn () [ = K (VafxtViRo _ 172 (d) K riiin

Rn+RB Rn+RB

Problem 8.5 Figure 8.10 depicts a bipolar junction transistor (BJT). Recall that a BJT
has three terminals called the base (B), the collector (C) and the emitter (E). Figure 8.10
also shows an alternative small signal model for the BJT operating in its active region.
This model is slightly different from the small signal BJT model discussed in this chapter
in that it includes a base resistance Rg. In the model shown in the figure, 3 is a constant.

B C
C -
B ib+ Rg Bip
E
E
Figure 8.10:

a) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.11.
Use the small-signal equivalent circuit to derive the small-signal gain of the ampli-
fier.

b) Draw the small-signal equivalent circuit for the BJT amplifier shown in Figure 8.12.
Notice that the resistor divider provides the necessary bias voltage. Use the small-
signal equivalent circuit to derive the small-signal gain of the amplifier.

Solution:

a) See Figure 8.13.
By KVL, i, = #. Substituting in to the KVL equation for the other side of the
circuit, v, = =Zf2. Therefore the gain is

%% — —BRL
UR Rp



Figure 8.12:

Figure 8.13:
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YOI I RO

Vo

Figure 8.14:

b) See Figure 8.14.
Using KVL to find the voltage across R; and combining that with v = 7R, we find

that i, = 7= (7% By the same argument in part ., the gain is % = %.
. o _ —BR o _ _—BRLR
ANS: @) % = i 00 = ity

Problem 8.6 Consider the MOSFET-based amplifier circuit discussed in Problem 7.8
(Figure 7.20) in the previous chapter. Assuming an input bias point voltage Vi, draw
the small signal circuit equivalent of the amplifier. Determine the small signal gain of the
amplifier. Assume throughout that the MOSFET operates in its saturation region.

Solution:
The small signal model is shown in Figure 8.15.

e

Figure 8.15:

Recall that the large-signal transfer characteristic for saturation derived in Problem 7.8
was:

KR
Vour = Vs — —(VIN + Vs — VT)Z-

Taking the derivative of this with respect to iy, one gets

dVout
dVix

=—-KRWVn + Vs — V).
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This is, by definition, equal to the small-signal gain.
ANS:: —KR(ViN + VS - VT)

Problem 8.7 Consider again the amplifier circuit discussed in Problem 7.8 (Figure 7.20)
in the previous chapter. Suppose that the amplifier is biased such that v; = vo at the
bias point. Draw the small signal circuit equivalent of the amplifier assuming this bias
point. Determine the small signal gain of the amplifier at this bias point. Assume that the
MOSFET operates in its saturation region.

Solution:
The small signal circuit is shown in Figure 8.15.

Recall the formulae derived in the solutions to Problem 7.8 in the previous chapter
and Problem 8.6 in this chapter.

The large-signal transfer curve in saturation is equal to:

KR
Vour = Vs — T(VIN + Vs — V)2

Setting VouT = Vin, and solving for Viy, we get that

B [2Vs 2V
Vin=Vr—Vs+ KR+KR'

Recalling the small-signal gain from Problem 8.6,

dVour
dVin

= —RK(Vix + V5 — V1),

we substitute our freshly derived value of Viy, and after simplifying, get that

dVour

T = V2VsKR — 2ViKR.

ANS:: \/2VsKR — 2V:KR

Problem 8.8 Consider the common gate amplifier circuit shown in Figure 7.24, and ana-
lyzed earlier in Problem 7.11 of the previous chapter. Assume that the MOSFET operates
in its saturation region, and is characterized by the parameters V- and K.

a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.
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b) Determine the output operating point voltage Voyr and operating point current Ip
in terms of an input operating point voltage Vix.

¢) Assuming an input bias point voltage Vix, draw the small signal model of the am-
plifier.

d) Determine the small signal gain vy /vin, Of the amplifier.

e) Determine the small-signal output resistance of the amplifier. That is, determine
the equivalent resistance of the amplifier at the output port of its small-signal model
with v; = 0. Is the small signal output resistance greater than, less than, or equal to
that of the “common source” amplifier shown in Figure 8.3.

f) Determine the small-signal input resistance of the amplifier. That is, determine the
equivalent resistance of the amplifier at the input port of its small-signal model.
Is the small signal input resistance greater than, less than, or equal to that of the
“common source” amplifier shown in Figure 8.3.

Solution:

a) See Figure 7.25 in the previous chapter.

b) As previously determined,

K
In = E(Vs — Vin — V)%,
KR
Vour = Vs — T(VS — Vin — V)2
c) See Figure 8.16.

Figure 8.16:

d) Taking the derivative and simplifying, we get that

dVour
d‘/:rml N
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e) There is no current flowing through the MOSFET since there is no signal coming
into the gate and the source is grounded. Therefore, the output resistance must
simply be R.

This is larger than the output resistance of the common-source amplifier.

f) Place a test voltage across the resistor, and measure the corresponding test current.

UTEST + IFET = IR-

This is shown in Figure 8.17.

Figure 8.17:

Plugging in

IFET = GmUTESTa

i = UTEST
R R )
and simplifying, we get that
R
By = R

This is smaller than the input resistance of the common-source amplifier.

ANS:: (b) Ip = 5 (Vs — Vin — V)2, Vour = Vs — BE(Vs — Vin — Vr)? (d) KR(Vs —
Vix — V1) (e) R (f) Riy = ﬁ

Problem 8.9 Consider the circuit illustrated in Figure 7.30 and analyzed in Problem 7.15
in the previous chapter. Assume that the MOSFET operates in its saturation region, and
is characterized by the parameters V- and K.
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a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating point voltage Vi, and operating point current Ip, in
terms of an input operating point voltage V7.

¢) Assuming an input bias point voltage Vi, draw the small signal model.
d) Determine the small signal gain v,/ v;.
e) Determine the small-signal output resistance.

f) Determine the small-signal input resistance.
Solution:

a) See Figure 7.31 in the previous chapter.

b) We refer to Problem 7.15 for the corresponding large-signal model, as well as sev-
eral key derivations, including this one for the current through the MOSFET:

1
K2RL’

Ip

1 1 2

From this, we can calculate the bias voltage to be

1

1 2
VOUT:—‘l‘Vi_VT_\/K—RS(%N‘i‘VS_VT)'i'KQ—R%-

K Rq
The full calculation is done in Problem 7.15.

c) See Figure 8.18.

Figure 8.18:

The transconductance g,, is equal to the derivative of the I-V}y transfer curve at the
bias point.
dI 1

_ _ 3 2\
= m*t (2K RY[Vix + Vs — V] + R3) 7.

N =

Im
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d) The small-signal gain is equal to the derivative of the Voyr-Vin transfer curve at
the operating point.

dVout
dVin

N

=1- (ZKRS[ViN + Vs — VT] +1)_ .

e) Asshown in Figure 8.19, we place a test voltage across the output, and measure the
corresponding current.

i
tet
. +
IFET i
RS
Viest
Rp Rs
_ T ;
Figure 8.19:

ltest T IFET = IRS-
Substituting in known values, we get that

UVtest

Rs

0+ tgest =
Simplifying this, one gets that

Vtest
Rour = = Rs.

Ltest

f) Infinite. The MOSFET gate has infinite input impedance, so the input resistance is
therefore infinite.

ANS:: (b) Vour = g5 + Vi — Vo — /5 (Vin + Vs — Vi) + gz (d) 020 =
1 — (2K Rs[Vix + Vs — Vip] + 1) 77 (e) Lt = Rg (f) infinite

Problem 8.10 Consider the circuit illustrated in Figure 7.32 and analyzed in Prob-
lem 7.16 in the previous chapter. Assume that the MOSFET operates in its saturation
region, and is characterized by the parameters Vr and K.
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a) Draw the SCS equivalent circuit by replacing the MOSFET by its SCS model.

b) Determine the output operating point voltage V, and operating point current Ip, in
terms of an input operating point voltage V7.

¢) Assuming an input bias point voltage Vi, draw the small signal model.
d) Determine the small signal gain v,/ v;.
e) Determine the small-signal output resistance.

f) Determine the small-signal input resistance.
Solution:

a) See Figure 7.33 in the previous chapter.

b) From Problem 7.16, we get that the current is

1

I .
P K2R}

1 1 2
:E(WN+%_VT)+KR§ —\/KRg(VIN'i‘Vs—VT)"‘

From this, we can determine the voltage to be

R

Vour = Vs — K2R

K—RQ‘FR—S(VI—VT-FVS)— —s (Vv + Vs = V) +
5

Rp Rp 2R
KR?

This was calculated in problem Problem 7.16.

c) See Figure 8.20.

o
V,
ImVin out
—0
Vin
Rs Rp

Figure 8.20:

The transconductance is the same as had been derived in Problem 8.9.

ar - 1 s )
=== (2K R[Vix + Vs — Va] + R2)

1
2

Im
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d) This is equal to the slope of the V-7 transfer curve at the operating point.

dVour _ Rp <2KRg

Rs \ Rp

R\ ?
= Vin + Vs — Vi 5 :
dVix R Vin + Vs = V] + >

R}

e) Asshown in Figure 8.21, we place a test voltage across the output, and measure the
corresponding current.

ety
. +
IFET iro
Vtest
Rg Rp
T .
Figure 8.21:

ltest = YFET T ?RD-

Substituting in known values, we get that

. U
Ttest — 0 =+ }tze]s)t .
Simplifying this, one gets that
v
Rour = —2 = Rp,.
Ltest

f) Infinite. The MOSFET gate has infinite input impedance, so the input resistance is
therefore infinite.

ANS: (b) Ip = #s(Vin + Vs — Vi) + ﬁg _ \/K_%g(vm_”/s Vo) + K21RS (d)

_1
5 (B + Vs~ Val + 1) (€) Rovr = 2 = Ro (7) infinite
Problem 8.11 This problem studies the small signal analysis of the amplifier analyzed
in Problem 7.14 of the previous chapter (see Figure 7.28). Assume that the MOSFET
operates in its saturation region, and is characterized by the parameters Vr and K.
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a) Draw the small signal equivalent circuit of the amplifier driving the load resistor
Rg, assuming an input bias voltage V1.

b) Determine the small signal gain of the amplifier when it is driving the load Rg.
Solution:

a) See Figure 8.22.

0
Vout

Vinéo ig= nginéRL IIRe

Figure 8.22:

From Problem 7.14, we get that the current through the MOSFET is as follows:

K

I =—
2

(Vin — V)2
Taking the derivative of this, we get the transconductance,
Im = K(Vin — V).

b) We note that the current has nowhere to go but through the two resistors in parallel,
so we use a simple V' = IR relationship to determine the output voltage.

—Vout = gmvin(RL‘ ‘RE)

The gain is equal to the small-signal output voltage divided by the small-signal
input voltage.

Vout — _ Ri Ry
Vin R;, + Rg

K(Vix — Vp).

This may be checked by the more traditional method of finding the output voltage
as a function of the input voltage, and taking its derivative.
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ANS:: (b) —-Erle | (Vi — Vi)

RL+Rg

Problem 8.12 This problem studies the small signal analysis of the circuit analyzed in
Problem 7.17 of the previous chapter (see Figure 7.34). Assume that the MOSFET oper-
ates in its saturation region, and is characterized by the parameters V- and K.

a) Draw the small signal equivalent circuit assuming an input bias voltage V7. What is
the value of g, for the MOSFET under the given biasing conditions?

b) Determine the small signal voltage gain v,/v;. What does the v,/v; expression
simplify to when each of g, R:, g R2, and g, Ry, is much greater than 1.

Solution:

a) See Problem 7.17 for key large-signal derivations. See Figure 8.23 for the small-
signal model.

Vout

Vin Ry ig= nginéRL

Figure 8.23:

gm = K(Vg — V).
Vi was derived as a function of Vix and Voyur in Problem 7.17. Vour can be found

in terms of Vy, but the derivation is quite messy.

b) We must use implicit differentiation to find the small-signal gain, since we do not
have Vour in terms of Vy, but we do have an expression that relates the two:

VS—VOUT+‘/1N—V0UT_K< Ry R

2
_8 Vix + — 1 —V).
R Ri + Ry 2\Ri+Ry " Ri+Ry, OUT T

Differentiating this, we get
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A=
RL R, + R,
R, R
— Vin + Vour — Vo
Ri+ Ry IN Ri+ Ry ouT T
R, R,
C = dVix + dVour.
R +R, TR +R, °UT

We can substitute in gyy = K (Vg — Vir), and solve for the ratio of the differentials:

dVour _ Ry, — gmRo Ry,
dViN R1 + R2 + RL + nglRL )

From this, when R; becomes very large, then the gain goes to zero. This is because
resistor R, is the only connection from Viy to the gate, so if it is opened up, any
change in Viy is made irrelevant.

When R, becomes very large, the gain approaches —g., R;,. This makes sense be-
cause the input impedance is dependent on R,, and if it becomes infinitely large,
we are dealing with a standard MOSFET amplifier.

When R;, becomes very large, the gain theoretically approaches — R,/ Ry, but this
is not actually realistic since that implies cutting off the supply voltage, and thereby
taking the MOSFET out of saturation.

ANS:: (@) gm = K(VG — VT)

Problem 8.13 This problem studies the small signal analysis of the source follower (or
common collector) BJT circuit analyzed in Problem 7.18 of the previous chapter (see
Figure 7.36). Assume that the BJT operates in its active region throughout this problem.

a) Determine the output operating point voltage Vo and operating point current Iz in
terms of an input operating point voltage V7.

b) Assuming an input bias point voltage V7, draw the small signal model of the source
follower amplifier.

c) Determine the small signal gain v,/v; of the amplifier.
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d) Determine the small-signal output resistance of the source follower amplifier. Is this
resistance greater than, less than, or equal to that of the “common emitter” amplifier
analyzed in Exercise 8.7 and shown in Figure 8.6.

e) Determine the small-signal input resistance of the amplifier. Is the input resistance
greater than, less than, or equal to that of the “common emitter” amplifier shown in
Figure 8.6.

f) Determine the small signal current and power gain of the source follower amplifier.
Assume for this part that the amplifier is driving an output load of R, connected
between the output node and ground.

Solution:

a)

Vo = IgRg

Ig(B+ 1)Rg
Vi—(Vp+0.6
%(ﬂ"‘ 1)Rg
(Vi —Vo—0.6)(3+1)2

Vi—0.6 !
Ry
AN (E=V 3=

Vo  Vi=06

RE_RE-i-(ﬂRTII)

Iy =

b)

Vo = 7;eRE'

in(8+ 1)Rg
“zte(B+1)Rg
(vi — 0,) (6 + 1) 22

Ry
N ERy =

Or, the small gain is
Vo 1
L
vi 1+ (5+15RE

Further, when BRg >> Ry,
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d)
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The small-signal output resistance is determined by applying a test voltage vy, at
the output and measuring the resulting current 4,.,; into the output node from the
test voltage. We also set the input voltage v; to zero.

. Vtest Vtest
ltest = + 0
'~ Rg||[Rr " R;

Or

Vtest 1 1
el + B
Liest / <RE| |RI ﬁRI)

In other words

Ry

Utest

r, = ?test _ (REHRI)/ (1 +6RE||RI>

When B(Rg||Rr) /R >> 1,
To = R]/ﬁ

The 3 factor in the denominator makes the output resistance of the BJT source-
follower significantly lower than that of the BJT common-emitter amplifier (for
comparable values of Ry and R;).

The small-signal input resistance is determined by applying a test voltage v;.,; at
the input and measuring the resulting current ¢, into the input node from the test
voltage.

. Vtest — Vo

p =
Ry

Or, substituting for v,
. Vtest — By R
W= —""FH RI

Multiplying throughout by R; and dividing throughout by i,, and simplifying, we
get

T, = Ut.eSt == RI —+ ﬁRE
127
When GRr >> Ry,
ri ~ BRg

The g factor in the numerator makes the input resistance of the BJT source-
follower significantly higher than that of the BJT common-emitter amplifier (as-
suming BRr >> Ry, and the same value of R; for both amplifiers).
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f) To compute the current gain and power gain, we are given that there is a resistance
Ro connected between the output node and ground.

The small-signal current gain is the ratio i, /4, Where i, is the current into the output
load resistor Ro.

The total current into the resistance pair formed by Ry and Ry is
i+ Bip = (B+ 1)ip
Applying the current divider relation,
. Rg
o= (B+1)ip—r—r
1 (B + 1)ip Rut Ro
Dividing by 4;, we get the current gain as

Rg

Current Gain= = = (8 + )m
E O

We know that the power gain is given by

v 7,
Power Gain = 222
(% Zb

Substituting for the voltage gain and the current gain
Vo 1o 1 Ry

Power Gain = —— = = X(B+1)=———
Vits 1+ GrnRaTRO) e+ fo

Notice that we have substituted Ry ||Ro as the effective load resistance in comput-
ing the voltage gain. Simplifying,

R?, 1
(RE + R0)2 R; + (ﬂ + 1)REHR0

Power Gain = (3 + 1)

ANS a V = ﬂ and I = Yo — — d Ty =
@ Vo s " RE+<5+1) © % 1+(ﬁ+1)RE @
(Rgl|Rp)/ (1+ BREIE) and r; = Ry + BRp (f) 2 = (8+1) .22, and Power Gain =
R2 1

(ﬂ + 1) (RE+RO)2 R;+(B+1)Rg||Ro

Problem 8.14 Consider again the compound three terminal device formed by connecting
two BJTs in the configuration shown in Figure 7.37 (Problem 7.19) in the previous chap-
ter. This problem relates to the small signal analysis of this device. Assume that the two
BJTs are identical, each with # = 100, and that each of the BJTs operates in the active
region.
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a) Draw the active-region equivalent circuit of the compound BJT by replacing each
of the BJTs by the piecewise linear (large signal) model shown in Exercise 7.8.
Clearly label the C’, B" and E’ terminals.

b) Develop a small signal model containing a single dependent current source for the
compound device by linearizing the circuit model in (a) and simplifying suitably.



Chapter 9

Capacitors and Inductors

Exercises

Exercise 9.1 Find the equivalent capacitance between the two terminals in each of the
networks in Figure 9.1.

Solution:

(a) 3/4uF

(b) 4uF

(c)4/3uF

ANS:: (a) 3/4uF (b) 4uF () 4/3uF

Exercise 9.2 Find the equivalent capacitance or inductance for each case in Figure 9.2.

Solution:
(a)
1uF - 2uF 2
ApF-2uF 2 L
1pF +2uF 3
(b)
1/,[/F ¢ 10pF - —12
— . F 13 7 e (13 7 o 1
71/1F-10pF 9.9pF — "p pico 0
()
40pF - 1uF
——————— = 38.5pF
AOpF + 1uF P

259
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@
luf 3puf
[ [
[ I

(© 3 uf
I
|

— =

2 uf

Figure 9.1:



1uF
»__%F___

~2 UF

A

@

T~10pF —~ 30pF

®

2mH

()

Figure 9.2:
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e
7~ 10 pF
e (b)
1mH
2 mH
. (d)
1puH
2mH 1mH
. ()
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(d)
1mH + 2mH = 3mH
(e)
2mH + 1pyH = 2.00mH
® 2mH - 1mH
mH - 1m
— _+1uH =2 H
2mH + 1mH tp /3m

ANS:: (a) 2/3 u F (b) 9.9pF (c) 38.5pF (d) 3mH (e) 2mH (f) 2/3mH

Exercise 9.3 Consider a power line on a computer backplane that is 2.5 mm wide, and
separated from its underlying ground plane by 25 ym. Let the permittivity and perme-
ability of the separating insulator be 2¢, and ., respectively. What is the capacitance and
inductance of the line per 10 cm of length?

If the voltage on the line is 5 V how much energy is stored in its capacitance per 10
cm of length? If the current through the line is 1 A how much energy is stored in its
inductance per 10 cm of length?

Solution:

Exercise 9.4 A current source drives a capacitor as shown in Figure 9.3. The source
current is as shown in Figure 9.4 for 0 < ¢ < T If the capacitor voltage is V, att = T,
what was it at ¢ = 0?

1(t) C —— V(1)

Figure 9.3: A current source driving a capacitor

Solution:

Exercise 9.5 A voltage source drives an inductor as shown in Figure 9.5. The source
voltage is as shown in Figure 9.6 for 0 < ¢ < T'. If the inductor currentis I, at¢t = T,
what was it at ¢ = 0?

Solution:
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b
A
IO
0 T T !
2
Figure 9.4: Source current
®
()
V(t)CD L
®

Figure 9.5: A current source driving an inductor

Ay
Ao
VO
t
0 T T >
2

Figure 9.6: Source current
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Exercise 9.6 Figure 9.7 shows four circuits, labeled “1” through “4”, together with the
waveform for the source in each circuit. The figure also shows four branch-variable wave-
forms, labeled “a” through “d”, that could correspond to the branch currents ¢ or branch
voltages v labeled in the circuits. Match the branch variable waveforms to the appropriate

circuit and source waveform.

\ A

|
|-
-

v T ® 1hvO B ® B

(a) (b) (c) (d)

Figure 9.7: Source current

Solution:
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Problem 9.1 A voltage source is connected in series with two capacitors as shown in
Figure 9.8. The source voltage is V'(t) = 5 V u(t), as shown. If the current 7 and voltage
v are given by i(t) = 4 uC §(¢) and v(t) = 1 V u(t), again as shown, what are C'; and

Cy?

vy c i3 i(t Avy
V(1) 1

vV @) E + 4uC AV/ I

C, v
> T - - -
t t t
Figure 9.8:
Solution:

Problem 9.2 A current source is connected in parallel with two inductors as shown in
Figure 9.9. The source current is i(t) = 400 A/s u(t), as shown. If the current ¢ and
voltage v are given by i(¢) = 100 A/s u(t) and v(t) = 0.3 V u(t), again as shown, what
are L; and Ly?

A i, Ai) Ayo)
[(t) A
©, % L, L,Bv 105 |1y
400 3 -
- >
t t t
Figure 9.9:
Solution:

Problem 9.3 A current source drives a series-connected capacitor and inductor as shown
in Figure 9.10. Let I(t) = I, sin(wt)u(t), and assume that the inductor and capacitor both

stored no energy priorto ¢ = 0.
Determine the voltage v for ¢ > 0.

Is there any relation between I,,, w, C' and L for which v is constant for ¢ > 0? If so,
state the relation and determine v.

Solution:
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I(t) @) | "o

Figure 9.10:

Problem 9.4 A voltage source drives a parallel-connected capacitor and inductor as
shown in Figure 9.11. Let V(¢) = V,sin(wt)u(t), and assume that the inductor and
capacitor both stored no energy prior to ¢ = 0.

Determine the current ¢ for ¢ > 0.

Is there any relation between V,, w, C' and L for which i is constant for ¢ > 0? If so,
state the relation and determine .

it)

L

VO (2) .

Figure 9.11:
Solution:

Problem 9.5 A constant voltage source having value V' drives a time-varying capacitor as
shown in Figure 9.12. The time-varying capacitance is given by C(t) = Cy + C sin(wt).
Determine the capacitor current i(¢).

Solution:

Problem 9.6 A constant current source having value I drives a time-varying inductor as
shown in Figure 9.13. The time-varying inductance is given by L(t) = Ly + Ly sin(wt).
Determine the inductor voltage v(t).

Solution:
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\% Ci) =— C(t)

Figure 9.12:

s

® g

Figure 9.13:

Problem 9.7 Consider the parallel plate capacitor shown in Figure 9.14. Assume that the
dielectric is free space so that e = «,.

Suppose the capacitor is charged to the voltage V. Determine the charge and the
electric energy stored in the capacitor in this case.

The capacitor is disconnected from the charging source so that its stored charge re-
mains constant. Following that, its plates are pulled apart so as to double the distance
between them; that is, the gap separation is now 2[. For this new configuration, determine
the voltage across the terminals of the capacitor and the energy stored in the capacitor.
Explain how the stored energy changes.

Solution:

Problem 9.8 Figure 9.15 shows two capacitive two-port networks. One is a “IT” network,
and one is a “T” network. For the IT network, find 7;p and i,p as functions of vip and vyp.
For the T network, find ¢, and iyt as functions of vyt and var.

How must Cip, Cyp and Csp be related to Cyr, Cor and Csp for both networks to
have the same terminal relations?

Solution:

Problem 9.9 Figure 9.16 shows two inductive two-port networks. One is a “IT” network,
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A
* |
+
+ | E
+ + |
v E+ ;
& E+ E+ >
B
Figure 9.14:
pr— — — — — — — A iZD iy Fr—— - - — — — A o7
+ o H —<4—0 + +0—->—|—||7—||—|—<—0 +
IR ERS
Vip I:_ Clp C2p—: I Vap Vit | T Car I Vot
| | | |
L - - — — — _| L - - - — — _|
(a) (b)

Figure 9.15: (a) a capacitive T two-port network, and (b) a capacitive II two-port network
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and one is a “T” network. For the II network, find v;p and vyp as functions of i;p and iyp.
For the T network, find v;1 and vor as functions of 7,1 and 7.

How must L,p, Lop and Lsp be related to L1, Lot and Ly for both networks to have
the same terminal relations?

/0000
.
=
o
©
—
N
o
/000
<
N
©
<
[
—
/000
—
w
—

Figure 9.16: (a) an inductive T two-port network, and (b) an inductive IT two-port network
Solution:

Problem 9.10 This problem examines in more detail why energy is lost when the switch
in Figure 9.17 closes. To do so, we examine the transient that occurs during the closure
of the switch. In preparation for this, let ¢ = 0 be the time at which the switch first begins
to close, and let t = T be the time at which the circuit reaches steady state. The charges
on the two capacitors prior to switch closure are given to be @, and Q.

Further, let ¢ (¢) be any function defined over the interval 0 < ¢ < T such that

q:(0) = Q4

and ¢ (7)) is the steady state charge on the capacitor given by

C
¢ (T) = G +1 & (Q1 + Qo)

In this way, the function ¢; is an arbitrary transient connecting the initial and final charge
during the switch closure.

(a) Use the charge conservation relation

@1 (t) + a2(t) = Q1 + Q2
to find ¢, in terms of ¢, for 0 < ¢ < T'. Then, use the equation

dq(t) .
“ar — W



270 CHAPTER 9. CAPACITORS AND INDUCTORS

01 o))

i=—=0C G=——=W

Figure 9.17:

to determine 7; and 5, again in terms of g; for 0 < ¢ < T'. Finally, use the equation
q(t) = Cu(t)

to find v; and vy, also in terms of ¢; for 0 < ¢ < T'. The entire transient is now described
in terms of the arbitrary function ¢;.

(b) During the transient, the difference between v, and v, must appear across some el-
ement or elements within the circuit. KVL requires this. For example, it could appear
across the wiring resistance or the switch, or a combination of both. In any case, energy
is lost as a current passes through this voltage difference. If we consider the voltage dif-
ference to be (v; — vy), as opposed to its opposite, then it is i, that passes into the positive
terminal of this difference. Why?

(c) The product iy(v; — v9) is the power dissipated during the transient. Determine this
power in terms of ¢; for0 <¢ < T.

(d) Integrate the power found in the previous part over the interval 0 < ¢ < T to find
the energy lost during the transient. Also, show that the energy lost is equal to the energy

difference in CiCy 7Q 2
-1 06 (49
wi(t < 0) —wp(t > 0) = 20, + C, (01 Co

Remarkably, the energy lost is independent of the interior details of the function chosen
for g1. Since these details are equivalent to the details of the loss mechanism, it is apparent
that the amount of energy lost is independent of how it is lost.

Solution:
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First-order Transients

Exercises

Exercise 10.1 Using superposition, determine the current 4, (¢) for the network shown in
Figure 10.1. The network is at rest for ¢ < 0.

1) 1H Vs(t)A s,
v 1mA
vg(t) 3kaz i S(t)ép
& T
Figure 10.1:
Solution:

The inductor first acts as an open circuit and eventually becomes a wire:

. initially: i, (¢) = 0 (open circuit)
- finally: 4, (t) = 59 4 ig(t) = £ mA

Assume ig(t) source points down.
i1(t) = (Final Value) + (Initial Value — Final Value) e /™

ir(t) = 4/3 (1 — e 7/7) [mA]
T=L/R=1/3ms
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ANS: i (t) = 2(1 —e/)ymAfort > 0; 7= 1ms

Exercise 10.2 Find and sketch the zero state response for ¢ > 0 in Figure 10.2. i5 isa 10
mA step at ¢t = 0.

. iL(t)
is(h) Ve(Y) 2100 0 10 mH
Figure 10.2:
Solution:
Ai
: >
0.5ms
Figure 10.3:

ir(t) = 0 initially
Is = 10mA finally

in(t) =10 (1 e7"/7) [mA]

T7=L/R=0.1ms

ANS:: ip(t) = 10e~/™mA; 7 =0.1ms

Exercise 10.3 In the circuit in Figure 10.4, i(t) = 100 pA, 0 < t < 1 second, zero
otherwise. At time ¢ = 2, the voltage v¢ = 5 volts. What is v¢ at time ¢ = —1 second?



+ ®

(h)  —c1opt v

Figure 10.4:
Ay (1) [volts]
5V - — — -
/'\ slope = 10
: — t[ seconds]
s 1s 2s
/ -5v
Figure 10.5:
Solution:
. dv,
=0
e
UV = c =10t for 0 <t < 1 second
J i : .
Ve = o = a constant, otherwise, when i, = 0
Therefore,
ve(t = —1 second) = —5V
ANS:: -5 volts
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Exercise 10.4 In the circuit in Figure 10.6, the switch is closed at time ¢ = 0 and opened

att = 1 second. Sketch v (t) for all times.
Solution:
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AMAMANA.

__+ 11V =1 kQ .

£10kQ ~T100 pf ve(t)

Figure 10.6:

- time

0 10
100 -e '
0 0

Figure 10.7:
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Assume v = 0 for ¢ < 0. When the switch is closed at ¢ = 0, v rises from 0 to

10k

11+ ——— =10 \Wolt ith m =1 10k| -
0k < 1k 0 Volts with 7 = [1k || 10k] - C

71 = 9.09ms

When the switch is opened, v falls exponentially back to zero with 7, = 10k - C' =
1 second

Assuming vc = 0 for ¢ < 0, when the switch is closed at t = 0, v rises from 0 to
10V with 7, = 7y = 9.09ms; When the switch is opened, v falls exponentially back to
zero with 7 = 1 second.

Exercise 10.5 Find and sketch the zero-input response for ¢ > 0 in each network in
Figure 10.8 for the given initial conditions.

1kQ 1kQ
. I [
v 7= 1uF £1kQ 1mH 21kQ
v(0)=6V i(0) =6 mA
C) (b)
1k
b . W-o—t-» i
6V = L €L L
—( 1pF7<\+_/ £1kQ 6V= 1mH E1kQ
Switch opensatt =0 Switch opensatt =0
(©) (d)
Figure 10.8:
Solution:
(@)
T =[1k || 1k] - C = 500us
v=6et"

(b)
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Av
6
. >
2.5ms = 5T
Figure 10.9:
A
6mA -
. »
10us=5T

Figure 10.10:
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T=L/(1k || 1k) = 2us
i=(6-107%)e /"

(©)
Av
6V
. >
5ms
Figure 10.11:
v(0) =6
T=R-C=(1kQ)(1uF) = 1ms
v=6et"
(d)
A
6mMA
. >
S5us
Figure 10.12:

i(0) = C¥20 — 6mA
T=L/1k=1us
i = 0.006e /"

ANS:: (@) v = 6e~/7, 7 = 500us (D) i = (6 x 1073)e~47, 7 = 2us (C) v = 6e /",
T=1ms€)i= (6x10"%)e ¥, 7 =1pus
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Exercise 10.6 Find and sketch the response for t > 0 in each network in Figure 10.13.
Assume that the input is as shown for ¢ > 0, and assume an initial zero state (in other
words, show the zero state response).

100 Q
[
. +
Va 10 mH Ig V AS1pF
va = 1V, constant ig = 1 pA, constant
(@ (b)
1kQ
vvvvv i )
v 1 mH ip Vs £10kQ
c m “T1pF 7
Ve = 10e710% i = (106)e101
(©) (d)
Figure 10.13:
Solution:
(a)
A
10mA+ — — — — =
:  t
0.5ms
Figure 10.14:

i VA _
final value: Tooa = 10mA

initial value: 0



i =10mA(1 — e t/7)
T=L/R=0.1ms
(b)

| =V
slope s

: »
1s
Figure 10.15:
ip=1pA=C%
V=2 dt =t
()
A
9.93mA +
: - {
6.9us
Figure 10.16:

ve — 1000 — L - % =0

(1) 1000vc = 10% €710 =105 + & = § = ippmogencous + Iparticular
Lhomogeneous = Ae10%

ASSUME iparticutar IN the FOrM = ipursicutar = Be™100%

Biparticular _ _1()0)0B 1000t

dt
Now plug iparticutar N0 (1): B = 10/999
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Now use the initial condition ¢(0) = 0 to find A:

10 10
= Ae 100 710000 —gwhent=0 = A=-——
r=Ae T 50¢ 999

. 10 —1000t —108-¢

1 = @ <€ — € )

(d)
A V
p
Figure 10.17:
dv v
10—6 —1000t — e 7
¢ ar 10k

dv
10e 1090 — 1000V + —
e + 7

v= A 100 | By 1000t

homo- ge- particular
neous solu- solution
tion

t factor included since forcing 7 = homogeneous 7
Plug in particular solution to find B = 10. If v(0) = 0, then A = 0.

v=10-t e—1000¢

ANS:: (@) 7 = (1072%) (l—e—1°4t) (b) v = Kt where K = 1V/s (¢c) i =

% <67103t _ 671067:) d)v = 10te10%
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‘SCD R 4=C \+/

Figure 10.18:

Exercise 10.7 For the current source shown in Figure 10.18, assume ig consists of a
single rectangular current pulse of amplitude I, amps and duration ¢, seconds.
a) Find the zero-state response to ig.
b) Sketch the zero-state response for the cases:
i) to >> RC

i) to = RC
i) ty << RC

¢) Show that for ¢t << RC, (the case of a short pulse), the response for ¢ > ¢,
depends only on the area of the pulse (Zyts), and not on i, or ¢, separately.

Solution:

a) v: final value resulting from pulse = Iy - R
initial value = 0 (assumed zero state)

When the pulse stops (at ¢, = t), exponential decay occurs in v,
with the initial value = I - R (1 — e~%/%¢) and final value = 0.

t>to:v=10-R (1 — eftO/RC) e—(t—to)/RC

b) 1) to >> RC
For t, > RC, v reaches max value since the pulse is sufficiently long.
i) to = RC
to = RC' Here the pulse is not long enough for » to exponentially rise all the
way to Iy - R.  V only reaches 63% of its maximum before decaying.
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AV
—————————— I, [R
I - {
tO
Figure 10.19:
Av o
- — = — - I, R
/

-3 - - — — — — - I, (R(0.63)
: »
t, = RC

Figure 10.20:
AV
I, R
- " T~ 10
| >
t0

Figure 10.21:
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i) ¢ty << RC
Here the exponential rise is very short, since the pulse is short

c) In case (iii), we see the output v for a constant pulse input is triangular, or ramped,;
nearly the integral of the input, i.e. proportional to the area under the input curve.
i=v/R+C %

Iy R=v+RC %

Ip d

¢=retu

As RC becomes larger (> t,), our equation can be approximated as

dU_IO . to
E—a :>U—/0 I()/C

since v/RC — 0 when RC'is large.

ANS:: (@) For 0 < t < ty, v = RI (1—e—t/Rc), and for t > tg, v =
RI, (1 _ e—to/RC) e—(t—to)/RC

Exercise 10.8 Identify the state variable in each network in Figure 10.22. Write the cor-
responding state equation and find the time constants.

R
lvvvvv\
) R —=—~<C Vo L
@ (b)
1kQ 1kQ
Ve TLpF S 1kQ v 1mH S1kQ
(©) (d)
Figure 10.22:

Solution:
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@ dV

- oV

70 V/R + dt
State variable: V
Time constant: RC
(b) i

2
=43-R+L—

Vo 2 -+ dt
State variable: ¢
Time constant: L/R
(©

Vo — V¢ _ d’l)c T Vo
1000~ dt 1000
State variable: vo
Time constant: 5005
(d)
Vo —YrL _ . UL

1000~ ““ T 1000
or,

Vo 2L dZL

1000 — 1000 ¢ T "

State variable: i,
Time constant: 2us

ANS:: (a) V, time constant RC' (b) ¢, time constant L/ R (C) v, time constant 500 us
(d) iz, time constant 2us

Exercise 10.9 In the circuit in Figure 10.23, v(¢) = 5mV for 0 < ¢ < 1 seconds, and
zero otherwise. At time ¢ = 4 seconds, i(t) = 7A. What is i(¢) at time ¢ = —1 second?

Solution:
When 0 <t < 1,
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. it)
v(t) L=1mH

Figure 10.23:

i(t) [Al

. —t : : > t[s]

Figure 10.24:

. (%
= —==5-1
! /L

i(—=1) =24

Graphically,

ANS:: 2A

Exercise 10.10 Identify appropriate state variables for the network in Figure 10.25 and
write the state equations.

Ry R,
Vs —C L
Figure 10.25:
Solution:
State variables: ir, vo
VS_’UC’_i_’UL_’UC_Cd’U_C_O

Ry R, dt
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’Uc—iLRg—’UL:O
d’UC R2 dUL _

— -y — — ——

P T

) ANS:: State ;/ariables i1, vc. State equations: VSE’C + ”ng”c - C ‘ﬂ;’—f = 0, and
v R: 1) A

G v - =0

Exercise 10.11 In Figure 10.26, R, = 1kX2, Ry = 2k2, C' = 10uF'. The driving voltage
vs = 0 for¢ < 0. Assume vg is a 3-volt step at ¢ = 0. Make a sketch of v () for ¢ > 0.
Be sure to label the dimensions of the voltage and time axes and identify characteristic

waveform shapes with suitable expressions.

R Ry
00, (t<0) *
Vo = ’ Vg Ve =C
ST HV, (t20) T
Figure 10.26:

Solution:

p

T
500 =33ms

Figure 10.27:

2
T:[RIHRQ]-c:?Oms



ve: final value
Ry

3- =2V
Ry + R,

Vo =

Initial value = 0
v = 2 (1 - e_t/T)

T =—MS

3

ANS:: v =2 (1 —e "), for 7 = Lms
3
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Exercise 10.12 Identify state variables and write appropriate state equations for the cir-

cuit in Figure 10.28.
Ry Li-M L,-M

VS M R2
Figure 10.28:
Solution:
State variables: ir1, 70, i
(1)
i1+l = ip
2)
Vu=Vii+ipn-Ri —Vsg=0
di di )
Md—i/[:(Ll—M)ﬁ+zL1-R1—VS=O
3)
Vie=Vig+ip0- Ry =0
di di .
Md—f = (LQ—M)ﬁ—f—ZLQ'RQ:O

ANS:: State variables: 101,002, La- State equations: (l) i1+ 12 = T, (2) Mdfi—y =

(L — M)%LL 447y - Ry — Vs =0, Q) M4 = (Ly — M)%L2 4 15 - Ry =0

dt dt
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Exercise 10.13 Referring to Figure 10.29, before the switch is closed, the capacitor is
charged to a voltage v = 2 volts. The switch is closed at ¢t = 0. Find an expression for
ve(t) for ¢t > 0. Sketch v (2).

R
M e W
+ +
V=1V —_ C::VC(t)
Figure 10.29:
Solution:
A Ve
2 -\
1 1+ - =
: p
5RC
Figure 10.30:
T=R-C
Ve

natial value = 2V
final value = 1V

ve = final value + (initial value — final value) e /7 =1+ ¢ /7

ANS:: v =14 e H/7

Exercise 10.14 Find the time constant of the circuit shown in Figure 10.31.
Solution:
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...........

vg(t)

%
N—r
=
=
T
I
I
=
%
@)
VVVYY

Figure 10.31:

Use the Thévenin Equivalent taken about the capacitor terminals to find Rrp.
Time constant=7 = Ryy - C

Rryg = 1000
7=1000-C
7=1ms

ANS:: 7 = 1ms

Exercise 10.15 A two-input RC circuit is shown in Figure 10.32. (Parts a, b, and c are
independent questions).

1KQ 2kQ
| o5 uRy YA KR
i) 1kQ 2 Vo vi(®)
0.5 uFA_ X1.5 pH
Figure 10.32:

a) You should realize that the “bridge” of capacitors can be replaced by a single ca-
pacitor in this problem. What is the value of the single equivalent capacitor?

b) Consider operation with i;(¢) = 0 and v;(t) = 0 for ¢ > 0. The voltage vo(?) is
known to be 1 volt at a time ¢ = 0. Determine v (¢) for all £ > 0.

c) A different constraint is that sources i;(¢) and v(t) are zero for ¢ < 0 and that
vo(0) = 0. Sources ir(t) and v7(¢) undergo step transitions of +1 mA and +1 volt
respectively at time ¢ = 0. Determine v (¢) for all time.

Solution:
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a) Cpg =1/4 uF + 3/4 uF = 1uF
b) vo(t) =1-e7t/™
T =1ms
c) v(t) =0fort <0
vo(t) = 1mA (1) (2kQ) + 1V (3) = 1Volt, final value

vo(t) = (1 —e ") ;7 =1ms,fort >0

ANS:: (@) Crg = 1uF (b) 7 = 1ms, vo(t) = 1 - et (C) vo(t) = (1 — e t7);
7= 1ms, fort >0

Exercise 10.16 In the circuit in Figure 10.33, R; = 1kQ, Ry = 2k, and C = 3uF.
Assume initial rest conditions (zero initial state), and assume that v; has a 6-volt step at
t = 0. Find vy(t) for ¢ > 0. Sketch and label.

C
Rl I
AN
+
%1 Ro2vo
Figure 10.33:
Solution:
Ay
4V
1 - t
0.045 seconds
Figure 10.34:

vo: initially = RfSRQ -6V =4V
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finally = 0
T = (2k + 1k) 3uF = 9ms
ve(t) =4 e 7 ;7 =9ms , t >0

ANS: vy(t) =4 e ;7 =9ms,t >0

Exercise 10.17 Consider the circuit shown in Figure 10.35. Sketch and label v (t) for
i1(t) a step as shown in Figure 10.36. Assume vp = 0 for ¢ < 0.

- ! ]
I +
Il(t) Rl 4Ib —C Vo
N
Figure 10.35:
A
I
Ll
Figure 10.36:
Solution:
' RAC
I1[:R1
- ———-
:  t
R, [T
Figure 10.37:

vg: Initially = 0
finally = 4 - Ry = &l
vo(t) = %(1 — e tT)
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test

O-4
/l
R 4, ) Viey
i I
O— —
Figure 10.38:

p = Ry
Ltest — 4 VEft) ngt =0
Rpq =%

ANS:: vy(t) = %(1 —e ), T = RéC

Exercise 10.18 For the circuit shown in Figure 10.39, find the characteristic equation and
the zero-input response assuming that the capacitor was initially charged to 1 volt. Label
your graph.

4R
YYVYY R -T-
vi(t) - vo(t)
1l .
-
Figure 10.39:
Solution:
*Characteristic equation:
dUC
g = SRC - —
v Vo + L

*zero input
vo(t): initially = 1V olt
finally = 0
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Vo (1)
v

Figure 10.40:
T =5RC

ANS:: v; = ve + BRC - ¢, ,(t) initially 1V, finally 0V, time constant 5RC

Exercise 10.19 The excitation function for all four of the circuits shown in Figure 10.41
is:

Ug(t) = 0, t<0
vs(t) = 10volts, t>0

For each of the circuits, select the time function on the right that corresponds in mag-
nitude and shape to the output, vo(t). Assume that all capacitors and inductors have zero
initial states, (the appropriate state variable is zero for ¢ less than zero). In no matching
response exists, say so and explain briefly. All responses are made up of “straight lines”
and “exponentials”. You may choose a time function more than once. (Note that part (d)
shows an op-amp circuit. Op-amps will be covered in later chapters).

Solution:

(A) — ’U()(t) = ]_OV(l — e—t/'r) r=R.C

(B) — wo(t) =10V (WRR) (l—et/r):r=R-C

(C) — wo(t): finally = 10V ; initially = 0

vo(t) =10(1 — e ") ;7 = L/R

D) — L+C% =0 = V,==-¢ within the linear region of the op. amp.

Therefore,
(A) 3
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Vo(t)

@ . )
+ (1) 1ov
R .
t
Response number vo(t)
(2 10vi-----o
(b) ' >t
" vo(t)
) ' >t
t
Response number vo()
(4) al
a0Vl

+
= 5y 10V
2 Vo(t) ( ) K
- oy

Response number

(6) SVI\
(d) ) .t

C
| vo(t)

|
R | nler10V]
""" ;%_'Vo(t)
vg(t) f -10V 7 syl--a
>

i t
Op-amp saturation at +10 V vol(t)

Response number (8) 10V/|..
5V
, >t

Figure 10.41:
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B)7

€3

(D) 4

ANS:: (A) vo(t) =10V (1 —e™/7) ;7= R-C, (B) vo(t) = 10V (3&5) (1 — e t/7)
;T=R-C,(C)uvy(t) =10(1 —e /") ;7 = L/R, (D) vo = 72t

Exercise 10.20 An RC network is shown in Figure 10.42. The voltage v and the current
1 are constant for all time. Prior to ¢ = 0, the circuit is in equilibrium with the switch
closed. At time ¢ = 0, the switch is opened, and it is then closed some time later. The
waveform in Figure 10.43 is observed for v¢(%).

vvvvv

2 e @,

Figure 10.42:

vet) A

2 V—m V1 (Final value)

Timeconstant 1y | Time constant T,
I

' >
} ! t
Switch open Switch closed
Figure 10.43:

What are the value of 71, 7, and the final value V;? NOTE: The figure may not be to
scale.

Solution:
71 = 1ms
Ty =1/2ms

Vi(final value) = 2Volts
ANS:: 71 = 1ms, 75 = 1/2ms, Vi(final value) = 2V olts
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Exercise 10.21 In the two following cases in Figure 10.44 the input vy (t) = 10u_y(%),
a 10 volt step® starting at time ¢ = 0. Give for each case

@ 1 uf
I +
vin(t 1MoS Vout()
® 5000 1 mH
+
Vin(t 50005 Vout(®)

Figure 10.44:

a) The time constant of the circuit.
b) an analytic expression for the signal voyr(t) as a function of time.

c) A labeled sketch of the output signal vopr(t) as a function of time. Be sure to label
the time and voltage scales.

Solution:
a) ()7 =(1MQ)(1uF) = 1second
(i) vo = 10 e7¥" ; 7 = 1second

b) ()7 = 1us
(i) vout (t) = 5 (1 — /") ;7 = Lus

c) See Figures 10.45 and 10.46.

! Recall that the notationug (t) representsanimpulse at timet. The notation u,, () representsthe function
that results from differentiating the impulse n times, and the notation u_,,(t) represents the function that
results from integrating the impulse n times. Thus u_; (¢) represents the unit step at time ¢, u_»(t) the
ramp, and u4 (t) the doublet at time ¢. The unit step u_(¢) is aso commonly represented as u(t), and the
unit impulse ug(t) asé(t).



Ay

10V +

1
T
5 seconds

Figure 10.45:

-

Figure 10.46:

-
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ANS:: (a) (i) 7 = 1second (ii) vo = 10e™"" ; 7 = lsecond (b) (i) 7 = 1pus (ii)
vo(t) =5 (1 —e M) ;7= 1ps

Exercise 10.22 In each of the following cases, find by inspection and give

1) an expression for the time constant ,
i) a sketch of the signal versus time,

iii) an analytic expression for the signal in terms of 7 and any other necessary parame-
ters.

a) Referring to Figure 10.47, find v(¢) for ¢ > 0 giveni(t = 0) = I,.

@ i
Rl L R2 \

Figure 10.47:

b) Referring to Figure 10.48, find i5(¢) giveni,(t = 0) = I,/2.

b) .
LB Vip P2
ey L2
R
Figure 10.48:

c) Referring to Figure 10.49, find v(t) for ¢ > 0 given that the switch is moved from 1

to2at¢t =0.

Solution:

Q) wolt) =~ ")
7=k

Ri || R
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) Cor Rl% C1 7

I
T < +

Figure 10.49:

b) (1) I, = i1 + 15
(2 iR+ L% = L%

S y — I 7%15 i ) — N Pt
0,7, (t) = Ze T+l since i, (t = 0) = 2.

R
. . . — t
From (1), io = I, — 43 — i, — Le T

_Litl
- R

) Yt 4+ -+ 1%+ Gy % =0

Homogeneous solution:

vg = Ae T, 7=

R, + R,

Particular solution:

Vo
R +R,

vp

Apply initial condition: v(¢t = 0) =V, then

Vo
R + Ry

VvV =vg +vUp = <R1 +R267t/T);

(01 + Cg)RlRQ

R+ Ry
(01 + CQ)RlRQ

R
ANS:: (a) ’U()(t) = _M(e—t/’r), T = m (b) 19 =1, — %e_mt, T = —L1£L2

Ri+R>

—t/TY\ . _ Ri1+R
(R1+R2€ t/ ), T = 7(01_’_102)}%1}12

— Y%
(C) v= Ri+R>
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A‘/\AMA
R
+
V| CD C—— Ve
Figure 10.50:
V| Ve
_>
7
e id >
Al
t o t
Figure 10.51:

Exercise 10.23 For the circuit in Figure 10.50, with no charge on the capacitor at t = 0,
given that if v; = Atu_y(t) then ve = [A(t —-7)+ ATe’t/T] u—1(t). Note that u_,(t)
represents a unit step at ¢ = 0.

Find:
a) vc(t) when the input is the same as above but ve (¢ = 0) = V4.

b) vc(t) when ve(0) = 0and vy (t) = Bu_1(t). Note that u_; (¢) represents a unit step
att = 0.

c) ve(t) fort > T when v (0) = 0 and

0 t<0
vt) =4 At 0<t<T
AT T <t

Solution:
a)

Ve dv, v;

—° = = Homogeneous solution; v, = A e~*/EC
rc T @t T RC J Ve = A€

For (a), assume a trial particular solution in the form v, = C,t + Cj, since the input
isv; = At-uy(t). Note that A in the homogeneous solution above is different from
A in the expression for v;.
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Plug into equation to find:
Ci=A Cy=—-RCA = nparticularsolutionisv, = A-t— RCA
Now apply the initial condition to complete the solution
ve=Ae RS 4 At — RCA
to find A.

therefore A =V, + RCA
v, = (Vo + RCA)e /B¢ + At — RCA
or,v. = [A (t — RC) + (Vo + A- RC)e B u_1(t) ()

b) Here the particular solution is v. = B, so applying the initial condition, we find:

ve = B(1 — e/RCY (b)

) v(t=0)=0
v.(t =T) = A(T — RC) + ARCe~T/RC *“initial value” for t > T
ve(t = 00) = AT, “final value,” fort > T
Therefore, fort > T,

ve(t) = AT 4 [(AT — ARC + ARCe T/EC) — AT] ¢t D/EC

ve(t) = AT + [ARC (e "/RC — 1)] e~ =1V/RC (¢)

ANS:: (2) v, = [A(t — RC) + (Vo + ARC)e™"/"Cu_y (t) (b) v. = B(1 — e /%%) (c)
v.(t) = AT + [ARC (e~ T/RC — 1)]e~(t-T)/RC

Exercise 10.24 A digital memory element is implemented as illustrated in Figure 10.52.
Sketch the waveform at the output of the memory element for the input signals shown in
Figure 10.53. Assume that the switch is ideal and that the memory element has a O stored
in it initially.

Solution:

See Figure 10.54
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din o m— * o[>0 dour

L ¢y,

Figure 10.52:

. -
Store ’_‘ ’_‘ ’_‘

dout

Figure 10.53:

N -
Sore _‘ ’_‘ _‘

douT B
t»

Figure 10.54:
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Problems

Problem 10.1 Figure 10.55a illustrates an inverter I NV'1 driving another inverter INV 2.
The corresponding equivalent circuit for the inverter pair is illustrated in Figure 10.55b.
A, B, and C represent logical values, and v 4, vg, and v¢ represent voltage levels. The
equivalent circuit model for an inverter based on the SRC model of the MOSFET is de-
picted in Figure 10.56.

A INV1 B INV2 c
o8 D>
(a
Vs

Figure 10.55:

a) Write expressions for the rise and fall times of INV'1 for the circuit configuration
shown in Figure 10.55. Assume that the inverters satisfy the static discipline with
voltage thresholds V;;, = Vor—v, and Vig = Vo = Va.

Hint: The rise time of 7N V1 is the time vp requires to transition from the lowest
voltage reached by vp (given by the voltage divider action of Ry, and Roy) to Vg
for a Vg to OV step transition at the input v 4. Similarly, the fall time of INV'1 is
the time vp requires to transition from the highest voltage reached by v (that is,
Vs) to Vi, for a OV to Vs step transition at the input v 4.

b) What is the propagation delay ¢,; of INV'1 in the circuit configuration shown in
Figure 10.55, for Ron =1k, R, = 10RoN, Cgs = 1nF, Vg =5V, Vi =1V, and
Vg =3V?

Solution:
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A VS
% R
V,
VIN 00— VIN o0——— Y ouT
O
Ces
VinZVr Vin< V7
Figure 10.56:
a) For vg going from low to high:
_ Ro _ —t/T
vg = Vg + (VS RoN-IJ-VRL Vg)e /
trise = —TIn | —==Y%2 | 7 =R,C
rise (VS— Vs ROR]\?_{_VRL LYGS
For v going from high to low:
_ Ron _ Ron —t/T
vB = Vsgouim T (Vo = Vorg 2mr) ¢ /
R
Vi —Vg o8
tiau = —71n | ——FoN*RL T = Cgg-Ronke
fall (VSVS e GSRon+RL
R,
Vi~V zON__
trise = —7In | —L5—Vo T = R Cgs t = —7ln | —Fgpti
rise (VS_VS RORNQ-{-VRL LY GS Ufall Ve—Vs RORNQ-{-VRL
_ RonRL
7= Ces Ron+RL
b) tpd = lrise = 8.2 us
ANS:: (a) t, = —rln|—%="Yun__ = R,C t =
.- rise T1n RON T LY GSH fall
Vs=Vs mon+Ry

1 Vi—Vs RORN-{-VRL _ C RonRL (b) t . =89
T Vs—VsROR% 7= VG RoxtRr pd = -2 J15
N L

Problem 10.2 The inverter-pair comprising /NV'1 and I NV 2 studied in Problem 10.1
(see Figure 10.55) drives another inverter I NV 3 as illustrated in Figure 10.57a. Logically,
the series connected pair of inverters INV'1 and INV2 function as a buffer, as depicted
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in Figure 10.57b. The equivalent circuit of the buffer circuit driving 7NV'3 is illustrated
in Figure 10.57c. For this problem, use the equivalent circuit model for an inverter based
on the SRC model of the MOSFET as depicted in Figure 10.56. Assume further that each
of the inverters satisfies the static discipline with voltage thresholds V;;, = Vi, = V7, and
Vin = Vog = Vi. Assume further that the MOSFET threshold voltage is V. (Note that
to satisfy the static discipline, the following is true: V;, < Vi < V).

INV1 INV2: INV3

BUF INV3
oo >0 N
L~ {>°

|
I
I
I

@& (b)
~_BUF
| INV1  INV2 | INV3
| VS VS | VS
| |
| |
2R R R
| |3 .\
| | —
i BN S B S S
_A | VB_ Vc | _
AT S SR N S T S &
(©
Figure 10.57:

a) Referring to Figure 10.57c, assume that the input to the buffer v 4, undergoes a step
transition from OV to Vg at time ¢ = 0. Write an expression for vg(t) for¢ > 0
for the step transition in v 4. (Hint: See the fall time calculation in Problem 10.1a).
Sketch the form of v for ¢ > 0.

b) Referring to Figure 10.57c, assume that the input to the buffer v 4 undergoes a step
transition from OV to Vg at time ¢ = 0. Write an expression for v (t) for ¢ > 0 for
the step transition in v4. (Hint: Refer to the sketch of vg drawn in part (a). The
MOSFET in INV 2 stays on for vg > V7, and turns off when vg < V7). Sketch
the form of v (¢) for ¢ > 0.
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c)

d)

f)

9)

h)

i)

CHAPTER 10. FIRST-ORDER TRANSIENTS

Write an expression for the rise time of the buffer for the circuit configuration shown
in Figure 10.57c. (Hint: Refer to the sketch of v from part (b). The rise time of the
buffer is the time vc requires to transition from the lowest voltage reached by v
to Vi from the time the input v, makes a step transition from 0V to V5. Note that
the rise time of the buffer includes the internal buffer fall delay, which is the time
v takes to transition from Vg to V7, and the additional time v takes to transition
from its lowest voltage to V).

Referring to Figure 10.57¢c, assume that the input to the buffer v, undergoes a step
transition from Vs to OV at time ¢ = 0. Write an expression for v(t) for ¢ > 0 for
the step transition in v 4. Sketch the form of v for ¢ > 0.

Referring to Figure 10.57c, assume that the input to the buffer v, undergoes a step
transition from Vg to OV at time ¢ = 0. Write an expression for v (t) for ¢ > 0 for
the step transition in v4. (Hint: Refer to the sketch of vz drawn in part (d). The
MOSFET in INV 2 stays off for vy < V7, and turns on when vz > V7). Sketch
the form of v (¢) for ¢ > 0.

Write an expression for the fall time of the buffer for the circuit configuration shown
in Figure 10.57c. (Hint: Refer to the sketch of v from part (e). The fall time of
the buffer is the time v requires to transition from Vs to V7, from the time the input
v, makes a step transition from Vg to OV. Note that the fall time of the buffer is
the sum of two components: (1) the internal buffer rise delay, or the time v takes
to transition from its lowest voltage to V- and (2) the additional time v takes to
transition from Vs to V7).

Compute the rise time and the fall time for the buffer assuming that Roy = 1k,
R, = 10RON) CGS =1nF, VS =5V, Vi =1V, Vp = 2V, and Vg = 3V.

What is the propagation delay ¢, of the buffer when the buffer output is connected
to a single inverter using an ideal wire as shown in Figure 10.57¢?

Notice that unlike the delay calculation in Problem 10.1, we needed the value of V-
to obtain the buffer delay. Why was it necessary in the case of the buffer?

j) An approximate value for the buffer delay can be obtained by doubling the individ-

ual inverter delay. Estimate the buffer delay by using the inverter delay computed
in Problem 10.1b. What is the percentage error in the value of this estimated delay
as compared to the accurate buffer delay computed in part (i) of this problem?

Solution:

a)

_ Ron _ Ron —t/T _ RonRL
vp = Vs Ron+RL + (VS Vs R0N+RL) € 7= Cas Ron+Rig

See Figure 10.58.




307

on

Figure 10.58:

b) The MOSFET in INV 2 stays on for vg > V7, and turns off when v < Vy. We
will call ¢ ¢, 5 the time it takes for v to reach V.

R
VT_ S R ON
_ ONIE _ RonR
traup = —Trau I | T————HE " | Tran = Casponsiits
STVS RoN+ERL

. R,
t <tlraip:vc = Vs RONO‘|1‘VRL

t > tfallB ’UC fr VS + (VS Roljvo_{_vRL —_ VS) ef(t*tfallB)/Trise TTiSC — RLCGS
See Figure 10.59.

c) vg=Vs+ (VS RoIfVO-II—VRL — Vs)e_(t_tfallB)/Trise

— Vs =V
triseC — tfallB — Trise In < —H )

REon
Vs= Vs Ron+RL
_ Rony —t/Trise
d) U — VS + (VS Ron+EL Vs)e

See Figure 10.60.

e) We will call t,;,.5 the time it takes for vg to reach V7.

_ Vs —V;
triseB = —Trise In ( < Ig )

— _ 'ON
Vs= Vs RonN+RL

— RON _ RON —(t—t ; B)/Tf 1l
ve = Vs Ron+EL + (VS Vs RON+RL) e rise a

See Figure 10.61.
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LalB >

Figure 10.59:

Figure 10.60:
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on

LalB

Figure 10.61:

R
Vi—Vs ¢ O-f-VR
f) traic = triseB — TrauIn <—ORAéN L

Vs—Vs mon+rL

g) trisec = 9.19 us
tfallC = 6.08 Hus

h) tpd = tm'sec =9.19 MS

i) INV2switches when v rises above or falls below V.. Therefore the output of the
buffer is dependant on V7.

J) Approzimate delay = 16.2 us

Y%error = 1822219 — 7600

9.19
. — Ron oN —t/T RonRL
ANS:: (@) vg = VSR0N+RL + (VS VSRON-I-RL)e . = CGSRON(+RL (bg/t <
__f*ON ON _ t—t UB)/T
tfallB Vo = VSRO TR t > tfallB- ve = Vs + (VSR0N+RL Vs)e fa rise
Vr—Vs g 5 TR RonR
. — — — — TONTTL — ON L . —
Trise = RCas, tfaup = —Tfau In Veve _Roy Traw = Cas g 250k (€) trisec =
Ront+EL
o . VS*VH — RON _ —t/T'rise —
tfauB — TriseIn <—V5—Vs Hon ) v = Vs + (Vog, 2% — Vse (€) ve

Ron+RL oN+RL Ve —ftON
RonN+RL

VS fox (VS - VSRRON )6_(t_triseB)/Tfa”) triseB = —Trise In (VVS—> (f)
S



310 CHAPTER 10. FIRST-ORDER TRANSIENTS

Vi —Vg QN __
(M> (9) trisec = 9.19 ps, trauc = 6.08 us (h)

Ron
Vs=Vsmon+Rg

tpa = 9.19 s (j) delay = 16.2 ps, %error = 76%

trauc = triseB — Trau1In

Problem 10.3 The circuit depicted in Figure 10.62 implements the logic function Z =
(ABC + D)E. Suppose the output of this circuit drives an inverter with a gate capac-
itance of Czg. Assume that the MOSFETS in the circuit have on resistance Ry, and
that the high and low voltage thresholds are Vig = Vog = Vg and Vi, = Vor, = V;,
respectively.

Vs

R

[ )

A

rrr

=
Figure 10.62:
a) What combination of logical inputs will result in the worst-case fall time for the

circuit?

b) Derive an expression for the worst case fall time in terms of Vs, R, Ron, V1, and
Vg . Not all variables need appear in your answer.

c) Derive an expression for the worst case rise time.
Solution:

a) To make the rise time longest 7 must be its largest possible value. To achieve this,
A, B, C, and E must all be high and D must be low.
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b) Z=Vs 4RoN + (VS _ VS#) et/ Tfan

4RoNn+RL Ron+RL
4R
Vi—Vs zx ONR 4RonNR
tfall = _Tfall 1Il ( fRN+ L T — C’ ONItL
V. _fBoN Jall GSiRoN+RL
Vs—Vs 4RoN+RE,

C) Trise IS always Cas Ry, and the maximum voltage is always Vs, so the rise time is
based only on the minimum voltage level when low. The lowest low results when
A, B, and C are high, while D and E are low.

— VsV
trise = —Trise In ( 5 211%01\7 )

Vs— Vs 2RoN+R[,

ANS:: (a) A, B, C, and E must all be high and D must be low (b) 7 =

Vi Vs g bRy 4RoNR Vs—V,
—Tfall In 40RNN L Tfall = C'GS QNZL (C) trise = —Trise In Sk N
Vs—Vs oy +az 1RoN+R Vs Vs rmont L

Problem 10.4 Figure 10.63 illustrates an inverter INV A connected to another inverter
INV B by a wire of length / on a VVLSI chip.

INVA INVB
A~ B I C’' D
Figure 10.63:

Figure 10.64 shows a lumped circuit model for the (nonideal) wire of length [ in
a VLSI chip, and Figure 10.65 shows the equivalent circuit model for the inverter pair
connected by the nonideal wire based on the SRC model for the MOSFET. Assume that
the logic devices satisfy a static discipline with voltage thresholds given by V;, = Vor =
Vi, and Vg = Vor = Vg, and that the supply voltage is V.

- | >
Be s C
IRy
Be—WW——FoC

j— ICO
Figure 10.64:

Suppose TNV A is driven by a 0 to 1 transition at its input (denoted v;x4) at time
t = 0. Determine ¢,4 0,1, the propagation delay through 7NV A for a 0 to 1 transition at
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Vs Vs
R, R
VouTa Ving
VINA o——— MM — O Vouts
F‘)'vvire
— % RON — — RON
Cosa Cuire Cess
Figure 10.65:

its input. Recall that by our definition ¢4, is the time taken by the input to INV B,
namely v;n g, to fall from Vs to V7, following the O to 1 transition at the input of INV A.
Express your answer in terms of Vg, V7, Ron, Cgs, the wire length [, and the wire model
parameters. By what factor does the delay increase for a 2x increase in the wire length [?

Solution:
ving = Vi + (Vs =V, Ye U
INB 5R0N+R S SR N+RL
Ro
bygs = —7In [ S TGN ) 1 (10, + Cas) (IR, + EonEs )
pd70—>1 VS_VS = RO—{-VR GS N+RL
ON L

Assuming the wiring terms dominate, a 2x increase in the wire length yields a 4x
increase in the delay.
VL

_VS Ron
—RORN+RL) T = (IC, + Cgs) (IR, + fonfu)

_ N R R
Vg VSR—OJVO+—RL oNtRL

ANS:: tpd’0_>1 =—71In (

Problem 10.5 Figure 10.66 illustrates an inverter I NV A driving n other inverters INV'1
through INVn. As in Problem 10.1, each of the inverters is constructed using a MOSFET
and a resistor Ry, and the inverters satisfy the static discipline with voltage thresholds
Vi = Vor = Vi and Vig = Vor = Vi. Model the MOSFETS using the SRC model
with MOSFET on resistance Roy and gate capacitance Cgg as in Problem 10.1 (see
Figure 10.56).

a) What are the rise and fall times for INV A? (Hint: Sum the input capacitances of
each of the inverters into a single lumped value, and use your answer from Prob-
lem 10.1 to solve this part). How does the rise time increase as the number of driven
inverters n increases?
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INV1

¥

INVA

{> INV?2

A

INVNn

?_

Figure 10.66:

b) What is the propagation delay ¢,, of INV A in the circuit configuration shown in
Figure 10.66, for Roy = 1k, R, = 10RoN, Cas = 1InF, Vs =5V, V, =1V, and
Vg =3V,

c) Now, assume that each of the wires connecting the output of /NV A to each of the
inverters INV'1 through INVn is nonideal as depicted in Figure 10.67. Model
each of the wires using the model shown in Figure 10.68. Assuming that the input
of INV A makes a step transition from 1 to O, find the rise time at the input of any
one of the inverters INV'i driven by INV A.

Figure 10.67:

Rw
™
Figure 10.68:

d) Compute the value of the rise time determined in part (c) for the following param-
eters: Roy = 1k, R, = 10Row, CGS = InF, Ry = 10042, CW = 10nkF,
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Vo =5V, V, =1V, and Vg =3V.

Solution:

a)

b)

d)

Vs—V;
trise = —TIn | —S—HF— T=nCagsR
rise Ve— Vs RORNQ-{-VRL GSLtL

The rise time increases linearly with n.
trise = N8.2 s
Refer to Figure 10.69.

CwtCgos—7—VC

Figure 10.69:

Vs—Va _

i Ceq = Cw + Cgs
VA = ’LcRW + v = cheqd;—tc + Ve

Combining we have Vs = C,(nRy + Rw) +ve  ve(0) = Vg RoffvofRL

. dv
nic = NCeq 3¢

Solving this differential equation yeilds:
ve = Vs + (VS — Vs)e_t/T T = (CW + Cgs)(nRL + Rw)

Ron
Ron+RL

Vs —Vi
trise = —TIn | —S—F ——
rise VS_ VSR_O]V%RL

trise = (0.9 +n90.3) us

ANS:: (@) tyi5e = —7T1In <—VS_‘,/{#> T = nCgsRr (b) trise = n8.2 us (C)

Lrise =

s

Vs—Vsmon+RL

Vs—Vu

—71n (—R
_ oN
Vs=Vs Ron+RL

7 = (Cyw +CGS)(nRy+ Rw) (d) trise = (0.9+n90.3)
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Problem 10.6 As can be seen from the answer to Problem 10.4, long wires have a serious
negative impact on the delay. One way to alleviate the wire delay problem is to introduce
buffers when driving long wires, as illustrated in Figure 10.70. Assume that the buffer is
constructed as depicted in Figure 10.57c using a pair of inverters identical to the inverters
in this problem. In other words, the input of a buffer has a capacitance C'gs to ground,
and the output of a buffer has the same drive characteristics as an inverter output. For this
problem, you will ignore the internal delay of the buffer. (See Problem 10.2c and f for a
definition of the internal buffer delay). In other words, assume that a buffer driving zero
output capacitance has zero delay.

By introducing a buffer, the effective length of wire driven by either the inverter
INV A or the buffer is [/2. For large [, given the nonlinear relationship between wire
length and delay, the sum of the delays in driving the two /2 wire segments is smaller
than driving a single wire segment of length /.

INVA INVB
T Py
2 2
Figure 10.70:

a) Compute the propagation delay between the input of TNV A and the input of
INV B for the circuit in Figure 10.70. Assume that rising transitions are longer
than falling transitions at the output of either the inverters or the buffers.

Hint: The total delay from the input of I NV A to the output of IN'V B is the sum of
the following two quantities: (1) the propagation delay of TNV A driving the wire
segment of length //2 and a capacitance C'ss corresponding to the gate capacitance
of the buffer and (2) the propagation delay of the buffer driving the second wire
segment of length //2 and a capacitance C'ss corresponding to the gate capacitance
of INV B. (Remember, the buffer has zero delay when it is driving zero output
capacitance).

b) Figure 10.71 shows a circuit in which n — 1 buffers are introduced between TNV A
and INV B. INV A and each of the buffers drives a segment of wire of length
[/n. Compute the propagation delay between the input of 7NV A and the input of
INV B for this case.

c) Determine the number of buffers for which the propagation delay for the circuit in
Figure 10.71 is minimized.

Solution:
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INVA Bl B2 ... Bn-1 INVB
n n n"’ n
Figure 10.71:

a) The delay is equivalent for each length of wire, so the total delay is twice that of
a single wire of length //2. Using the result from Problem 4 we can easily see the
following.
tpa = —27In (—VS_‘% ~ > 7= (3Co + Cas) (3R, + Ry)

Vo Vo—=1ON_
S SRoN+EL

b) tpd = —n7ln (VS;VHN) T = (%Co + Cgs)(%Ro + RL)

5= Vs montry
c) The n that minimizes ¢,, we must also minimize nr = n(%Co—i-CGS)(%R,,—i—RL).
%n(%Co + Cgs)(iRo + RL) = 0

H _ IR,Co
Solving forn = n = Gl

ANS:: (a) tpd = —271n (%) T = (%Co + CGS)(éRo + RL) (b) tpd =

—Va—ON
o VSRON""RL

—n7ln (%) 7= (£Co + Cas) (5 Ro + Rr) (¢) n = vV éﬁ;%;

Vs—Vs ron+E1

Problem 10.7 Figure 10.72 shows a buffer BU F'1 driving a large load capacitor C;,. The
buffer is built using an inverter pair as in Figure 10.57c. The width to length ratio of each
NMOS transistor in the buffer is 1W/L and the resistors have a value R;. Accordingly,
the gate capacitance seen at the input of the buffer is given by (W/L)Cgs. The buffer
satisfies a static discipline with voltage thresholds given by Vi, = Vo, = Vi and Vg =
Vorn = Vy. The supply voltage is Vs. Assume that the internal buffer delay (as defined
in Problem 10.2c) is zero. Assume that there is a 0 to 1 transition at the input A at time
t=0.

a) Compute the propagation delay for the buffer BUF'1 driving the load C, for the
rising transition at the input A.

b) Now consider Figure 10.73. This figure shows the use of a second buffer with
larger transistors and smaller valued load resistors (xz > 1) interposed between the
first buffer and the load capacitor. Compute the propagation delay for the buffer
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BUF1
A—>

T

W
TR

Figure 10.72:

BUF1 in series with BUF2 driving the load C}, for the rising transition at the
input A. Assuming that C';, is much larger than the input gate capacitances of the
two buffers, and that x > 1, is the delay computed in part (b) greater than or less
than the delay computed in part (a)?

BUF2
BUF1 [
A
C
W L
TR w R I
X+, —
L' x
Figure 10.73:

c) Consider Figure 10.74. This figure shows the use of a series of n buffers in which
BU Fi has transistors that have a width x times that of BUF7 — 1 and resistors that
are a factor x smaller than that of BUF'7 — 1. n is chosen such that C', is = times
the gate capacitance of BU F'n. In other words, n satisfies the equation:

w
CL = anfogg

Compute the propagation delay for the sequence of n buffers driving the load Cp,
for the rising transition at the input A. As before, assume that C', is larger than the
input gate capacitances of each of the buffers and that = > 1.

BUF1 BUF2 BUF3 ... BUFn

> N
w R R CL
LT’ RL X\LV’ L XZ\_/_Vl L Xn —-1lw RL I
L' x L X2 L’ Xn -1

Figure 10.74:
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c) Determine the value of = for which the propagation delay computed in part (b) is
minimized.

Solution:

a) tpg=—TIn —VS_V};’ON T=R;CpL
Vs= Vs mon+Ry,

= (z %W il _ Vs=Vm
Since (), < x%CGS the first term in negligible. Since = > 1 the delay computed
in part (b) is smaller than the delay computed in part (a).

c) The result will be a sum of terms similar to those found in part (b).

" W Ry Vo — Vg
td:— .Z'k—CGs— In

d) The limitation on x is the maximum value such that the buffer can still achieve a
valid low.

VL

Ry -~
_ Ron — Vs
Ve Ron+Rr/z RON(l_%)

ANS:: () by = —71n (%) = RiCy () b = (2% Cashy +

R Vs—V, _ n kW R V=V, _
CL—;) In | —F—EL— R%N (c) tpa = — D=1 T fCGS_J;IIJ In = mkI;; (d)z =
Vs—Vs g & Vg—Vg - RON __

ONTRL «FRoN+R],
\%
Ry —Vg

V;
RON(l—%)

Problem 10.8 In this problem, you will study the affect of parasitic inductances in VLSI
packages. VLSI chips are sealed inside plastic or ceramic packages and connections to
certain nodes of their internal circuitry (for example, power supply, ground, input and
output nodes) need to be extended outside the package. These extensions are commonly
accomplished by first connecting the internal node to a metallic “pad” on the VLSI chip.
In turn, the pad is connected to one end of a package “pin” using a wire that is bonded to
the pad at one end and the pin at the other. The package pin, which extends outside the
package, is commonly connected to external connections using a PC board.
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Together the package pin, the bond wire, and the internal chip wire are associated with
a non zero parasitic inductance. In this problem, we will study the effect of the parasitic
inductance associated with power supply connections. Figure 10.75 shows a model of our
situation. Two inverters with load resistors R; and R, and MOSFETs with width to length
ratios W1 /L, and W5/ L, respectively are connected to the same power supply node on
the chip that is labeled with a voltage vp. Ideally this chip-level power supply node would
be extended with an ideal wire outside the chip to the external power supply Vs shown
in the figure. However, notice the parasitic inductance L p interposed between the power
supply node on the chip (marked with voltage vp) and the external power supply node
(marked with voltage V).

C
w
A_| 1! B:O—| V\_/Z

Ly L,

Va A

5V- | — —
oV >t
to

Figure 10.75:

Assume that the input B is OV at all times. Assume further that the input A has 0V
applied to it initially. At time ¢t = t,, a 5V step is applied at the input A. Plot the form
of vp as a function of time. Clearly show the value of vp just prior to ¢, and just after
to. Assume that the on resistance of a MOSFET is given by the relation %Rn and that
MOSFET’s threshold voltage is Vi < Vg. Also assume that V- < 5V.

Solution:
ip Will be used to refer to the current through the inductor, from Vg to vp. For ¢ < t,,
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vp = Vs. The following applies for ¢ < t,.
ip(t=0") =ip(t=0%)=0.

. _ Vs
— Lp
Ri+7t Ry
7;P Vs (1 o e—(t—to)/’l‘)

T Rt R,
vp = (R + 2R,)ip = Vs(1 — e (710)/7)
See Figure 10.76.

VpA

Vs

Figure 10.76:

Problem 10.9 A certain box, known to contain only linear elements (and no independent
sources), is connected as shown in Figure 10.77.

i(t) v Box

Figure 10.77:
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' > (9)

Figure 10.78:

The current waveform i(¢) has the form shown in Figure 10.78.

The voltage v is zero for all ¢ < 0, and is 1 volt for 0 < ¢ < 2. What is v during the
interval from ¢ = 2 to ¢t = 5? Show one simple possibility for the circuit in the box.

Solution:

From0 < ¢t < 2 we see that v = % = 1 V. Keeping this relation we have v = —1 V

for2<t<3andv=-1/2Vfor3 <t<b5.
See Figure 10.79.

Figure 10.79:

ANS:: v = —1lvoltfor2 <t < 3andv = —1/2voltfor3 <t <5

Problem 10.10 As illustrated in Figure 10.80, a capacitor and resistor can be used to
filter or smooth the waveforms we derived from a half-wave rectifier, to get something
closer to a DC voltage at the output, for use in a power supply for example.

For simplicity, assume the voltage from source vg is a square wave. Assume that at
t =0,vp = 0, i.e., the circuit is at rest. Now assuming that R is small enough to make
the circuit time constant much smaller than ¢, or ¢, calculate the voltage waveforms for
each half cycle of the input wave. Find the average value of the output voltage v, for
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A L]
+ R +
' t+—
Vs
V _
1 tH tt | T
<« |- R
>
0 time
Figure 10.80:

t1 = ty. Sketch the waveforms carefully. For this choice of R, it should be clear that no
useful smoothing has been accomplished.

Solution:

0<t<t: vo=V(—e 7o)
to<t <ttty vo=Ve m"
The average value of vp is V/2.

See Figure 10.81.

(t—t1)

ANS: 0 <t <t 00:V(1—e_15_0),t1<t<t1+t2: vo = Ve "EC

Problem 10.11 For R much larger than the value used in Problem 10.10, so that the
circuit time constant is much larger than ¢, or ¢, (so that the exponentials can be ap-
proximated by straight lines) calculate v, for the first half cycle of vg, and the second
half cycle. Sketch the result. Note that the solution does not return to the initial point of
vo = 0 after one cycle, so is not in the “steady state” yet.

Solution:
0<t <ty UOZV(l—e_Rt_C)
For RC > t, we can approximate vo as a straight line through the origin with slope
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Figure 10.81:

vo(t) = pgt

Note that vo(t1) = 2.

(t=t1)
1 <t<ti+1: vo= %6_ RC1

Again, since RC >> t; we can approximate v, as a straight line with slope — ¥4 - =

vo(t) = Y — Vbt~ 1))

See Figure 10.82.
ANS: 0 <t <ti: vo(t) = ot b1 <t <ti+12 vo(t) = F& — (ggl)Q (t—1t)

Problem 10.12 You can see from Problem 10.10 that for circuit time constant = >> ¢;
and ¢, the capacitor voltage starts from some value V,,,;,, and increases when v is positive;
then when vg Is zero, vp starts at some value V,,,ax and decreases. By definition, the
“steady state” of the circuit is when v, charges from V,,,;, to V;,...., then discharges from
Vinaz t0 the same V,,,;,. Assuming ¢; = t,, sketch the vo waveform in the steady state.

Find the average value of the voltage v,. Problem 10.11 may give you a hint. Explain
your answer. It may help to consider the waveform v to be made up of a DC voltage V/2
and a symmetrical square wave whose values alternate between +V/2 and —V//2.

Solution:
See Figure 12-12-a.
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VOA [ |
\ \
Vt, | :
RC| | |
| |
V. | oV |
RC \ (RC)2 |
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\ \
\ \
\ \
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\ \

| | >

- 1 >‘< to >‘ t
Figure 10.82:

Let’s use the hint and think of vg as the sum of a DC term and a symmetric square
wave. For the DC voltage of V/2 the capacitor acts like an open and vpo = V/2. The
symmetric square wave will charge and discharge the capacitor equally as the wave alter-
nates between V//2 and —V//2, so the average value of v, from the square wave term is 0.
Therefore the average value of v for the total vg is V/2.

ANS:: V/2

Problem 10.13 This problem (see Figure 10.83) involves a capacitor and two switches.
The switches are periodically driven by external clock controls at frequency f, such that
first S; is closed and .S, is open for the %fo, and then S, is closed and S; open for time
sfo.

You can assume that the clock drives are non-overlapping, that is, S; and S, are never
both closed at the same instant. S; opens just before S, closes, and S, opens just before
S closes.

a) Find an effective average current i 4 by determining the average rate of charge trans-
fer over several clock cycles. Suppose v4 = A coswt where w << 27 fy. Sketch
14 and v 4 on the same axes.

b) Examine your results for i4 and v4 from part a). They should be in phase, and the
amplitude of i 4 should be proportional to the amplitude of v 4. This is a funny form
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A ?1_ Switch states
Closed_ % 0
in Sl - — +— — P
._—l Open_ -
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Va C— ( o ‘o
Closed_ -
Open >
Time
Figure 10.83:

of “resistor”. What is the "resistor” value? Where does the energy supplied by v 4
actually go?

COMMENT: Circuits of this type are now commonly used in a type of MOS inte-
grated circuit to make elements that simulate resistors with precisely controlled values.
The value of such elements is that precise control of capacitor sizes and clock frequencies
is easy in MOS integrated circuits, but precise control of resistor values is hard.

Solution:

a) When S; is closed and S, is open an amount of charge ¢ is dumped onto the
capacitor and when the switches change the charge is removed.

: AQ _ CV. ;
iave = 32 — Th = tave =CVafo

Forv, = A coswt Where w << 27 fo we can assume that the average current found
above is the actual currenti4. = iy = AC fy coswt.

See Figure 10.84.

_va 1
b)R—i_C—f0

The energy supplied by v 4 goes to charging the capacitor.

ANS:: (@) iave = CVafo (0) R =14 = o

Problem 10.14 State variables can be used to describe the behavior of a wide range of
physical systems. For each of the examples below, try to determine:
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A
A~Va
ACF A
|
t
\/

Figure 10.84:
i) the number of state variables that are needed to describe the system, i.e., how many
state variables.
i) Which physical variables can serve as state variables.
iii) The form of the state equations, including the identification of inputs.

iv) A simple circuit that can represent the system (an electrical analog).

Here are the examples:

a) A hockey puck leaves a hockey player’s stick with velocity v, and slides along the
ice until it comes to rest (assume a very large hockey rink, or a very weak shot).

b) Halfway through your shower each morning, the water temperature suddenly

plunges toward freezing, presumably because your roommates were up earlier and
showered first.

c) A simple pendulum starts from rest with an initial angular displacement A,, and
rocks back and forth until it eventually comes to rest.

(COMMENT: Part (a) is easy if you concentrate only on the velocity, and is more
difficult in terms of the circuit analogy if you include the position as well. Parts (b) and
(c) lend themselves to excellent descriptions with circuit analogs.)

Solution:
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a 1)1
i) velocity of the puck (v)
i) ‘fi—ft’ = kv (no inputs, only an initial velocity)
iv) See Figure 10.85.

WWWY

Figure 10.85:

b) 1)1
i) volume of hot water left in the tank (V)

i) % = —(@, where Q is a constant input (with units of volume/time) draining
the hot water from the tank.

iv) See Figure 10.86.

Figure 10.86:
See Figure 10.86.
c) )2
ii) angular displacement () and its derivative (6;)
iii) % =6,

‘%2 = k161 + k20,
There are no inputs, only the initial angular displacement of the pendulum.

iv) See Figure 10.87.
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MW

Figure 10.87:

ANS:: (a) (i) 1 (i) v (iii) 2 = kv (b) (i) 1 (i) V' (iii) 2 = —Q (¢) (i) 2 (ii) theta and

its derivative (iii) 1 = 6,, @2 = k6, + k»0,

Problem 10.15 Figure 10.88 shows the use of a filter choke.

Vs C’) iR

Source Filter choke Load

Figure 10.88:

Assume that the waveform for vg for parts a) and b) is a series of square pulses starting
at ¢t = 0 as shown in Figure 10.89.

Assume that the waveform for vg for parts ¢) and d) is a half-rectified sine wave as
shown in Figure 10.90.

a) Assume initial rest conditions at £ = 0~, and assume that both ¢; and ¢, are long
compared to the time constant of the network. Determine each of the following:

i) Calculate the current waveform for the first cycle (0 < ¢ < ¢; +1t5), the second
cycle [(¢1 +t2) <t < 2(t; +t2)], and a typical cycle after stead-state periodic
conditions have been reached.

i) How many cycles are required to go from initial rest to steady-state condi-
tions?

iii) In steady state, determine the average load current, the amplitude of the vari-
ations in load current through one cycle, the average energy stored in the in-

ductor, and the ratio of this stored energy to the energy dissipated in the load
during one complete cycle.
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Figure 10.90:
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b) Repeat part a) for the case where both ¢; and t, are short compared to the time
constant of the network.

c) Now assume that as a filter designer, you are faced with the problem of selecting
the inductor value to produce relatively smooth, ripple-free current in a load from
a voltage source with a strongly pulsating value, such as the half-wave rectified
sine wave shown. What method would you use to specify the inductor value with
which to achieve a specified maximum variation in load current? Why might the
specifications of a huge L value, much larger than might be needed, be a poor
design?

d) Try your hand at a design: assume that the source waveform is half-wave rectified
60 hz 115 V AC, the load resistor is 16.2 Ohms, and it is desired to have a load
current ripple of 5% of the average load current. Make reasonable approximations.

Solution:
For this entire problem, 7 = L/R.

a) Since both ¢; and ¢, are long compared to the time constant, the circuit will reach
steady state during every cycle.

|) 0<t S t1: Z(t) = %(1 _ e*t/T)
b <t <t 4ty i(t) = Ye 0T
Every other cycle will be identical to the first.

i) It will only take one cycle to reach steady state. It will only take one cycle to
reach steady state.

i) We will assume that for the majority of each cycle, i(t) is either 0 Amps or %
Amps. In this case:

g (0) = Y7

R t1+ta
The amplitude of the variations is V/R
_1ly:.2 __ 1 Vot 2
EL,CWQ - §L7’cwg - §L[R(tf+1t2)]
— 2 EL,O/U _ L
ERavg - Rzavg = m ~ 2R

b) For this section we will approximate each exponential rise and decay as a straight
line, with a slope equal to the initial slope of the exponential.

t<t<ty+tyr i) =Yl — Yohy — Yehi(q _ t=h)
t+ 1ty <t <2t +ts.
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i) = 3% — 1 - )] [t (0 + 1)
=[P = 2= 20t~ (b + 1)
0T ][ (4 4 1)
%)+t < £ < 2ts + )
As a shorthand, lets say A = Y21 — & 4 1k
i(t) = At; — %[t —(2t1 +t)] = Atl[l M]
For steady state:

Once the circuit reaches steady state, the value of the current will oscillate
between a high value (iy) and a low value (i;). Expressions for these two
values follow.

. Vo/R—i .
ZH:70/ ZLt “+ 17,

ZL = ZH — _t2
We now have two equations and two unknowns. Solving yields:
KQtlT
— R

'H= ’T(t1+t2)7t1t2
Vo4 (r—
o _mhlr=ts)
L= T(t1+t2)—t1t2
So in steady state i(¢) rises and falls linearly between iz and iy

i) Notice in the expression labeled A in part b) i) a pattern begins to emerge:
1 —4 + 42 Since t; and ¢, are approximately equal when compared with
T, We can approximate the final term in this expression as [”Ttl]”, where n
is the cycle number. The circuit has reached steady state when this term is
reasonably close to zero. This is a subjective decision and is based on the
values of ¢; and 7.

The circuit has reached steady state when ["T“]" is approximately zero, where
n is the cycle number.

. tg+iL tl(T_t_z)
ii) Zavg(t) = "9 = r(t1+t2) tits

V—£t1t2
(t1+t2)—t1t2
ELavg = 5LiZ,, Where i, is given above.

— 2 EL,avg — L
ERaUH - Rlavg = Fravg 2R

The amplitude of variations is iy — iy, =

c) We will approximate the sine wave as a square wave of decreased height, and so all
previous calculations apply.

For the difference seen between parts a) and b), we much choose L such that the
time constant is much larger that ¢3. From the calculation of variations in i(¢) from
part b) iii) we see that the ripple is inversely proportional to . We should choose
L such that 7 is large enough to achieve the minimum ripple. If L is chosen to be
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larger than necessary, the current will take longer than necessary to reach steady

state.
d) t3 = 60Hz = 16.7ms
lripple __ 0 05 _ %tg __ i3
favg 0 Mgr-lay T B
T = 0t85 + t?’ = 342ms
L=7R= (342m3)(16.29) = 5.535H
L =5535H
ANS: (a) ()0 < ¢t < ty: i(t) =R (1—e™),0 <t <ty i(t) =221 —e"7),

t<t <tidtar i(t) = e T () 1 ([) dang () = L5 Erang = s Liggim

R ti+t2’ R(t1+t2)
E av
—EIL{,MZ =& (d) L =5.535H
Problem 10.16 Consider the circuit shown in Figure 10.91.
Vi
A
+ VR -
Ve —e +
R
v C—= Ve
0<_tl. < tl_N t R

Figure 10.91:

a) Plot vy and ve for several cycles of the indicated input waveform. Assume the RC
time constant is 10¢;.

b) During the first several cycles, the v waveform does not repeat, but after some
time, v¢ is cyclic. Find and sketch this cyclic waveform. Dimension key values.

Solution:

a) Since 7 > t; we can approximate v as a series of straight lines. We will define
these lines by their values at ¢ = ¢y, 2t¢, 3tq,. . ..

’Uc(tl) = 10t tl =0. 1VP

ve(2t) = 0.1Vp — &5t = 0.09Vp
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vo(3ty) = 0.09Vp + YE5Ee ) = 0.181Vp

A pattern appears.

For even n, ve[nt:] = 0.9vc[(n — 1)t1]Ve

For odd n, ve[nt1] = {0.9v¢[(n — 1)t1] + 0.1}Vp

Using this pattern, we can easily graph v, as seen in Figure 10.92. vz = v; — v¢
as graphed in Figure 10.92.

\ \ \ \ \ \ \
T, 2, 3 4y 5 64 7t >

Figure 10.92:

See Figure 10.92. See Figure 10.93.

b) Once v becomes cyclic it will have some minimum value v,y and some maxi-
mum value v; 4 x. From the pattern noted above, vy = 0.9v74x. We also know
that the average value of v is Vp/2 (see Problem 12).

vmaxtomin — Vp
2 2

vmax +vmiy = Vp

Vpax + 0.9vax = Vp

= vprax = 0.526Vp and vy = 0.474Vp
See Figure 10.94.

Problem 10.17 Referring to Figure 10.95, for v; = Kt, a ramp starting at ¢ = 0, find
expressions for vr and vy,. Plot the waveforms.
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AVc

0.91Vp |-

0.9Vp-
0.837Vp|—
0.819Vp|—
0.778Vp|—
0.753Vp|—

0.7Vp|—

-0.09Vp|— t

-0.1Vp|—
-0.163Vp|—
-0.181Vp|—
-0.222Vp|—
-0.247Vp|—

-0.3Vp|-

Figure 10.93:
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Figure 10.94:

Vi
A
+ VL -
T ° +
L =
AN v R W
Kt
>t -
0

Figure 10.95:
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Solution:

vy, IS the integral of the inductor voltage in response to a step.
vp=K [e " 7=L/R

vy = —T7Ke " + 1K

Note that a constant of integration was added, whose value was determined using the
initial condition of v, (0) = 0.

vy =7K(1 —e7t/7)
vp=v;—vp = Kt —TK(1 —e™7)
See Figure 10.96 and Figure 10.97.

VLA

Figure 10.96:
ANS: v, =7K(1—e /"), vg =Kt —7K(1—e¥") 7=L/R

Problem 10.18 Referring to Figure 10.98, given an initial inductor current i, (0) = 1mA,
find the expression for v and v,. Plot the waveforms.

Solution:

We will solve this problem using superposition, treating the initial current through the

inductor to be a third independant source. For the entire problem, 7 = %.

Contribution from V:
V11 (0) =0
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Figure 10.97:
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Figure 10.98:

Kot
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s = J Bt = —Egrentr 4 Kx = e (1 )
Contribution from I:

ULQ(O) =0

vpo = [ KoRe 7dt = —KotRe™™ + KyTR = KoTR(1 — e7Y/7)
Contribution from initial condition (i, (0) = 1mA):

ip = 107377

V3 = L% = —%10_36_”7

vV, =Vp1 + V2 + V3 = (% + KQTR)(l — e_t/T) + —%10‘36_”7

To find vr we will first find the Thevenin equivalent of everything to left of the induc-
tor and resistor of interest. The Thevenin voltage is Vs /2 + IsR. The Thevenin resistance
is R. See Figure 10.99.

+ VL -
A o——0000
R L
vV L +
7’5+|SR<D RE Ve
i
o

Figure 10.99:

From this we can see the following relation for v .

vgp = $(Vs/2 + IsR — vy,) + i, R where vy is the inductor voltage due only to the
sources and 7z, is the inductor current due only to the initial conditions.

o = (55 + Bt = (54 (1 - eot7) 4 107 Re"

See Figure 10.100 and Figure 10.101.
ANS:: vp = (K17 + KorR) (1 — e ¥7) + L1073 /7, vp = (£ 4 KBy — (K
K22’TR)(1 _ eft/'r) + 1073R67t/7

Problem 10.19 The purpose of this problem is to illustrate the important fact that al-
though the zero-state response of a linear circuit is a linear function of its input, the
complete response is not. Consider the linear circuit shown in Figure 10.102.

a) Leti(0) = 2mA. Let i; and i, be the responses resulting from voltages e; and e
applied one at a time, where
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Figure 10.101:
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Figure 10.102:

0, t<0
= { 10 volts, t>0 (10.1)

0, t<0
€2 = { 20 volts, t >0 (10.2)

Plot 7; and i, as functions of ¢. Is it true that iy (¢) = 24, (¢) for all ¢ > 0?

b) Consider now the zero-state responses due to e; and ey; call them 4 (¢) and i(¢).
Plot 7} and ¢}, as functions of ¢. Is it true that i, (¢) = 24/ (¢) for all ¢ > 0?

Solution:
For the entire problem 7 = L/R = 0.2s.

a) See Figure 10.103 and Figure 10.104.
It is not true that i, (¢) = 24, (¢) forall ¢ > 0.

b) See Figure 10.105 and Figure 10.106.
It is true that i}, (t) = 24 (¢) forall ¢ > 0.

ANS:: (a) not true (b) true

Problem 10.20 In the circuit shown in Figure 10.107, the switch opens at ¢ = 0. Sketch
and label iz, (t) and vy (2).

v = 5V Vo = 3V, R1 = 2]€, R2 = 3I€, L =4mH
Solution:
T= ﬁ = 3.33s.

ir(t = o00) =Vi/Ry = 2.5mA



2mA

Figure 10.103:

AmA—

2mA —

Figure 10.104:
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i’ A

2mA—
>
t

Figure 10.105:

i A

AmA—
>

Figure 10.106:
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O g O

Figure 10.107:

ir(t) = 2.5+ e " [mA]
v (t) = LY = Le=/"[mV] = —Ry || Ree™/"[mV] = —1.2e77[V]

T

See Figure 10.108 and Figure 10.1009.
A

i

3.5mA—

2.5mA—

Figure 10.108:
It is not true that i (¢) = 24,(¢) forall ¢ > 0.

Problem 10.21 A two-input RC circuit is shown in Figure 10.110.

) = 0 for ¢ > 0. The voltage vo(t) is known

Consider operation with i7(t) = 0, vy(
) forall ¢ > 0.

t
to be 1 volt at time ¢t = 0. Determine v (¢

A different constraint is that sources iy (¢) and v;(t) are zero for ¢ < 0 and that v, (0) =
0. Sources i7(t) and vy(¢) undergo step transitions of +1 mA and +1 volt respectively at
time ¢t = 0. Determine vo () for all time.
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Figure 10.109:

Ry=1kQ R3=2kQ

AAAAAA AMAMAA

0.5uF
0.5uF\ 4

i\ (t) D SR, =1kQ <\ > Yo CD vi(®)

05uFA \\O.SuF [ -
L

VVVVY

A

Figure 10.110:



345

Solution:

The four 0.5uF capacitors can be combined into one 0.5uF' capacitor, which will be
called C.

For the whole problem 7 = R;,C = 0.5ms.

First constraint (initial condition and no sources):

vo = e*t/’r

Second Constraint (sources and no initial condition):

Vo = 1mA—1k1f3k2k(1 — ety + %(1 —e My =1—¢et"

ANS:: First: vo = e~ */7, Second: vo =1 — e~ ¥ 7 = 0.5 ms.

Problem 10.22 The neon bulb in the circuit shown in Figure 10.111 has the following
behavior: the bulb remains off and acts as an open circuit until the bulb voltage v reaches
a threshold voltage V- = 65V. Once v reaches V7, a discharge occurs and the bulb acts
like a simple resistor of value Ry = 1k€2; the discharge is maintained as long as the bulb
current 7 remains above the value Is = 10m A needed to sustain the discharge (even if the
voltage v drops below V7). As soon as 7 drops below 10 mA, the bulb again becomes an
open circuit.

R=1MQ
MWW _
+ [
| +
NVV— C=10uyF=—= v
Neon
bulb

Figure 10.111:

a) Sketch and dimension v () and (%), showing the first and second charging intervals.

b) Estimate the flashing rate.
Solution:

a) Charging (v < 60V):
7. = RC = (1MQ)(10pF) = 10s.

Ucharging = 90(1 - e_t/Tc)
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Discharging (i > 10mA):

Ta = ReqC = Jiiak e 10uF = 10ms
10

Note that when discharging v approaches 90 1770 55 = 0. Also note that 7. > 74
so the charging time is much longer than the discharging time.

Vdischarge = 656775/”
The minimum » when discharging is v, = imin/R = 10mA/1kQ = 10V.
See Figure 10.112.

v

90V—

65V —

10V

Figure 10.112:

b) Since the discharge time is so small in comparison to the charge time, we will only

consider the charge time.

After the first charging cycle, veparging = 90 + (10 — 90)e—t/Tv. The charging time,
t. is the amount of time it takes for v,y ging t0 reach 65 V.

t.= —7,In (902;)65) = 11.63s.

Therefore the flashing rate is once every 11.63 s.

ANS:: (b) 1/11.63sec

Problem 10.23 Because of the input resistance and capacitance of an oscilloscope, lab-
oratory observations of transients, such as the step response of the R; — C circuit in
Figure 10.113 may have errors in them.
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Ry
—o—\WW\©! o
+
+ M
Va <> Ci—/— %RZ ——~C, vg Displayed
Unit on scope
step o 0

Circuit being tested Scope input impedance

Figure 10.113:

a) Assuming that the effect of connecting the oscilloscope to the circuit under test is
to add R, and C5, as shown in Figure 10.113, find and sketch the step response that
will be observed at v in the above circuit. Discuss the errors introduced by the
scope by comparing your result to what would be observed if the scope were ideal
(Ry — 00, Cy — 0). Assume zero initial state.

b) A common method of coping with the errors of part a) is to use a compensated at-
tenuator in series with the scope (see in Figure 10.114). For simplicity, we examine
what the compensated scope displays when it is connected directly to the unit step
without the R; — C circuit of part a). Assume zero initial state before the step is
applied.

Cs
(_ 0
Rs +
Va CD %Rz /T~ C, Vg Displayed
Unit on scope
step o 0
Compensated Scope input
attenuator impedance

Figure 10.114:

i) What is vp immediately after the step is applied, i.e. at ¢ = 0*?
i) Whatisvg ast — oo?

iii) Using your results, find vg(¢) for all ¢.
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iv) What conditions on R,, C5, R3 and C3 must be satisfied in order that there be
no natural response component, i.e. no transient, in vp(¢)? What is vg(t) in
this case?

Solution:

a) 7= (C1+Co) (R || Ro)
vp = UARII-?RQ (1—et7)
See Figure 10.115.

VBA

Vy_Fe_
Ri+R,

|
t
Figure 10.115:
b) i) vg(07)=0
i) vp(t = 00) = UARBI_?RZ
i) vp(t) = 1),411211_%112 (1—etT)
7= (C2 || C3)(Ry || R3) = (Co+ Cs) g
iv) There will be no transients if Cy Ry = C3R3. In this case, vp(t) = va RI}ERQ

ANS:: (@) vp = vaglie (1 — e77), 7 = (Cy + Cy) 182 (b) (i) vp(07) = 0 (ii)

vp(t = o0) = UARﬁ?Rz (iii) vp(t) = UARffRz(l —e M) = (Cy+ Cg)% (iv)

Vs (t) =va R1I-z|-2R2
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vi(t) L

vi(t)
Kyt

Figure 10.116:

Problem 10.24 The RL circuit shown in Figure 10.116 is driven with the ramp v;(¢) =
K t, for ¢ greater than zero, and v;(t) = 0,¢ < 0.

a) Assuming ir(0~) = 0, sketch the current i.,(¢). Also find an analytic expression
forip(t).

b) In some applications, such as generating a linear sweep for a magnetically deflected
cathode-ray tube, we want to make i, (¢) a linear ramp as shown in Figure 10.117.

iL(t)
() = Kyt

| -

Figure 10.117:

Find a new input waveform v, (¢) such that i, (¢) = Kst,t > 0. Plot v;(¢). Label all
values and slopes.

Solution:

a) T=L/R
in(0t) =0

ir(t) = f%(l —e7tT)dt = % + %e—t/T _ %
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ig(t) = Kb — K1t (1 _ e=t/7)

R R
See Figure 10.118.
i, A
|
t
Figure 10.118:
b) ir, = Kot

vy = L4 = LK,
vg = Rip = RKyt
vy =vr + vg = LKy + RKt
See Figure 10.119.

ANS:: (a) ZL(t) = Tlt — %(1 —€_t/T) T = L/R (b) Uy =V, +Vgp = LK2+RK2t

Problem 10.25 For the RL circuit shown in Figure 10.120, sketch and label vz versus
time for ¢ > 0. Assume iz (¢ < 0) = 0, and that 7} is five times as long as the circuit time
constant.

Solution:

The until ¢ = T the input can be treated as a step of height A/T;. During this time
vg Simply rises exponentially to A/T;. The short pulse after ¢ = T, will be treated as an
impulse of area A. Taking ¢ = 73 to be our new ¢ = 0 and no initial state we have the
following.

vp=—AL(1—e ") =—2e ") = —%e‘t/T
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i, A
RK,
LK,
|
t
Figure 10.119:
v, A

" \viL
Area=A

-— T1—>

Area=A

Figure 10.120:
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Add to this the initial condion that vz(0) = # and we have vp = —3e™"/".
See Figure 10.121.

VR A
A
T, |
|
t
_4A
T,
y

Figure 10.121:

Problem 10.26 With the capacitor initially at rest (v¢(0) = 0) and disconnected, the
switch is closed to position (1) at time ¢ = 0 in Figure 10.122.

a) Sketch the waveform vc(t) for ¢ > 0. Label all relevant points on the figure and
calculate the time constant.

b) Atatime T > 0 (at least five time constants later), the switch is thrown (instanta-
neously) to position (2). Sketch v (t) for ¢ > T and label all relevant points on the
figure.

c) With Ry = Ry = Rj3, is the time constant in part (a) greater than, less than or equal
to the time constant in part (b)?

Solution:
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Ry @ @
% <+> Rz% C%—\:J_er(t) % Rs

Figure 10.122:

a) ve(t) = VRIIE?R2 (1- e_t/T)

_ R1 Ry
T= CR1+R2

See Figure 10.123.
A

Ve

v _R
R1+ R2

Figure 10.123:

b) ve(t) = Vﬁe‘tﬁ
T = CRg

See Figure 10.124.

c) The time constant in part (a) is greater than the time constant in part (b).

Problem 10.27 For the circuit shown in Figure 10.125, sketch and label vz versus time.
Assume that v; = K for a long time prior to ¢ = 0 as illustrated in the figure.
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Ve A
v _Re
R +Ry[
>
t
Figure 10.124:
Vi
f ——
Kt C |
K2 V| R§ VR

>t

Figure 10.125:
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Note that this problem can be solved in a number of simple steps by breaking the prob-
lem down into parts and solving each part. There are several ways to do this breakdown,
all of roughly equal ease.

Solution:

For ¢ > 0, vy consists of a step of height K, plus a ramp of slope K3. We will use
superposition to solve this problem, treating the step, the ramp, and the initial condition
as three seperate inputs. Forthe entire problem, 7 = RC.

Initial Condition:

Vg1 = —vo = —Ke U™

Step:

Vpy = Koe H™

Ramp:

vr3(0) =0

vrs = [ Kse H7dt = —Kyre ™™ + K3 = K37(1 — e7t/7)
Total:

VR = (KQ — Kl)e*t/T =+ KgT(]. — e’t/T)
See Figure 10.126.

VR A
Kot —
Ko - Kq—
>
t

Figure 10.126:

ANS:: vp = (Ky — K))e "™ + Kyr(1 — e7/7)
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Problem 10.28 You are given the RC circuit shown in Figure 10.127.

1MQ
1
vi(t) 1 uF== v(1)

Figure 10.127:

a) Suppose you observe that vo(t) is a triangular pulse, as shown in the sketch in
Figure 10.128. Find and draw the waveform v;(¢) which must be applied to produce
this output signal. Label times and magnitudes, and significant parameters of the

function.
AVO (V)

5.1

i | | J -
-10 5 5 10 t (s

Figure 10.128:

b) Now the input signal is changed. You apply a ramp starting at ¢ = 0,v;(t) =
tu_1(t), as the input signal v;(¢). (Note that u_; (¢) represents a unit step at ¢ = 0.)

Sketch and label the output signal v (t) for 0 < t < 5.
c) Give an analytic expression for the output signal v, (t) you sketched in (b).

Solution:

a) vI:RC‘Z’—f+UO
0<t<d vo=1+t
b<t<10: vo=—-14+(10—t)=9—1t
See Figure 10.129.
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V|A

1V

5s 10s

Figure 10.129:

Vo

ZAVA

Figure 10.130:
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b) See Figure 10.130.

Q) volt)=f(l—e/)dt=t+1e " —7 =t —7(1—e7¥)
T7T=RC =1s
vo(t)=t—1+¢€"

ANS:: @0 <t <5 wvo=14+t5<t<10: vo=-14+(10—t) =9—1(c)
vo(t) =t—1+e?

Problem 10.29 Consider the digital memory element shown in Figure 10.131. The volt-
age at the storage node with respect to ground is denoted v,;. The figure also shows
a parasitic resistance Rp from the storage node to ground. This resistance will cause a
leakage of the charge stored in the memory.

The signal A is fed to an inverter and the inverter drives the input d;» of the memory
element. All inverters shown in the figure have a load resistor R;, and the on resistance of
the pulldown MOSFETS in each of the inverters is Roy. Assume that the on resistance
of the switch driven by the Store signal is also Roy. The supply voltage is Vs and the
threshold voltage for the MOSFETS is V. In doing this problem, assume that R is much
larger than either Ron or Ry,.

Store

Figure 10.131:

a) Suppose that a 0V to Vs step is applied at the Store input of the memory element at
t = 0. Sketch vy, () for ¢ > 0, assuming that v;,(t = 0) = 0, and that A is at OV

throughout. Assuming that Rony << Rp, what is the maximum value attained by

UM?
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b) Suppose, now, that a rectangular pulse of height Vs is applied at the Store input of
the memory element, and that A is at OV throughout. The rising transition of the
pulse occurs at ¢ = 0 and the falling transition at ¢ = 7. Determine the minimum
value of the pulse width 7" so that v, can charge up to Vg, where Vi = Vig =
Vou, the high voltage threshold of the static discipline. Assume the following:
’UM(t = 0) =0;Vg < VS; Vg > Vr;

c) Let us now consider the case in which A is at Vg throughout, and vy, (t = 0) = V.
Sketch vy (t) for t > 0, when a OV to Vs step is applied at the Store input of the
memory element at ¢ = 0. What is the minimum value attained by v,,?

d) Suppose, now, that a rectangular pulse of height Vs is applied at the Store input
of the memory element. The rising transition of the pulse occurs at ¢ = 0 and the
falling transition at ¢t = T'. Determine the minimum value of the pulse width 7" so
that vy, can discharge from Vg to Vi, where V;, = Vi, = Vp;, the low voltage
threshold of the static discipline. Assume as in (c) that A is at Vs throughout and
that vy, (¢t = 0) = V. Assume further that V7, < Vi and that V7, is greater than the
minimum value attainable by v;,.

e) Suppose the memory element is storing a 1 (assume vy, = Vi) at ¢ = 0 and that
Store = 0. Assuming that no further Store signals occur, determine the period of
time for which the output (doyr) of the memory element will be valid. (Hint: the
output becomes invalid when doyr switches from 1 to 0.)

Solution:

a) See Figure 10.132.

Vs

Assuming Rp is much larger than R;,.
b) Tmm = —CM(RL + RON) ]Il( — “//—}SI)
c) See Figure 10.133.

Ron
Ron+Rp Vs
R

Vi— 55 Vs

— RonR RonN+R
d) Tmm = _CM(RON + R ON é’ )ln( ROLN L )

onN+RL —==—Vg
Ron+RL

e) —~CuRpIn(3F)

ANS:: (a) Vs (b) Trnin = —Cm(Rr + Ron) In(1 — “/,—’;) (€) wEor_ Vg (d) Trnin =

R Ron+RL

__Ron

_CM(RON + RonRL )]n(VL RoN+RL VS) (e) _CMRP ln(ﬁ)
Ron+RL Rozﬁﬁ-RL V. Vs
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VM('f)A
Vg—
| >
t=Cu(RL + Ron) t
Figure 10.132:
VM('[)A
Vg —
ROﬂ
v Ron* R
| >
t= Cu(Ron + RonlIRD) t

Figure 10.133:



Chapter 11

Energy and Power in Digital Circuits

Exercises

Exercise 11.1 Aninverter built using a NMOS transistor and a resistor R;, drives a capac-
itance C',.. The power supply voltage is Vs and the on resistance of the MOSFET is Ro .
The threshold voltage for the MOSFET is V. Assume that logical 0’s are represented
using OV and logical 1’s using Vs volts.

a) Determine the steady-state power consumed by the inverter when a 0 is applied to
its input.

b) Determine the steady-state power consumed by the inverter when a 1 is applied to
its input.

c) Determine the static power and the dynamic power consumed by the inverter when
a sequence of the form 01010101 - - - is applied to its input. Assume that signal
transitions (0 to 1, or 1 to 0) happen every T seconds. Assume further that 7" is
much greater than the circuit time constant.

d) Assuming the input in part (c), by what factor does the dynamic power decrease if
(i) T is increased by a factor of 2, (ii) Vs is decreased by a factor of 2, (iii) Cp, is
decreased by a factor of 2.

e) Suppose that the inverter must satisfy a static discipline with high and low voltage
thresholds Vg = Vog = Vi and Vi = Vo = V3, respectively. You are given
a MOSFET with on resistance Rox and threshold V. Assume that V; < Vp <
Vg < Vs. Choose a value for Ry, in terms of the other circuit parameters such that
the power consumed by the inverter is minimized.

361
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Solution:

a) The MOSFET is in cutoff and therefore acts as an open circuit - so in the steady
state, no current flows through it and therefore no power is consumed.
Psteady—state,O =0

b) The power can be calculated using the formula P = VI, where V' is the supply
voltage, and I is the current that flows from supply to ground, which in this case
can be calculated using the formula V' = I R. Therefore, the power is equal to vz
where R is the total resistance.

2
Psteadyfstate,l - ROJ‘V/iRL
c) The static power remains unchanged since in the steady state a capacitor acts as an

open circuit, providing a fundamentally identical system as before. Therefore the
static power is one-half the result derived in part B, because the circuit is only on
one-half of the time.

To calculate dynamic power, we use the circuit model shown in Figure 11.1.
Vs

R

|
|
O

Ron

Figure 11.1:

Since power is equal to energy change per unit time, the best way to calculate the
average total power (both static and dynamic) is to find the total energy dissipated
by each resistor per cycle, and divide by the total cycle length. Energy dissipation is
the integral of instantaneous power consumption, so we get the following equation:

2T (Vs — ve(t))? 2T ve(t)?
Eiora = / ~ = 7 dt / ——~ 7 dt.
otal 0 RL + 0 Ron

The function v¢(t) is shown in Figure 11.2
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Ron
SRy +RL

Figure 11.2:

It consists of two exponentials with different time-constants, as shown. The inte-
gration is an exercise in elementary calculus, and results in the following:

_ VS?T VS2R%CL
Etotal — + 9
Ron + R, (Rp + Ron)

If we divide through by the total interval 27", we get the following.

%5 n VsR2Cp,
2(R0N+RL (RL +R0N)2T.

P, total —

The static power is the first term, so the second term is the dynamic power. This
makes sense because if the capacitor were not there, the dynamic power consump-
tion would disappear.

p.o. -V p o VRO
static — Q(RL‘i‘RON)’ dynamic — (RL+RON)2T

|) T=2T: den = %den
||) VS = %VS : den = iden
III) CL:>%CL:den:>%den

Power actually decreases with increasing R, so we can make Ry, as large as pos-
sible without violating the static discipline. However, the problem arises when we
look at the dynamic behavior of the system - as Ry, is made very large, the time con-
stant of the capacitor charging and discharging also becomes very large, making the
system very slow and therefore useless.
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ANS:: (a) Psteady—state,O = 07 (b) Psteady—state,l = RO]‘\:iRL ) (C) Pyoric =
| V2R2C . .. .
SFLT RN Paynamic = m, (d) (i) halved, (ii) quartered, (iii) halved, (e) Maxi-

mize Ry, while looking out for dynamic constraints.

Exercise 11.2 Determine f for the functions given below. Express your answer in a
simplified sum of products form. (Hint: use DeMorgan’s laws).

a) f=A-B

by f=A+B

c) f=A+B
Solution:

a) f=A-B

b) f=A+B

¢) f=A+B=A-B

ANS:: (@) f=A-B(b)f=A+B(@)f=A-B

Exercise 11.3 Give a CMOS implementation (using NMOS and PMOS transistors only)
of the following logic functions. In doing these exercises, is the value of the on resistance
of the MOSFETs needed? Why or why not?

Solution:

a) See Figure 11.3
b) See Figure 11.4

c)

N
+
Sy
|
N
]

See Figure 11.5



S

A_|_
B

Figure 11.3:

Figure 11.4:

Figure 11.5:
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The value of the resistance is not needed, because by design CMOS implementation
satisfies the static discipline.

Exercise 11.4 Write a truth table and a boolean expression that describes the operation
of each of the digital circuits in Figure 11.6.

N

c|

ot
Z
A
B[ C
€Y

Solution:

a)

b)

c)

d)

a) See Table 11.4

b) See Table 11.1
c) See Table 11.1

Vs Vs

A A
cd D4, D C

Ad B A B

A

B

—— Z —— Z
o Al D
C B C
(b) (©)

Figure 11.6:

Z3=(A+D)-(B+0C)

Z,=(A+D)-(B+C)

Vs
B[ €<
A4l B
A+ b

B—|iC—|

(d)
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N|— o - o o oo
Dodo d — O -
Moo d - O -
bl leNeoNoNo) —

Zy

Z3

Table 11.1:

A|B|C|D|Z
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d) See Table 11.1

Problems

Problem 11.1 This problem examines the power dissipated by a small digital logic cir-
cuit. The circuit comprises a series-connected inverter and NOR gate as shown in Fig-
ure 11.7. The circuit has two inputs, A and B, and one output, Z. The inputs are assumed
to be periodic with period T}, as shown in the same figure. Assume that Ron for each
MOSFET is zero.

Vs
R
Z
B
4‘ — CL
5V
A e o o
oV -
A I I t
5V I I
| I
B | | e o o
I I
0V, i i o
I |
[
T3 I |
- T, >

Figure 11.7:



a)

b)

d)

e)

f)
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Sketch and clearly label the waveform for the output Z for 0 < ¢ < T}. In doing so,
assume that C'q and Cf, are both zero.

Derive the time-average static power consumed by the circuit in terms of Vs, Ry,
Ty, Ty, T5 and T}. Here, time-average power is defined as the total energy dissipated
by the gate during the period 0 < t < T} divided by 7}.

Now assume that Cg and C1, are nonzero. Derive the time-average dynamic power
consumed by the circuit in terms of Vs, Ry, Cq, C,, T1, Ts, Ts and T. In doing so,
assume that the circuit time constants are all much smaller than 73, T, — T, 15 — 15
and T, — T5.

Evaluate the time-average static and dynamic powers for Vs = 5V, R, = 10 K2,
Cg =100 fF, Cy, = 1 pF, T; = 100 ns, T, = 200 ns, T3 = 300 ns and 7, = 600 ns.

What is the amount of energy consumed by the circuit in 1 minute for the parameters
in part (d).

By what percentage does the total time-average power consumption drop if the
power supply voltage Vs drops by 30%?

Solution:

a)

The waveform for the output Z for 0 < ¢ < Ty is given below in Figure 11.1.
The truth table: (see Table 11.2)

l—\Hootuﬂ
-~ o r o
R o ol NN

b) Assuming Roy = 0, then: For 0 < ¢ < T; only the first MOSFET is on, i.e.

VQ
Psta.tic = R_SL
For T < t < T, the first and the third MOSFET’s are on, i.e.

V2
P, static — 2R_SL
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For Ty <t < T3 again only the first MOSFET is on, i.e.

Ve
Ry

P, static =

For T3 < t < T, only the second MOSFET ison, i.e.

Ve
R,

P, static =

Therefore, the time-average static power consumed by the circuit is given by

T VS2 T —T; QVS2 T3 — Ty V52
Psta,tic ave — + + -
’ Ty \ Rr + Rop Ty Ry, Ty Ry,
T, =Ty [ V2
i 4 3 (Vs
Ty Ry
W (—T1 + T +T4>
" RL T,

c) For 0 < t < T the dynamic dissipation occurs while C¢ discharges, and Cp,
charges, i.e.

CeVé + CeVé
P, dynamic — 2T,

For T1 <t < Ty the dynamic dissipation occurs while C', discharges, i.e.

Prymamic — 25
dynamic — 9 (T2 _ Tl)

For T, <t < Tj the dynamic dissipation occurs while C'y, charges, i.e.

Prymamic = —SLV5
dynamic — 9 (T3 _ Tg)

For T3 < t < T, the dynamic dissipation occurs while C';,, Cs charges, and C7,
discharges, i.e.
CG‘/SQ + CGVS2

2(T, — T3)

P, dynamic —

Thus, the time-average dynamic power consumed by the circuit is given by

p o _N CeVi + CeV§ . To—-T [ CLVZ
dynamic,ave — T4 2T1 T4 2 (T2 — Tl)
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+T3 — T2 ( CLVS2 ) + T4 - T3 <CGVS2 + CGVSQ>
T, \2(T3 —T) T, 2Ty — Ts)

_

=7 (Ce + 2Cp)

d) Static:

Pstatic,ave =

Vs2 TV +15+ 1T,
e )
_ 52 —100 + 200 + 600
_10><103+0< 600 )
=29mW

Dynamic:
1
denamic,ave = ﬁ <C1GV'S2 + 2CL‘/52)

1

= W (100 X 10_15 52+2 ]_ X 10_12 52)

=87.5 uWw

E =Pt
= (Pstatic + denamic) (60860)
= 0.180J

f) Since the power depends linearly on V&, 30% drop in Vs translates to a 51% drop
in the total time-average power consumption.

ANS:: (b) %SZ (_TI+T2+T4) (C) %—(CG + QCL) (d) Pstatic =29 mW! denamz'c =

Ty

87.5 uW (€)0.18.J (f)51%

Problem 11.2 Implement the logic function Z = A + B + C'D using NMOS transistors
alone. In other words, use an NMOS transistor in place of the pull-up resistor. Your
implementation must satisfy a static discipline with low and high voltage thresholds given
by Vi =Vor =V and Vie = Vo = Vi, where 0 < Vi, < Vp < Vg < Vs, Vg IS
the power supply voltage. As your answer, specify the W/ L values for the pullup and the
pulldown transistors.

For what combination of inputs does the circuit dissipate the greatest amount of static
power? Determine the static power dissipation for this combination of inputs.

Solution:



A Vs

o N A
o

Figure 11.8:

See Figure 11.8 for logic diagram.

Specify the L/W values:
2(L/W)pi
Vi, > Vs P
(L/W)pu + Q(L/W)pd
Vi, >V, __r
L= P @ W
2 @/ Whpa T 1
Vi 1
Ve & L&) 4
2 (L/W)pa)

(L/W)) 5 Vs

@ +1° 2, Y
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Greatest power dissipated when total resistance is lowest. This occurs when all MOS-

FETSareon,ie, A=B=C=D=1.
Static power dissipation:

P N
static — Roff - Rpu + %de

Ve

ANS:: Pitasic = 7t
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Problem 11.3 A circuit consists of N inverters, where N >> 1. Each inverter is built
using a NMOS transistor and a resistor Ry. The power supply voltage is Vs and the on
resistance of the MOSFETS is Roy. The threshold voltage for the MOSFETS is V7.

a) Suppose we do not know how the inverters are connected to each other or to the
inputs and outputs of the circuit. How might you estimate the amount of static
power that the circuit is likely to consume?

b) Suppose it is known that the inverters are connected in series as one long chain.
Estimate the amount of static power dissipated by the circuit.

Solution:

a) To estimate static power, find all combinations of the circuit layout, and take the
average of the power output of the combinations of on-off.

b) On average, % inverters will be dissipating power. So:
N %

Ps atic — o ° -5

189 R+ Ron

.. V2
ANS:: (0) Putatic = % * 75—

Problem 11.4 Consider the digital memory element illustrated in Figure 11.9. Assume
that the inverters are implemented using a pulldown NMOS transistor with on resistance
Ron, and a pullup resistor Ry. The power supply voltage is Vs. What is the instanta-
neous power dissipated by the memory element when it stores a logical 1? What is the
instantaneous power dissipated by the memory element when it stores a logical 0?

Store

dIN e & x {>o {>ofo dOUT

L ¢y

Figure 11.9:
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Solution:
Instantaneous power dissipated:

— for logical 1:
_ W
N R,, + Ry,
— for logical 0:
_ W
R+ Ry

.. V2
ANS:: P = m for both

Problem 11.5 Give a CMOS implementation (using NMOS and PMOS transistors only)
of the following logic functions.

Solution:

) - (C + D) See Figure 11.10(a)

. (A+B
. (A4 B) - (C + D) See Figure 11.10(b)

w

A-B-C- D See Figure 11.10(c)

4. Y W)X -W)X-Y -W)=(Y+W)-(X+W)-(X+Y+W) See Figure 11.10(d)
Problem 11.6

a) Express F in a simplified sum-of-products form given that ¥ = AB + CD.

b) Implement the logic function FF = AB + C'D with an NMOS digital logic circuit
that obeys the static discipline defined by the low-level and high-level logic thresh-
olds Vi, = Vor = Vi and Vig = Vog = Vi, respectively. Assume the the supply
voltage is Vg, and that the on-state resistance of the NMOS transistors is Roy. De-
termine the lowest value of the pull-up resistor Rpy; for which the circuit will obey
the static discipline in terms of Roy, Vs, Vi and V; not all variables need appear
in your answer.
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(@)

Ad 8

il

E— L

A c
B 5

—————e out

Hﬁ B%q Qﬁ 54%

Figure 11.10:

(b{%
A c
B D4

E— e IU4

i
C%E

(d)

Y_O| W_O|
i
)_(_O“:i Y_O“:‘I \/_V_O“:‘I
Y_| x_| >_(_|
W_| W_| Y_|

e
L
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c) Implement the logic function F = AB + C'D with a CMOS digital logic circuit.
Hint: make use of the result from Part (a).

d) Suppose that the NMOS and CMOS circuits above drive a capacitance C',. Assume
that the on-state resistance of both the PMOS and NMOS transistors is Roy. For
both the NMOS and CMOS circuits determine the worst-case output rise time. For
the purpose of this problem, assume that the worst-case output rise time is the time
the output takes to go from 0 V to V. Sketch the form of the output for both the
NMOS and the CMOS circuit.

e) Suppose that the inputs are arranged such that B = 1, C = 0and D = 1, and
that a OV-to-5V square wave signal is applied to the input A. Assume the square
wave cycle time is 7', and that 7" is large enough so that the output comes close to
its steady state value for both falling and rising transitions. Under these conditions,
compute the power consumed by the CMOS and NMOS circuits when driving the
capacitance Cy, load.

Solution:

a)

F=AB+CD=AB-CD=(A+B)-(C+D)
F=AC+AD+ BC + BD

b) See Figure 11.11 for logic diagram

2R,

V> Ve ——on
LS R + Ry

Vi, S 1
2VS Ron 2Ron + Rpu
2 Ron VS
VL

< 2Ron + Rpu

Smallest Ry,

c) See Figure 11.12 for logic diagram

d) NMOS output rise time (worst-case):

T = Ron CL
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Vs
S
o

Figure 11.11:
Vs
/1@| E@|
B Dy

A_| A _| B_| B_|
(":_| D _| 6_| D_|

L

Figure 11.12:
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Figure 11.13:
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CMOS output rise time (worst-case):
T = 2RonCL

See Figure 11.13 for sketches

e) NMOS: Power consumed: Alternates between Vi - and Vg - ——

=
+Jw|ce
M|

A Vs

<

Ron

_|_‘CL
A o
%Ron %Ron

Figure 11.14:

P = Cul(5Vs)* — (Vs

11

CMOS: no power dissipated

ANS:: (a)F = AC + AD + BC + BD (b)Ron (32 — 2) (d) NMOS : 7 = RonCl,
CMOS : 7 =2R,,C () NMOS : P = CVZ- L CMOS : none

100"



Chapter 12

Transients in Second Order Systems

Exercises

Exercise 12.1

a) Is the zero input response of the circuit shown in Figure 12.1 underdamped, over-
damped, or critically damped?

R
WMWY
L + R=15Q L=1puH
Vg C) L E C—_— V¢
T ) C=001pF
Figure 12.1:

b) What is the form of the zero input response (v¢) for the same circuit? Make a rough
sketch.

c) Compare the envelope of the zero input response with the rate of delay of the zero
input response of the RC circuit in Figure 12.2:

How do they differ?
Solution:

381
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R
WAWW
" + R=15Q
VSC) C —— V¢
T - C=0.01pF
Figure 12.2:
A
\ Ve
\
\ —
. oot
nd
N
~N
A e—
JRIE
_ envelope”
/
/

/
/
|

Figure 12.3:
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dve | 1 dve | 1

) dt2+RCdt+ =0
_ 1

2 o= &
2 _ 1

Wo™ = ¢

a <w, — UNDERDAMPED

b) ve = K e - cos(wq - t + )
Wg = Vwe? — a?
¢ = tan™" (%)
we = 10 x 106
a = 3.33 x 10°
¢) (1) ve in RC circuit in zero-input case decays as e /™ = e /EC,
(2) vc above in the RLC circuit decays with “envelope” as e = e~*/2EC,

Therefore, the RC circuit zero-input response decays twice as fast as the RLC re-
sponse;

i.e. TRLC = 2- TRC
RLC takes twice as long to decay.

ANS:: (@) 2a = RC We? = Llc, since @ < w,, underdamped, (b) ve =

Ke™* cos(wat + ¢), wa = Vw,” — a?, ¢ = tan™ (), w, = 10 x 10° o = 3.33 x 10°,

(¢) ve in RC circuit decays as e—t/RC, while v¢ in RLC circuit decays with “envelope”
e~ t/2RC

Exercise 12.2 For each of the circuits in Figure 12.4, find and sketch the indicated zero-
input response corresponding to the indicated initial conditions.

a) In Figure 12.4, find vy, assuming v1(0) = 1V, v,(0) = 0.
b) In Figure 12.5, find v, assuming i(0) = 0,v(0) = 1V

c) Repeat (b), but with the resistor changed to 552.
Solution:

) (1) g + U + (3auF) G =0
(2) vy — (SHF) ©2(6000) —vo =0 — v = vy + g %2
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8kQ 6 kQ
W W
+
I 1 e
Vs ﬂUF/\ 7 ~T~18 “_ Vo
Figure 12.4:
i 1mH
— 0000
n L+
Vs 100 Q % v 10 uF
Figure 12.5:

Plug (2) into (1), find
Vg = A e—lOOOt + B 6—9000t

Initial conditions allow us to find constants A and B:

A+B=0 — fromuvy(0)=0

1
A+ B-— gA—3B= 1 — fromuwv(0) = 1Volt

3 .
vy = g(67100(” — e 9% - +inseconds (a)
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b)

(s* +1000s + 100 - 10%)v = 0

s12=—500+9,990] — w,’=ws’+a* w,=10,000
N—\— N———
(6] wq

Thus,
v =1.001 e~ (0.999 coswyt — 0.05sinwgt) (b)

(s 4 20,000s + 100 x 10°)v
81,2 = —10, 000

v = A e 10000t | pyo—10,000¢

Initial condition: v(0) =1V — A=1

—A
7 = —1000 - /U = —1000 1_04 6_104t +B /t€—104tdt
—
integrate by parts

i(t=0)=0=10"-A+B — B=-10" since A=1

v=(1-10Y"1" (c)
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ip L R, =1Q
— 0000

i + oy - iy L=1H

2 C = 05F
+ R +\ Rl =20
I 1

10V —= R2§¢i3 Vg——C
Figure 12.6:

ANS:: (a) vy = 3 (e 1000t —¢=9000%) () v = 1.001e~%9%(0.999 cos wqt —0.05 sin wqt),
(©) v = (1 —10%)e10%

Exercise 12.3 Inthe circuit in Figure 12.6, a constant voltage source of 10 volts is applied
att = 0. Find all branch voltages and all branch currents at ¢ = 0" and at ¢ = oo given
i1(07) = 2 amps and v4(0~) = 4 volts.

Solution:

Att =0T,

i+ =1 =54

Therefore, i3 + 7, = 5A

11 = 2Amps v; = 6Volts
19 = 3Amps v9 = 6V olts
i3 = 4Amps vg = 4V olts
iy = 1Amp vy = 4Volts
Att = o0,
i1 = 10Amps vy = 0 (L behaves like a wire)
79=0 vy = 0 (no current flows through R;)
i3 = 10Amps vy = 10V olts
14=20 vy = 10V olts

ANS:: t = 0" : 4, = 2A,v7 = 6V,ip = 3A,v9 = 6V,i3 = 4A,v3 = 4V iy =
1A,’U4 =4V. Att = oc: 11 = 1014,’()1 = O,ig = 0,’1)2 = 0,’1:3 = 10A,U3 = 10‘/,24 =
0,04 = 10V

Exercise 12.4 Is the zero-input response of the circuit in Figure 12.7 underdamped, over-
damped, or critically damped? (Provide some kind of justification of your answer, either
a calculation or a sentence of explanation.)
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L=1uH C=001pF and R, = R, = 159

o]

L ¢

VSC) éRl R

Figure 12.7:

Solution:
For the zero-input case, we may treat the circuit as if R, were not there.

1Ry +vc+v, =0

dZ dUC dUL 9 R2 1 .
p & e du B Dyizo
T TN - (st )

— =~
¢t Lo

204:% — a="7.5x10°

w, =1/1/LC =10 x 10°

a < w, , therefore the response is underdamped.

ANS:: oo = 7.5 x 108, w, = 10 x 108, so underdamped

Exercise 12.5 In the circuit in Figure 12.8, the inductor current and capacitor voltage
have been constrained by some external magic to be iy, = 5 Amps, v¢ = —6 volts.

At ¢t = 0, the external restraints are removed, and the natural response of the circuit is
allowed to evolve. Find the initial slopes of the state variables.

Solution:
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R,=2Q
L=3H
C=4
—Q
I + -
Rlzlsé Ve
Figure 12.8:
dUC . Ve dUC’ N iL Ve _ 1 6 .
CW—ZL‘FR#Q — W‘t:(ﬁ—c CR2_4(5 ( 2))—2V0|t5/5
. di
—iL Ry — Ld—tL —ve =0
di 1
d—f = (—ZLRl ’Uc)z = —Amp/S

ANS:: 2o | = 2Volts/s, 4= = tAmp/s

Exercise 12.6

a) Write the differential equations for the circuit in Figure 12.9 in state variable form.

||
() T

Figure 12.9:

b) Assuming vc(0) = 0, sketch v (t) for a very short pulse of height v;. Don’t work
it out: just show the form.
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Solution:

) dvo _ ZL
d;—tL:[Ui()—Z'LR—Uc]'%
b) See Figure 12.10.
A

Ve

N A
T

Figure 12.10:

ANS:: Lo — i 4L — [4,(t) — i R — vc] - +

Exercise 12.7 Solve the following sets of coupled first-order state equations for ¢ > 0
with the indicated inputs and initial values. Plot the positions of the natural frequencies
in the complex plane. Sketch the state trajectories.

a)
dx
d—tl = —3371 + 9
diﬁg 3
— =21 — O
dt 1 2
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b)

Solution:

a) X1 =$02 +3x5

Note z,= ‘%

So, A= -1,

b)

CHAPTER 12. TRANSIENTSIN SECOND ORDER SYSTEMS

(s +65+B)ry=0 — z9=Ae 4+ Be™?

z1(t=0)=2=-4A-2B+3A+ 3B
T(t=0)=0=A+B

B =1, whichimplies

gy =e 2 — M

T = e 2 + e 4

Ty=—— — ($+16)1, =0 — 519 =+4j
zy = AeV' + Be™ %!
1 . .
29(0) =0 = —Z(4jA —4jB) —» A=B

2(0)=2=A+B — A=B=1



391

4t | —4jt
(¥t + e~%t)

1 = e+ Be ¥t — gz, =2cos4t since cosdt = 5

1
Ty = _Z(_(4)2 sindt) — xp = 2sindt

ANS: @)z, =e 2 +e ¥ 1y =2 —e*, (b) 2, = 2cos4t, zo = 2sin 4t

Exercise 12.8 Find the roots of the characteristic polynomial (often called the network
natural frequencies) in each of the networks in Figure 12.11:

Ry R, L
Vs( ) L % —C VSCSWMEF ]
(@ (b)
R R R R.
Vs 1 2 i 1 2
L L L L
(©) (d)
Figure 12.11:

Numerical values: Ry = 1092, L = 10puH, C = 10uF, Ry = 29
Solution:
a)

Vs — VU,

Ry

—’iL—iCZO

Setting vs = 0, and noting that v, = ve, L% =wv;, ic = C%2, we find

(52+L+L)v =0
RC "LC) ¢
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S1.9 = —5000 % 99, 8747

b)
vg — 1Ry — v —vc =0
(s + L + i)z’ =0 — s;5=—100,000 (double root)
L™ LC b2 ’
C)
) di R
11R1+Ld—tl=0 — R1+L81=0 — Slz—fl
. di R
22R2+Ld—t2 =0 — SQZ_TQ
s1,2 = —1,000,000; — 200,000
d)
di di . L
1= —iy — Lﬂ + 1Ry —i9Ry — L£ = 0 (first-order circuit)
dt dt
s — _R1 + Ry
N 2L
s = —600, 000

ANS:: (@) —a £ jwg;a = 5 x 10%rad/sec, wy = 10°rad/sec, (b) —«a(double root); o =
10°rad/sec, (¢) —ay, —ag; ;. = 10%rad/sec, oy = 2 x 10°rad/sec, (d) one natural fre-
quency at —a; oo = 6 x 10°rad/sec

Problems

Problem 12.1 Electrical networks are used to model physical systems governed by lin-
ear differential equations. The most important problems which arise in such modeling
concern the interplay of accuracy and simplicity. It is usually very important to know
when certain effects can safely be ignored in order to simplify the model and subsequent
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analysis. Such knowledge can be obtained by understanding the consequences of making
the simplifying assumptions.

Two networks which could be used to model an acoustic system are shown in Fig-
ure 12.12. It is known that the inductance L is small (specifically L << (R?C)/4) but
it is not known whether a circuit model with no inductances will be adequate. You are to
help answer this problem by determining the difference in the responses of the capacitor
voltage v¢ for the two circuits. Specifically assume:

is(t) = Tu_i(t) (astepof amplitudeI)
Uc(o_) =0
ir(07) 0

Determine v (t) for ¢ > 0 for both circuits. You should identify the effects of the
inductance on such characteristics of the response as the natural frequencies, approximate
behavior for small ¢, and asymptotic behavior.

You can greatly simplify the form of your results by making use of some assumptions
derived from Taylor’s theorem. For z << 1,

Vi—-z~1-1/2x (12.1)

and

e "~1—x (12.2)

OO0
+ . +
iSC*) <: R C—— V¢ iSCD :§:R C—— V¢

Figure 12.12:

Solution:

A time-domain solution using differential equations is presented first:
We can write the following KCL equation:

ve + ve + Cv!

18: R c-
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We also know that:
vy = Li, = LCu¢..

Substituting, we get:

iI = ”+§v’+iv
LCce " e T LT ot

The roots of the characteristic equation are:

—R R 4],
=30 T\ T mo

Since we know that /= << 1, we can simplify to get the following roots:

_ R -1
L LC

We now have the following solution to the differential equation:
—t =Ry
ve = Ae®C + Be T '+ IR.
By inspection, since the inductor acts as an open circuit at ¢ = 0, we know that

ve(0) = 0 and i (0) = v (0) = 0, so we substitute in those values, getting the following
conditions:

A+B+IR=0,
—4_-RB_,
RC L

Solving for A and B, we get:

—ICR* . LIR &,

—JR+ " o
Vo R+RQC—L6RC+RQC—L6

If we set the inductor to zero, we get the following:

ve = IR — IRe®c .
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Ls

iSCfD R =

Figure 12.13:

An alternate, more elegant solution involves working in the frequency domain.

First, draw the impedance model as shown in Figure 12.13. From here, determine the
Thevenin equivalent of the left side.

The Thevenin impedance Zry is equal to R+ Ls, while the Thevenin voltage is equal
to is R. A voltage-divider relationship ensues:

1
Cs

Vo =7 —_— .
C TH ZTH + é
This can be simplified to form an admittance transfer function:

R
Yc _ LC

= R T
is 82+ 15+ e

We must find the roots of the denominator:

_—RC+VRC?—4IC _-R , R [ 4L
5= 2LC ~ 9L oL R2C"

If we use the Taylor series approximation, we can simplify to get the following two
roots:

—R -1
51 = —F5—, 52

L'~ RC

Our new approximate admittance function is therefore:
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We substitute in that i(t) = Tu(t), which corresponds to is(s) = £ when the Laplace
transform is taken. Our output function is therefore:

IR

LC _
s+8)(s+ 75)

ve(s) = =

This can be simplified using partial fractions to get the following:

R A
’Uc(S):I<—+LRC LRC)

s s+% s—i—%

We convert this back into a time-domain expression by taking the inverse Laplace
transform:

ILR gt IRC .
velt) =1k = F—mae " T -mot™

Substituting in that | = 1, we get the following:

LIR -m IRC
vell) =IR == pmae ™ T - mo®™
From here, we can make the following approximation if we leave out the inductor:
vo(t) = IR(1 — ewc).

Not coincidentally, these are the same results that we got using differential equations
in the time domain.

See Figures 12.14 and 12.15 for the transfer functions. Note that without the inductor,
the initial slope is nonzero, while with the inductor, the slope is zero. The natural frequen-
cies are changed by the presence of the inductor since without the inductor there is but
one natural frequency, and with the inductor there are two. For a very small inductor, the
second natural frequency is very low and therefore almost negligible in comparison to the
natural frequency caused by the capacitor. The asymptotic behavior is identical for both
since the inductor has no long-term steady state effect. No matter the size of the inductor,
the voltage across the capacitor approaches I R asymptotically.

—Rt

ANS:: with small inductor: v (t) = TR— 212 =" 4 L 075 without inductor:
ve(t) = IR(1 — e®e).




iritial dopeis |
initi opelsC
>
No Inductor
Figure 12.14:
Ve
A
S
_ —
-
e
/
/
/
/ initial slopeis0
>
With Inductor
Figure 12.15:
+ YA . Switchcloses

[ at=0

Vi —— Cl C2 — V2

Figure 12.16:
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Problem 12.2 Capacitor C'; has an initial voltage v,(0) = V. Capacitor Cj is initially
uncharged, v2(0) = 0. The voltage across element A tends to zero as time tends to infinity.
At time ¢ = 0, the switch is closed.

See Figure 12.16.
a) Compute the initial charge of the system.

b) Find the voltage across both capacitors a long time after the switch has been closed.
Remember that the total charge of the system must be conserved.

¢) Find the energy stored in the system after a long time.

d) Find the ratio of final stored energy to initial energy. Where did the rest of the
energy go?

e) Assume element A is a resistor R. Find its voltage or current, and from that, find
out the energy lost in it.

f) Find the ratio of lost energy to initial energy. Is it what you expected? Does it
depend on R?

g) What would happen if an inductor was placed in series with R? Sketch the behavior
of the current. (No calculations are needed.)

Solution:

a) Again, only C; has any voltage. Thus, the total charge of the system is Q; = C,V.
b) We are told that the voltage across A tends to zero. Therefore, v, = v, after a long
time. Let’s call this voltage v;. The final charge of the system is
Qf = Cﬂ)f + szf = (01 + CQ)Uf

Charge must be conserved since there is no place for charge to go. Thus, Q; =
Q: = C,V. Substituting C, V" for Q, we have

C
01V=(01+02)vf;»vf=0 J:CV
1 2

c) Since both capacitors have the same voltage, the energy as ¢t — oo is

1 1 1
Ef = 501’0; + 502’[); = 5(01 + Cg)’UJQc
Substituting the expression we found for v, we get
C]? V2 — 1 C]? V2
(C1+ Cy)? 2C +Cy

1



d)

e)

f)

9)
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1 2
Ef _ §C’1+C’2V &

E.~ o T G+G

The rest of the energy, namely

& +C , must be dissipated in element A.

If A is a resistor R, then the system is first order with 7 = R szz since C; and
Cy are in series as seen from the resistor. We also know that the initial and final
voltage across R is the difference in voltage of the two capacitors:

vr(0) =V, wg(t—00)=0

From this information, we can obtain the voltage across R:

_ C1C,
t)y=Ve ™", r=R
vr(t) = Ve, T=ReT
The power lost across R is
vy V2 C,C
P = —R = — _t/T = 12
r=r=rY  TTle g,

The energy lost in R is

C.Cy
Ci + 0y

V2
ER :/0 R _t/Tdt T=R

This integral yields

VGG
E= 9 0L+ C,
2
ER . VTCc;I-f—CgQ . 02

E,  1CV?  Ci+GC

The ratio can be checked by noting that Er/ E;+ Ef/E; = 1, thus accounting for all
the energy in the system. surprisingly, the energy lost in the resistor is independent
from the value of its resistance.

If an inductor was placed in series with R, the charge would oscillate between the
two capacitors until it reached equilibrium. At that point the current through the
inductor and the resistor would be zero. The energy lost in the resistor would be
the same as before, since our assumption about element A (in this case, a series
combination of an inductor and a resistor) still holds.
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ANS:: (a) Qz = C’1V, (b) 01V = (01 + CQ)Uf = vy = C+C’2V (C) Ef =
5(C1+ Cz)mv2 = 15 V2, (d) fracEsE; = 5%, () Er = L 8%, ()
fracERE; =

Cl+C2

Problem 12.3 Shown in Figure 12.17 is one possible circuit model for a transformer,
for use where there can be a common ground between primary and secondary. Assume:
L, =25H,Ly,=0.025H, M = k\/ Ly Lo, where £ < 1, R, = 1k, Ry = 1052.

Ry i1 in i1 Li-M L-M
MM\ —e > - o > (m\ (m —o
+ + + +
+
«(Dw 8 E v s ow o gw
Transformer
Figure 12.17:

a) Write the state equations for this network using 7; and i, as state variables, and
using the given circuit model to represent the transformer.

b) Determine the behavior of the natural frequencies of the network as a function of
the coupling constant &. In particular, what are the natural frequencies in the limit
of small &, and in the so-called tight-coupling limit, where & approaches unity?

c) Assume that v is a 1-volt square pulse of length 5 msec. Find v, () for the case k =
.98. Is the output a good replica of a square pulse, or are there obvious departures
from the square pulse shape?

Solution:
a) We write the following KVL equations:

OZRQZQ—I-( M)ZQ—{—M( +7,2) R222+L2212+M7,11

These can be simplified to get the following state equations:
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RS N A - S L R P —
YU ML L, \M T M(M?2—LiLy)) ? M?2—LiL,
. -M . RoLy . M
!
- —— R .
I Yy ke VR A VR

b) Since we are looking for the internal characteristics of the system, we do not need
to give it a driving condition, so we set vg = 0.

The two state equations can be simplified to give the following result:

g LR RM
U M2 L L, M?—L,L, "
g _Life . RM

M2 —L.L,> M?—LL,"

From here, we can eliminate i, and 4}, using standard differential equation tech-
niques and get the following equation:

. —LoRy — LR, . —RRy .
n !

—0.
Ry i S R Vo

This corresponds to a transfer function whose denominator is:

L L
24 1Re + 2R18 n R Ry .
L,L, — M? L,L, — M?

This can be written in terms of K:
(1 — K2)(L1L2)82 + (L1R2 + LQRl)S + (RlRQ)

The transfer function can also be easily found in the frequency domain, using
Laplace transforms. This solution is demonstrated below.

First, we must draw the impedance model for this circuit, which is shown in Fig-
ure 12.18. 7Z,, Z,, and Z3 are the impedances of the three inductors, and i1, i3, and
13 are the currents that go through them, as shown in the diagram.
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Z; Z,
I 12
- - o
R, (Li-M)s I3 (L-M)s
Ry V,
Vs Zq Ms
O
Figure 12.18:

First of all, v, is most easily calculated as a Thevenin equivalent voltage by a series
of Norton-to-Thevenin-to-Norton simplifications, as shown in Figure 12.19. The
last diagram in the figure is a voltage divider, and after simplification, the following
result ensues:

. U5R2Z3
" RiRy+ R Zy+ R Z3+ RyZy + Ry Zs + 717y + 71 Z3 + ZoZs'

V2

From here, it is very easy to find i, since it is the current going through resistor Rs,
so it has current — 2. i3 can be found by finding the voltage across Z3, which is
the sum of the voltages across R, and 7.

. . Zs+ Ry
13 = —1 7
3

In order to find the natural frequencies, we find the roots of the denominator of the
system function, which is:

(1 — K?)(L1Ly)s® + (Ri1Ly + RoLy)s + Ry Ry.

This was derived in the time-domain previously.
If k is close to zero, then the denominator can be factored, and the two roots are:

As k gets close to 1, one of the natural frequencies increases without bound, and
the other gets closer and closer to the following value:

—R1 Ry

§= —— " —,
RiLy + Ry Ly
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Figure 12.19:

Z, Z,
o
Ri+Z;
\Y
%3 Re > Cf Ri+Zy Z3 Ry
1
Vs
O
RiZ3+ 2,74
o)
Vv R,Z,+2Z,Z Vv
—> 2 CD Rl +SZ +1Z3 Ry — C’DWSZ 3 Ry
R1+Z1 1 1 3 - R1+Zl+z3
o)
R Z,+ Rlz3 +72,7,+ le3 +7Z,74
Ri+Z,+2Z4
0
—> VSZ3 + R2 V2
R1 + Z1 + Z3 -
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c) We can find the transfer function in the time domain by realizing that the response

to a square pulse is the response to a unit step, added to a response to another step
that is shifted in time.

We can find the two natural frequencies by substituting in to the characteristic equa-
tion previously derived. The two roots are s = —202.02 and s = —20000 so the
response to a unit step will be of the following form:

Ug(t) — A€7202'02t +B€720000t.

This for time ¢ > 0, of course. The initial value is zero, since the output voltage is
dependent on the current through a resistor, which is the same as the current through
an inductor, and the current through an inductor cannot change instantaneously.

We must find the final values of each of the exponentials. Since the output dies
away as t becomes very large, A and B must be equal in magnitude and opposite in
sign.

Therefore, we have:
Vg (t) — V(e—202.02t _ 6_20000t).
The derivative of our output is:

vh(t) = 1979798V (e 2020% — ¢=20000t)

The derivative at time ¢ = 0 is equal to 19797.98V}, and if we can find the initial
derivative another way without finding V7, then we can use that result to find V7.

That method is as follows:

Very shortly after time ¢ = 0, the inductors are so close to open circuits, that their
resistance is very high, and the two ordinary resistors may be neglected. The in-
ductors obey the rule V' = L%, so the derivative of the current through any in-
ductor may be found using simple current-divider laws. In other words, we treat
the voltage-source as a voltage-source, and the inductors as resistors, and then re-
member that the “current” found through “resistor” L is really the derivative of a

current.

This is an exercise in simple circuit analysis, and the easiest way to it is a Thevenin-
Norton conversion, and then one current divider. This is shown in Figure 12.20.

The result is:

diLQ . ’UsM
dt  LiL, — M?’
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Ly-M

S Ll-M M Lz-M

Figure 12.20:

Then, we know that the resistor R, obeys the law V' = TR, so we know that V' =
I'R, so knowing I', we can find V, which is equal to:

UsRQM
5(0) = ————.
UQ( ) L1L2 _ M2

Substituting in the numbers, we get the following:
v5(0) = 989.89.

From here, we can divide through by 19797.98 and get that V; = .05
The final solution is therefore:

Vg_up(t) = (05720202 _ (5200001,

However, this is only the solution to the up-step. The solution to the down step must
be added. (u(t) is the unit step function.)

V9 (t) = vo—up(t)u(t) — vo—up(t — .005)u(t — .005).

This solution can be done out with less sleight-of-mind in the frequency domain.
We have already found the transfer function et
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E _ RQK\/ LlLQS

vs (1= K?)(LiLy)s* + (RiLa + RyL1)s + Ri Ry’

The input function, vg(s) can be expressed as the difference of two unit step func-
tions, one shifted in time. We could deal directly with such a function, but it is much
easier to deal with one unit step function, and, because superposition allows us to
do so in a linear time-invariant system, we shift the response in time correspond-
ingly. So we must find the response of the system to a unit step function. This is
done by multiplying the system function by the Laplace transform of the unit step:

RQK\/ LlLQS l
(1= K?)(L1Ly)s>+ (R1Ly + RoL1)s + R Ry s

Vg =

Substituting in numbers, we get:

B 2.45
~.002475s2 + 50s + 10000

v(5)

Finding the roots of the denominator and then doing partial fraction decomposition
gives us:

.05 .05

val8) = T 509.02 ~ 5 5 20000°

Then, an inverse Laplace transform results in:

Va—up (t) — (.056—202.02t _ .056_20000t)u(t).

This is the response to only half of our input. We must add an inverted and shifted
unit step to this, to get our final value:

V9 (t) = vo—up(t)u(t) — vo_up(t — .005)u(t — .005).

The graph of the output is shown in Figure 12.21. This does not resemble a square
wave due to the fact that while the coupling constant is high enough to allow one
natural frequency to be extremely high, the second natural frequency, which is a
function of the sizes of the resistors and inductors, is too high and allows for a very
quick decay. The second natural frequency must be decreased enough to allow the
square wave to not dissipate quite as fast.
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0.05V +
10ms
0 |
SM\/
-0.05V+-
Figure 12.21:
ANS:: (a) Z’l = Wfizlthil - (%—F%) 19 — ]\425721112?)5’2'/2 =

S Ruiy 4 ey 4 M (©) va(t) = ((05¢ 2020 — 050000y (1)

(.0567202.02(157.005) _ _056720000(t7.005))u(t _ 005)

Problem 12.4 Assuming y(¢) = Be®, for each differential equation, find the particular
solution and the general form of the homogeneous solution. Plot the natural frequencies

in the complex plane.

Assume 7, «a, wy are constants. Do not worry about the dimensions of the right-hand
side. Assume B always has the appropriate dimension.

1) &2y

dz | z _ dy
2) dt+T_dt

3)

318

R

+

1S

4) Lo 4 2=y
For 5) and 6), assume « and wq are both positive numbers.

5) %2@ + 2(1/?1_55 +wir =y  Assume a > wp.

&z do 4 2y = W
6) 97 + 20y twer =3 Assume a < wq.

Solution:

The easiest way to do these would clearly be via a lookup table to get the form of the
homogeneous and particular solutions, but such a “solution” is not particularly insightful.
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One realizes that if the driving function y is of the form 5 then the particular solution
is of that form too. The homogeneous solution is determined also by inspection by sub-
stituting in z = e* and using elementary differential equation solving techniques. But
again, that solution is very mechanical and probably reveals no new insight.

The alternate approach involves Laplace transforms.

Due to the unfortunate choice of s as one of the parameter variables in this problem,
we will be doing the Laplace transforms in terms of s as always, but converting the form
of y into BeS* - note the distinction between capital and lowercase. Another convention is
as follows: if f is a time domain function, then F' is its frequency-domain equivalent. In
any answer identifying the form of the homogeneous and particular solutions, C' and C,,
are arbitrary constants whose value are not held between problem parts. Finally, z(0) and
«'(0) represent initial values of a function and its derivative at zero, and are constants.

1)

dr =z
— + 2 = Be",
dt+7' €

Take the Laplace transform of this...

X
sX—i-?— S_S—i-x((])
Simplify algebra to get:
B z(0)
X =
GrDG-9) s+l

A partial-fraction decomposition results in:

—B 1 B 1
X:<l+5+x(0)>s+l+l+55—5'

This results in a time-domain solution of:

—B —t B
x:<l+5+x(0))67+7 et

T

The homogeneous solution is of the form Ce= and the particular solution is of the
form Ce?.
1

The natural frequencies of the function are S and —, and are shown in Fig-
ure 12.22.



409

Figure 12.22:

2) If y(t) is of the form BeS! then 3/(t) is of the form BSeS?, and a solution can be
derived from the solution to part 1 by substituting B.S for every instance of B.

The final solutions are the same as for part 1.

The homogeneous solution is of the form Ce~= and the particular solution is of the
form CeSt.
1

The natural frequencies of the function are S and ——, and are shown in Fig-
ure 12.23.

Figure 12.23:

3) This equation can be expressed as:
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= B(1+S1)e’.

There is no homogeneous solution, and the particular solution is of the form Ce®?.
The natural frequency of the function is S as shown in Figure 12.24.

Figure 12.24:
4)

d*z
ﬁ -+ (UZ.',E = BeSt.

Taking the Laplace transform of this, one gets:

B
2X — sz(0) = 2'(0 2x = .
s sz(0) — 2'(0) + w; -
This can be rewritten as:
¥ — B sz(0) + 2'(0)
(5= 9)(s2+w?) s2+w2

A partial-fraction decomposition results in the following:

1 s Wo
X =X + X + X ,
Os—S 82 4 w? 252 4 w2

B
Xo = w2+ S?’
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-B

)
wi+ S Wo

This can be converted into a time-domain equation of the form:

—B55, | #(0)
w+S5?2 0w,

B s, ( —B +x(o)> cos(wot) + <

X=—"_
W2+ 52 w2 + 2

%mmn

The homogeneous solution is of the form Ccos(w,t) + Casin(w,t) and the partic-
ular solution is of the form Ce®".

The natural frequencies of the function are S and +jw,, and are shown in Fig-
ure 12.25.

Figure 12.25:

Az T
—~ 4 20— + w?r = BeS.
dt? dt 0

Converting this to the frequency domain, one gets:

B
s>°X — sz(0) — 2(0) + 2a[sX — z2(0)] + wiz = st
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This can be rewritten as:

B (s + 2a)z(0) + z'(0)
(s — S)(s? + 2as + w2) s? + 2as + w?

X =

A partial-fraction decomposition results in:

07 W2+ 205 + 5%

—Bs —2Ba — BS
X = 2 "(0).
1 W11 208 1 52 + (s + 2a)z(0) + 2'(0)

In order to properly take an inverse Laplace transform, the second term must be
written in the following form:

K(s+ a) LyjwZ — a?

$2 4 2as+w? s+ 2as+ w?

When this is done, the following result is gotten:

—-B
K = 0
w§+2a5+52+x( )

I 1 < —Ba— BS

Jw? — o2 \wj + 205 + 57

From this, an inverse Laplace transform can be taken. This intermediate step will
come in useful for part 6.

_ M ot
1= KeS + Le ™ cos(\/w? — a2t) + ¢ “sin(\/w? — a?t),

2 _
wi—o

+ az(0) + f(o)) .

B B
w2+ 2aS + 5%’
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L 5 +
= T
w2 4+ 2aS + 52

(0),

—Ba— BS

= S roas+ T az(0) + 2'(0).

However, since |a| > |w,|, y/w? — «? is imaginary, so we can write the previous
statement as:

z=Ke + ge_at(ej\/w + e_j\/w) + ge_at(ej\/“’g_—a? — e‘j\/w).

J

This can be simplified to:

L+ = L-—ri2
r = Ke’t + a”—Ws e—a—\/oﬁ—w?, + a”—Ws e—a—l—\/oﬁ—w?,
2 2 )

The homogeneous solution is of the form Cye @ V% 4 Che~ V"9 and the
particular solution is of the form Ce?.

The natural frequencies of the function are S and —a + /a2 — w2, and are shown
in Figure 12.26.

+12 2
—a C(—(JOO

Figure 12.26:



414 CHAPTER 12. TRANSIENTSIN SECOND ORDER SYSTEMS

6) We start with this intermediate result derived in part 5:

M
_ St —at 2 _ .2 —at ,» 2 _ 2
x = Ke>" + Le " cos(y/w? — o?t) + w2—a2€ sin(y/w? — a?t),
[

B B
w2 +2aS + 5%

L — +
= T
w2 + 2aS + 52

(0),

_ —Ba-BS
 w?+2aS + 2

+ az(0) + 2'(0).

We must replace all instances of B with BS, which results in the following.

BS
K —
w2+ 2aS + §%’

—BS
L =
w2+ 2aS + S? +2(0),

_ —BSa - BS?
w2+ 2aS + S2

+ az(0) + z'(0).

The homogeneous solution is of the

form Cie~%cos(y/w? — a?t) + Cee *sin(y/w? — ot) and the particular solution

is of the form CeSt.

The natural frequencies of the function are S and —a =+ j4/w2 — a2, and are shown
in Figure 12.27.

ANS:: (1) homogeneous: Ce=, particular: CeSt (2) homogeneous: Ce~, partic-
ular: CeS* (3) homogeneous: none, particular: Ce“t (4) homogeneous: Cjcos(w,t) +
Cysin(w,t), particular: CeSt, (5) homogeneous: Cre™ "V =% 4 Che™ V=2 par-
ticular: CeSt, (6) homogeneous: Cre~%*cos(y/w? — a2t) + Coe~%sin(,/w2 — at), par-

ticular: CeS?.
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X —o+ /az—cocz)

[2 2
X—a—a—wo

Figure 12.27:

2
A
Jl
S
>
&
&
<
w
Y
J
(@)
w

Figure 12.28:

Problem 12.5 The circuit in in Figure 12.28 is the electrical analogue of a temperature
control system.

Assuming Cy = 1F,Cg = 4F, Ry = 19, Rg = 4).
is = K(Vo —vp)? where K = 25A/V? V= 1.1V

a) Write dynamical equations for this network in state form. Use v4 and vg as state
variables.

(As a check on your state equations, the stable steady-state value of vp is 1V. That
is, you should have dv/dt = dvg/dt = 0 for vg = 1V.)

b) Now assume vy = V4 +vg and vg = Vg +wvy, Where V4 and Vp are the steady-state
values and v, and v, are small variations. Determine a small-signal linear circuit
model in which v, and b, are the state variables.

c) Is the zero-input response of the small-signal circuit underdamped, overdamped, or
critically damped?

Solution:
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a) Two node equations:

dvy v4—Up 9 dvg vp Vs — UB
C =K(V, — Cr—8 4+ 8
A at T T Ra Vo—ve) Cs 0+ 5 = "R,

b) Sinceis = K (V, — vg)?, then the following small-signal approximation is valid:

1s dig
= = 2K — .
Up dvg (Vo — V)

is = —2K (Vo — Vi)vp

See Figure 12.29 for a small-signal model.

+ +
VA ——C, A Rg Cg—— B
] is) ]

Q = -2K(Vo-VB)Ve
Figure 12.29:

c) First, write two new state equations using the small-signal model:

dv, Ve —Up
Ca dt+ R 2K (Vo — Vg)uy,

duy Up Vg — Up
Cg— +— = .
5% " Rs  Ra

We substitute in the numerical values given, and get the following:

dv,

E +Ua — Vp = —51)1,,

d
4% + .20V, = Vg — Vp.
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We can eliminate v,, getting the following:

d2’l}b dU(,
16— +21— +21 = 0.
dt? * dt *

This has the following characteristic equation:
16s° + 21s + 21 = 0.
Since 212 — 4(16)(21) < 0, the system is overdamped.

ANS:: (8) Cp 4 + 24202 = K (Vg —vp)%, CplR + 22 = vazz (b) i, = —2K (Vo —

dt Ra dt

Vi )vs, (€) Overdamped.

Problem 12.6 In the circuit in Figure 12.30, the switch has been in position 1 for all
t < 0. Att = 0, the switch is moved to position 2 (and remains there for ¢ > 0). Find and
sketch v (t) and i, (t) for ¢ > 0.

10Q 1H
——— MWW —et—e 70000
@ —
+ i +
2V —— @ Ve — .01F
Figure 12.30:

Solution:
At time ¢ > 0, the circuit becomes an LC oscillator.

The natural frequency w, is equal to \/% . Since the capacitor starts out charged,
initially, the voltage across the capacitor is a cosine function with maximum amplitude of
2V. The current through the inductor is the same as the current through the capacitor, and
it is characterized by the capacitor I-V relation: i¢ = Cﬁ’—f. Taking the derivative, we get
a negative sinusoidal relation.

ANS:: ve = 2c0s(\/ 5t), i, = =2,/ Csin(y /1)
See Figures 12.31 and 12.32 for the plots of these two functions.
Problem 12.7 Figure 10.75 (Problem 10.8 in the chapter on first order transients) illus-

trated a parasitic inductance associated with VLSI package pins. Figure 12.33 is a mod-
ification of Figure 10.75 and shows a lumped parasitic capacitor C'p associated with the
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Ve
A
2V
\ g
0.628 s
2V4
Figure 12.31:
i
A
0.2A
m -~
0.628 s

-0.2A +

Figure 12.32:



419

power node within the VLSI chip. In this problem, we will study the combined effect of
the parasitic inductance Lp and capacitance Cp.

Assume that the input B is OV at all times. Assume further that the input A has 0OV
applied to it initially. At time ¢t = t,, a 5V step is applied at the input A. Plot the form
of vp as a function of time for the underdamped and overdamped cases, assuming that
vp = Vg fort < ty. Clearly show the value of vp just prior to ¢, and just after ¢,. Assume
that the on resistance of a MOSFET is given by the relation %Rn and that the MOSFET’s
threshold voltage is Vi < Vs. Also assume that Vi < 5V. Compare this result with that
for the inductor acting alone as computed in Problem 10.8 (Figure 10.75) in the chapter
on first order transients.

Vs
Lp
Vp
Rl —=C %R
—_|— P 2
C
A_| Wl B:G—| \/\_/2
Ly L,
Va A
5V- 4 — —
oV - {
to
Figure 12.33:

Solution:

Before the switch occurs, the resistors R; and R, are floating. We are also given that
the voltage across the capacitor for ¢ < 0 is V.

Next, the MOSFET is closed, and the voltage across the capacitor starts dropping,
since the inductor current cannot build up suddenly and so the capacitor supplies the
current. Note that resistor R, is still floating.

This occurs with a time constant of 7 = Cp(R; + Ron). Soon the inductor current
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builds up and the voltage will rise again towards V. The lower envelope of this rise will
have a time constant 7 = %. If the system is overrdamped, then the solution is as shown
in Figure 12.34 while the underdamped case is shown in Figure 12.35.

Vout
A
Vs
Overdamped Case
Figure 12.34:
Vout
A

Underdamped Case

Figure 12.35:



Chapter 13

SSS: Impedance and Frequency
Response

Exercises

Exercise 13.1 Find the magnitude and phase of each of the following expressions

a) (8+457)(5e73) (e 739°)(0.3 — 50.1)

b (8.5+;34)(20e=925° )(60)(cos 10°+7 sin 10°)
) (25€920°)(37¢123°)

c) (25e73%°)(10e927°) (14 — j13)/(1 — 52)

d) (13ej(15°+j1.5)) (66(1—]'300))
Solution:

a) (8+357) = 10.63 *-18"J
(0.3 —j0.1) = 0.316¢ 18432°
MAG =16.8
PHASE = 13.75deg

b) MAG = 32601 _ 45 47

2537
PHASE =T76° — 25° + 10° — 20° — 23° = 18°

421
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__ 25-10-19-1 __
) MAG = 10191 — 9136

PHASE = 30° + 27° — 42° 4 63° = 78°
d) 13e3(15+15) . 6e1-30)) — 13:e/te L6l

€30
MAG =473
PHASE = —-15°

ANS:: (a) MAG = 16.8, PHASE = 13.75deg, (b) MAG = 45.47, PHASE =
18°, () MAG = 2136, PHASE = 78°, (d) MAG = 47.3, PHASE = —15°

Exercise 13.2 Find the real and imaginary parts of the following expressions

a) (34 75)(4e7°")(7e77%7")
b) (10e750%)(e720%)
c) (10e7%0%)(eiw)

d) Ee/“'where E = |E|e’®
Solution:

a) 5.83e75%° . 4¢750° . 7e7720° = 163.26e3% — 2.84 4 ;163
b) 10" — 3.42+59.4
c) 10e7@50) 5 10(cos(wt + 50°) + j sin(wt + 50°))

d) |E| @0 |E|(cos(wt + 0) + jsin(wt + 6))

ANS:: (a) 2.84 + 5163, (b) 3.42 + j9.4, (c) 10(cos(wt + 50°) + 7 sin(wt + 50°)), (d)
|E|(cos(wt + 8) + jsin(wt + 0))

Exercise 13.3 Find the system function V7, /I for the network shown in Figure 13.1. Then
find the response vy, (t) for i(t) = I coswt under steady state conditions.

Solution:

_ RILs ﬁ RLs
- Ls+ R

Vi T Ls+R
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+
Figure 13.1:
L
Voo P e Yo — e () 2
I (Lw)? + R? I wL
LI
vr(t) = S - cos(wt + ¢)
(Lw)? + R?
ANS: Xz = ALs. ) (1) = %  cos(wt + ¢), ¢ = tan~! (%)

Exercise 13.4 Referring to Figure 13.2, given i(t) = I,coswt, where [, = 3mA and
w = 10° rad/sec, determine v(t) in the sinusoidal steady state. Assume R = 1k and
L=1mH.

+
it) Q) ER L gv(t)
Figure 13.2:
Solution:
_ILLsR 3 3. 3 .
“IstR_ 27T R
Therefore,

3
v(t) = —=cos(10° - t + 45°)

V2

ANS:: v(t) = J5 cos(10° - ¢ + 45°)
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Exercise 13.5 The two-terminal linear network in Figure 13.3 is known to contain ex-
actly two elements. The magnitude of the impedance function is as shown, (log-log coor-
dinates).

|Z(joo)|
A
100
70.7
i + Linear
® Vio | network

Figure 13.3:

Draw a two-element circuit that has the impedance magnitude function indicated in
the sketch. Specify the numerical value of each element.

Solution:
O
+ 1

R C
_ ]
Figure 13.4:

Z = pem

== = 10*rad/s

R = 10082

C =1uF

ANS:: 7 = ]'UJRLCH’ 75 = 10'rad/s, R = 100Q, C = 1uF
Exercise 13.6 For each of the circuits shown in Figure 13.5, select the magnitude of
the frequency response for the system function (i.e., impedance, admittance or transfer
function) from those given. It is not necessary to relate the critical frequencies to the
circuit parameters, and you may choose a magnitude response more than once.
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Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

) (b) - (@ )
1 R I 1 Ry
+I + C R + L
vy C—F— Vi é" Vot Vi R c
- "~ R C -
o h(jw) o Vy(jw) o Vy(jw)
Y(jw) = V.09 (jw) = ) Z(jw) = i)
3 4
©) A (4)
+ml -
|—,7 |—‘— .
Iogoo log w W logw log w
(7 (8
None of
the above
Figure 13.5:
Solution:

ANS:: (a) 2 (b) 4 () 8 (d) 5

Exercise 13.7 A linear network is excited with a sinusoidal voltage v;(t) = cos(t — 3
for all time, as shown in Figure 13.6.



426 CHAPTER 13. SSS: IMPEDANCE AND FREQUENCY RESPONSE

(1)

v (t) = cos%—%— +> Z(s)

Figure 13.6:

The current observed under the sinusoidal steady-state conditions is i;(t) =
V2sin(t + 5):

What is Z(s = j1), the impedance of the network at an excitation frequency of one
radian per second?

Solution:
A % ej(t*57r/8)
T 1 /2 eiltn/s-n/2)
i . T m 3
since sin <t+ —> = coS (_ - _) — oS (t _ _)
2 8
1
Zs:j = — e_(ﬂ/4)]
V2
ANS: Z,_; = % e—(m/4)j

Exercise 13.8 Find vy (t) in the sinusoidal steady state in Figure 13.7. Assume L = 10H,
R1 = 1209, and RQ = 6012.

Solution:

Vo Ls || Ry _ ;
i} B N = Jj
vi R1+LS||R2 ‘ (_](,())‘6

where

CL)RQL
\/w2L2(R1 + R2)2 + R12R22

|H(jw)| =
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3V cos (4t) +

Figure 13.7:

I

V() Network

Figure 13.8:

and

_ 1 |WL(R1 + Ry)
¢ = 7T/2 — tan lw]

Forw=4, ¢=m/4,and|H(jw)| = ﬁ

1
vo(t) = 75 08 <4t + %)

ANS:: vy(t) = % cos <4t+ %)

Exercise 13.9 A sinusoidal test signal is applied to a linear network that is constructed
from exactly two circuit elements as shown in Figure 13.8.
V(jw)

The magnitude portion of the Bode plot for the impedance Z(jw) = em) is shown
in Figure 13.9.

Draw the network and find the element values.

Solution:
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A
10°+
‘V(Jw) 10—~~~
1 (jw) |
103 I
|
' ' : -
10° 105 107 10%® W
Figure 13.9:
R = 1000Q
o WWW\

AAAA

= L = 0.001H

Figure 13.10:

.. R _ V(jw) _ .
ANS:: £ =2 x 10%rad/s, I((;w)) =R+ Lwj

Exercise 13.10 The circuit shown in Figure 13.11 is a highly simplified model of a power
transmission system.

Ly Lo
0000 000 5

vi(t) C) v (0 CD va(t)

Figure 13.11:

v1(t) and vy (t) are the voltages of two power generators:
v = Vcoswt vy =V cos(wt + P)

Find the Thévenin equivalent of this circuit at the terminals 1-2 in terms of a complex
amplitude V,. and a complex Thévenin impedance Z;,.



Solution:

Lls - LQLS . LngS
L18+ LQS B Ll + L2

RTH = ZTH = = ZTH

By superposition,

_ ‘/1[128 + VvQLlS . LQ + L16j¢ )
B L18 + LQS L18 + LQS - L1 + L2

oc

. _ _ LiLss _ Lo+L1el?
ANS:: Rrg = Zrg = L11+22, Ve = ﬁ-‘/
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Exercise 13.11 Write expressions for H(jw) = V,/V;, its magnitude |H (jw)| and its

phase angle /H (jw), as a function of w in the four cases shown in Figure 13.12.
Solution:

(a)
Vo & _ 1 _ ! ¢i%
Vi &+R ROs+1  J(WRC)?+1
¢ = tan"' (= RCw)
(b)
Vo Ls wlL oi®
Vi Ls+R  J(wL)?+ R?
R
— tan—1 (Y
¢ = tan (wL>
(©)
Vo 'R~ RCs RCw oIt
1
|
¢ = tan (RCw

ForC =1uF and R = 1M,

. _ W . -1
|H(jw)| = NS and ¢ = tan (—)
(d)
V,_ R R
_— = el €
Vi R+ Ls (wL)? + R2
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R
(@ —e
VE dot +
C—/— Vo
R
(b))
Vi =2 e"*’t +
L Vo
C=1pF=10°F
(©) 1 .
Vi =5 ei“’ ” +
Vo
R=100Q7T -
@ L=1H
v; =10 d¥ +
VO
R=10Q7 .

Figure 13.12:



o ()

For R =102 and L = 1Henry,

Vo 10 s
Vi Vw?+100

6 =tan”! (- )

10
.. Vo _ 1 jé 4 —1(_ Vo _
ANS: (a) v = 7\/me ,¢ = tan™ (—RCw), (b) 3¢ =
“1 (R Vo _ __RCw __jé 4 _ 41 (_1_ Vo _
tan™! (31). O ¥ = Jogmi©h ¢ = tan” (m). @ 7 =
tan ! <—%)

wL

(wL)2+4 R2
R

\/ (wL)2+R?

431

i, =

1,6 =

Exercise 13.12 Plot the log magnitude and the phase angle, both as functions of fre-

quency (on a logarithmic scale), of the complex quantity.

1l —jw
14w

H(jw)

Label all significant asymptotes, slopes and break points.

Solution:
*MAGNITUDE:
: V12 +w?
|H(jw)| = == =1
124+ w
Or in decibels,
|H(jw)| =20-log1
|H (jw)| = 0 dB
*PHASE ANGLE:

/H(jw) = /numerator — /denominator = tan ' —

(H(jw) = =2 -tan"'w

Asw — oo, /H(jw) — —2(90°) — —180°

w W
— —tan ~—
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Asw — 0, /H(jw) — -=2(0°) — 0°
As w = 1, the cutoff frequency, /H(jw)= —2(45°) = —90°

ANS:: H(jw) = 732, magnitude: [H (jw)| = 1, or in decibels, |H (jw)| = 0 dB,

phase angle: /H (jw) = =2 - tan™tw

Exercise 13.13 In the network shown in Figure 13.13,

C, R
o
+
vi(t) Vo(t) =G,
Figure 13.13:

R = 1kilohm Cy =20uF Cy =20uF

a) Determine the magnitude and phase of H (jw), the transfer function relating V5 /V;.

b) Given v;(t) = cos 100t 4+ cos 10000¢, determine the sinusoidal steady state output
voltage, v,(t).

Solution:

Vo @ _ 1 _ !

Vi astR+a; 1+S+RCs 24L&
a)

v== (3)
100
¢ = tan ™} (—7=5)
b) w = 100,
Vo 1 eI 5 w,(t) = 1 cos(100¢ — 45°)

Vi 22 2v/2
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w = 10, 000,
| 1 o 1
o [ *]89-4 t frnd 1 t . .40
V. ~ 20001 € = () = 55557 ©0s(10,000¢ — 89.4%)

1
Vo(t) = ——= cos(100t — 45°) +
(1) = 75 osl )

cos(10, 000t — 89.4°)
200.01

. Vo _ 1 1
ANS:: (a) 12 N (

2) e’?, ¢ = tan™'(—1%), (b) vo(t) = ﬁcos(lOOt -
45°) + 55057 cos(10,000¢ — 89.4°)

Exercise 13.14 Find v,(t) in the sinusoidal steady state for the circuit in Figure 13.14.
L=10H R;=120Q Ry =601

Ry
AV

+
3 cos 4t (JD L % Rz% Vs

Figure 13.14:
Solution:
() Ls || RQ . :
=——"1"*° _|H ¢
'UZ' R1+L8||R2 ‘ (]w)‘e
where
) wRyL
|H (jw)| = - —
\/LUQLQ(Rl + R2)2 + R1 R2
and

¢ =m/2— tan™" le(gll + R2)]
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Forw=4, ¢=r/4,and |H(jw)| = 3{’

ANS:: vy(t) = == cos (4t+ %)

S

Exercise 13.15

a) Write the transfer function V,(s)/V;(s) for the circuit in Figure 13.15.

Zl - Z3 +
*'A(t)
vi(t) Z2 Zs|  volt)
Figure 13.15:

b) Write the transfer function 1,(s)/Vi(s).

Solution:
a)
Z3+74)Z Z
Vo _ (ZzliI-ZsﬁZi (23+424) _ 2y -2y
- (Z3+Z4)Z - ) )
Vi itz T4 (Zo+ Zs+ Zy) - Zy + (23 + Z4) - Z»
b)
(Z3+24)Z
Io(s) _ Z;Z;kzz 1
- = (Z3+Z24)Z2
V;(S) Z;l-Zs:-Zz; + Z Z2
Ia(S) N Z3 + Z4
Vi(s) (Zs + Za)Zo + Z1(Zo + Z3 + Zy)
.. Vo _ Zs-7 Ia(s) _ Z34Z
ANS:: (a) Vi = (Za+Z3+Z4)- 2Z1-;4— Z3+Z4)-Z>"' ( ) (Z3+Z4)ZQ+SZ1(%2+Z3+Z4)
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Ry L
AW L +
iA(t)i i
m&j) ——C  ReZ vy
Figure 13.16:

Exercise 13.16 Write the transfer functions V,(s)/Vi(s), I.(s)/V;(s) in the circuit in Fig-
ure 13.16.

Solution:

. Ls+ Ry

- LOs2+ RyCs +1
Vo(s) e ( Ry )
Vi(s)  Ryi+e \Ry+Ls

I(s) e
Vi(s)  Ri+e

€1

-Cs

o Vols) R Ia(s) _
ANS:: ol = pe (Ll — e .(Cs

" Rit+eir \Ra+Ls)' Vi(s) Ri+er

Exercise 13.17 Write the transfer function 1,(s)/I;(s) for the circuit in Figure 13.17.

i CA) il ' Y2 Y,

Figure 13.17:

Y3

Solution:

(Vi +YD)-Ye _
Yot VYstV,

I.(s) _ Y

13(8) Yv|| +Yi
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L I(s) Y
ANS:: 28 = 1L

Exercise 13.18 Find I,/I, in the circuit in Figure 13.18.

R (etG=1R)
'\/\/\/\/\/\_

ia(t)

it) D — O] §|_ — 7

Figure 13.18:
Solution:
7 = (RCQS + 1) - Ls
= L0282 + RCQS +1
& o Z|| . 018Z||
I N ZH + Cils N 018ZH +1
ANS:: Lo — 0122

I - C]_SZH+1

Problems

Problem 13.1 For each of the networks shown in Figure 13.19:

a) Determine an expression for the indicated complex impedance or transfer function.

b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you
learn to use both kinds of axes.

Solution:



—» R = C Z—» R
Figure 13.19:
Q) ) Z= it
i) 2 = e
i) Z = JuRCy 11

jwC1—w2C1 Ca R+jwCs
b) 1) See Figure 13.20

Io%|Z|

Figure 13.20:

i) See Figure 13.21
iii) See Figure 13.22

ANS: (@) (i) Z = —L& (ii) Z = 2“BL_(ji)) Z =

1+jwRC R+jwL
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[ ]

Z—»

jwRCy+1

JjwC1 —w20102R+ij’2

Problem 13.2 Shown in Figure 13.23 is one possible circuit model for a transformer, for

use where there can be a common ground between primary and secondary.

Assume:

L, = 25H, Ly, = 0025H, M = k/L{Ls where k < 1, Ry = 1kQ, Ry, = 1092.

a) Determine an expression for the sinusoidal steady-state transfer function V5/V;.
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Figure 13.21:
0z
log |Z] A
% 90
AN
/ N
W N\
VY N\
VY, N
/ \
4 \
i >0
1
C,C,R -90
Figure 13.22:
Rl 1 I 1 Ll-M L2-M
+ + + +

(D w §E W zow B

Figure 13.23:
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b) In the tight-coupling limit, & — 1, the two natural frequencies are far apart. (See
Problem 12.3 in the previous chapter.) For this specific case, sketch the magnitude
and angle of the transfer function on log-log scales.

Solution:

JjwM
RiR2+w?(M2—LiLs)+jw(Ri1La+RaL1)

a) v =

b) See figures on the following pages.

107 1 2 3 T
0 10 10 10 10
log(w)
Figure 13.24:
. L . ]UJM
ANS:: (a) Vj ™ RiR>+w?(M2—L1Ls)+jw(RiL2+RoL1)
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90

8o
701
60|

50|
=

>N

a0k
30
20}
101

10

10°
log(w)

Figure 13.25:



441

Problem 13.3 An electrical system has the transfer function

H(jo) = Y02) _ 10°(10 + jw) (1000 + jw)

X(jw) (14 jw)(100+ jw)(10000 + jw) (13.1)

a) Plot the magnitude of H(jw) in decibels versus the logarithm of frequency, labeling
all 3d B points.

b) Sketch the phase of H(jw) versus the logarithm of frequency.

c) For what values of w does the magnitude of H(jw) equal Odb? What is the rela-
tionship between the magnitudes of X (jw) and Y (jw) at these frequencies?

d) List the frequencies at which the phase of H (jw) equals 45 degrees.
Solution:

a) See Figure 13.26.
A

60

40

20

0 | | | | |
10T 10° 10 10?2 108 10° r

Figure 13.26:

b) See Figure 13.27.

c) The magnitude of H (jw) equals 0db at w = 105. Here, )Y(((j:)

1
3

~

d) 1;10; 100; 1,000; 10,000
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-60

-80

| | | | | -
101 10 10t 10¢ 10° 10%

Figure 13.27:
ANS:: (¢) H(jw) = 0db at w = 10° (d) 1; 10; 100; 1, 000; 10, 000

Problem 13.4 Refer to Figure 13.28 for this problem. Assume R; = 1kQ and L, =
10mH.

R L
AW 0000 o
Ry
WD) “
Ly
Figure 13.28:

a) Find the transfer function H (jw) = V1 /V,.
b) Find R so that the DC gain is 1/10.

¢) Find a value of L so that the response at high frequencies is equal to response at
DC.

d) Plot H (jw) (magnitude and phase) vs. log w for the values of R and L found above.
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Solution:
. R jwLg
a) H(jw) = (RI+R1)JJ:§'W(L1+L)
b) R = 9kQ2
c) L =90mH

d) See figure.

ANS:: (a) H(jw) = (Rﬁﬁﬁiﬁﬁfiﬁm (b) R = 9k () L = 90mH

Problem 13.5 This problem examines the simple door-bell circuit commonly used in
homes (Figure 13.29).

Push-button
_a_switch I, LM LM,

l1 M I
(000 —7— 0000 —=—=
+ / \ + _I + +
Door
Vi H Vo | bl Vq % M Vs

Circuit model for
bell transformer

Power line  Bell transformer
120V AC, 60 Hz

Figure 13.29:

Data for the transformer in Figure 13.29 is given below:
L, =25H,Ly, =.025H, M = k\/L{Lo, Where k < 1.

a) Inthe limit £ ~ 1, what is the voltage V5 with the push-button switch not pressed
(open)? You should use root-mean-square amplitudes for all quantities. The voltage
source is given as 120V root-mean-square.

b) The door bell operates by repetitive making and breaking of a contact and can nor-
mally be modeled as a 102 resistance at 60 H z. Determine the magnitude of the
root-mean-square primary current 7; under normal door bell operation (push button
closed, door bell =10%2) in the limit of £ ~ 1.
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c) An important safety issue in such circuits is the prevention of fire in the event that
the door bell should accidently stick with its contact closed, thus becoming equal
to a short circuit. This can be accomplished by adjusting the value of k. Find the
value of k that will limit the root-mean-square primary current to 500mA for the
case where the push button is pressed and the door bell acts like a short circuit.

Solution:

a) M is approximately 0.25.

di di
1 T + Vi = (Ly )dt+ 7t
i _W
dt L,
v=y@ MW 30,

dt L, 25

b) See Figure 13.30.

§>10§2

Figure 13.30:

605 Ly — 605 M + 10)605 M

7= :
607 Ly + 10

+60§(L, — M)

_ 3600M? — 3600L; Ly +600jL;  6005L,
B 605 Ly + 10 ~ 60jLs + 10

J_ 60jLy +10)Vi _ /100 + 3600 * (0.025%)[V;| /409
- 600jL; 600 * L; 25
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Figure 13.31:

c) See Figure 13.31.

(607Ly — 605 M)60;M .
7= 6071, — 605 M
6007 Lo + 00751 = 007

_ 60k?L;, — 60L,
J

= —60L.j(k* —1)

Therefore we have W = 0.5, and % = k% — 1. Finally, k = @

ANS:: (@) 12 (b) I = L2 (c) k = /£

Problem 13.6 In the circuit in Figure 13.32, the switch has been in Position (1) for a long

time. Att¢ = 0, the switch is moved instantly to Position (2). For the particular parameter
values of this circuit, the complete output waveform for all time greater than zero is

1) R
—.‘ ® IVVVV\’A r'y
+
+
2
Vo — == V)
- v(t)=V,cos (wt ) )
1 *

Figure 13.32:

ve(t) = |Ve| cos(wt + @) (13.2)

a) Find V.| and ® in terms of V;,w, R, and C.
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b) Find V, in terms of |V,|,w, R and C required to produce the v.(t) waveform.

Solution:
N %
a) |Ve| = \/H(:,w
® = — arctan(wRC)
b) Vo = ko
ANS:: (a) |Ve| = \/ﬁ"I> = —arctan(wRC) (b) V, = H(u‘fw



Chapter 14

SSS: Resonance

Exercises

Exercise 14.1

a) For the circuit in Figure 14.1, assume a sinusoidal steady state at a fixed frequency
wp. Determine an equivalent circuit for the R— L parallel combination (Z;) in terms
of a resistor R’ in series with a suitable inductance L'.

L!

%:ER@/»/» R

Z Z;

1 Z
Zy Z;

b) Determine the impedance Z that must be added in series with Z; such that the total
impedance Z, is equivalent to a pure resistance at frequency wy. What is this value
of this resistance?

!

Figure 14.1:

Solution:

a)

N LsR
Ls+ R

=Z+L+R

447
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LRw,j _ L?Rw,? + R?Lw,j
o) Ijw,+ R =
Twsj+R It (Lw,)? + R2

Equating real and imaginary parts above,

I R?L
~ (Lw,)? + R?
R WolL?R
 (Lw,)? + R?
b) Add the capacitor in series with
O R? + (w,L)?
 R2w,?L
ANS: (a) L' = mﬂ' = %, (b) C = 722)2

Exercise 14.2 For a parallel RLC network with R = 1k, L = 1/12H,C = 1/3uF, find
wo, fo, @, Qo, wq, w1, ws and B = ws — wq. (wy and wo, are the half-power frequencies.)

Solution:

(H(jw))

» lOgWw

Figure 14.2:

1
= _ = =92
W, 76 60007ad/s 7 fo
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i(t) D R% L — C v(t)

Figure 14.3:
£, = 954.9H 2
1
200 = — =1
a=o5 o a 500rad/s
Q0= 22 — W, RC =2
2c0

W = w,? — a?

wq = 5,809rad/s

w1 = —wp — a = 4684rad/s

Wy = wp + a = 7684rad/s
B = 3000rad/s

1
Wp =Wy 4|1+ TQQ = 6,184rad/s

ANS:: f, = 0.95kH z,wy = 5.8krad/sec, w, = 7.89krad/sec, o = 1.5rad/sec,w; =
4.68krad/sec, 8 = 3krad/sec, Q, = 2

Exercise 14.3 A parallel resonant RLC circuit (Figure 14.3) driven by a current source,
0.2 cos wt, (units of amperes) shows a maximum voltage response amplitude of 80V at
w = 2500 rad/sec. and 40V at 2200 rad/sec. Find R, L, and C.

Solution:

For this circuit,
V=1-H(jw)

I, =0.2Amps
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1 1/2
)

V|=1,-R =80V

Peak response occurs at

and at this w,
|H(jw,)| — R
Therefore, R = 40012

S
I,&

24 s o 1
$°+ ze 1 1ic

4405 /C

2 2 22005
Wo” — W + oo

_ 4405/C
T 1.41 x 106 + 22

|V |we2200 = 40V =

C = 6.756uF
wl= = (2500)?
° T LC
L =23.Tmh

ANS:: R = 4009, I = 23.7mH, C = 6.76uF

Exercise 14.4 Find an expression for the value of L that will balance the bridge (Fig-
ure 14.4) to make v; — v = 0, for an input voltage V cos wt.

Vcos (wt)
T L R
O v
R C—
Figure 14.4:

Solution:

We need to meet the following condition:

Ls_

R

Q- =
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L=R-C

ANS:: L = R?C

Exercise 14.5 One or two of the following statements made about the second-order RLC
network in Figure 14.5 is/are inconsistent with the rest. Circle the inconsistent state-
ment(s).

i(©)

_>_

¥ RLC
Vs C) network

Figure 14.5:
a) The natural frequencies s; and s, of this circuit are as shown in the complex plane
(see Figure 14.6).

jw

— -|j12

— -|j12

Figure 14.6:

b) Q =1.2

¢) The admittance function Y (jw) = I(jw)/V;(jw) = j2w/[(169 — w?) + j10w]
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d) The step response for ¢ > 0 is of the form:

i(t) = Ae 'cos(12t + ¢) (14.1)

e) The steady state response to v, (t) = Bcos 25t is of the form:
i(t) = C cos (25t + @) (14.2)

Solution:
(b) is inconsistent with the other statements.

@ = 1.3 actually.
w02 =a’+ wd2 — S12= —a T wy]
Wo 13
=—=—<=13
@= 2 T30

ANS:: (b) is inconsistent with the other statements, () = 1.3 actually

Exercise 14.6 Consider the network shown in Figure 14.7.

- -
(1)
10 1Q

w0 (D)

b@*——lF um$ L

Figure 14.7:

a) Show that by proper choice of the value of L, the impedance }’(j)) = Z;(s) can be
made independent of s. What value of L satisfies this condition?

b) With L as determined in part a), what is the value of Z;?

c) Assume that the capacitor voltage and the inductor current are both zero for ¢ < 0.
Determine i (t) for ¢ > 0 when v;(¢) is a unit step.

Solution:
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_(R+&)(R+Ls) (RCs+1)(R+Ls)-Cs

7, = _
R+ 4 +R+1Ls Cs(2RCs+ 1+ LCs?)

R (L052 + (%) s+ 1)
LCs?+2RCs+1

ZZ(S) ==

We need Z2C+L = 2 RC for Z;(s) to be independent of s.
Choose L = R?C to accomplish this.
L=1ifR=C=1.

b) Z =R

C) ic(t) = & e /RC

ANS: (@) L=1ifR=C=1,(b) Z; = R, (¢) ic(t) = 5 e /R

Exercise 14.7 Each of the following parts makes a statement about a second-order sys-
tem. Indicate whether the statement is true or false.

a) The network shown in Figure 14.8 (with both R’s and C’s positive) can exhibit
natural responses of the form e~%!sin wt.

Ry R>
MM, o+
vi(t) ——Cc, —GC Vo(t)
Figure 14.8:

b) The natural response of a RLC network is given by: v (t) = 25¢ >cos(12t +7/7).
The @ of the network is 1.2.

c) For the circuit shown in Figure 14.9, the output voltage under sinusoidal steady
state conditions is zero.
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o+
L
f% Vo(t)

C

N
py)
WWW

t O
ICOSD— (
s¥°0/c0

Figure 14.9:

igt) D R% @fpu—

Figure 14.10:

d) The circuit shown in Figure 14.10 contains 3 energy storage elements and thus has
3 natural frequencies.

Solution:

a) False. The roots are purely real and negative from the characteristic equation.

b) False.
wg=12and a =5
S0, wy=+VwsZ+a?2=13
Q=4 =13+#12

c) True.
V. R(LCs® +1)
H = — =
(5) I, LCs®+RCs+1
So at .

S = L
VLC'

|H(jw)| =0

d) False. L; and L, are in series, so their combination is equivalent to one inductor of
value L; + L.

Thus the system is second order and cannot have 3 natural frequencies.
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Vg .
vi(lw)‘

(log scale)

Figure 14.11:

~ANS:: (a) False (roots are real and negative), (b) False (Q = 1.3), (c) True (at s =
\/%_C, |H (jw)| = 0), (d) False. (system is second order)

Exercise 14.8 The voltage transfer ratio of a certain network is shown in Figure 14.11 in
Bode-plot form.

This transfer ratio can be expressed in the form

Vo(s) Ks
Vi(s) (82 + swo/Q +w})(Ts + 1)

(14.3)

Determine the parameters K, , wg, and 7.

Solution:

w, = lrad/s; it is the resonant peak frequency.

The pole at w = 10 is due to (7s + 1) factor in the denominator.

Atw =10, wr=1sothat |rs+ 1| =+/2.

T=1/10

@ is the ratio of the resonant peak to the asymptotic intersection, @ = 5.

Kw

HG-1)|=5=
|H(j-1)| \/(w02—w2)2+(%")2' 1+ (1w)?

K =1.005
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ANS:: K =1.005, @ =5, w, = 1rad/s, 7 = 1/10

Exercise 14.9

a) In the circuit in Figure 14.12, find an expression for the complex amplitude V, as

a function of V; after transients have died out, assuming v; is a sinusoid: v; =

V;cos wt.
R
W *+
—T1 C

16 "

L
T *-

Figure 14.12:

b) Find v,(t) at the frequency wy = oL

Solution:

a)
1+ LCSs?

Vols) = 1T res w1 )

b) Atw, = \/%, vo(t) = 0.

ANS:: (8) Vo (s) = rmsEC 5 Vi(s), (b) v,(t) = 0

Exercise 14.10 The impedance of the network shown in Figure 14.13 is found to be 252
and is purely real at all frequencies. The value of the inductor is one mH as shown. What

are the values of R and C?
Solution:

(R+ g)(R+Ls) _ R(LCS®+ ( + RO)s + 1)
2R+ &= + Ls LCs®>+2RCs + 1

In order for Z to always be purely real,

L
— =92
(R+RC) RC
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+e
Z(jow)—»

C 1mH
Figure 14.13:
L= RC
Then
Z = R = 2000
independent of w.
.001 = 2000% C

C =25-10""Farads

ANS:: R =2000and C = 2.5 - 10~ '° Farads

Problems

Problem 14.1 For the series-resonant circuit in Figure 14.14, draw the impedance model,
and find the transfer function V,,/V;. Sketch the Bode plot of log magnitude and phase
of this function versus log frequency by sketching the asymptotes, then sketching the
function. This is a second-order low-pass filter.

For this topology, the maximum amplitude does not occur at the resonant frequency
wq (prove this, but don’t work out all the math). However, this is a small effect for all but
very low Q. Find expressions for the resonant frequency (defined as the frequency where
the s? and the s° terms cancel in the denominator) and the Q.

Solution:
Impedance Model (Figure 14.15):

Transfer Function:
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R L
— MWW—— T ———=  +
vy () C == volt)
Figure 14.14:
R Ls ® +

Figure 14.15:

Vo = B 1 B 1
Vi Ls+R+4& LCs?+RCs+1 (1—w?LC)+ jwRC
Bode Plot:

— _tan( wRC )
v 1—w?LC
w L
°T VIO
See Figure 14.16 for plot.
Resonant Frequency:
1
wo = —F—
°" VIC
Check if max amplitude occurs at wy:
i(@) B —jRC +2wLC
ow\V;/) (1 —w?LC) + jwRC]?
at wy:
3(@) _ —JRC+2VLC 40
0wVt /loo  [jRYST




>Iog(oo)

™ log(w)

Figure 14.16:

459
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S0, wy not maximum amplitude.

-~ Yo _ 1 — _1 — 1 /L
ANS:: 32 = (1—w?LC)1jwRC’ Y0 = /Lo Q=&

Problem 14.2 Consider the circuit in Figure 14.17.

+

10 D RE L Cc— W

Figure 14.17:

a) Draw the Bode plot of |Z(w)|for R = L = C' = 1. What is the resonant frequency?

b) Draw the Bode plot of |Z(w)| for R = 1,L = C = 2. What is the resonant
frequency?

c) Comment on the results of part a) and part b).

Solution:
Find |Z(w)|:

Z(w) = 1 B RLs B JwRL
~ Cs++++ RLCs>+Ls+R R(l—-w’LC)+ jwL

wRC

1Z(w)] =
\/R2(1 — w?L(C)? + w?L?

Q) R=1,L=1,C=1

Bode Plot: see Figure 14.18
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log|Z(w)l
A |Z(wp)| = 1

o__

\

Figure 14.18:

b) R=1,L=20C =2

2w
1Z(w)| =
\/(1 — 4w?)? + 4w?
Wy = 5
log|Z(w)|
A |Z(wp)| = 1
O —_

Z(w)| = 2w/ "

Figure 14.19:

Bode Plot: see Figure 14.19

c) The resonant frequency drops from 1 to ;. As a result, the Bode plot for | Z(w)] just
shifts to the left by an amount log(3).
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ANS:: (@) wo =1, (b) wp = 5

Problem 14.3 The circuit shown in Figure 14.20 has an input voltage v;,;(t) =
Vicos 120xt, and L = 500mH, C = 80uf, R = 5012.

_R_SL +

Vi) v

Figure 14.20:

a) Compute the transfer function H(s) = V,(s)/Vin1(s).

b) Setwv;,1(t) = 0. What is the equivalent complex impedance of the circuit evaluated
between V, and ground?

c) Parts a) and b) might lead you to believe that Thévenin’s Theorem also applies to
complex impedances. If this is true then we can replace the circuit between V, and
ground by a complex Thévenin impedance (Z;;) and a complex open circuit voltage
(Vioe)- Taking v;p1(t) = 10cos120mt compute Zyy, and V.

d) Having represented the circuit by its Thévenin’s equivalent we wish to connect it to
another circuit having v;,2(t) = 10c0s200¢ as shown in Figure 14.21.

v sL — R

O ] (D

Figure 14.21:

1) Are there any problems with this approach? If so state them explicitly.
2) Compute the complex V, for this circuit.
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3) Now let v;,1 = v;2 = 10c0s1207t. Evaluate V, for this case.
4) 1f vi,1(t) = vina(t) = 10cos120mt compute the real output voltage v,(t).

Solution:
) 1 1
H = =
(s) LCs?+ RCs+1 (1 —-w?LC)+ jwRC
R Lg .
1]« Ry
Cs
Figure 14.22:
b) See Figure 14.22
7 _ 1 . R+ sL . R+ jwL
“T s +Cs  LOs®+RCs+1  (1-w’LC)+ jwRC

C) Vin1(t) = 10 cos(1207t)
1
(1—-w?LC) + jwRC

wRC
1-w2LC

/(1 = w2LC)? + w2R2C?

10¢7 (120m1)

%c:H(S)'%nlz

106j(1207rt—tan*1

10€j(1207rt)
T 4.92¢4(—0.311)

‘/gc — 2'036‘]'(120’”15"‘0.311)

g R+ jwL
"7 (1= w?LC) = jwRC
for w = 1207
195€j(1'311)

= 1 09.j(0311) 3(1.622)
" 4.9261'(*0.311) = 39.6e
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(b) Ze, = RHjel () v, = 2.03¢/(120mt+0.311)

. 1
ANS:: (a) I—w?LC)1jwRC (1-w?LC)+jwRC

Zy, = 39.6¢7(1:622)

Problem 14.4
a) Determine w,, o, wq, Q1 for each of the circuits in Figure 14.23 (Q1 = w,/2a).
L 4 [ 4

Ro
Zy— % Ry g L —c Zy—*>

L

Figure 14.23:

b) Assume L = 1mH,C = 10uF. Find values of R, and R, that will yield @; = 10.
What is the ratio of R; to Ry?

c) Make a parallel L' — R’ equivalent circuit for the L — R, series combination (as in
Exercise 14.1) and use this equivalent circuit to calculate what the ratio of R, and
R, in part b should be for @Q; = 10 in both circuits. How large is the discrepancy,
if any?

d) Using the values for R; and R, found in part b), make plots of | Z;| and | Z,| versus
frequency and /Z; and /Z, versus frequency. ldentify the following features of
your plot:

i) The maximum impedance, the frequency w, at which this occurs, and the
phase angle at w,.

if) The frequencies w; and w, at which |Z| is 1/1/2 smaller than the maximum,
and the phase angles at w; and wy. Calculate the quantity @, = w, /(ws — w1).

e) Now suppose that you have just been given a “parallel resonant” circuit Z, but
you don’t know whether it is of the Z; form or the Z, form. Suggest a step-by-
step experimental procedure based on measurements of |Z| and perhaps /Z as a
function of frequency to determine

1) which of the two forms of parallel resonant circuit is the best model, and
i) specific values for the three elements, R, L, C.

Solution:



a) 1) Firstcircuit:
v
it)=CV'+ =+

R
, v vtV
ll(t) :CV”-FE-FZ}J :CVI,+E+Z
1, V! 1%
—i'(t)y =V" —
c'W=V"+getic
General form: s* + 2as + w§ = 0, s0:
1 1
2+ .1
s°+ RCs—i- iC 0
1
~ 2RC
L
°" VIC
1 1
22
Wa=Wh — = TE T Ipee
_ W _ _p ¢ _
@ = 200 woRC = R\/; - woL
2) Second Circuit:
i(t) =CV' +1ig
Find V": _
il . V — R’LL
)
V = Li}, + Rig,
V' = Li] + Ri},
Substitute:

i(t) = CLi} + RCi}, +1ip,

. .Il R.I 1 .
ml(t) =1y + Z’LL + ﬁlL

General form: s? 4+ 2as + wi = 0, so:

- =
Q

Wy =

465
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1 R
Y4T IO T 4L
w _wlb 1 /L

“92% R R\C

b) From part (a), the values of R, and R that yield ); = 10 are: R; = 10052 and
Ry, = 1. The ratio is then: g—; = 100.

o

— %R’ %L’

Figure 14.24:
c) See Figure 14.24
Zth, = RQ + ]CUL

1 _ jwl'R"  W’L”R + jwl'R"?
i T~ =
5 + J‘UT ]wLI + RI w?LI? + R12

I —_—
th —

We want Z,, = Z},,, So:
w2Ll2RI
CL)QLIQ + R12
LIRIQ
= wZL'Z + R/Z

Ry =

WwL' Ry

R L

R w?L'L
R,

Substituting:
277
LUZL,?(WI_%;L) B R2w2L’L

= 17272 — D2
w2L12 + w [I:LZL R2 +w2L2

2

,  R3+wL?

L
w?L
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- R2 + W?L?
Ry
Find new Q;: o
Q1= oD
w’L  wyL
@ = wolty a R—z

R, = 1009 and R, = 1. The ratio is unchanged at g—; = 100, so there is no
discrepancy from part (b).

|Z1(w)]
1000 +—— — — — — — — — maxi mum impedance

w, = 95125 wp = 105125
I | : Ll )

w :104

Figure 14.25:

d) See Figure 14.25 for plots.
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le

R_1+]wL

JwLRy wLRe¥(3)

Z - . 1 w
! R (1 — w2LC) +]wL \/R2 — Ww2LC)? + W2 L2 P (maie)

_ wLRl
\/R%(l — w?2LC)? 4+ w2L?

Rl(l—u2LC))
wlL

el tan—1(

0.1w w
\Z,| = -
V1041 =10 8w2)2 4 10 6w? /(103 — 10-5w2)2 + 10 *w?

= tan

100(1 — 10—%2)]

B [105(1 — 10-8w?)
1-10—3w

/Zy =tan! [
w

See Figure 14.26 for plots.

1 Rz + ij
T jwC (1 —w?LC) + jwRyC

\/ R3 + w2l 2edtan (%)

L= W2LOY? + 2R3C2 o)

1+ 10 6w?
25| = 8w2) 10, 2
10-8w?2)2 + 100w

ZQZ

Ra+jwl +JwL

10 5w
1103 -1
[Zy =tan” (10"°w) — tan (W)

e) i) Measure /Z closetow = 0. If /Z ~ 90°, then Z; is the best model, if
/7 = 0, then Z, is the best model.

i) Measure |Z| to find wy and @, then solve the resulting system of equations for

R, L,C.
ifZl: Wy = \/%fc,,Q wanR Zmaz
if Zy: wo = \/% Q=L tan(Q) — 90 = /Z(w = wy)
ANS:: (a) (i) @ = 535, wo = %C,wd = 15 — e @1 = w%(ii)a = &

Wo = e Wi = 1o — 10 Q1 = 11/ () 1 =100 (c) £ = 100
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|Za(w)]

1005Q - — — — — — — — — maxi mum i mpedance

10 W = 9512.5 Wy = 10512.5
I >
4
W, = 10
0z,
90

391].

-5.7
-50.4
-90

Figure 14.26:

) R
— W\
i)

0

Figure 14.27:
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Problem 14.5

a) Write down the differential equation describing the circuit in Figure 14.27.
b) Write the transfer function V,(s)/V;(s).
c) Solve for i7(t) assuming v;(t) = coswt (letw = 1).

d) Plot the roots of the characteristic polynomial (from part b) on the complex s-plane
(Assume R?2C? < 4CL.)

Solution:
a)
vr(t) = Ri + % + L¢'
! t :L~II R'I i
vy (t) v + Ri + c
1 ! _ R-I 1 .
Lvl(t) =1+ +LCZ
b) Transfer function:
Vo(s) Ls LCs?

Vi(s) R+&+Ls LOs?+RCs+1
) vy =coswt =€/t and w =1

1
Z=R+—+1Lj

Cj
ejt
ift)= —F——
R+ CL] + Lj
Cjelt Cei(5)eit
- (1-LC)+RCj \/(1 —LO)? + R2C2¢0 0 ()
i(t) = ¢ it 5 tan™ (+2z)
V(1= LC)? + R2C?
i(t) = ¢ cos [t + tan™" (1 - LC)]
- RC

V(1= LC)? + R2C?
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A 2
1 R
° LC .. 2
LC 4L
two ?8Iru§|ons - | -
_R
2L 5
o 1 jL_RrR
LC 42
\J
Figure 14.28:

d) See Figure 14.28
s% + o + Ly
7 =

LC

R 1[R 4 R 1 R
e Y S 7Y P
T or TN e T Tar T WIe a2

ANS:: (8) Lop(t) = " + Bi' + i (b) goetlor— (¢) i(t) = ——S— cos [t+

24 RCs+1 /(17L0)2—|—R2C2
-1({ 1-LC
tan < RO >

Problem 14.6

R . R2
(d) =5 Tivze — ir

a) In the circuit in Figure 14.29, given that vg = Vgcoswt, where w = 10° rad/sec.
Design a lossless coupling network containing one inductor and one capacitor that
will maximize the power transferred to the antenna at frequency w.

b) Now suppose that vg = Vgcoswt + ecos3wt, where e represents a small amount
of third harmonic distortion introduced by nonlinearities somewhere in the trans-
mitter. Since the FCC forbids the broadcast of harmonics, it is important to check
that coupling networks do not inadvertently favor the coupling of harmonics to the
transmitter. For your design in a), calculate how much third harmonic reaches the
antenna.

Solution:



472 CHAPTER 14. SSS: RESONANCE

Rs
Lossless ® Rs=500Q
Ve coupling : R R =1Q
network
Transmitter Antenna
Figure 14.29:
Rs
° * R<=50Q
v c ] =R R=I0
Zeg
Figure 14.30:

a) vs = Vs coswt, w = 10° See Figure 14.30 for network structure.

Specify L, C:
1 RLs

T ITYLI1Cs RICS+1)+Ls
make LCs®> + 1 = 0 so that Z,, = R, then:

Zeq

1-LCwW?*=0
1 —12
LC=— =1x10
w

L=1mH=1x10"*H
C=1nF=1x10"°F
b) vg = Vg coswt + € cos 3wt
See Figure 14.31 for equivalent circuit.

7 1 B Ls
th = LLS+CS_LCSQ+1
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Rs=50Q
R =1Q

\/VVVV\V
e

Vg Zth

Figure 14.31:

Simple model of a

physical inductor More complex model

Figure 14.32:

From (a), LC = 1. Ats = j3w,

g 3L
" 9wLC + 1

30007 . iz

Zup = _—8] = 375§ = 375 ¢ 13)
phaseshift

Amount that reaches the antenna: use | Zy,|:

€ ( ZnRr, ) _ 15e

Rg + % Zw + Ry, 767

ANS:: (b) 23¢

Problem 14.7 Refer to the figure in Figure 14.32 for this problem.
The () of a physical energy storage element may be defined as
Im(Z)

Q= oz (14.4)
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where Z is the terminal impedance of the element. The ) may also be defined in
terms of energy as

2r < W >

145
Ediss /eycle ( )

Q2 =

where < W > is the average stored energy and Ey;,s/cycie IS the energy dissipated per
cycle.

a) For the simple inductor model, calculate and compare @, and @, as functions of
frequency.

b) For the more complex model, and assuming Rp >> Rg, sketch ); as a function of
w making reasonable approximations.

c) Suppose two inductors with the same @1 and (?1¢) are connected in series. Express
Q1 for the series combination in terms of ) 1,.

Solution:

a) Simple Model: Find Q;:
Z = RS + ij
0, = Im(Z) _ Lw
"7 Re(Z) ~ Rs

Find Q,:
1
= _LI?
%4 5 i

1
§L fpem’od Iz2dt

< W >=
Period

where the Period = 22

L
<W>=2 / Idt
T Jperiod

Ediss = IZ2RS
Ediss/cycle = RS/ ) Ifdt
period
2r<W> Lw
Ediss/cycle 2RS

Q2 =

To compare ), and @», find the ratio % = 2.



b) More complex model:

1 wRpL
Z = Rg+ 1 = Rs + ]wip
joL + Rp RP + ij
7 Ret jwRpL(Rp — jwL) Re RpL?w? . RiLw
S R} + w?L? TR 4 L2 J R% + w?L?
Im(Z R%Lw
Ql — ( ) P

Re(Z) ~ RsRZ + RsL?w? + RpL2w?

assuming Rp > Ryg:
RPLCL)

G~ RiRe+ e
See Figure 14.33

Q
A

Ll

Figure 14.33:

c)

ANS: (8) Q1 = £2, Qs = 352 (b) Q1 = 52t

Rs = 1kQ,r =10000Q, L=12yH, f=11, Rpand C variable
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Problem 14.8 Communications receivers require high-Q circuits to separate signals
broadcast on adjacent channels. Due to losses, modeled by the parallel resistance r, there
is a limit to the @ that can be achieved with passive components. In the amplifier circuit
in Figure 14.34, a variable resistor R has been added which has the effect of increasing
the (Q of the passive tuned circuit.

a) Consider first the tuned circuit by itself, disconnected from the amplifier. If C' is

chosen so that the circuit has a 1 M H z resonant frequency, what is its )7
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[ ]

Re .
i P G) — 4 % L =1 Vo
Source  Amplifier Tuned circuit
Figure 14.34:

b) Determine the overall transfer function H(s) = V,/ V.

c) Select values for C and Ry so that the overall frequency response is peaked at a
frequency 1M H z and has a half-power band width of 2k H z. (Note, the half-power
bandwidth = 2«). What is the () in this case?

Solution:

a)

Z
Figure 14.35:
1 jwrL
Z = 1 1 - = 2 -
;+jw—L+ij r(1 — w?LC) + jwlL
_ _R _ _Z
=357 7= Rpiz

Find V,:
Vo =vBiRp
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Find i:
Vs =(1-19pP)iRs
Vs
(1-B)Rs

Substitute:
YBREV;

(1 —7B)R,
YBRp
(1 —vB)Rs
jwrL
- Rpr(1 —w?LC) + jwRpL + jwrL

H(s) = E B JwBRerL
Vo  RsRpr(1 —w?LC) + jwRsRrL + jwRsrL — jwBRgrL

&

SIS

v

1
RI
1
Wy = —F—

VvVLC
2.5

C="2x10°F=7.96x10"°F
Vs

200 =

Q

R' =100, 00052
With these values, @ = 500

ANS:: (a) @ = 50 (b) H(s) = JjwbRprL (c) C =

RsRpr(1—-w2LC)+jwRs RpL+jwRsrL—jwBRsrL

7.96 x 1071%F, Rp ~ 89k, Q = 500

Problem 14.9

a) Consider the two circuits in Figure 14.36.

Determine the transfer functions

Hl(S) = Il/Is and HQ(S) = IQ/IS
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is<D %R —cC L iSCD —T-C L

Figure 14.36:

b) Giveni,(t) = u_1(t), draw the circuits as they would appear in steady-state. (Recall

that u_(¢) represents a unit step at time ¢ = 0). What are the “forced responses”
il and 727

¢) Calculate the “natural responses” 7 and 5. Assume:
ir(0) =0, ve(0)=0, R>>,/L/4C
Why is i’ not the complete steady-state response of the second circuit?

d) Write the step response i; = i} + i and i, = 72 + i’ in terms of wy and Q.
Answer:

1
i(t) = 1—e 29— sinw,T + cosw,t)
2Q
ia(t) = 1—coswyt
e) 42(t) reaches maxima/minimaat ¢ = #%,n = 0,1,2,... For what value of n does

i (57 =50 (57).

For Q = 5, 50, 500 calculate

<N (27
i (0)
o (14.6)
i3 ()
Sketch 4, () for @ = 50.
Solution:
a) First Circuit:
. 1 R
@ E1Cs 1+RCs
s Tios T LS TR t L



R

H —
18) = 2 RIs+ RLCS

Second Circuit:
. 1 1
2 Cs

H = = =
2(3) is é +Ls 14 LCs?

Figure 14.37:

See Figure 14.37 for circuit diagrams
First Circuit: 7' =1
Second Circuit: i)’ =1

c) First Circuit:
i’ V! 1%
—_=y" _
c~V TR Ic

Since R > (/% = w =~ wy:

V = e *(Asinwyt + B coswyt)
i = e *(Asinwot + B cos wyt)
iY(0)=—-1=B=-1
iN(0)=0=—aB+ Awy =0

Since a = 3§
1
A=_%__ =
Wo 2Q
1
iV = —e’at(% sin wot + cos wot)

Second Circuit:
iy = Asinwgt + B cos wyt

iY(0)=—-1= B=-1
iN0)=0=Awy = A=0
>

1o = — COSwyt

479

i2:is
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d) Witha = ¢8:

1
i(t) =14 +i) =1— e“""t/QQ(Q— sin w,t + cos wyt)

ig(t) = 15 + i) =1 — cosw,t

&) 727
—e’“t(% sin wot+cos wyt), 1Y = — coswyt (d) i, (t) = 1—6’“’0'5/2@(% sin wyt+cos wyt),

io(t) = 1 — cosw,t

Problem 14.10 The circuit in Figure 14.38a is to be used as a bandpass filter having
the magnitude-frequency curve shown in Figure 14.38b (linear coordinates). The input
voltage is

vs(t) = Vicoswt

and

w, = 1x 10%adians/sec
wt = 1.05x 10°

w™ = 0.95x 10°

(14.7)

a) Find the appropriate values of L and C.
Using the values found in a):

i) Sketch Ang V, vs. w.
i) Letwvs = 10cos 10%¢. Calculate vo(t),i(t), vo(t).

iii) For vg = 10cos10%¢, determine the total stored energy W, and the time-
averaged power dissipated.

Solution:



+

C L

}—m%»—o
_ i

™ Ve

_ R=100Q =

vg(t) = Vgcos (wt)

@
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(b)
Figure 14.38:

> W



482 CHAPTER 14. SSS: RESONANCE

a)
We
= =10
wo = L 1 x 10°
LC
_ wl
@= R
Solve for L and C:
L=1mH
C=1x10"°F
i) See Figure 14.39 for plot
Vo R jwRC

Vi s +jwl+ R (1-w?LC) + jwRC

OV,

2
0.80

Figure 14.39:
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i) vg = 10 cos 10%¢ Find v, (t):

_ 10cos(10% — %)

™
=1 10% — =
ve(t) RO 00 cos(10°t 2)
Find i(t):
i) = vs(t) 107t _ 10(jwL)e?vt
 Z  gp+iwlL+R (1-w’LO)+jwRC
at wy:
“ 10e7vt
i(t) = 7 =01 cos(10°¢)
Find vo(t):

vo(t) = 10 cos(10%¢)

iii) Total stored energy:

1
W = SCV2+12L1% = 5 x 10~ cos*(10° — g) +5 % 1070 cos?(10%)

W=5x10"%J
Average power dissipated:
P = I?R = cos?(10°%)

<P>=05

ANS: (@) I = 1mH, C = 1 x 10°F (i) /Vp = tan (1sz0) (ii) ve(t) =

wRC
100 cos(10% — %), () = 0.1cos(10%), vo(t) = 10cos(10%) (iii) W = 5 x 107°J,
<P>=0.5

Problem 14.11 An RLC circuit is shown in Figure 14.40.

The magnitude of ",—i(jw) is measured and is as plotted in Figure 14.41 (on log-log
coordinates).

a) What is the value of C?
b) What is the value of R?

c) What is the value of Aw?
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i® R L=1mH
— MWW\, 000
wo(H) C—— vo(t)
Figure 14.40:

Figure 14.41:
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d) The circuit is now excited with a unit step of voltage. The values of i;(¢) and v ()
are zero prior to time ¢t = 0.

Sketch the signal vo(t) for ¢ greater than zero, labeling important features.

Solution:
a)
wo = 10°
C =10"°F
b) at resonance:
Vi
R = ||| = 1009
|7
c)
U)()L
=—"=10
R
Wo
= — = 1
Q Aw 0
rad

Aw = 100, 000?

d) See Figure 14.42 for plot of vp

L, o R, 1.
Lvl(t) =i+ i+
R 1
2 — — =
s°+ Ls—i- Ic 0
R 1 R2
= —— =+ J{/— — — = —5000 % 5 (998, 749
ST TN Ie T are J (998, 749)
,[::Ast—}—B
dt A
vo = fé = C—es”B +D=1-—eAgin(wt) + Bcos(wt)]
s

Uo(O) =0=B=1
v} (0) = 0 = 5000B — Aw = 0 = A = 0.005
vo(t) =1 — e7°%%0.005 sin(998, 749t) + cos(998, 749t)]
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T

|

T = £'~ 6.29x 10 °sec
R

Figure 14.42:
L
'3 000 '3
+

Va C RS VB

\ / .\ =\ /
Power Power line Customer

plant load

Figure 14.43:



ANS:: (@) C = 107°F (b) R = 1009 (c) Aw =

599010 005 sin (998, 749t) + cos(998, 749t)]

Problem 14.12 Refer to Figure 14.43 for this problem.
vg = Acos400t A = 141kilovolts, L =0.25H
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100, 00072 (d) vo(t) = 1 —

This problem examines a simple model of an electric power system. The source v 4
represents the generator in the power plant. The inductance L represents the net effect of
all power lines and transformers. The customer’s load is represented by resistance R, to

which the capacitor C'is added in parts b) and c).

a) No capacitor. R; =
dissipated in Ry.

100€2. Find the magnitude of vz and the average power

b) In an attempt to improve on the situation in part a), the customer adds a capacitor
in parallel with his load. He finds that a 25, F" capacitor works well. Find the
magnitude of v and the power dissipated in Ry, for R, = 1009 and C' = 25uF.

c) The customer is now very happy. However, before going home for the night, he
turns off 90% of his load (making R, = 1k2), at which point sparks and smoke
begin to appear in the equipment still connected to the power line. The customer

calls you in as a consultant to straighten things out:

1) Why did sparks appear when the customer tried to turn off 90% of the load?

il Assuming a variable R, in the range 100 < R; < 100052 provide the cus-
tomer with a simple formula he can use to calculate the right value of C so
that the magnitude of vp is always equal to 141£V'.

Solution:

a) No capacitor:

Z = ij + RL
= YA
B RL +](UL
e — RVa  RpAe
27 Ry +jwL  Rp+jwL
R A
lvp| = ————= = 99.7kV
\R2 + w?L?
Average power dissipated:
1 ‘UB|2 N 1 RLA2 .
< P >= SR, ER% s 49.TMW
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b) Capacitor, with C' = 25uF

, 1 , Ry Ry (1 — w?LC) + jwL
7 =il — ol —
TR T e T T T jwRC 1+ jwR,C

Let 7 be the total current entering the load R-C circuit, and 7 be the current through

the resistor: _
(14 jwRLC)

Ri(1 —w?LC) + jwL 4

3 =

From the current divider law:
1
_ gwe . 1

1R = 7= - 7
R ju%c—IrRL 1+ jwR,L

. VA
1p =
R R;(1 —w?LC) + jwL

Since |vg| = Ry - |ig|, and |v4| = A:
R, -A

lvp| = = 141kV
VEI(1 - w?LO) + w?L?
Power dissipated:
1 |vp?
< P>=—-——=994MW
2 Ry,

c) i) Immediately after the customer changes the load, the voltage on the capacitor
cannot change, so the voltage across the resistor also stays the same. As a
result, the current increases by a factor of 100, and so the power dissipated in
the resistor increases by a factor of 100 briefly, overloading the resistor.

ii) From the expression for |vg| derived in part (b), we see that for |vg| =
141kV = A, we require that:
Ry,
JR(1 —2L0) 1 I
R2(1 - w’LO) +W?L* = R?
R} — (WLR3)C +W’L* = R
(W LR3)C = w’L?

L
C=—
R}
With L = 0.25H: :
C

:@
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ANS:: (a) [ug| = 99.7kV, < P >= 49.7TMW (b) |vg| = 141kV, < P >= 99.AMW
(i) C = L

2
iR?

Problem 14.13 Refer to Figure 14.44 for this problem.

+ yic®
i [
o(h) OB Ly

Figure 14.44:

R __ 1 _ — 1 _
-1 =2 R=5 =1

a) Assume that i(¢) = 0 for ¢ > 0, and that i7,(0) = 0,v¢(0) = V,. Find ve(t)
for t > 0. Simplify your answer, and make a rough sketch of vc(t) showing its
behavior.

b) Find the transfer function (system function) relating V'(s) to I(s).

c) When i(t) = 2e 3¢, it is known that the voltage v(¢) can be expressed as

v(t) = Ae'* + Be*' + De ™™ (14.8)
Find s;, s, and D. (You need not find A and B).

Solution:

a) See Figure 14.45 for plot
H 1 . R . —
Given: ;5 =16; T+ =10; R =25
= wi=1620=10=a=>5

5= 52516 ={—-8,—2}
ve = Ae™* + Be™™
"
vc(0)=A+B:VO;s—3B:VO:>B:_§0

4
dvgt(o)=0=—2A—8B:>A=—4B:>A:¥

Substituting:
_ AV, o Vo

ve =3 3
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Ve
A _
\ e
VO_ A ~ K
\ e— el —t — — — -
U i __l——\:_—/‘l' ———————
=2l 4m
'VO / -
Figure 14.45:
b) Transfer function:
V(s) 1 Ls-(R+2)
7 =T R+ —)= Cs
I(s) il +Cs) Ls+ (R+ &)
_ Rs;—i- o :
82 + fS + c
_ RLCs*+Ls
 LCs2+ RCs+1
c) From part (a), s; = —2, s = —8. From the transfer function in part (b), we have
that:
CF_U+E@+LU—R@+1'
d?  Ldt LC — di2 C
With the values given in the problem:
d*v dv d?i
— + 10— + 16v = 25— + 40z
gz Vg T =g A
We also have:
i =2
v = De 3

We can find the first and second derivatives in a straightforward manner. Substitut-
ing, we then have:
9D +10- (—3D) + 16D = 25 - 18 + 40 - (—6)

Solving for D:
D= —42
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ANS:: (a) ve = e — 278 (h) LRLCﬂ (€) 51 = —2,8=—8,D=—-42

3 Cs24+RCs+1

Problem 14.14 Refer to Figure 14.46 for this problem.

AAAAA

Figure 14.46:

Ve =1V K =1mA/V?

a) For v;(t) a small sinusoidal voltage, choose V;, R, L and C to give a resonance at
w = 10° radians/sec, = 10, and an incremental gain v,/v; at resonance of -2.
Use the incremental model.

Solution:
MOSFET small signal model (Figure 14.47):

Figure 14.47:

gm:K(‘/I_VT)
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Vour = —Zy K (Vs — Vr)

We need the following features: Resonance: wy = \/% = 15 radians
Quality: woRC =10

Gain: —|Rp|K (V7 — V) = —2, at resonance

Calculate | Z| first:

1
71 = R||Lg||—
L= R| S”CS
1 1+ 1 L Ls+ R+ RCLs?
_— = — e S =
Z;, R Ls RLs
RLjw
2 = +
Ljw+ R+ RCLw?
RLw
1Z1| =

V(R — RCLw?) + (Lw)?

- - . 1 .
Substitute in w = Viroh

RL L
L R/ %
25| = R RL% T o \{2; =R

\/ (R—7&) + (755) Vo
(Note: This is expected: at resonance, the effects of the capacitor and inductor cancel out
perfectly.)
From the resonance constraint:

1
—— =10°=LC =10"""
VLC

Choose L = 4.7 x 1073H, C = 2.2 x 1078F. These are standard element values for
inductors and capacitors, and as a result are readily available. (This was not asked for
in the problem, so this is one of many possible answers). These choices give LC =
1.034 x 10710, an error of 3.4%.

From the quality factor:

(U()RC =10
083 x10*-R-22x10%=10=2.163x10%- R =10
1
=~ ~46x10%Q
= oie3 <101 ~46x10

To again choose a standard value, choose R = 4.7kf).
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From the gain expression:

—4.7x 10*(1073)(V; — 1) =2

2
Vi—1=-—"—
! 4.7
Vi &~ 1.426V

Summary of choices:

Vi~ 1426V, R=4.7kQ, L =4.7x 10 *H,C = 2.2 x 1078F
ANS:: V; ~ 1.426V, R = 4.7kQ, L = 4.7 x 1073H,C = 2.2 x 1078F

Problem 14.15 The two networks shown in Figure 14.48 are driven in sinusoidal steady
state by the voltage v;(¢) = Vj cos(wt). Their outputs take the form v (t) = Vo cos(wt +

).
® MWW ') o—\\WW ®
+ + + +
R R
L C
v () % wh O LT T w0

C

Figure 14.48:

a) For both networks, find V5 and ¢ as functions of V1 and w using impedance meth-
ods.

b) For both networks, let R = 1000 2, L = 47 mH and C' = 4.7 nF. Plot and clearly
label Vo / V4 for 27 x 10% rad/s < w < 27 x 105 rad/s; use a linear axis for
Vo /Wi, and a logarithmic axis for w. You need only plot enough points to outline
the dependence of Vo /V; on w.

c) Describe the filtering function of each network, and how each network acts to per-
form its function.

Solution:
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[
+

+eo R

|
1
\/ Cs| Y%
l
Ls
|

Figure 14.49:

a) First circuit:
Impedance model (Figure 14.49).
By voltage-divider:

Ls+ & LCs?+1
Vo(s) = (Ls + &+ R)V} - (LC’32 + RCs + I)VI(S)

1 — LCw? )V( )
(1— LCw?) + jwRC) V%

Vo(jw) = (

Find magnitude |Vo|:

1 - LCw?
/(1 = LCw?)? + (WRC)?

Vo(jw)| = Vi(jw)]

Since Vp (jw) = Re{Voe! @9} and V;(jw) = Re{V;e/@)}:

1 — LCw?
o= )
/(1 = LCw?)? + (wRC)?
Find phase:
B Sy Sy g1 wRC )]
¢ = LVo(jw) = |tan ~(0) — tan <71 T + /Vp
_ ., 4 wRC )
¢ = —tan (1 — LCw?

Second circuit:
Impedance model (Figure 14.50).
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[ )
+

+e R

Figure 14.50:

By voltage-divider:

Ls
Ls
Vols) = (22— )vics) = ( Wis)
i R Ls+ R+ RLCs?

, JwlL .
Voljw) = ((R ~RLCw?) + ij>VI(M

Magnitude:

wlL
VR2(1 - LCw?)? + (wL)2)VI

Vo = [Vo(jw)| = (

Phase: I
™ w
=/ iw) = — — tan~* (—>
¢ =Voljw) =5 —tan™\ g7
b) First circuit: See Figure 14.51

@_ LCs?+1
Vi, LCs?2+ RCs+1

‘Vo| . 1-— LCU)2
Vil /(1 — LOw?)? + (wRC)?

Second circuit: See Figure 14.52
Vo Ls

Vi (RLO)s2+Ls+R

|Vo| ( wlL )
V1] \/R2 — LCw?)? + (wL)?
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Vo
v, A
! - logw
Wy = A/?ic = 6.7><104
Figure 14.51:
Vo
v, A
i > logw
Wy = % = 6.7><104

Figure 14.52:
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c) First circuit: Notch filter. Takes voltage across 2 elements.
Second circuit: Band-pass filter.

ANS:: (3) (i) Vo = ( \/(1_;;)02{@0)2)%, ¢ = _mn—l(lfé’wz) (i) Vo =

‘VO(]C{))‘ = <\/R2(1Lg’f)2)2+(wL)2>V}’ ¢ = Z‘/vO(J(‘()) = % - ta'n_l (ﬁ%) =

tan-1 (M) (¢) (i) notch (i) band-pass

wL

Problem 14.16 This problem examines the very simple tuner for an AM radio shown
in Figure 14.53. Here, the tuner is the parallel inductor and capacitor. The injection of
radio signals into the tuner by the antenna is modeled by a current source, while the Nor-
ton resistance of the antenna in parallel with the remainder of the radio is modeled by a
resistor. (You can learn more about antenna modeling in follow-on courses in Electro-
magnetic Waves.) The AM radio band extends from 540 kHz through 1600 kHz. The
information transmitted by each radio station is constrained to be within +5 kHz of its
center frequency. (You can learn more about AM radio transmission in courses in signals
and systems.) To prevent frequency overlap of neighboring stations, the center frequency
of each station is constrained to be a multiple of 10 kHz. Therefore, the purpose of the
tuner is to pass all frequencies within 5 kHz of the center frequency of the selected station,
while attenuating all other frequencies.

| - +
5 ooy PR e 0@ 1] e i

Figure 14.53:

a) Assume that I(t) = I cos(wt). Find v(t) where v(t) = V cos(wt + ¢), and both V/
and ¢ are functions of w. Note that v(¢) is the output of the tuner, namely the signal
that is passed on to the remainder of the radio.

b) For a given combination of 7, C, L and R, at what frequency is V maximized?
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c) Assume that L = 365 pH. Over what range of capacitance must C' vary so that the
frequency of maximum V//I may be tuned over the entire AM band. Not that tuning
the frequency of maximum V'/I to the center frequency of a particular station tunes
in that station.

d) As a compromise between passing all frequencies within 5 kHz of a center fre-
quency and rejecting all frequencies outside that band, let the design of R be such
that V(1 MHz + 5 kHz)/V (1 MHz) ~ 0.25 when the tuner is tuned to 1 MHz.
Given this design criterion, determine R.

e) Given your design for R, determine V(1 MHz + 10kHz)/V (1 MHz). Also, deter-
mine ( for the tuner and its load resistor when the tuner is tuned to 1 MHz.

Solution:

a) Impedance of each element: Zp = R, Z;, = Ls, Z¢ = &

S

\oltage across the capacitor: V = IoZ¢

By the current divider law:

AR

— T
Zi12c+ 2 Zp+ ZoZR

Ic

VARA Y e,
L2+ ZpZr+ ZoZr

IRL

1__

V210ZC:

L .
_ IRZjw
—RLw? + jwk + &

RLjw

V= Ric"t Ljw+ R

RLw

V= V(R — RLCw2)? + (Lw)?

b=5- t”(m)

v(t) = |V]cos(wt + @)
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b) By inspection, and from previous examples, the frequency at which V is maximized
IS:w = ,/%. A more rigorous proof follows:

We are allowed to maximize only what is in the square-root, since the square-root
function is monotonically increasing:

RLw
V(R — RLCw2)? + (Lw)?

R2L2w2
~ \| (R = RLCw?)? + (Lw)?

V=

This expression is maximized when its reciprocal is minimized:
[R%(1 — LOw?* + LA (R?L™*w™?) = (L"*w™?)(1 = LCw?)?* + R™?

= L%w (1 - 2LCw® + L*C*w") + R™?

L72w™24+2£ 4+ C%w?+ R~% is minimized when its derivative with respect to w = 0,
so take derivative:

1
2L %03+ 2C0tw=0=L w3 =Clw=>LC  =wmw= ic

c) L =365uH, AM band: 540 kHz to 1600 kHz.

We want wy to vary over the AM band:

1 1
- = 2739.7y/ =
“o \/(365 x 10H) -C C

i) upper bound for C:

/1
wo = 540 x 10 Hz = 2739.7 e =C=257Tx10°F
if) lower bound for C:
/1
wo = 1600 x 10°Hz = 2739.7 c =C=293x10°%F

So:
203x10 %< (C <257x10°°
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d) First, let us find values for L and C that give this tuning:

1
— =10"=LC=10""
VLC

Choose: L=10"%C =101
Now, an expression for YAt :

Vooskm:
Viow _ 1 005 VR2(1-099)2+9.9x10° 1
Voos V106 - 0.25
Solve for R:
3.98 x 10* = v10~4R2? + 9.9 x 10>
1.485 x 10" = 107* - R?
R =1.22 x 10°Q
e)
Yoo _ ) 990 ALl
Viooo VR2(1 = (1074)(9.9 x 108)2) + (10-8)(9.9 x 10%)?
1 3
=0.990 - 0
/(122 x 108)2(1 — 0.98) + (9.8 x 10°)
990
Quality factor:
Q = woRC = (107)(1.22 x 10%)(1071%) = 1.22 x 10*
ANS: @IV = \/(R—RLZf;)?-i—(Lw)?' ¢ =5 —tan (W) (b) w = \/% ()

2.93 x 1079 < C < 2.57 x 1075 (d) R = 1.22 x 10%Q () 0.0405, @ = 1.22 x 10*



Chapter 15

The Operational Amplifier Abstraction

Exercises

Exercise 15.1 Find the Thévenin equivalent for the circuit in Figure 15.1. The circuit
contains two resistors and a dependent current source.

Ry [
A -—o
+
+ =
gvq Vq % Ry v
'
Figure 15.1:
Solution:
KCL: 0
. — U1
— =0
g- v +i1+ o
U1 RQ
—_— = R =
1 th gRy +1
Voc = 0
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ANS:: Ry, = g}{;ﬁ,vth =0
Exercise 15.2 Calculate v in terms of I;, Vi, V5, in Figure 15.2. You may assume the
operational amplifier has ideal characteristics.

(D) Rz v Vs "o

Figure 15.2:
Solution:
Ry Ry
Vo= — 2. _ M
7 R, & R; V2

ANS:: vo = —%Vl — g—ng

Exercise 15.3 Calculate the sensitivity of the gain, dG/G, as a function of fractional
change in Op Amp gain, dA/A for the inverting Op Amp connection shown in Figure 15.3.

Solution:
dG 1
G 1 + RA+I%4B
.. dG __ 1
ANS:: ‘G T 1+AR4/(RA+RpB)

Exercise 15.4 The circuit in Figure 15.4 is called a differential amplifier.

a) Using the ideal Op Amp model, derive an expression for the output voltage vo in
terms of vy, vy, Ry, Ry, R3 and Rj.
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@

Figure 15.3: Inverting Op Amp

AMA— Yo
Ra
v A(V*- V)
r )
l ®

Figure 15.4:
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b) Does connecting a load resistor R;, between the output and ground change the above
expression for vp? Why?

C) Let v; = vy and R, = 1]€Q, Ry = 30]€Q,R3 = 1.5k€2. Find R, s0 that vo = 0.

d) Let v, = 0 and v; = 1 volt. Using the resistor values above (including that com-
puted for R,), find vo.

Solution:

a) Assumingvt 2o~ =15 - ( By ) , KCL at node v~ yields:

R3+R4
VoRy ) ? VoR, 1
) o () o
(1 Rs+ R,) R, * \R;+R,/I R,
=(R1+R2)'R4-v—@-v
" (Rs+Ry)-Ri > R

b) No. The derivation for V; is not affected by the addition of Ry.
C) Ry = 45kQ2

d) Vo = —15Valts, since the op. amp. saturates here. V, cannot be more negative!

ANS:: (a) vo = %w — £24;, (b) No, () Ry = 45k, (d) —15V

Exercise 15.5 For the circuit shown in Figure 15.5, D is a silicon diode, where
i = Ig(e™/™ T —1),kT/q = 26mV, and n is between 1 and 2.

a) Find v in terms of v; and R;.

b) Make a quick sketch of the answer to (a).

Solution:



Figure 15.5:

b) See Figure 15.6.

505

o
T
N
L O
@)
K

_|S[R1 .018-n 1

.028-n +

Figure 15.6:

ANS:: vo = =2Lp (IS—R + 1)

Exercise 15.6 Refer to the figure in Figure 15.7 for this problem.
Ry = 1002, Ry = 9kQ2, R3 = 1kSQ.

Given that vg = 2coswt (in volts), make a sketch of v (¢) through one complete cycle.
Be sure to label the dimensions of the voltage and time axes and identify characteristic
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Ry

Vs

+15V

15V 2Ry

Figure 15.7:

=r

CHAPTER 15. THE OPERATIONAL AMPLIFIER ABSTRACTION

waveform shapes with suitable expressions. (Make reasonable assumptions based on your

lab experience.)

Solution:

A v (1) (volts)
20 4
N\

15 1 \

_15._____\ /

20l o __ ~_~

Figure 15.8:

vg = Vp -

since no current flows through R, and v+ = v~ = vg

vg = 10 - vg = 20 coswt

ANS:: vy = 10 - vg = 20 coswt

Exercise 15.7 Refer to the figure in Figure 15.9 for this problem.

» ([seconds]
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R
MWW
i +15V
D
Vie — -
+ Vp - + 2
-15V
Figure 15.9:

Diode data ip = Ig(e®r/kt — 1)
where Ig = 107124
and kT /q = 256mV

For vy in the range |v;| < .575 volts, how should the value of R be chosen to keep the
Op Amp in the linear region? Make reasonable approximations.

Solution:
Since vt 2 v~ =0,
0-V;

i =1, (e - 1) = 0=

*To stay in the linear region, |V5| < 15V olts, or

R- 1, (eqvl/’“T — 1) <15

Vi < 0.575Volts
R < 15390

ANS:: R < 15392

Exercise 15.8 Find the Norton equivalent circuit to the left of terminal pair a-a’ in Fig-
ure 15.10.

Solution:
Ry = 5092
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iy 100 Q
—— ————® a

+ L

WA

o A
Figure 15.10:
S B0 v,
SCT 71000 T 2000
ANS:: Rpp, = 5012, Isc = 216%

Exercise 15.9 In the circuits (a) and (b) shown in Figure 15.11 the operational amplifiers
are ideal and have infinite gain. If the input to each amplifier is v; = 1 volt, what is the
output voltage vo for (a) and for (b).

1kQ 1kQ
1 kO i 1kQ
+ o— A - + o— W -
= - vi=1V —— 8V,
V| -1.\1 N —e VO | B A + (@)
1 kO 1kQ
€Y (b)
1 1 1 1
Figure 15.11:
Solution:
(a)
v 2o =0
KCL: 0 0
vr — Vo — _
e ke
Vo = —Uy
(b)
KVL:

(1000) - i + vy 4 (1000) - i = 0
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_ —Vr _ 0— Vo
T 2000 1000
1

UO:§'UI

1

ANS:: (a) vo = —vy, (b) vo = —%vl

Exercise 15.10 You may assume that the operational amplifiers used in the connections
shown in Figure 15.12 have very high gain and input resistance, and low output resistance
when operating in the linear region.

3kQ 3kQ

AMMA AMMAM
VVYW YVVVY

+15V +15V

@ (b)
Figure 15.12:

The input signals have the form shown in Figure 15.13:

vi(t) A
- A
|
1 2 is 4 t(s)
A
Figure 15.13:

a) Plot the output voltage vo for the circuit of Figure 15.12a for A = 1 volt. Note:
In all of your plots, be sure to clearly indicate peak values and times when signals
change character abruptly.

b) Plot the output voltage vo for the circuit of Figure 15.12a for A = 10 volts.
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c) Plot the output voltage v for the circuit of Figure 15.12b for A = 10 volts.

Solution:
(a) (b) (©)
+15
Note that the OP AMP saturates!
v, axis is flipped!
) +301
l.e. vy = =30y,
34 +15

I I
| |
f - f ; ; ; f ; L ;
V2 1 112/2 212 3 3112 t 2.5
| | (sec)
3L - — — — 151
l -30+

+V0

N_
<
Y

w

~—+

.15 L

Figure 15.14:

a) See Figure 15.14
Note vg axis is flipped!

b) See Figure 15.14
c) See Figure 15.14

Exercise 15.11 For the circuit shown in Figure 15.15 (which includes a voltage con-
trolled voltage source) determine:

a) The input resistance v;/i;.

b) The Thévenin equivalent resistance at the terminals a b.

Solution:

~—+



®a

2Q 1Q

+

Figure 15.15:

a) KCL.:

_Ya _
i1+0_VA ( ] 1‘)/’4)

2
> 2+

i1 =Va
KVL:

ir=Vi—i

v
SERE Rinpur = 292

Figure 15.16:

b) Apply V., at terminals a — b and measure ;’:—; = Rry

KCL at A:

(Viest = Va)  (0—=Vy4) (0—Vy)
2 + 2 + 1
— ‘/test
4

=0

Va

o011
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KCL at B:
—VA/2 = Vies Va— Vies
o VA2 = View) | (Va = View)
1 2
— Vvtest

=0

Va

ANS:: (a) 22, (b) 2/3%2

Exercise 15.12 Find and label clearly the Thévenin equivalent for the network in Fig-
ure 15.17.

i Ro
A\N\N\IA
+
v Ry gv
R
Figure 15.17:
Solution:
0-V
1—g- v+ 7 =0
V R,
— = R =
; TH 1+ Ry g
VOC = 0

ANS:: Ry, = %=, Voo =0
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Ry
MW
i R

— W +
+ , R
(D) 3
Ry

Figure 15.18:

Exercise 15.13 Find ¢ in terms of v for the linear network in Figure 15.18. Assume an
idealized operational amplifier.

Solution:

- Ry

+ ~ — .
v oY T R TR,
So,
U+(R3 =+ R4)
Vo =
R,

KCL:

vo—vT wv—wvT
+

=0
R, R,

Eliminating v, from the above two equations, we solve for v* to get

+ _ v R2R4
RoRy — R R3

v

v—vt Y Rs
Rl N R1R3 - R2R4

7 =

e Rs
ANS:: 7 = ViR Rola
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Figure 15.19:

Exercise 15.14 Determine the Thévenin equivalent for the circuit shown in Figure 15.19,
to the left of terminal pair a-a’. The circuit contains a current-controlled voltage source.

Solution:
RyR;
Ry =
T = Ry + Ry
since Vg = 0 = 74 in this case to find Rry.
. Vs =0
lg =
Ry
. Rs
Voo = .
0C =t B IR,
\ . Vg & R3
9¢ ™ R, (R, + R3)
ANS:: RTh =R, || R3, VOC = ;Jf_iaR2i3R3

Exercise 15.15

a) Draw a circuit model for the Op Amp circuit in Figure 15.20.

b) Write the node equations for the v, and the v~ nodes, and enough more independent
relations to specify v, in terms of v;. Do not solve.

Solution:

a)
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—e
+
Vo
Figure 15.20:
R;
MW
VI\N\N\' WWW p O o +
Va Rs v+
R, A(vt—-v7) v,

Figure 15.21:
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b) (1)

(v —ve) (V7 —we)  (vo—va)
=0
R + Rs + Ry

)

(o —v7)  (0-v7)
R3 Ry
Also: vy = A(vt —v~)and vt =0

or, vt ~v andvt =0

=0

ANS:: (v; —v4)g1+ (v —v4)g3+ (Vo —va)g2 = 0and (v, —v~)g3+ (0—v7)gs = 0,
and either vp = A(vt —v~)andv™ =0,0rvt =~ v~ and v™ = 0.

Exercise 15.16 For the circuit in Figure 15.22 find v,,; as a function of v;, v9, R, and R,

in the limit of very high Op Amp gain. Assume input resistance r; = oo, output resistance
r; = 0, and non-saturated operation.

v1
VZ R, Ry

MW——AWW

Figure 15.22:

Solution:

ANS:: Vo = 72 (v3 — 01)
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Exercise 15.17 For the circuit in Figure 15.23 find 4, as a function of v;, R, R, and the
Op Amp gain A. Assume input resistance r; = oo, output resistance r;, = 0 and non-

saturated operations.
+ iy
n -
v, <> Ry

Ro

Figure 15.23:

Solution:

assuming A is infinite.

With A finite,

Ry
Ry + Ry

v =A@t —v")

Therefore,

 Av- Ry

" Ri+ Ry + AR,
B A-v;
R+ (1+A)R,
Note: limitas A — oo checks with the above answer.

a1

R A
ANS:: 11 = mvi
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Ra

MWW
+Vsg

L

+ +

il(D Ré i2@> R, Vs v RE

v

Figure 15.24:

Exercise 15.18 Consider the circuit illustrated in Figure 15.24.

Assume that the operational amplifier is ideal with input resistance r; very large and
output resistance r; negligibly small, so that it ~ 0,7~ ~ 0, and vo = A(vt — v™), with
A very large. Assume it is operating in its linear range.

a) Draw a linear equivalent circuit for this circuit valid for operation with the Op Amp
in its linear range.

b) Derive an expression for v as a function of 4., 5, and the resistors in the circuit.

Solution:

W

o V™ 0

V+

| ,
’ | %Rl (D) ER AvE-v) ZR

Figure 15.25:

b) vt Xv =iy - Ry

KCL: 0_ iR
11 + (}8#2) + (U() — 7;2R2)R3 =0
1
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Ry(Ry + R
Vg = —i1R3 + ig [2(1_"'3)]

Ry

ANS:: vy = —iy Ry + iy [ 208 1)

Exercise 15.19 In the circuit in Figure 15.26 determine the voltage gain G = v, /v;:

10R
MWW
x R
W -
+ +
Vo
Figure 15.26:

a) when terminal x is connected to terminal a.

b) when terminal x is connected to terminal b. Assume the Op Amp is ideal.

Solution:
a)
(W=0) (=0 _,
R 10R
sincevt =2y =0 ’
G=-==-10
Vi
b) Since vt ~ v~ &~ 0,
v—i-R||R
€1 = ——————
R+R|| R

R||R=R/2
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Vi
Figure 15.27:
er =v;/3
KCL: %—O+UO—O:0
R 10R
G:%:—?

ANS:: (a) v, = —10v;, (b) v, = —%vi

Exercise 15.20 For the amplifier shown in Figure 15.28, find the current transfer ratio
i0/1s. Assume that the Op Amp is ideal.

Re
A
i p 'o
N Ro
Figure 15.28:
Solution:
Atnode v~ 2 vt & 0,
KCL: .
i,y Uollo=0) _,

Rp
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ANS:: i, = —z’sg—g

Exercise 15.21 Find the Theévenin output resistance of the circuit shown in Figure 15.29.
That is, find the resistance seen looking in at the terminals X X, the terminals that drive the
load resistance R;,. (Resistor Ry, should not be included when you make this calculation.)
DO NOT assume vt ~ v, as it leads to trouble here. Now state a condition on the value
of R to ensure that the circuit acts as a current source driving Ry,

R

AMAW

Y .V

Rs X out + X
Ivvvvvt -
+
Vi
Figure 15.29:
Solution:
turn off Vi : @ N&Viv \O/: _/1

T - test

|
— A
.
A(V+—V ) test

Figure 15.30:

Apply Vi.s: and measure % = Rry:

VT = —Vpest + A(vT —v7)
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Therefore,
v = —Vtest
(1+ A)
i . 0—vw . Vtest
test — RS - (]_+A)Rs
?test — (1 +A) Rs — RTH
Utest
RS
V v —0 V™
Voc +
Vi
A(vt—v7) = (-AV)
Figure 15.31:
Now find Voc:

v~ = wv;, since no current flows through Rg

Voo = —Av; — v;

VOC = —UZ'(A + 1)
Now connect R, to the Thévenin Equivalent of the circuit:
*[ is current driving Ry,

. —’l)Z(l-i-A)
~ Rs(1+A)+Ryg

For the circuit to act as current source (i.e. current is constant regardless of R;),

Rs(1+ A)> Ry,

ANS:: Rry = (1 + A) Rg,

Rs(1+ A) > Ry
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\ A

YW
Ry = (1+A)R
Voo = (-V)(1+A) ™ S

Figure 15.32:
Ry
AW
Ry
AWV -
[ s o
n I%% Vout
.
Figure 15.33:

Exercise 15.22 For the Op Amp circuit in Figure 15.33:

a) Assume that the Op Amp is ideal (very large gain A, zero output resistance, infi-
nite input resistance, operating in the linear region) and find v,,; as a function of

Tiny Rl, Ry and R3.

b) Draw the circuit model, assuming the Op Amp has finite A, keeping the other as-
sumptions from a).

c) Analyze the circuit and find an expression for v,,; as a function of i;,, R, Ry and
R3 and (finite) A.

Solution:

a) vour = —irn - Ry since no current flows through R3
b) Circuit model:

c) KCL:
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RZ

Rl WWW,

YWWW o V— o 4+

i v+
N A(vt—-v7) Vout
R3

O

Figure 15.34:

Therefore,

Vout = A(vT —v7) = —Av™
v . —-A Zzn ) R2
out — 1 + A

Note: The answer in (c) checks with the answer in (a) in the limitas A — oo.

ANS:: (a) Vout = _iinRQl (C) Vout = _fllfli?éle

Exercise 15.23 The operational amplifier circuit shown in Figure 15.35 is driven with a
ramp:

| MY
1 lllF 2kQ
WWW - + -
1kQ — ® o
v (t) + Vo(t)
V| (t) = O, t<O0

v =103 stt v, t<o0

Figure 15.35:
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You may assume that the operational amplifier has infinite open-loop gain, zero output
resistance, and infinite input resistance, and that the capacitor voltage is zero for ¢ < 0.
What are the value of vp(t) att = 0" and t = 1ms?

Solution:
KCL at node v—:

’U[(t) -0 + Cd’l)[(t) + U()(t) -0

=0,sincev” =vt =0
1000 dt 2000

dvy (t
Therefore, vr(t) = 1000t ”C’i—i) = 1000, S0

vo(t) = —2000 - t — 2 [volts]

vo(t =07) = =2V olts
vo(t = 1ms) = —4Volts
ANS:: vo(t = 01) = —2Volts and vy (t = 1ms) = —4 Volts

Exercise 15.24 An operational amplifier is connected as shown in Figure 15.36.

R2 =5 kQ
Ry C=0.02 pF
WWW -
500 Q ———=o +
v +
! Vol(t)
Figure 15.36:

a) What is the gain of the amplifier for w = 0.
b) Find the expression for V,(jw)/V;(jw).

c) At what frequency does |V, | fall to 0.707 of its low-frequency value?
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Solution:

a) The input is in the form of Ae’“*. When w = 0, the input is a DC signal A.
For DC inputs, we may treat the capacitor as an open circuit:

V; Vo

500 T 5000~V
Y% — _1p
Vi
b)
Vo Rl &
Vi Ry
Vo(jw) Ry

Vi(jw) N Ry (jwRyC +1)
c) |V,| has the low frequency value of g—j, SO Weutoff 1S SUch that

Ry Ry

0.707 = =
R1 |R1 (_](AJRQC + ].)

V2= /(wR,C)2 +1

1

Weutof f = R.C
2

- Vo __ Vo(jw) __ 2 _
ANS:: (8) & = =10, (b) U2 = — s, (0) wewrors = g

Exercise 15.25 For the circuit shown above, determine V,,:(s) in terms of V;,(s).

Solution:
In general if we have the set-up shown in the figure,

we know from voltage dividers that
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4|_‘ Rl% C1  Vour
V”\'CD .-

.

i3]
C

22—

Figure 15.37:

Figure 15.38:
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Therefore P 7 7
1+ 4o 1+ 4o
Vi = Z Vo = Z Vi
So we may conclude here that
A
Vo=—WV
2 Z2 1
In this problem
7, = Cis _ M
TR+ RiCis+1
1 RQCQS -+ 1
7, =R =
2 2 + 028 CQS
and V,,; = “VJ’ above and V;,, = “V}" above.
Therefore,
R, C:
‘/out = L2 ) V:m
(R1018 =+ 1)(R2028 + 1)
since p
‘/ou = -1 ‘/m
t 7
.. _ R1C>s
ANS ‘/;7“t - (R1018+11)(12{2028+1) ) I/Zn
v R
A Vg
Ry
T
Figure 15.39:

Exercise15.26 R; = R, =209 C =24uF L =0.25mH
Find the system function H (s) = V}/V, for the circuit in Figure 15.39.
Solution:
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vt = v~ = vy since no current flows through R;

ANS: H(s) = LC (s* + 225 + 1))
Exercise 15.27 For the circuit shown in Figure 15.40, select the magnitude of the fre-
quency response for the system function given. It is not necessary to relate the critical
frequencies to the circuit parameters.

Please note that the magnitude responses, except (7), are sketched on a log-log scale,
with slopes labeled.

Ry
C R,

el |,

o Vy(jw)
M09 = 70w
L@
log w W W Iogw log w
(7) (8
None of
the above
W W logw wy log w W W
Figure 15.40:
Solution:
)

ANS:: (2)
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Problems

Problem 15.1 The circuit shown in Figure 15.41 is very similar to the standard non-
inverting Op Amp except that R;, is some external resistor, and we are interested in show-
ing that the current through R, is nearly constant, regardless of the value of R, that is,
the circuit acts like a current source for driving Ry,

() . 5"

Figure 15.41:

a) Using the ideal Op Amp assumption of large gain, zero output resistance, infinite
input resistance, show that the expression for i, as a function of v; is independent
(or weakly dependent) on Ry.

b) To verify the “current source” action more directly, find the Thévenin equivalent
resistance looking to the left of terminals AA’, with R, an open circuit.

Solution:

a) See Figure 15.42.
,L-L — UQ;%Z'LLRQ
Vo = A(UI — iLRz)
iLRL = A(’U[ - iLRQ) — ’iLRQ

- Avg ~ VI e s Avy ~ VI
"L = ARy +Rot Rz ~ Ro ANS: if, = ARy+Ry+R;, ™ Ry



+ AL
° > Q
V| T % RL
° Vo
% Rz A .
O
1
Figure 15.42:
M Itest A
_ <~
Vtest
1 s
- es;_.
Al

Figure 15.43:

531
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b) See Figure 15.43.
vrest = A(vr + irpstR)
Set independent sources to zero: v; = 0
vresr = AirpsrRo

VTEST

irEST ARy = Rrupvenin ANS:: AR,

Problem 15.2 Zener diodes are most often used to establish stable reference voltages,

independent of power supply variations, and independent of any lingering AC signals that
may be present in the power supply.

a) For the characteristics shown in Figure 15.44, find vo assuming v, is a clean DC
voltage of value 15V".

Zener diode Zener

(1 + Vi A ip
N Vo
Va R +15 -
—ww——- Vo
10kQ —e -IVZ -
+ I
-15 Vb
Slope
~UR,

VZ:6.2V, RZ:7Q

Figure 15.44:

b) Determine the sensitivity of vo to changes in v4. Thatis, find dvo/dv 4. If v has

0.1V of DC drift or so of 120H z AC ripple, how much drift or ripple shows up on

Uo?

Solution:

a) ip = 15 = —1.5mA from graph: vp ~ —6.2V

b) small signal model of diode is resistor r = 7€)

dvo __ T
dva ~— 10000

ripple is reduced to 7 x 10~°V
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1KQ 10kQ
Vi W AW 10kQ
1kQ
o 2KQ
AR e
1KQ —we Vo

oo |
Figure 15.45: v4 = 0.1V and vg = 0.2V

ANS:: (a) vo ~ —6.2V (b) ripple is reduced to ;== of original value.

Problem 15.3 Consider the circuit in Figure 15.45.
Find vo assuming that all Op Amps are ideal and operating in the linear region.
Solution:
vo = =5 X ({5 + 115) X —10kQ
vo = 50 X (vs + vp) = 15 volts
ANS:: 15 volts

Problem 15.4 You are faced with the problem of constructing a current transmitter, a
circuit that forces a load current 7;, into a load under accurate control of a source voltage
vg, independent of variations in load resistance. That is, you need a voltage-controlled
current source.

The design requirements for your problem are to achieve
iL = —K’US

where K = 10mA/V for the ranges |vs| < 1V, Ry < 1kSQ.

While looking through a handbook of practical circuits, you come across the
schematic in Figure 15.46 as a proposed solution to your problem. The question is, will
it work?

a) As a first step, analyze the basic principle of operation of the above circuit. Show
explicitly whether it is capable of performing the desired function.

b) Next, determine whether there will be any problems in selecting resistor values R,
and R, to meet the specifications for your particular application. You should draw
on experience with Op Amp limitations. Can you meet the specs?

NOTE: Part a) is easy. Part b) is endless, so look only for the larger issues, i.e.,
major sources of error or failure.
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Ry
AW

Ry

o AV

+
()
@
(N —

Control voltage

Solution:

a) See Figure 15.47.

b)

’iLRL:U+
ﬂ_i __ LR
Ry — 37 "R

ip =i (1 + 22)

Ry
’iLRL + i2R2 = Vo
vg—vt _ vt—wpo
R1 - Ry

: —v
L= gy

Current transmitter Load

Figure 15.46:

Since K = 10mA/V, we must set R, = 10052.

However, for the worst case (vs = 1VandR;, = 1k ), vo = 20V. This will not
work since the opamp can only output +£15V.

ANS:: (a) i, = ==

Ry

Problem 15.5 Find the Norton equivalent of the circuit in Figure 15.48 looking into ter-
minals A and A’.

Solution:



Ry
AW
Ry
A -
+
R>
n i2 i
VS i
R, % R
s ‘
Figure 15.47:
R
R
'V\NW -
] e Vo
+
R
A
- R
Ae

Figure 15.48:
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R
VVVV\IA
i R
— AW -
e Vo
+
R

i CD RE o

Figure 15.49:

See Figure 15.49.

v =v" =w
,L'I:’U]};'U

vo=v—11R=2v—1;
j = Y=o _ vr=v
— "R T R
UOC:U|i:0:UI

isc = tly=0 =

oIS

—) —
Rry =555 =

ANS:: Iy = %;RTH =R
Problem 15.6 You are asked to design the circuit shown in Figure 15.50 so that the output
voltage v is the weighted sum of v; and v,; specifically.
Vo = 3U1 + 5U2

It is known that the magnitudes of v; and v, are never larger than 1 volt.

a) Determine the values for Ry, Ry, R,, and Ry that will make the circuit perform that
sum.

b) Given that the op amp is powered from +15 and —15 volts, and has output current
limits of +1mA and —1mA, redesign if necessary to meet these additional design
constraints.
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Ry
W
R2 * L
—o— \WW——— - N
Ra
+ + WWW
Vi\ . A" I Vo
RoZ
1 )
Figure 15.50:

¢) How would you change the design to perform the sum:
Vo = —3’1)1 - 51)2

using only one Op Amp (given Figure 15.50, a two-op amp design is obviously
trivial, but unnecessarily complicated).

Solution:
' b
Rout
O
% \& lout
Ry Ro .
AV, - V) % R
Iy I V. a Vo
O
Vi Vo %
Ry
L

Figure 15.51:

First, draw the op-amp as a voltage-controlled voltage source, as shown in Fig-
ure 15.51. Then, find v, and from there find v~ and vour.

V1 — ’ilRl = Vg — 7;2R2 = U+.
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7;1 = —iQ.
From here, one can eliminate 7, and 4, and solve for V', getting that

+ ’U1R2 =+ U2R1
R+ Ry

To find v~ and vy, use the following voltage divider relations:

TA+7'B
Tour + 74+ 7B

Vour = VAmMP

Then a voltage divider relationship:

B
rour +T4a+ 7B

v = Vour
To find v 45, p, Use the definition of the operational amplifier:
vamp = Al —v7).

We have expressions for v+ and v, so plug in and solve for v4/p, and then use the
voltage divider to get the following:

— A(R4+ Rp)(v1 Ry + v2 1)
(Rl + RQ)(ROUT + RA + [A + 1]RB) .

a) Assuming the op-amp is ideal, A is so high that any non-A terms can be omitted,
and Royr = 0.

" _ (Ra+ Rp)(ViRy + VaRy)
our (R1 + RQ)RB '

We want to satisfy the following two criteria:

RitRy Ry _,
Rg Ri+R,

Ry,+Rg R

=3.
Rgp Ri+ Ry
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Anticipating the next parts, we choose values in a careful manner. The worst pos-
sible scenario for possible voltage or current overload is when V; = 1 and V, = 1.
The following limiting situations occur.

1V (R4 + Rp)(R1 + Ry)

15V.
(R1 + R2)Rp <

1V
— < ImA.
RB< m

This implies that Rz > 1k€). Choose 1.5k€) for a healthy margin.

From dividing the other two equations, we get that g—‘f = %
Using standard values, choose Ry, = 4.114£2 (Use 4.7k||33k€2) and Ry = 6.8kS2.
This gives a ratio of .60500, which is well within tolerance.
Solving further, we find that

Ri+ Rp

= 8.
Rp

This is well within tolerance. This also implies that RA = 7, which means that
R4 = 10.5k€2, which can be approximated quite well by 10k$2 + 47082 in series.
b) Of course it meets the constraints - part A was done specifically with that in mind.

c) We need an inverting configuration, so start by grounding the positive terminal. Set
up the configuration that is shown in Figure 15.52. If the op-amp is ideal, then
vx = 0. Use the following two node equations:

U1 + .
e — =1 .
R1 ‘R2 ouT
(Y (%
vour = ~Rx(p+ 7).
1 2

This implies that we need to set £ = 3 and £x = 5.
1 2

Let Rx = 10k€2. This allows us to set Ry = 3.3k with very small error, and
R, = 2k52, which can easily be attained either as 142 + 1k or 2.2k||22k<).

ANS: () R, = 6.8kQ, Ry = 4.7kQ)||33kQ, R4 = 10kQ + 4709, Ry = 1.5kQ, c)
Ry = 10kQ, Ry = 3.3kQ, Ry = 15kQ + 1kQ.
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R AW
1 R
._’VV\N\IA l X
+ louT
R, Vy > o
MWW - VouTt
l1 I
Vi Vo

Figure 15.52:

Problem 15.7 For the circuit in Figure 15.53, assuming an ideal Op Amp with large A,

a) Calculate vo in terms of v; and the resistor values.
b) Find 4 in terms of v; and the resistor values.

c) For what resistor values in a) will the voltage gain become infinite? Explain why
this occurs (one sentence).

d) Find the limits on the solutions in the a) and b) imposed by using a real Op Amp.

Solution:

The best way to do the problem is to deal with a non-ideal op-amp, with finite gain
and nonzero output resistance, so that part D may be analyzed correctly.

See the voltage-source model in Figure 15.54.
Four equations to start out with are:

11 +12+13=0.

+_ Riwour + Rovin

v R, + R,

-~ Ryvour
Rs + R,




o241

Ry
i Ry
) +
L]
- +
R3
\ Vo
Ry
-
Figure 15.53:

.
%Rs Vo
=R

Figure 15.54:
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VouT = A(U+ — Ui) — IQROUT.
Then, some node equations to set up the currents in terms of voltages:

. VIN —VoUur

"“T TR TR,

_ VYour
Rs+ Ry

13

From here, we can eliminate 7, and substitute in for v and v~, getting vor7 in terms
of itself and vy .

We create the following definitions: R, = R; + Ry, R34 = R3 + Ry, and Ry =
Ri+ Ry + R3 + R4.

Rivour + Rovin Ryvour VYouT — VIN VYour
— Rour .
Ry R34

vour = 4 ( Ri " Ry

This can be solved for voyr.

ARy R34 + RourRss
Ri3R34 — A(R1 R34 — RyR15) + RourRr

VYouTr = VIN

To find the current asked for, which is —i,, use the equation

i = Vour — VIN
R12

Substituting the previously derived expression for voyr and simplifying, one gets that

AR3Ry9 — Royr — Rio
RyRi3 — R1R34) + R19Rs4 + RourRr

i=?)INA(

a) Assuming that A is so large that any terms lacking it may be neglected, and that
Rour = 0, we get the following value for voyr.

(R2)(R3 + Ry)
—Ri(R3 + R4) + R4(Ry + Rz).

VouTr = VIN
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b) Finding the limiting case again, we get that:

R
—R;(R3+ Ry) + Ry(R; + Ry)’

i:UIN

c) The voltage gain becomes infinite when the denominator is zero. In the ideal case,
this occurs when

Ri(R3 + Ry) = Ry(Ry + Ry).
This can be simplified to get that

RiR; = RyR,
This occurs due to the presence of positive feedback.

d) For a non-ideal op-amp, the voltage will never actually exceed the supply voltage,
and for a set of resistor parameter ranges, the op-amp will rail. This set of param-
eters may be calculated by finding the internal voltage of the op-amp (without the
drop across the output resistance), and seeing for what values of R, R,, Rz, R, and
A it exceeds the supply voltage.

(R2)(R3+R4) - Rs3
R3+R4)+Ra(R1+R)’ b) L= UIN —Ri1(R3+R4)+Ra(R1+R2)’ C)

ANS:: (@) vour = vin “Ri(
R1R3 = R2R4

Problem 15.8 Choose values for R; through Rs in Figure 15.55 so that
vo = +2v; — dvy — v3 — 3y

You may assume the operational amplifier has ideal characteristics.

Solution:
See Figure 15.56.
A

- U4V v3—V" V2—V"
t= R + R + R3

vo =0~ — iR

Combining these, we get:

_ _WiRs Re Re 4 Re) _ Va Vs %3
Yo = R4+Rs5 (1+R1+R2+Rs) R6 (Rl +R2+R3)'
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R Rs
R ——
Vg3 —— 2
V- A A R3 -
2 WA -
V8 + ¥
Vo
* 1
Figure 15.55:
Ry Rg
Vg —— AN
R
R I
Vo AR - - ’
Vl N A + +
Vo
R5 -

Figure 15.56:
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One possible set of values is:
Ry = 10k, Ry = 30kS), R3 = 6k, Ry = TkQ), Rs = 2k, Rg = 30k12.
These resistances can all be easily synthesized using common values.

ANS: R, = 10k, Ry = 33kQ330k%, Ry = 6.8kQ||4TkQ, Ry = 6.8kQ +
20092, Rg = 33k€2||330kS

Problem 15.9 For the circuit in Figure 15.57, find vo in terms of v;. Analyze with literal
resistor values, then substitute numbers: R; = Ry = R; = 10 kilohms. R, = 100 ohmes.

Ry Rs
A AN
Ry % "
A mﬁ -
SR B
+ * ©
(D)
L ]

Figure 15.57:

Solution:
Since v = v~ = 0, one can redraw the circuit as shown in Figure 15.58.

Note: ground shaded regions

R. R
——wh AT
n
_I\N\NV\_ ' -
e,
+ +
W)
L ]
Figure 15.58:

From here, one can find the equivalent resistance of R3 + (R2||R4) and then realize
that this is a simple inverting-amplifier configuration.
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ANS:: v R2||R4) + R3
our _ _( ||R4) + = —1.9091.
- Rl

Problem 15.10 This question concerns the circuit illustrated in Figure 15.59:

i+ +VSS
— |+
- +
-V,
Vs <+ = Vo =R

T

Figure 15.59:

The operational amplifier is a high gain unit (4 = 10°) with high input resistance, r;,
and negligibly low output resistance, r;. Assume that it is operating in its linear region.

The following data is given:

Vs = 1V
it = 10pA =104
R, = 1kQ

a) What is vp? (Accurate to within 1%).

b) 1) What is the power delivered by the source v5?
i) What is the power dissipated in the load resistor, R, ?

c) The power dissipated in the load resistor, Ry, is much larger than the power supplied
by the source, vg. Where does this additional power come from?

Solution:

a) vo ~Hvg =1V
b) i) Power = vgit = 10~ " Watts
i) Power = ;ﬂ—é = 10"3Watts
L
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c) The additional power comes from the power supply!!! (+Vsg ).

ANS:: (a) vo = vs = 1V, (b) i) Power = vgi™ = 10" " Watts, ii) Power = % =
10~3W atts, () from the op-amp power supply Vss.

Problem 15.11 The equivalent circuit of an amplifier is shown in Figure 15.60.

Biy
e

s(H) w mzby RE

. o b
a1

Figure 15.60:

a) Find the input resistance seen by the current source ig at the input terminals a — a'.

b) Find the output resistance seen at the output terminals b— b’ (with the current source
shut off).

Solution:

a) Ry = 7—5
vg = —11 Ry
is + 11 + (i1
Ry = ﬁr—lﬁ

b) is=0
pi1 = —1y
11 =0
Royr = Ry

ANS:: (a) R[N = li—lﬂ’ (b) ROUT = R2
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Ry Ry
M e
R> Rs Rs
AAAAA A\/\N\N\ -
®
+ +
Ro R,
+ + Vo
Vil Vol
= Rs
|
1
Figure 15.61:

Problem 15.12 For the circuit in Figure 15.61 find v, in terms of v; and v,. You can use
in your analysis the ideal Op Amp model.

Solution:

Since the ideal opamp has infinite input impedance, i~ = it = 0. The resistors Rs
and Rg can thus be disregarded (set to 0).

We then find the Thevenin equivalent of the left side, as shown in Figure 15.62. From
there, the problem is identical to Problem 15.7.

The open-circuit voltage was found in Problem 15.6, and is:

v N UlRQ + ’UgRl
T R +R,

The Thevenin resistance is (R;||R2) + Rs.

N RiRy 4+ RiR3 + RoR3
= R+ Ry .

We import the following formula from Problem 15.7, changing the parameter names
to suit this exact configuration.

VouTr = UTH R4(R7 * Rg)
Rg(RTH + R4) — RTH(R7 + Rg)
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Figure 15.62:

Substituting and simplifying, one gets:

. . R4(viRa+v2R1)(R1+R2)
ANS:: Vour = Ri1R4Rg+R2R4Rs—R1RoR7—R1R3R7—R2R3R7 "

Problem 15.13 An operational amplifier circuit is shown in Figure 15.63.

2R
MW

R -

A\N\N\/I
€
v +
1 2R +
Vo
Figure 15.63:

You may assume that the operational amplifier has ideal characteristics, including zero
input current and output resistance and further make the simplifying assumption that its
open-loop gain is infinite. Also, assume that the amplifier does not saturate.
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a) With v, = 0, what is the value of the gain vo /v,?

b) Voltage v, is now made 3 volts. Plot the vo vs. v; characteristics. Be sure to show
important values and slopes.

Solution:

The bias applied to the non-inverting terminal has a Thevenin voltage of %. Therefore,
the voltage at the inverting terminal is also =>. Use the following KVL equations.

V1 —ZR—2ZR:UO

. )
V1 —1lp = ?
Eliminating 4, one gets that
Vo = —2’01 + 3.

a) We set v, = 0 and get a standard inverting amplifier, as is expected.

Vo
U1

= —-2.

b) See Figure 15.64.

ANS:: () 22 = —2.
Problem 15.14 By combining Op Amps with RC circuits, we can make circuits which
perform elementary mathematical operations, such as integration and differentiation. The
circuit in Figure 15.65 is, over some range, an integrator.

a) Use the ideal Op Amp model to determiner the ideal function performed by this
circuit.

b) Based on your knowledge of Op Amp limitations, indicate the constraints that must
be placed on the component values R and C to achieve satisfactory operation, as-
suming that the input is a sine wave with angular frequency w and peak amplitude
A.

Express your answer as a constraint on the RC product imposed by the voltage limit,
and a separate constraint imposed by the current limit.



Vout
A
\hsv
i\ sope= -2
T 1.5v
— He—+— > Vin
Figure 15.64:
R C
v v -
\ + le(-)

Figure 15.65:
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c¢) For practical reasons, R usually should not be greater than 1 megohm. Calculate
the value of C' required to meet the voltage constraint listed above for operation at
20 Hz and above, and A = 1 volt.

Solution:

a) See Figure 15.66.

+ VC -
|C }7
R C
WWW -
]
V| + V-'(-)
Figure 15.66:
vF=0v"=0
io = Ot = —Ctp = 3
Vo = % fUIdt
b) v; = Asin(wt)
Vo = o cos(wt)
Assume opamp has voltage limit + V7.
A
RC > Vermr

ic = % sin(wt)
Assume opamp has current limit & I;,75,.

A
2 <Ipim

C) w=2nf>407m
R<1MQ
A
¢> wRVLIM

Assuming that V75, = 15 volts:
C > 530pF
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ANS:: (a) vo = 7 [ vrdt, (b) RC > 7—, (c) C > 530pF

Problem 15.15 The capacitor you calculated in Problem 15.14c is (or should be) much
larger than the maximum capacitor that can be included on a VVLSI chip. For this reason,
the circuit in Figure 15.65 must usually be built of Op Amps, discrete R’s and C’s. To
allow the circuit to be built on a chip, the resistor is replaced by a switched capacitor,
which can produce a very large “effective resistor” with reasonable capacitor values. This
circuit is shown in Figure 15.67.

G
|
@
o—— -
+
_ Cl Vo
Figure 15.67:

At time ¢ = ¢,, the switch moves to position (1), and C; charges (instantly) to voltage
v1(t1). Then at time ¢,, the switch moves to position (2), and C; discharges into Cy. As-
suming that the usual Op Amp approximation of (v —v~) ~ 0 can still be used, calculate
the charge that is “dumped” at each cycle, hence the average current (a function of both
vy and the switching frequency f.), and hence the effective resistance of the switched
capacitor. Also, show that the overall system equation relating vo to vy is the same as in
Problem 15.14.

Solution:

Qaumpea = Crv1t; 1T the switching frequency is much faster than the frequency of vy,
then:

iave = [Civr

The effective resistance is then fl—cl

I
Vo = G, Jiavadt

Vo = —7fc,czcl fUIdt
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This is the same function as in problem 14 when f%l =R.

Problem 15.16 In Fig. 15.67, what are the constraints on C; and C; set by the Op Amp
voltage and current limits? Calculate the appropriate values of C, C, and f,. for operation
at 20 Hz and above. Can the circuit now be built on an IC chip if we replace the switch
by MOS transistors, and C,,,., = 100pF™?

Solution:

The effective resistance of the capacitor can be calculated as follows. The capacitor is
instantly charged when the switch is set to connect it with the voltage source. The amount
of charge on the capacitance can be calculated by the formula Q@ = Civ;. When the
switch is moved to the second position, all this charge is immediately released due to the
capacitor now being connected to an effective ground. Therefore, the rate of current move
iIs7 = Qfc, which is ¢ = Cyvrfe. From this, we can calculate the effective resistance
UTI =R.ff= Cllfc-

From here, we have a simple inverting amplifier configuration. The maximum voltage
gain is equal to m, which is equal to %g If our maximum voltage limit is Vi, 4x,
our maximum current limit is I, 4x and our maximum input voltage is vyx_arax, then
we have the following relations:

Cife

ZVC - Viax.
40mC,  MAX

VIN-MAX

vin—maxCife < Imax.

This can be simplified to the following:

A typical IC configuration will support an op-amp with a voltage rail of +2.5 volts,
and a maximum current of 1 milliampere. The input signal that needs to be amplified can
be assumed to be much less than the bias voltages necessary to make the op-amp work
correctly, given only a 45V supply and a ground. Therefore, we can assume Viy_yrax
to be 25mV.

Given this, we can find the numerical values for the constraints on C fc.

lec < 40, lec < 40007 Cs.

Clearly the second criterion is much more restrictive. If we let Cy be the maximum
allowed value of 100 picofarads, this implies that

Cifc < 471077,
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We would like this to run at a sufficiently high rate, of at least 100KHz, so we set
fc = 100K H z, which gives us C; = 47107'3. This clock rate is very modest, and
probably would not be effective for anything much higher than the 20Hz signals expected.
It is difficult to design for both low and high frequency response simultaneously.

ANS:: €7 =1.256 %« 10712F, Cy = 107 10F, fc = 100K H .

Problem 15.17 Design a differentiator circuit out of RC circuits and Op Amps.
Calculate the constraints as in Problem 15.14b.
Solution:

a) See Figure 15.68.

R
YW
~ C
+
Figure 15.68:
v =0t =0
. dv
1 =CG;
Vo = _RC’dstI

b) Assume voltage limit V7, current limit 7.
vy = Asin(wt)
1 — Aw cos(wt)

Ippax = ACw < I,

C< i

Veeaxk = RCAw <V,

RC < ¥

Iy, . 1%
C< 45 RO< 45

ANS: C < i; RC < I
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Problem 15.18 This problem deals with switched-capacitor circuits introduced in Prob-
lem 15.15. Referring to Figure 15.69, assume both S; switches are closed for time 1/2f,
with S, open, and S, closed for 1/2 f, with s; open. Assume no overlap, i.e., and S; and
S, switches are never both closed at the same time.

Figure 15.69:

a) Forwv, = A volts (constant), go through one complete clock cycle, identifying the
charge on each capacitor and the voltage at each node.

b) Now assume vy, = A cos wt where w << 2mfy. Sketch vg. In the circuit as
constructed, vg is zero half the time. During the other half cycles, vz and v, are
related by a simple gain expression, just as in a normal inverting amplifier. What is
the “gain”?

Solution:

a) First, switch S; is closed, so the second capacitor is discharged to ground, and the
first capacitor is charged to v4. The output voltage is zero as well.

Then, when S, is closed, the first capacitor discharges onto the second one, so the
voltage across the first capacitor is now 0, and the voltage across the second is —v .
By the conservation of charge, vaCy = —vpCs, S0 vp = — 2471,

b) See Figure 15.70.

From the previous expression, the gain can be calculated to be:

—C
Cy
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Figure 15.70:
ANS:: (b) =52
Problem 15.19 Figure 15.71 is a practical implementation of a switched capacitor circuit

(see Problem 15.15). As in the previous problem, it is useful to examine the behavior of
an “average vg” over a clock cycle.

Cs

B s
T

—* VB

Figure 15.71:

a) Show that if v4 = A volts (constant), the cycle-average of vp has a steady-state
value equal to —(C/C5)A. In other words, for low-frequency signals, the circuit
behaves like a non-inverting amplifier with gain —(C/Cs).
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b) Show, for v, a step of amplitude A volts, and assuming v is initially zero, that
the cycle average of vg “charges up” to its steady-state value with time constant
T = c3/ foCy. That is, show that the cycle-average of vy obeys a first order linear
differential equation with time constant C3/ foCs.

Solution:

a) Both switched capacitors can be modeled as resistors, and the impedance model
drawn as shown in Figure 15.72. This is a standard inverting op-amp with effective

gain:
1
Css
1
C,fy 1
Cafo
+
()
Figure 15.72:
-1
gain — Cgs—iszo — _leo )
Cifo 038 + Cgfo

For a low signal s = jw << fo, the C3s term drops out, and the device becomes an
amplifier with gain — &

b) The natural frequency in the denominator of the transfer function is Cg—f’ which

implies a time constant of ijco.

Problem 15.20 a) Use the ideal Op Amp model to determine the ideal function per-
formed by the circuit in Figure 15.73.



559

R
YWWW
C e+15V
vl._’f .
L — ey,
+
N +-15V
Figure 15.73:

b) Based on your knowledge of Op Amp limitations, discuss the accuracy with which
the circuit will perform the intended function, or indicate any constraints that must
be placed on the component values R and C to achieve satisfactory operation, as-
suming that the input is:

i: A sine wave with angular frequency w and peak amplitude A.
ii: A triangle wave with period 7" and peak amplitude A.
ii: A square wave with period 7" and peak amplitude A.
c) The leakage of an actual capacitor can often be modeled by a large resistor in par-

allel with an ideal capacitor. What effects on circuit performance would capacitor
leakage have?

Solution:

Model the capacitor as non-ideal by placing it in parallel with a leak resistor R;. See
Figure 15.74.

Ry
YWWWW

[ )

Figure 15.74:

The best way to do this problem is by superposition. We can place the voltage source
onto the capacitor by itself, and then onto the resistor by itself. The resistor causes the
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circuit to act as an inverting amplifier and the capacitor, as an inverter. The sum of them
is as follows:

“Ruvs(t) = d“;t(t) on(t).

a) Inthe ideal case, the terms with no R;, factor may be dropped since the leak resistor
is an open circuit with an infinite resistance.

dU1 (t)

t) = —
Ug() RC dt

b) i) vy = Asin(wt)
i = ACw cos(wt)
ACw < Iprmrr
v9 = —RC Aw cos(wt)
RCAw < Virmir

.. . __4ACA
1) Zpeak = === <Iprmrr
4CAR
T

< Virmrr

Furthermore, since the triangle is a function whose derivative is not defined at
the switching points, the op-amp will rail alternatingly at the negative supply
value (when the switch is from up to down) and the positive supply value
(when the switch is from down to up), once each per period.

iii) The derivative of a square wave consists of impulses. The opamp limits on
voltage and current prevent the circuit from performing the intended function
accurately.

c) The non-idealness will cause an extra term that is proportional to the input to be
added to the derivative of the input.

d’Ul( ) R
ANS:: (a) v2(t) = —RC20 (c) vy(t) = —RC — Foy (1),

Problem 15.21  a) Using the “ideal operational amplifier” assumption, i.e., infinite
gain, infinite input resistance, and zero output resistance, determine the relationship
between v (t) and v () in Figure 15.75.



Figure 15.75:

Vi 10V

0,0 100ms Tt

Figure 15.76:

b) If the signal v;(¢) is the rectangular pulse in Figure 15.76, sketch vo(t) for ¢t > 0,
assuming that vo(0) = 0.

Solution:

a) vt=v =0

s __ v _ __(Ydvo
i=%=-0%

Vo = —10f’l)]dt

b) See Figure 15.77.
ANS:: (a) vo = —10 [ v;dt

Problem 15.22 An operational amplifier is connected as shown in Figure 15.78.

The voltage v; is 2 volts for 0 < ¢t < 1 ms, and 0 otherwise. Assuming that vo = 0
for ¢t < 0, sketch vp fort > 0.

Solution:

First, draw the full impedance model of the voltage-source, as shown in Fig-
ure Figurel5.79.
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A
100ms
0,0 I
| &
Vol(t) |
I
I
I
1) V20 S .
|
Figure 15.77:
2kQ
WWW
2kQ
WY -
2kQ
+ o WWW
Vo 2 uF__

°y ?szg

Figure 15.78:
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I1 Vavp I3
> I >
l> Rs
V, Vout
RZ O T
S — N ANVL-V) z l
+ V. |
V. - , * ouT
l
Ry z
|
I |
N :
®
Figure 15.79:

Let Z;, be an arbitrary output load impedance, and Z be the impedance of the resistor

- - - - R4
and capacitor in parallel, which is 7=t

From here, we can get the following three node equations:

vy — U VT —VAMP

Ry R, ’

VamMp — Vo _ Vo | Vo

R Z 7
VAMP = A(’Uo — 1)_).

Simplifying these three, we can get the following relation:

Vo —RQZZL

Vr N R1R3ZL =+ RleZ — RQZZL.

Substituting in for Z and simplifying more...

vo —RyRuZs

Ur N R1R3ZL(R4C$ + 1) + R1R3R4 — R2R4ZL .
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Then, even though the notation of the problem would indicate otherwise (filled out-
put nodes), we assume that Z;, is infinitely large. We substitute in the given values of

R1, Ry, R3, Ry, and C, to get that

vo(s) = _28501)[(5).

Taking the inverse Laplace transform of this, we get:
vol(t) = —250 / vr(t)dt.

The corresponding graph is shown in Figure Figure15.80.

A

0,0

Vo(t)

Figure 15.80:

Problem 15.23 Consider the following two circuits in Figure 15.81.

Cy
||
|
Rl Rl
MWW - MW
| @ +
+ Vo Vi C2 —
Figure 15.81:

@ +

Vo

Use the Op Amp model to find the transfer function vo /vy for the two circuits.
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Assume only moderate gain (say 100) for the Op Amp so you cannotassume v+ = v~
How large does C have to be compared to C; in order for the two circuits to behave the
same? The increase in the effective size of C; because of the gain of the amplifier is called
the “Miller Effect”, and is used in Op Amp design.

Solution:
Both amplifiers have output vo = —Awv~. The node equation for the first one is as
follows:
vy —v U —Uo
- 1
R, Gis

These two equations can be combined to yield the following result:

Vo —A

vi RiCis(A+1)+1

The second amplifier has a voltage-divider at the input:
- 1
Y __ Cs
vr R1 + CLzs

This, combined with the amplifier gain model, results in the following transfer func-
tion:

Vo . —A
v RiCys+1

Comparing these two, we get the following relation:
Rngs = RlCls(A =+ 1)

This can be simplified to:
ANS:: Cg = Cl(A + 1)

Problem 15.24 Assuming an ideal Op Amp: (large gain, v* ~ v~, r;, infinite, r,,; zero,
but including amplifier saturation effects.)

a) Plot a curve of i;y versus vry between -20 and +20 volts for the circuit in Fig-
ure 15.82, assuming R, = R3. Dimension your plot.
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Ry
+15V
—o—_»—q
A ||N } VO
Ry
VIN <+>
A R
Figure 15.82:
Ry
1 2 +15V
g +
+ + Ry=Rs
1V — C—— VW
Rs

Figure 15.83:
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b) A capacitor is initially charged to 1 volt (switch in position (1)) in Figure 15.83, then
connected to the circuit at ¢ = 0 (switch in position (2)). Sketch and dimension the
waveform v (t) for ¢ greater than zero.

Solution:

a) First, draw the input as shown in Figure 15.84.

Ry
w lp
VouT
" .
VIN
<> =R
VIN
=R;
Figure 15.84:

The current is derived as follows:

PR VUrNn — Your

IN Rl .

If the op-amp is not railed, then by a simple voltage-divider rule, voyr = 2vyy. If
the op-amp is railed, then either voyr = 15V, or voyr = —15V. The current is
therefore characterized as follows:

N +15
i[N = 7,01 + fOT‘U[N < —7.5V, iIN
R,
UIN . vin — 19
= —?,for — 7.5V <wvy < 7.5V, andiry = Tforvm > 7.5V
1 1

See Figure 15.85 for the relevant v — i plot.
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1
Rl
15V | -7.I5v .
_7.I5V 1 I -15v VIN
1 Ry
R1
Figure 15.85:

b) While the voltage across the capacitor is between -7.5V and 7.5V, the circuit will
act as a simple RC circuit, but with a negative resistance. Therefore, the voltage
across the circuit will increase exponentially with a time constant of —C'R;. When
the voltage hits 7.5V, the device will start acting like an ordinary resistor, which
attempts to discharge the capacitor. This immediately drops the voltage below 7.5V,
which then increases it again. Therefore, once the voltage hits 7.5V, it will never
change.

See Figure 15.86 for the plot of voltage as a function of time.
Ve
A

Figure 15.86:

ANS:: (a) N = %fOTUIN < —7.5V,i]N = —%—Jf,fOT — 75V < vy <
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7.5V, andijy = ’”]}Jg%wforvm > 7.5V.

Problem 15.25 An operational amplifier is connected as shown in Figure 15.87.

10 pF
|1
I
10kQ
AW -
N * Vo(t)
vi(t) CD
Figure 15.87:

a) Assuming that the amplifier has infinite gain and infinite input resistance and zero
output resistance, determine the relationship between v (t) and v (2).

b) The signal v(¢) is a rectangular pulse as Figure 15.88.

A
Vi 10V

0,0 100ms Tt

Figure 15.88:

Assuming that v (0) = 0, draw vp (t), for ¢ > 0.

c) The operational amplifier is now connected as in Figure 15.89.

The voltage v (t) is held at zero (by some means not shown) for ¢ < 0. The switch
is initially in the up position, connecting the 10£€2 resistor to a fixed voltage V. At
time ¢ = 100ms, the switch is thrown to the down position. The observed voltage
vo(t) is shown in Figure 15.90.

Determine the relationship between V7 and 7, the time required for v () to return
to zero volts.

Solution:
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10 uF
||
VP |
\ 10 kQ
i - Vo(t)
+
-10V B
Figure 15.89:
A
100 ms
0,0 |
Vo(t)

Figure 15.90:



a) v-=vt=0
i(t) = 2 = —Cge
vo(t) = =& [ur(t)dt

’Uo(t) = —10f1)](t)dt

b) See Figure 15.91.

0,0

Vo(t)

(10 V0 I

Figure 15.91:

C) vy = —10 X Vg x 100ms

—10x =10 x17=Vp

Vi

T = 100

ANS:: (c) T = 1&

o71

Problem 15.26 We wish to show that the circuit shown in Figure 15.92 behaves in a

manner very similar to an RLC circuit.

a) Write the node equations for v, and vs.

b) Simplify these equations by using the Op Amp assumption, i.e., v~ =~ v™. This
allows you to neglect v3 terms compared to v, terms, and ddif terms compared to ‘idit?
and %4 terms, provided C, and C5 are comparable. (You must later check on this

last assumption.)

c) Find the characteristic equation. Compare with the RLC case.

d) For the numerical values given below, is the circuit under, over, or critically

damped? What is the @ of the circuit, in literal form?
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Cy
I
I
Ry
WWW
C
V1°—¢vv§\»1v ”2 -
Vo || V3 ] *V,
+
Figure 15.92:

01 = 02 = 01/,LF

Ry =109
Ry = 1kQ
Solution:

First, draw the voltage-source impedance model of the op-amp, since it will come in
useful in part b. See Figure 15.93.

°V,
|2 ‘ } |3
Ry
1
Cys + °Vs
1 N AV
Ry
l1
Vi

Figure 15.93:



b)

d)
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v — vy v3—v4+v§—vg Vy— V3 V3 — Uy
- 1 ) 1 - :
Ry Ry o & Ry
The third necessary condition is v; = —Aws. With these three equations, we can

derive the following result:

1 1
4 A

1
A UQRQCQ — R1 (0102) — —Ufl - R1(01 + CQ)'UQ“"

A

lRlCQRQ(Cl + CQ)’UZ = RQCQU; — l
A A
Here is where the condition of capacitor size similarity comes in. Ordinarily, one
would cancel out all the terms involving %, since A is infinite in an ideal op-amp.
However, in a real op-amp, A is only about 10, and it is quite possible for C; and
j(]z to be of comparable size, which devalidates the principle behind the cancella-
tion. Therefore, we must give the condition that the capacitors are of “comparable
size”, meaning that the ratio of their magnitudes is far less than A.

vZRng + UZRlcl .

Given that, we may cancel several terms to get the following result:
’UllRQCQ = —UZRleclcg — Vg — ULILRlCl — UéRlcz.

We now let v; and v, be of the form e*’.

We can solve for the ratio %, getting the following, which corresponds to the trans-
fer function of an RLC circuit.

V4 —RQCQS

U1 N R101R20282 + R1(C1 + 02)8 + 1 ’

The damping can be found using the discriminant. For the denominator of the form
As? + Bs + O, the discriminant is B2 — 4AC'. In our case, we plug in the numbers
and get a negative term, meaning that the circuit is overdamped.

In order to find @, we recall that for a general transfer function whose denominator
is of the form As? + Bs + C,Q = /4%. This implies that for our case,

o | (Gt Ry
(Cy+ Co)?Ry

The circuit is overdamped.
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ANS:: (a) 111};1112 = 112214 —+ 1}2?1]3, 112;”3 = U3};U4. (b) 1 RyCys = —U4R1R2010282 —

Cys Cas Cys

v4 —R2Css _ | (C14+R2Co
Vg — U4R1018 — U4R1028. (C) ﬁ = R101R20252+2R12(Cl—|—02)3+1 (d) Q = Ci4Ca) Ry and
the circuit is overdamped.

Problem 15.27 What is the differential equation relating to vo to v; in the network in
Figure 15.94? Assume the Op Amps are ideal.

6 kQ
20 mH
Vi e ii2 4KkQ
V,
o
250 kQ
3KQ | 8kQ
= \N\Nv\v
+ 250 kQ
2kQ
Figure 15.94:

Solution: Label the output of the bottom amplifier before the 3£$2 resistor as node
vx. By superposition, the first op-amp is an inverting amplifier which calculates the sum
—3v; — 2vx. The second op-amp is also a differentiator, with gain — ;0= = on

1
- e i 4000 — ~ 200000
the derivative of the input. We now know that vo = 555555 (1.5v7 + 2v).

The input to the next op-amp is almost an ideal voltage divider, since most of the
current going through the 8%¢2 resistor is channeled to ground, so the input to the op-amp
can be approximated by .2v. The third op-amp is merely an inverter, so we can calculate
that vxy = —.200.

We now have:

1
~ 200000

vo (1.5v] — .4up).

This can be simplified to:
vo — 2 % 1070}, = 7.5 x 10750},

ANS:: vp — 2% 107080 = 7.5 % 107642
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Problem 15.28 The circuit in Figure 15.95 behaves in a manner very similar to an RLC
circuit.

a) Write the node equations.
b) Assume vy = V,e®t,vg = Vjet, and find the characteristic equation.

¢) Find « and w, in terms of Cy, Cy, G1, Gs.

Ry
WWW
Cy C,
vie—]| Ve |3
| VA || | o o VO
R, % ;
Figure 15.95:

Solution:

This is done most easily by using the impedance model. See Figure 15.96 for the
impedance model of this circuit.

- R2
- '8 +
T AT 1 Vo
V| Cs C,ys Rl
Figure 15.96:

a) If we let G; and GG, be the conductances (the reciprocals of the resistances) corre-
sponding to the two resistors, we get the following two node equations.

(v —v4)C1s = (va — vR)Cos + (V4 — V0)Ga, veG1 = (V4 — vE)Cas.
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b) If the op-amp is ideal, then vo = vp due to the negative feedback. Simplifying the
three equations that we have, we get that:

’U_B . 0102R1R282
U1 N 0102R1R282 + RQCQS + 1 ’

¢) For atransfer function with denominator As% + Bs+ C, « is defined to be one-half

the bandwidth, w_hich is %, and the resonance frequency w, is \/g. For our case,
we get the following values.

Y G, 6
20,70\ GGy

ANS:: (@) (v — v4)Cis = (va — vg)Cas + (va — V0)G2,vG1 = (va4 — vE)Css, (b)

Vg __ C1CsR1 Ry s? _ G — [Gi1Go

f T Ci1C2R1R25%2+R2Cas+1! (C) Q= 3¢, Wo = V CiCs

Problem 1529  a) Find H,(S) = V4 /V; in Figure 15.97. Plot and dimension log | H |
and /H; vs. log w.

RllekQ Rzzle
C,=1pF  C,=001pF

+

+ V1
Vs <_> C1— = w

Figure 15.97:

b) Find Hy(S) = V,/V;. Plot and dimension log |H,| and /H, vs. log w.

¢) Find H,(S) = V,/V, = H,(S)H,(S). Plot and dimension log | H;| and /H; vs. log
w. Compare with the plots you obtained in parts a) and b).
Solution:

a) See Figure soln-fig:18-29-a.
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Figure 15.98:
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Figure 15.99:

YA
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m? 1 1
RlICl RZICZ

-90 _|

-180

—
11
R,C, R.C,

Figure 15.100:

b) See Figure soln-fig:18-29-b.

c) See Figure soln-fig:18-29-c.

Problem 15.30 a) Find the transfer function for the network in Figure 15.101.

Ry
MM
||
Ry e,
MM |

Figure 15.101:

b) Synthesize the function an = —(s 4+ 4)/(s + 6) using the above circuit. That is,
find values of Ry, R,, C1, and Cy which satisfy V,/V;,,. You may use capacitors of
1pF.

Solution:

O

Zin = Ryl| 24

sCo
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Zp = Ri|| &

sCo

V; . —(SRlRQCQ + Rl)

Vin  sRIR,Ci + Ry

b) Given the previous derivation, we see that we must let C; and C; be the same, since
the magnitude of s must be the same. We use 1u.F' capacitors, because we can.

Plugging this in and simplifying, we get the following:

5+% s+4

_5+% Cs5+6

This implies that R, = 2502, R, = 167k€). In order to synthesize these, we can
use a 220k in series with a 33k€2, or if more precision is needed, 220&€2 in series
with the parallel combination of a 33k$2 and a 330k€2. R, can be made from a
220k€) in parallel with a 680k¢€2, which turns out to be remarkably precise.

Cy = 1uF,Cy = 1uF,

Ry = 220kQ)||680kQ,
Ry = 220kS) + (33k€2||330k12).

ANS: () o = =CRERGETR) () ¢, = 1uFC, = 1uF R =

22082 |680kS2, R2 220k (33k$2|[330k02).

Problem 15.31 The circuit shown in Figure 15.102 is a capacitance multiplier. It may
be incorporated into circuits which might otherwise require unrealistically large physical
capacitors. You may assume that the operational amplifier has ideal characteristics.

a) Find the impedance Z looking into terminal A-A’ for the circuit.

b) Show that the model on the right corresponds to an impedance equivalent to the
result obtained in part a).

c) For Ry = Ry, = 10MQ, Rs = 1kQ, what is C¢, in terms of C?

Solution:
See Figure 15.103.
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Ry
AW
> Req
.\ —WW——eB
eq B’
AN o A I L
c— R ~7

Figure 15.102:

R>
AWV
V(s) -
Vi(s)ee — 1V
"
A -q—o+
C f Rl lt(s) VE(S)

Figure 15.103:
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a) Vt =V~
it =0, therefore V, =V~
Analyze the current I; from test voltage with complex amplitude V.

1
Vt = E1 Vt
R1+E

—_ W=V Vi=Va
It_ R3 + R

Zeq = Rlling (% + Ry)

b) Zeqg = s + Req

_— _Ri1R3
C) Req ~ R3+Ri

Ceg = C x fiatls
C,q = C x 10001
Problem 15.32 Show that the Op Amp circuit in Figure 15.104 has the same form of

transfer function as the circuit in Problem 14.1 (shown on the left hand side of Fig-
ure 15.104). Find expressions for the resonant frequency and the Q.

R L Ry Ry

—— W —— T+ MW — MY +E TI . +

v (7)) c==w0  vo(?) Lo WO

Figure 15.104:

Solution:

This is actually the same as Problem 15.28 but with the resistors and the capacitors
switched. We recall the equation derived in Problem 15.28, part B:

U1010282 = U0010282 + U()GlCQS + UoGlGQ.

We replace the admittances as necessary:

018 = Gl, CQS = GQ, G1 = 018, G2 = CQS.
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From that, we get the following transfer function:

U_O _ G1G2
Vr B 010282 + GQCQS + GIGQ.

This is equivalent to pulling the voltage across a capacitor in a series RLC circuit. The
resonance frequency of a transfer function with denominator of the form As? + Bs + C

§ \/E and @ is ,/g_g‘. We substitute, getting the following values:

. _ 1 _ [CaRs
ANS:: wo = /s Q = /2.

Problem 15.33 The circuit in Figure 15.105 is a switched capacitor filter. The switches
S; and S, are driven by nonoverlapping clocks as in Problem 15.15. Both S; switches
are closed for time 1/2f. with S, open, and S, closed for 1/2f. with S; open. V;, =
Acoswt, w << 27 fy.

” V |
R
AW > \ =1 =2
+ o NN R _
Wy OpAmp1l 1 t ; +V
Vin 2R CRI OpAmp 2 2

Figure 15.105:

a) Find (in the sinusoidal steady state) the transfer functions V3 /V; and V,/V;. Refer
to Problem 15.15 to see how to handle the switches. Note that there are no switches
across C; and Cs.

b) Now find a simple equation to describe the operation of Op Amp 1, i.e., find an
expression for V7 in terms of V5, V;,, and V3. Note that in all of our impedance
calculations, we have been implicitly assuming that the relation among V’s for such
a circuit is the same as the relation among the time variables v(¢).
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c) Now substitute from a) into b) to find the overall transfer function V5/V;,. Find
expressions for the resonant frequency wg and the bandwidth Aw in terms of the
circuit constants. The easiest way to do this is to get the transfer function into the
form

KVin
Vo= 15.1
s2 + 2as + wd (15.1)

and work by analogy to the parallel RLC case. How does the resonant frequency
wp depend on the clock frequency f.?

Solution:
First, let the effective resistances of the switched capacitors be R, and R,.

a) The second and third op-amps are both integrators, and have the following transfer
characteristics:

Va -1 Vi -1

71 - RlCls’ ‘/2 - RQCQS.

b) The first op-amp is similar to the one detailed in Problem 15.8, except has only two
inputs instead of three. Therefore, it has the following transfer characteristic.

V=g (14 R+ )~ R (4 %)
This simplifies to:

Vi=Vo—V3—Vin.

c) We substitute into the previous equation, getting:

VoR1Cis = Vo —

This can be transformed into:

Vé . RQCQS
V}N N R1R2010282 - RQCQS + 1 ’

From here, we can get the resonant frequency wq and the bandwidth A = omega,
since for any transfer function with denominator As? + Bs + C, the resonant fre-

quency is \/g and the bandwidth is %

Vé . RQCQS Aw = 1 o = 1
‘/IN - R1R2010282 - RQCQS + 1, B R101’ 0~ RleclcQ ’
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ANS: @) P = mém it = mem ®Vio= Va-Vi-Viv 0 g =

RlCls’ VQ RQCQS' VIN
RoCss _ 1 _ 1
RO Ot FaGastl AW = Top Wo = V RiR2CiCs -

Problem 15.34 The circuit shown in Figure 15.106 behaves like an RLC circuit.

Cy
[
||
Ro
WWW,
C
Ry T
VMW/ | | - —. +
+
V
1 V4

1

Figure 15.106:

a) Find the transfer function V,/V;. (You may assume that the Op Amp is ideal, i.e.
V+ =V~ to simplify your calculations.)

b) Sketch the magnitude of the transfer function |V,/V;| versus frequency. Indicate
the frequency at which the peak occurs, the magnitude of the transfer function at
the peak, and the Q of the resonance. Use the following numerical values:

Ci =Cy=0.01pF R, =100 Ry =1kQ

c) This circuit is known as an RC active filter. Is it a low-pass, high-pass, or hand-
pass filter? What is the expression for bandwidth in terms at R, Cy, etc.? That is,
B = wy — wy Where wy and ws are the half power frequencies?

Solution:

This is a continuation of Problem 15.26.

a) From Problem 15.26, part C, we get the transfer function:

% _ —RQCQS
(1 B R101R20282 + R1 (01 + 02)8 + 1
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b) See Figure soln-fig:18-34-same-as-38.

log v
Vi

90+

-20 db/dec

0+ _

Figure 15.107:

c¢) Since the numerator contains a linear term in s and the denominator a quadratic,
this is a band-pass filter. The bandwidth for any function with the denominator
As? + Bs + C'is &, so in this case we get a bandwidth of:

Ci+Cy
RICICZ ’
v4 __ —RyCss C1+Co
ANS (a) R1C1R20252+R1 C1+CQ s+1° ( ) R1C1Cs"

Problem 1535 a) Find an expression for the complex amplitude ratio V,/V; for the
active filter circuit in Figure 15.108, given that R, = 10R;. Sketch the Bode plot,
|V,/Vi| versus w and V, /V; versus w.

b) An equivalent filter can be made with the circuit shown in Figure 15.109. Find the
value of C5 needed to make a filter equivalent to that in part a), assuming that R,
and R are the same here as for part a). How does the value of C, here compare to
that of C in the filter of part a)?

Solution:
V, _ —Zp _ —Rollzk
a) i T Zin Ry
Vo Ry

Vi sCRaR1+ Ry
Given that R, = 10R;, we substitute in, getting:
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Figure 15.108:
Ry
W
V2R, V2R,
—o— MWW WA |_
® +
+

<
s
g
A
Jl
<

Figure 15.109:
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Vo -10
Vi 10RCs+1

See Figure soln-fig:18-35 for the Bode plot.

VO
Vi

20 db/dec ~
Y

i
1
Figure 15.110:

b) First, find the Thevenin equivalent of the input. The open-circuit voltage is given
by a voltage divider rule:

1

Vi = Vip5222 .
TH I%Rl + é
This can be simplified to:
2
Vog =Vi———.
T TR Cys + 2

The Thevenin impedance is found by shorting out the voltage source:

1
Cys

1 1
Zrg = —R —R .
TH = 1+(2 1l )

This simplifies to:

R2C,s + 4R,

Ty = .
TH = 9R,C,s + 4
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This is now a standard inverting amplifier configuration:

—R,

Zru

Vo= Vru

Substituting in, we get:

Vo  —4R, 40
Vi R2Cys+ 4R, RiCps+4

Comparing this result to that derived in part A, we get that:
C, =40C.
ANS:: () 12 = resg7 - (0) Cr = 40C.

10R1Cs+1"?

Problem 15.36 The circuit shown in Figure 15.111 behaves in a way very similar to an
RLC circuit.

Ry
W
Cy 5
| 1= Vo
L !
M v v

[ J
1

Figure 15.111:

a) Write the sinusoidal steady state node equations for the complex amplitudes V, and
Vi

b) Solve for V,/V; using the results in a), and noting that V, = V.

¢) Assuming the circuit is underdamped, sketch the magnitude of the transfer function
|V,/Vi| versus frequency. Indicate the frequency at which the peak occurs, the
magnitude of the transfer function at the peak, and the Q of the resonance.
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Solution:

Vi—V, Vi — Vo —

a) z1a+ b1a+%RVa:0
sCy sCo 2
VoV _ Vo _
e h

sCo

b) Doing a bit of algebra, one gets that:

& _ R1R2010282
V} B R1R2010282 + RQ(Cl + CQ)S +1 ’

c) See Figure soln-fig:18-36.

Vo
Vi 0y
A A

-90 _|

-180]

JRIRC4Cy

Figure 15.112:

The frequency at which the peak occurs is the resonance frequency, w,, and can be
determined from the transfer function whose denominator is As? 4+ Bs+ C by find-
ing \/g, which turns out to be ,/m. To find the magnitude at this frequency,
substitute in for s, remembering that s = jw, and after a bit of simplification, get-
ting:

Vo R, vC,Cy

VI% B R_201+C2.

The value of @) can be determined by finding ,/g—g, and it turns out to be the square
of the magnitude of the peak.
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Yo _ & vV 0102 Q _ 0102R1
RlRQClCQ’ V} Wo R2 01 + CQ’ (01 + 02)2R2 ’
. Vo __ R1 RyC1Cys> _ 1 Ve _
ANS: - (b) 7? - R1R2C'1021521I%2(201+C’2)3+1" © wo = V R1R2C1C>? 7?“""’ -
Ry vVC10o Q — C1Ca Ry
Ry C1+C3? (C14+C2)?Ry "

Problem 15.37 Plot the frequency response (magnitude and phase) of the active filter
shown in Figure 15.113. Assume the Op Amp is ideal.

Ly R
V W\ +
Vo
Cl p— L2
C, ——
1
Figure 15.113:

Solution: First, redraw the impedance model of the op-amps shown in Figure 15.114.
Ly, R, and C; can be omitted since no current ever flows through them. This is a standard
non-inverting op-amp configuration. The voltage at node Vx is equal to V; since the op-
amp is assumed to be ideal, and there is negative feedback. A simple voltage-divider
relationship ensues.

L23
+
(D v

Figure 15.114:

LQS

L28+ L

Vi=V, :
Cos
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This can be solved for V, and simplified:
ANS:: V, = V; CaLas®+1

t CyLys?
See Figure soln-fig:18-37-2 for the frequency response.

V0

log

-90 _|

-180

Figure 15.115:

Problem 15.38 The circuit shown in Figure 15.116 has a resonance very similar to an
RLC circuit.

|l
N
C, R,
WA
Ry
|(
w1 - y
C2 + 4
va(t)

Figure 15.116:

a) Write the sinusoidal steady-state equations for V5 and V3.

b) Solve for V,/V; using the results in a), and noting that V3 = —V, /A, where the Op
Amp gain A can be assumed to be very large.
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c) Assuming now that Cy = Cy = 0.1uF, Ry = 109, Ry = 1k, sketch the mag-
nitude of the transfer function |V,;/V;| versus frequency. Indicate the frequency at
which the peak occurs, the magnitude of the transfer function at the peak, and the
Q of the resonance.

Solution:

a) This has been already done in Problem 15.26.

V1 — V2 Vg — Uy Vg — Vg V2 — Vs V3 — Uy

1 1 ) 1 -
I T T T Ry

b) This was also done in Problem 15.26. This intermediate result was derived.

1 1
(1 + R1Csys + R1C1$)(—ZU4 — Uy — ZU4R2028) =

1
(vy — ZU4R1028 + v4R1C18)(RyCss).

If we assume that the capacitors are of comparable magnitude, then we may cancel
several terms to get the following result:

% _ —RQCQS
U1 - R101R20282 + R1 (01 + 02)8 + 1

c) Substituting in the values given, we get a transfer characteristic of:

vy —107%s
vy 1071062 4+ 2% 10654+ 1"

For any transfer function whose denominator is of the form As? + Bs + C, the
frequency of the peak w, is given by \/g , the magnitude at the peak may be found

by substitution, and the factor ) can be found by finding sqrt’;—g. For our function,
we get:

wo = 10%, 22|, = 50,Q = 250.
U1

See Figure 15.117 for the Bode plot.
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-20 db/dec

Figure 15.117:

Figure 15.118:
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. VI—V2 __ V2—U4 VU2—v3 V2—VU3 __ U3—U4 V4 __ —RsCss
ANS:: (a) Ry CLzs + Clzs ! %25 T R» '(b) v1 ~ R1C1R2C2s?+R1(C1+C2)s+1"

(€) wo = 10°, 24|, = 50,Q = 250.

’Ul

Problem 15.39 For the circuit in the figure in Figure 15.118

a) Find a set of equations which, if solved, would give V,/V;.

b) Assuming that these equations, when solved, yield

(JwC1)(jwCy)

Vo/Vi= . .
/ G1G2 + ]W(Cl + CQ)GQ + (]u))20102

(15.2)

Find the expression for the undamped resonant frequency (wg) of the circuit.

c) Find an expression for the low-frequency asymptote of V,/V;. (Zero is not an ac-
ceptable answer.)

d) Find an expression for the high-frequency asymptote of V,/V;. (Zero is not an
acceptable answer.)

e) Assuming @@ = 1/2, sketch the magnitude and phase of V,/V; versus w. Specify
coordinates, and dimension key features.

Solution:

a) This was already done in Problem 15.36. The equation derived there will be used
here, except with resistors R, and R, switched.

E _ R1R2010282
Vi RiRyC 0,82 + Ri(Cy+Co)s+ 1

b) The assumption is valid. The resonance frequency of any transfer function with
denominator of the form A(jw)? + Bjw + C is given by \/g In this case, it is:

" = |GGy
N GGy
c) Since this is a high-pass filter, the asymptote in a linear plot is indeed zero, but in a

logarithmic plot, it is a line with a non-zero slope. Since the filter is second-order,
the slope will be 2.
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We also know that the low-frequency and high-frequency asymptotes cross at the
resonance value, and the high frequency asymptote is a horizontal line with value
1, we can find the line, since it goes through the point (w,, 1) and has slope 2. The
line is:

Vo

Vi

=2(w —w,) + 1.

d) The high-pass filter will reach a constant value, and since the (jw)? coefficient of
the numerator and the denominator are the same, this constant is one.

Vo

—| =1

Vi

e) See Figure soln-fig:18-39.
log \%
=2
A
180

90 _

™ w

Figure 15.119:

Yo
Vi

. Vo _ R1RyC;Cys? _ [/GiG —
ANS:: @)Y2 = et G Qe () wo = \/FE, (0) |32 = 2w —wo) + 1,

(d) =1.

Problem 15.40 Tech Hi-Fi advertises a car stereo system that can deliver 10 watts aver-
age power into a 4€2-speaker. Given your demonstrated proficiency in electronics, you
decide to build one using an (hefty) Op Amp. To save yourself the problems associated
with designing the receiver you plan to use a small transistor AM-FM radio as the signal
source.

Yo
Vi

You try the circuit shown in Figure 15.120.

In the following parts, you may assume that the hefty Op Amp has very high open-
loop gain, zero output resistance, infinite input resistance, and other good features.
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12V (Battery) G

1kQ Ry
C. 5 MW
! +12V
|| WA A
|| v V) -
1kQ N
Y S 4 Q speaker
(From 1k g o c
radio) I L
Figure 15.120:

a) What is the operating point value of the voltage at the output of the operational
amplifier?

b) Why is capacitor C', included?

c) Assume that the maximum signal from your radio is 1 volt peak to peak. What is
the maximum value of R, that insures the operational amplifier will remain in the
linear region?

d) What is the maximum average power that can be delivered to the 4<2 speaker with
vy is a constant amplitude sinusoid?

e) In spite of your answer to parts b) and c), assume that you choose R; = 10k and
that capacitor C'y, is very large. In order to reduce low frequency noise, you decide
that you should make the lower half-power frequency 100 radians per second. What
value of C; should be selected? You also want to filter high frequency noise by
making the upper half-power frequency 10° radians per second. What value of C;
should be selected?

Solution:

a) 6 volts
b) Cy, is included because all items have a load capacitance associated with them.

¢) The output voltage of the opamp must be between 0 and 12 volts. Therefore, the
maximum value of R; is:

12 kS2.
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d) Maximum output signal is 12 volts peak-to-peak. This equals % volts RMS.

_ Vius
Power = —BMS

3v2v0ltsRM S, 4.5watts.

e) The gain of the amplifier can be calculated using the impedance model shown in
Figure 15.121 to be:

Rf
RiCs+1

* VouTt

Figure 15.121:

UoUT _ —10301'8
viN — 107C;Cfs% 4+ 103C;s + 104Cs + 17

We must set the magnitude of this gain to be \/g times the magnitude at resonance,
which is 1. Plugging in s = jw and simplifying, we come up with the following:

1 1
W= "——""—-
10:C;’ 103C;

Plugging in the desired half-power frequencies, we get the following:
Cy=10""F,C; = 107 5F.

ANS:: (a) 6 volts, (b) Cf, is included because all items have a load capacitance associ-
ated with them, (c) 12 k9, (d) 3v/2voltsRM S, 4.5watts, (€) C; = 107°F, C; = 1075F.
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Figure 15.122:

Problem 15.41  a) Using the ideal Op Amp assumptions, write the node equations for
the complex voltage for the circuit in Figure 15.122. Solve for V,,.

b) Assume V, is of the form

sKV;
Vo=——""—— 15.3
52 + 2as + wi (15:3)

If a short pulse is now applied to this circuit, the output voltage after the pulse is

vo(t) = 3e71%%sin(1000¢ + 20°) (15.4)

For K = 400(sec!) find the response v (t) in the steady state to a 1 volt cosine
wave at the resonant frequency:

vr(t) = 1 coswot (15.5)
(Provide numbers for wy etc.)
c) Repeat b), for a one volt cosine wave at the lower 0.707 frequency w;.

Solution:

a) This was already done in Problem 15.38, except with capacitors C; and Cs
switched. Interestingly, the switch does not change our answer at all.
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@ . —R2018
V} N R1R201(01 =+ 02)82 + Rlcgs +1 )

The transfer function is the response of a system to an impulse, so we can find the
frequency-domain equivalent of the response, and from there match up the con-
stants.

vo(t) = 3e™ %% sin (1000t + L).

L is a non-relevant offset, since it will just change the amplitude, which we will be
given anyway. We can rewrite the time-domain equation as:

Vo (t) — 36_100ti,(61000jt o 6_1000jt).
2]
From this we can ascertain that the natural frequencies are s = 100 + 1000;.
We now find a quadratic equation with those roots:

s? +200s + 10* + 108.

From this we can determine oo = 100 and w, = sqrt10* + 10°, or about 1005.
Our transfer function is as follows:

Vo 400s

vy 82+ 200s + 1010000

The steady-state response to a cosine can be found by plugging in s = 10057, and
finding the magnitude and phase of the resulting cosine output.

The constant and quadratic terms cancel out due to resonance, so we can simply
find the gain by dividing 400 by 200. There is also no phase shift at resonance, so
our output is also a cosine.

vo(t) = 2cos(1005t).
The lower half-power frequency can be found by subtracting the half-bandwidth «
from the resonance frequency. This turns out to be approximately 905 radians/sec.

The magnitude and phase can be found in a similar manner as the last time. The
magnitude ends up being about 1.3758, and the phase shift about 47.5 degrees.

vo(t) = 1.3758c0s(1005t — 47.5 degrees).
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Ry
MWL

W
x(t) C|:|2 +

ao () k Volt)

+ .-

Figure 15.123:

ANS:: (8) Y2 = pmeroiesrmos 0 vo(t) = 2c0s(1005t)., (c) vo(t) =

1.3758¢0s(1005t — 47.5 degrees).

Problem 15.42  a) For the circuit in Figure 15.123 write the node equations needed to
find V,(s) in terms of V;(s). Your answer must be arranged with the source terms on
the left, the unknown variables on the right, and must use conductances g(= 1/R).

b) Solving these equations, you should obtain for C; = (>,

s%V,

%(8):S2+8L+;
RyC R1R>C?

(15.6)

For R, = 1k%, find the values of R, and C which give a ) of 10 and a resonant
frequency defined as the frequency where the s? term and the s® term cancel in the
denominator of the above expression) of w, = 1000 radians/second.

Solution:

a) From Problem 15.28:

(’U[ — ’UX)Cls = (UX — ’Uy)CQS + (UX — UO)Gla

UyGQ = (’UX — ’Uy)CQS.

These can be rewritten in the desired form as follows:
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11015 + voG1 = vxCi1s +vxCss + vx G — vy Css.

0= —UXcQS + ’UyGQ + ’UyCQS.

b) For any transfer function whose denominator is As? + Bs + C, the resonant fre-
quency is defined as \/g and the @ factor is ,/%.
We get the following two equations:

w2 = !
0™ 1000R,C?’
%
R2C2
Q2 — 21 .
1000R2C?

This implies that R, = 400Q and C' = 1.5811x10 °F.

The resistor can be synthesized quite nicely by putting a 3302 resistor in series
with a 682 resistor, while the capacitor can be made from a 1.5210~%F capacitor
in parallel with a 6.8210~8 F' capacitor with pretty reasonable margin of error.

ANS:: (b) R, = 3309 + 689, C = 1.5z107°|6.8  10~5.

Problem 15.43 For the network shown in Figure 15.124:

Ry
A‘/V\N\/A
[l
Ry Ic
'Y WVV\’A -
. ] +
+
V| Vo
Find ViV,

Figure 15.124:
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a) Determine an expression for the indicated transfer function.

b) Sketch the magnitude and angle of the indicated quantity as a function of frequency.
You may use either linear or log-log coordinates, but it is recommended that you

learn to use both kinds of axes.

Solution:
Yo _ Ry
a) Vi jwR1RaC+Ry

b) See Figure 15.125

Io%|Z|

Figure 15.125:

. Vo —Rs
ANS:: (a) = TR



Chapter 16

Diodes
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