EE2210 Electric Circuits, Spring 2017 Practice Problems Solutions (Lecture4-Lecture7)

Problem 2 update

2.

$$\begin{split} V(t) &= L\frac{di}{dt} \rightarrow \frac{1}{L}V(t)dt = di \rightarrow \frac{1}{L}\int_{-\infty}^{t}V(t)dt = i \\ i &= \frac{1}{L}\int_{-\infty}^{0}V(t)dt + \frac{1}{L}\int_{0}^{t}V(t)dt = i_{0}(initial\ value\ at\ t = 0^{-}) + \frac{1}{L} \end{split}$$

Supplement:

The Dirac delta can be loosely thought of as a function on the real line which is zero everywhere except at the origin, where it is infinite,

$$\delta(x) = egin{cases} +\infty, & x=0 \ 0, & x
eq 0 \end{cases}$$

and which is also constrained to satisfy the identity

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1.$$
^[19]

From WIKI