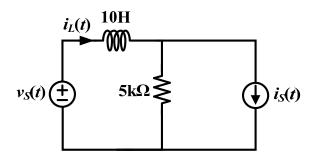
電路學(EE2210)第七次隨堂考

2015年5月6日 時間:10分鐘 Close Book

學號:_____

姓名:

Using superposition, determine the current $i_L(t)$ for the following circuit. Assume $v_S(t) = 10u(t)$ V and $i_S(t) = 2u(t)$ mA, find $i_L(0^+)$, $i_L(\infty)$, the time constant (τ) , and the response $i_L(t)$. Sketch the response $i_L(t)$ for $t \ge 0$. (Label the key values in your sketch.)



Solutions:

The inductor first acts as an open circuit and eventually becomes a wire:

When $t \ge 0$,

Initial:
$$i_L(0^+) = i_L(0^-) = 0$$

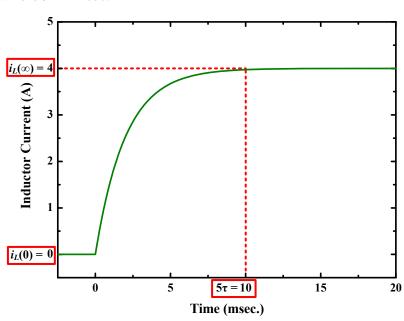
Final:
$$i_L(\infty) = \frac{v_S(\infty)}{5k\Omega} + i_S(\infty) = \frac{10V}{5k\Omega} + 2mA = 4mA$$

Time constant:
$$\tau = \frac{L}{R} = \frac{10}{5k} = 2$$
msec.

Then $i_L(t)$ can be written by intuitive method,

$$i_L(t) = Initial \ value(e^{-t/\tau}) + Final \ value(1 - e^{-t/\tau})$$

=
$$4(1 - e^{-t/\tau})$$
mA where $\tau = 2$ msec.



 $i_L(0^+) = \underline{\qquad \qquad 0A \qquad \qquad }, i_L(\infty) = \underline{\qquad \qquad 4mA \qquad \qquad }, \text{Time constant } (\tau) = \underline{\qquad \qquad 2msec.}$

 $i_L(t) = 4(1 - e^{-t/\tau}) \text{mA where } \tau = 2 \text{msec},$

Sketch the response $i_L(t)$ for t > 0:

