
EE2245 Microelectronics Labs Final Exam

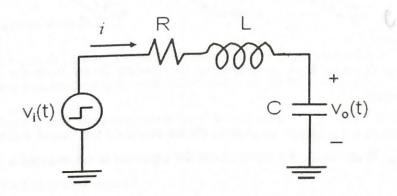
Date: January 15, 2016

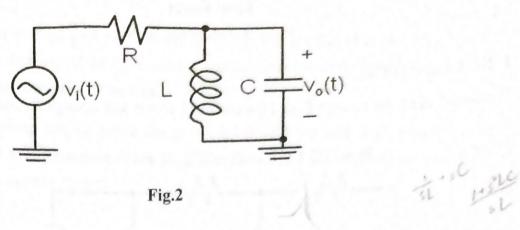
1. DC Circuit (10%)

Please calculate the voltage V_i and the current I_i across and through R_I and R_2 .

2. Time-domain Responses (8%)

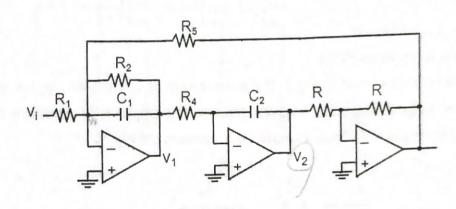
Consider the circuit shown in Fig.1. If the waveform of v_0 contains ripples, which action(s) below help to suppress or even remove the ripples? (i) increase R (ii) increase L (iii) increase C? Please explain your answers clearly.



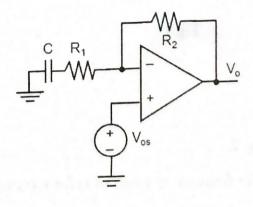

Fig.1

3. Passive filters (18%)

Consider the circuit shown in Fig. 2.

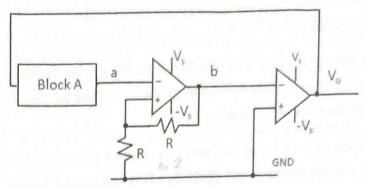

- (a) (6%) Please derive the transfer function (in terms of s) for $v_0(s)/v_i(s)$.
- (b) (4%) According to the answer in (a), is it a low-pass, or band-pass, or high-pass filter? Please **explain** your answers clearly.
- (c) (8%) If we would like to increase the quality factor of the filter, how could the

individual components (i)R (ii)C (iii)L be adjusted? Please explain your answers clearly.

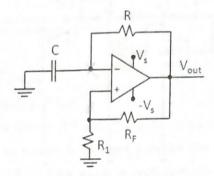


4. Active filters and Opamps (20%)

(a) (10%) Please derive the transfer function V₂(s)/V_i(s) of the biquad filter as shown below.



- (b) (5%) Please describe how to determine the quality factor from the measured frequency response.
- (c) (5%) For the op-amp circuit as shown, please calculate the output voltage due to the dc offset V_{os} . What would be the output if the capacitor is not inserted?


5. Oscillators (20%)

(a) (5%) Below is an incomplete schematic of the triangular, square-wave oscillator circuit used in our lab. Please draw the circuit diagram represented by Block A.

(b) (5%) Following part (a), given that $V_s = 10$ V, please draw at least one period for the waveforms at points a and b, and make sure the relationship between them is correct along the time axis.

(c) (10%) For the relaxation oscillator as shown below, please derive the frequency of the output oscillating between V_{max} and $-V_{max}$.

6. MOS Transistors (12%)

Consider the circuit in Fig. 3. Let g_m represent the transconductance of the transistor and assume the channel-length modulation effect of the transistor is negligible.

- (a) (4%) Please derive the expression for the voltage gain v_o/v_i .
- (b) (8%) If we increase V_G but find the voltage gain v_o/v_i reduces, what is the likely reason for this phenomenon?

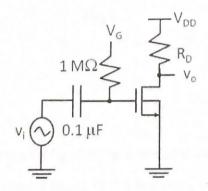


Fig.3

7. MOS Amplifiers (12%)

Consider the MOS amplifier in Fig. 4.

- (a) (4%) Let the voltage gain v_0/v_i be 100dB before the speaker is connected. But the voltage gain drop significantly when the speaker is connected. Would you explain the reason for the gain reduction?
- (b) (8%) Following (a), to solve the problem, should we add a (i)common-gate amplifier or a (ii)common-drain amplifier between v₀ and the speaker? Please explain your answer clearly.

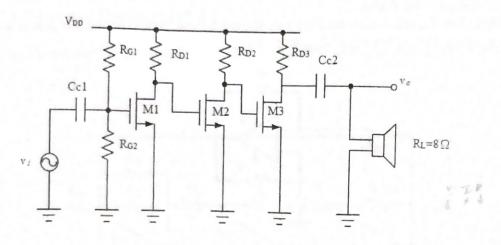


Fig.4