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For the circuit as shown, assume is(t) = lou(t). Find (1) the linear first-order ordinary differential equation
with constant coefficients for vc, (2) ve(0%), (3) the particular solution vcp, (4) the homogeneous solution vch,
(5) the time constant (z) and (6) the total solution vc(t).
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Apply node method at node e:
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Let us rearrange terms to find the differential equation for vc
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Replacing is with is = |0U(t) , we have the differential equation for vc as:
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(2)|ve (07) =vc (07) =0V

(3) The particular solution:

To find the particular solution, let us assumev,., = K that satisfies the following equation:
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(4) Find the homogeneous solution:
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To find the homogeneous solution, by plugging v, = Ae* into the above equation, we have.
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(5) Time constantjz = (R, + R,)C

(6) The total solution is simply the sum of the particular solution and the homogeneous solution:
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The constant A can be found from the initial conditions.
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Differential equation for vc : (20%)
ve(0) = , (16%) vep = , (16%) vcH = (16%)
Time constant (z) = , (16%) vc(t) = . (16%)




