電路學(10510EE221002)第七次隨堂考

2016年11月23日 時間:15分鐘 Close Book

For the following circuit as shown, assume $V(t) = V_I u(t)$, $V_I = 5V$, the initial state of the capacitor $v_C(0)$ is 0V and that of inductor $i_L(0) = 0$ A, answer that following questions.

(1) Find the undamped natural frequence, ω_0 .	(15%)
(2) Find the damping factor, α .	(15%)
(3) Find the approximate damped-natural frequence, ω_d .	(15%)
(4) Find the approximate period of the ringing, <i>T</i> .	(15%)
(5) Find the quality factor, Q .	(15%)
(6) Sketch $v_C(t)$ for $t \ge 0$.	(25%)

To analysis the response for the undriven RLC circuit, we write KVL equation for its loop. KVL: $v_R + v_L + v_C = 0$

$$\Rightarrow i_{C}R + L\frac{di_{L}}{dt} + v_{C} = 0, \text{ where } i_{L} = i_{C} = C\frac{dv_{C}}{dt}$$
$$\Rightarrow RC\frac{dv_{C}}{dt} + LC\frac{d^{2}v_{C}}{dt^{2}} + v_{C} = 0$$
$$\Rightarrow \frac{d^{2}v_{C}}{dt^{2}} + \frac{R}{L}\frac{dv_{C}}{dt} + \frac{1}{LC}v_{C} = 0$$
Thus, the characteristic equation can be writte

ten as

$$s^{2} + 2\alpha s + \omega_{0}^{2} = s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$

Where

(1)= 25000rads/sec \sqrt{LC} $\sqrt{2mH \times 0.8 \mu F}$ 10 R (2)2500rads/sec $2 \times 2m$ 2L

 $\therefore \alpha < \omega_0 \Rightarrow$ under-damped dynamics

(3) ω_d is approximate equal to ω_0 , or the accurate value is $\omega_d = \sqrt{\omega_0^2 - \alpha^2} \approx 24874.69$ rads/sec $=\frac{2\pi}{2}=0.252$ msec ω_0 ω_d

