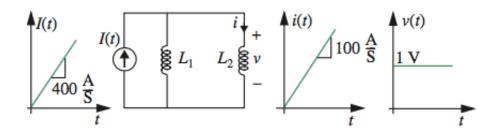
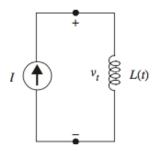
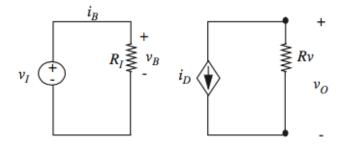
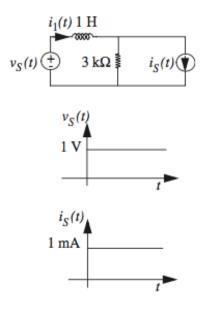

EE2210 Electric Circuits, Spring 2017

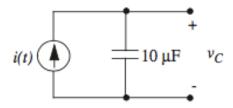
Practice problems (Lecture4-Lecture7)

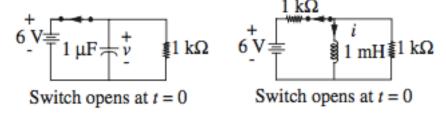

1. Find the equivalent capacitance or inductance of the following circuits.

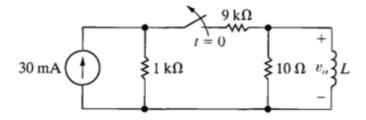

2. Find the current i in the following figure when the voltage source is an impulse function $\delta(t)$.


3. Consider the following circuit with two parallel inductors and one current source. The current source I(t), the current flows through L_2 , i(t), and the voltage across L_2 , v(t) are shown as follows. What are L_1 and L_2 ?


4. A constant current source having value I drives a time-varying inductor shown in the following figure. The inductance is $L(t) = L_0 + L_1*\sin(\omega t)$. Determine the inductor voltage v(t).


5. Consider the circuit in the following figure. (a) Determine vo if $i_D = K_1 v_B$. (b) Determine vo if $i_D = K_2 i_B$.


6. Determine $i_1(t)$ in the following circuit.


7. In the following circuit, $i(t) = 100 \mu A$ between 0 < t < 1 s, and i(t) = 0 A otherwise. At t = 2 s, the voltage $v_C = 5$ V. What is v_C at t = -1 s?

8. Find the response of the following circuits for t > 0. Assume the input is shown for t > 0, and initial zero state.

9. The switch has been closed for a long time before opening at t = 0. (a) Find the value of L such that vo(t = 1 ms) equals 0.5*vo(t = 0). (b) Find the energy dissipated by the 10-0hm resistor at t = 1 ms.

