EE2210 Electric Circuits, Spring 2017 Practice problems (Lecture11-Lecture14)

1.

Find the magnitude and phase of each of the following expression:

$$(8+j7)(5e^{j30^\circ})(e^{-j39^\circ})(0.3-j0.1)$$

2.

Find the real and imaginary parts of the following expressions: a)

$$(3+j5)(4e^{j50^\circ})(7e^{-j20^\circ})$$

b)

 $(10e^{j50^\circ})(e^{j20^\circ})$

3.

For each of the circuits shown in the following figures, select the magnitude of the frequency response for the system function (that is, impedance, admittance)

Write expressions for $H(j\omega) = V_o/V_i$, its magnitude $|H(j\omega)|$, and its phase angle $\angle H(j\omega)$, as a function of ω in the following figure.

5.

The impedance of the network shown in Figure is found to be 2 k Ω and is purely real all frequencies. The value of the inductor is one mH as shown. What are the values of *R* and *C*?

6.

The circuit shown in Figure has an input voltage $v_{in1}(t) = V_1 \cos(120\pi t)$, and L = 500 mH, C = 80 μ F, and R = 50 Ω .

Compute the transfer function $H(s) = V_o(s)/V_{inl}(s)$.

7.

Find the rms value of the half-wave rectified sinusoidal voltage shown.

8.

Find the steady-state expression for $i_0(t)$ in the circuit in the following figure if $v_s = 100 \sin 50 \text{ mV}$.

9.

- a) For the circuit shown in the figure below, find the frequency (in radians per second) at which the impedance Z_{ab} is purely resistive.
- b) Find the value of Z_{ab} at the frequency of (a).

10.

A resistor denoted as R_L is connected in parallel with the capacitor in the circuit in the following Figure 14.7. The loaded low-pass filter circuit is shown in the following Figure 14.7.

- a) Derive the expression for the voltage transfer function $\frac{V_O}{V_i}$.
- b) At what frequency will the magnitude of $H(j\omega)$ be maximum?
- c) What is the maximum value of the magnitude of $H(j\omega)$?
- d) At what frequency will the magnitude of $H(j\omega)$ equal its maximum value divided by $\sqrt{2}$?
- e) Assume a resistance of $10 \text{ k}\Omega$ is added in parallel with the 100 nF capacitor in the circuit in Fig 14.4.

Find ω_c , H(j0), $H(j\omega_c)$, $H(j0.1\omega_c)$, and $H(j10\omega_c)$.

