電路學(EE2210)第一次隨堂考

2016年9月26日 時間:10分鐘 Close Book

學號:	
姓名:	

For the circuit as shown below, there are six elements which observe the *Associated Variables Convention*. Among the eight elements, the voltages for four elements are given on the figure. The current for element a is $i_a = -3A$, for element e is $i_e = -6A$, for element d is $i_d = 2A$, and for element f is $i_f = 4A$. By using the KVL and KCL, please find

- (i) the voltages of element a and e (v_a and v_e),
- (ii) the currents of element c and g (i_c and i_g),
- (iii) the power of element $e(p_e)$.

Solutions:

(i)

Applying KVL to the two loops:

Loop 1:
$$v_c + v_g - v_f = 0$$

$$\Rightarrow -3V + 2V - v_f = 0$$

$$\Rightarrow v_f = -1V$$

Loop 2:
$$v_b + v_f - v_e = 0$$

$$\Rightarrow 5V - 1V - v_e = 0$$

$$\Rightarrow v_e = 4V$$

Loop 3:
$$-v_d + v_h - v_g = 0$$

$$\Rightarrow -v_d + 6V - 2V = 0$$

$$\Rightarrow v_d = 4V$$

Loop 4:
$$-v_a + v_d - v_c - v_b = 0$$

$$\Rightarrow -v_a + 4V + 3V - 5V = 0$$

$$\Rightarrow v_a = 2V$$

(ii)

Applying KCL to the two nodes:

Node 1:
$$i_a - i_e - i_b = 0$$

$$\Rightarrow -3A - (-6A) - i_b = 0$$

$$\Rightarrow i_b = 3A$$

Node 2:
$$i_b - i_c - i_f = 0$$

$$\Rightarrow 3A - i_c - 4A = 0$$

$$\Rightarrow i_c = -1A$$

Node 3:
$$i_c + i_d - i_g = 0$$

$$\Rightarrow -1A + 2A - i_g = 0$$

$$\Rightarrow i_g = 1A$$

Node 4:
$$-i_a - i_a - i_h = 0$$

$$\Rightarrow -2A - (-3A) - i_h = 0$$

$$\Rightarrow i_h = 1A$$

(iii)

$$p_e = v_e \times i_e = 4 \times (-6) = -24$$
W

 $p = v \times i$

$$p_a = 2 \times (-3) = -6W$$

$$p_b = 5 \times 3 = 15$$
W

$$p_c = (-3) \times (-1) = 3W$$

$$p_d = 4 \times 2 = 8W$$

$$p_e = 4 \times (-6) = -24$$
W

$$p_f = (-1) \times 4 = -4W$$

$$p_g = 2 \times 1 = 2W$$

$$p_h = 6 \times 1 = 6W$$

 $p_a + p_b + p_c + p_d + p_e + p_f + p_g + p_h = 0$ W (Power conservation in this circuit.)

(i) $v_a = 2V$ $v_b = 4V$

(ii) $i_c =$ -1A . $i_a =$ 1A

(iii) $p_e = \underline{\hspace{1cm}}$.