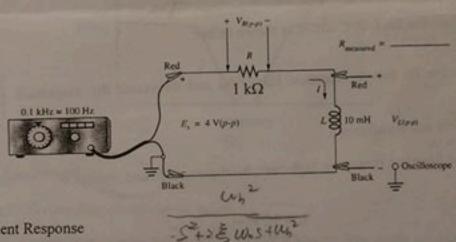
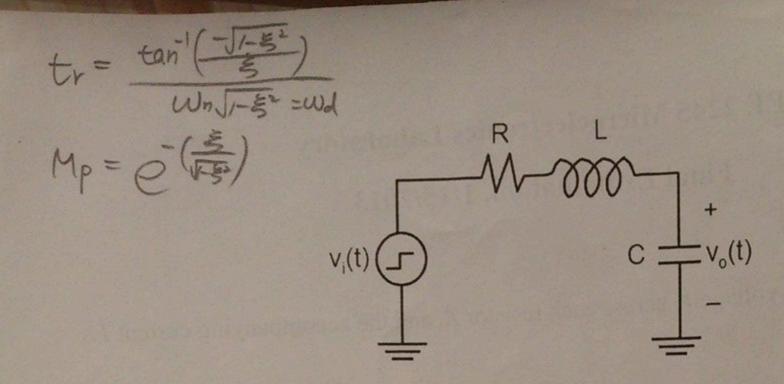
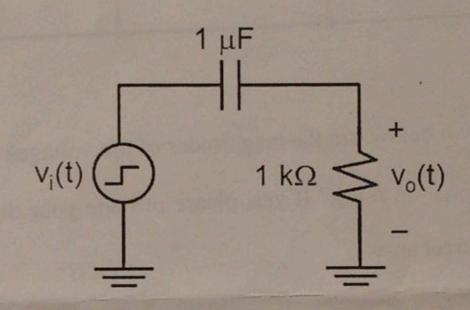

EE 2245 Microelectronics Laboratory


Final Examination, 1/15/2013

. (15%) DC and AC circuits

(10%) Please calculate the voltage V_i across each resistor R_i and the accompanying current I_i.

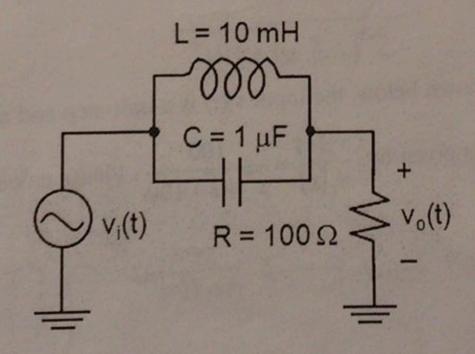

(2) (5%) For the R-L circuit shown below, are the magnitudes of the voltages $V_{R(p-p)}$ and $V_{L(p-p)}$ related to the input $E_{s(p-p)}$ by: $V_{L(p-p)} + V_{R(p-p)} = E_{s(p-p)}$? If yes, please provide your derivation; otherwise please provide your derivation of the correct answer.


2. (15%) Transient Response

(1) (6%) For the R-L-C circuit as shown below, the input $v_i(t)$ is a unit-step and all initial conditions are zero. The input-output relationship is given by $\frac{v_s(s)}{v_i(s)} = \frac{100}{s^2 + s + 100}$. Please calculate the overshoot and

rise time of its step response. e^{-at} e^{-at}

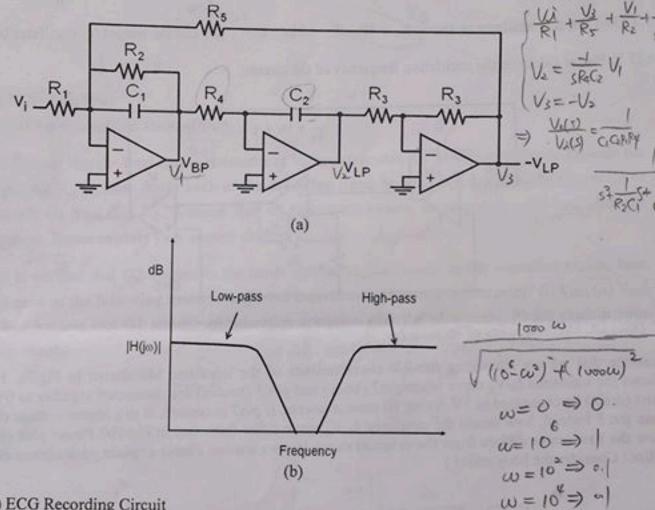
(2) (9%) For the R-C circuit as shown below, the input square waveform v_i(t) has a minimum value at 0 V and a maximum value at 1 V. The period of v_i(t) is large enough for the output v₀(t) to reach the steady state. Please derive vo(t) when vi(t) rises from 0 to 1 V and decreases from 1 to 0 V, and draw one period of the output waveform $v_o(t)$.



3. (10%) Passive Filter: For the L-R-C circuit as shown below:

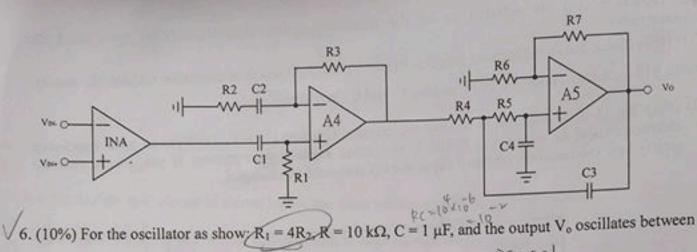
(1) (7%) Please derive its transfer function $V_o(s)/V_i(s)$ and determine the magnitude $\frac{|V_o(j\omega)|}{|V_o(j\omega)|}$ at

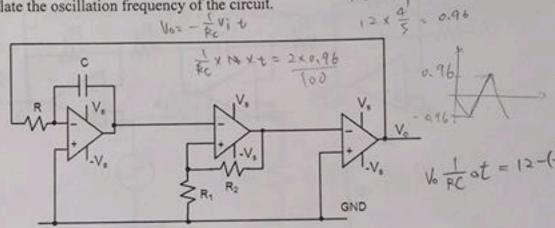
frequency $\omega = 0$, 10000 and ∞ radian/sec.


(2) (3%) What type of filter is it (low-pass, high-pass, band-pass, and band reject)?

(16%) Active Filter Consider the circuit shown in Fig.4a. Assume all Opamps are ideal Opamp and that the resistors (Ri)

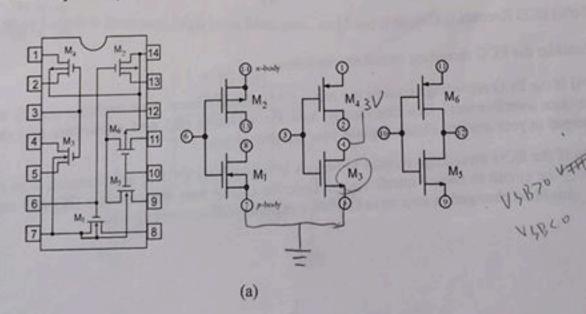
and capacitors (C_i) are selected to let the transfer function $H(s)=V_{BP}(s)/V_i(s)$ have band-pass


- (1) (10%) Please derive the transfer function $H(s) = V_{BP}(s)/V_i(s)$ and then determine whether the quality factor will increase or decrease by increasing C_1 and C_2 , respectively.
- (2) (6%) Would it be possible to modify the transfer function H(s)=V_{BP}(s)/V_i(s) to have band-stop characteristics, as shown in Fig.4b? If no, please explain your answer. If yes, please describe clearly how the resistors (R_i) and capacitors (C_i) should be changed.


(10%) ECG Recording Circuit

Consider the ECG recording circuit shown below.

- (5%) If the ECG recordings contain too much 60-Hz interferences, how could we modify the circuit to reduce interferences? Describe clearly how the resistors (Ri) and capacitors (Ci) should be changed in your answer. Please explain your answers clearly.
- 2) (5%) If the ECG recordings contain too-much low-frequency (<1Hz) interferences, how could we modify the circuit to reduce interferences? Describe clearly how the resistors (R_i) and capacitors (C_i) should be changed in your answer. Please explain your answers clearly.



±12 V. Please calculate the oscillation frequency of the circuit.

7. (8%) DC characteristics of MOSFETs

Assume that we are measuring the I-V characteristics of the transistor M3 shown in Fig.7a. Fig.7b shows the measured I_d-V_g curve when pin7 (body) and pin 5 (source) are connected together to 0V. Let pin4 (drain) be connected to 3V during all measurements. If pin7 is connected to a higher voltage (0.3V) than pin 5 instead, how would the measured I_d-V_g curve differ from that in Fig.7b? Please plot clearly how the new curve differs from the original curve in your answer. Please explain your answer clearly (Hint: Consider the body effect)

