EE 2245 Microelectronics Laboratory

Final Examination (solutions), 6/21/2011

1. (15%)

(a) (8%) For the circuit as shown (left), please calculate the Norton current (I_N) and the Norton resistance (R_N) for the network to the left of the 47- Ω resistor. Please also explain how you would implement the current source I_N ?

(b). (7%) For the R-L circuit as shown, there is one thing you must do before measuring the voltage waveform V_R across the resistor by using an oscilloscope. What is that important step? Please describe the reason as well. Is it true that the peak-to-peak voltage values are related to the input voltage by: $V_{R(p-p)} + V_{L(p-p)} = E_{(p-p)}$? If not, please derive the correct relationship.

Sol:

(a)
$$
R_{th} = 220 + (3.3k/330) = 520 \Omega
$$

 $V_{th} = 12 \cdot \frac{330}{330 + 3.3k} = 1.091 V; I_N = \frac{V_{th}}{R_{th}} = 2.1 \times 10^{-3} A$

The current source I_N can be constructed by using a power supply in series with a resistor (the resistance is large) as shown.

(b) The important step: switch the positions of R and L; otherwise the negative end of the measuring probe would short the inductor. R,L 不互換的話,在量測 VR時會讓電感兩端短路。

No. It should be:
$$
V_{L(p-p)}^2 + V_{R(p-p)}^2 = E_{p-p}^2
$$
.

Reason:

$$
V_{L}(s) = \frac{Ls}{Ls + R} E(s); V_{R}(s) = \frac{R}{Ls + R} E(s)
$$

\n
$$
V_{L}(j\omega) = \frac{jL\omega}{jL\omega + R} E(j\omega); V_{R}(j\omega) = \frac{R}{jL\omega + R} E(j\omega)
$$

\n
$$
|V_{L}(j\omega)| = \frac{\omega L}{\sqrt{\omega^{2}L^{2} + R^{2}}} \cdot |E(j\omega)|; |V_{R}(j\omega)| = \frac{R}{\sqrt{\omega^{2}L^{2} + R^{2}}} \cdot |E(j\omega)|
$$

\nSo $V_{L(p-p)}^{2} + V_{R(p-p)}^{2} = E_{p-p}^{2}$

2. (15%) For the R-L-C circuit as shown, the input v_i(t) is a unit-step, and R = 5 Ω , L = 1 H, and C = 10 mF. Assume the initial condition $v_0(0) = 0$, please calculate the output response $v_0(t)$. In addition, please calculate the rise time and overshoot in the step response.

Sol:

$$
\frac{v_o(s)}{v_i(s)} = \frac{\frac{1}{sC}}{R + sL + \frac{1}{sC}} = \frac{100}{s^2 + 5s + 100}, \text{so } \omega_n = 10, \xi = 0.25
$$

$$
v_o(s) = \frac{100}{s^2 + 5s + 100} v_i(s) = \frac{100}{s^2 + 5s + 100} \frac{1}{s} = \frac{1}{s} - \frac{s + 5}{s^2 + 5s + 100}
$$

\n
$$
= \frac{1}{s} - \frac{s + \frac{5}{2}}{\left(s + \frac{5}{2}\right)^2 + \left(\frac{5\sqrt{15}}{2}\right)^2} - \frac{\frac{5}{2}}{\left(s + \frac{5}{2}\right)^2 + \left(\frac{5\sqrt{15}}{2}\right)^2}
$$

\n
$$
\therefore v_o(t) = u(t) - e^{-2.5t} \cos\left(\frac{5\sqrt{15}}{2}t\right) - \frac{1}{\sqrt{15}} e^{-2.5t} \sin\left(\frac{5\sqrt{15}}{2}t\right)
$$

\nRise time = $\tan^{-1}\left(-\sqrt{1 - \xi^2} / \xi\right) / \left(\omega_n \sqrt{1 - \xi^2}\right) = \frac{1.82347}{\frac{5\sqrt{15}}{2}} = 0.188$ sec.
\n
$$
\text{Overshoot} = \exp\left(-\xi \pi / \sqrt{1 - \xi^2}\right) = 0.444 = 44.4\%
$$

3. (20%)

(a) (8%) Given a 2nd-order RLC circuit whose transfer function is $H(s)$ $H(s) = \frac{25}{s^2 + s + 25}$, please calculate the magnitudes and phases at frequencies $\omega = 0$, ∞ , and the natural frequency.

(b) (6%) Please use one resistor (R), one capacitor (C), and one inductor (L) to implement a passive band-reject filter. You must derive the transfer function between the input and output.

(c) (6%) Please use passive elements to implement a high-pass filter. You must derive the transfer function between the input and output.

Sol.:

(a)
$$
H(j\omega) = \frac{25}{(25 - \omega^2) + j\omega}
$$
, $|H(j\omega)| = \frac{25}{\sqrt{(25 - \omega^2)^2 + \omega^2}}$, $\angle H(j\omega) = -\tan^{-1} \left(\frac{\omega}{25 - \omega^2}\right)$
\n $\omega = 0$, $/H(j\omega) = 1$, $\angle H(j\omega) = 0^\circ$
\n $\omega = \omega_n = 5$, $/H(j\omega) = 5$, $\angle H(j\omega) = -90^\circ$
\n $\omega = \infty$, $/H(j\omega) = 0$, $\angle H(j\omega) = -180^\circ$
\n(b) Band-reject:

$$
\frac{v_{o}(s)}{v_{i}(s)} = \frac{s^{2} + \frac{1}{LC}}{s^{2} + \frac{1}{RC}s + \frac{1}{LC}}
$$

At
$$
\omega = 0
$$
, $\left| \frac{v_o(j\omega)}{v_i(j\omega)} \right| = 1$. At $\omega = \infty$, $\left| \frac{v_o(j\omega)}{v_i(j\omega)} \right| = 1$. At $\omega = 1/\sqrt{LC}$, $\left| \frac{v_o(j\omega)}{v_i(j\omega)} \right| = 0$. Thus it is a band-reject

filter.

(c)

$$
\frac{v_o(s)}{v_i(s)} = \frac{R}{R + \frac{1}{sC}} = \frac{sRC}{sRC + 1}
$$

4.(15%)

(a) (5%) How to find the quality factor of a circuit from the measured frequency response?

(b) (10%) Find the transfer function $v_2(s)/v_i(s)$ of the biquad filter as shown.

Sol:

(a) From the measured frequency response as shown: $2 - \omega_1$ $Q = \frac{w_r}{\sqrt{2\pi}}$ $\omega_2 - \omega$ $=\frac{\omega}{\omega}$

5. (20%)

(a) (10%) For the oscillator circuit as shown, please derive the oscillation frequency and determine the ratio of R_1/R_2 in order to start the oscillation.

(b) (10%) For the triangular, square-wave oscillator as show: $R_1 = 4R_2$, $R = 1$ k Ω , $C = 0.1$ μ F, and the output V_0 oscillates between ± 10 V. Please point out where the triangular wave and square wave are produced, respectively (namely, point A or point B). Also, please calculate the oscillation frequency of the circuit.

Sol:

(a)
$$
\frac{v^+(s)}{v_{out}(s)} = \frac{R \, ||\frac{1}{sC}}{(R + \frac{1}{sC}) + (R \, ||\frac{1}{sC})} = \frac{sRC}{R^2C^2s^2 + 3RCs + 1}
$$

 $(j\omega)$ $(j\omega)$ $\left(1-\omega^2R^2C^2\right)+j\omega 3RC$ *j RC* $v_{out}(j)$ *v*⁺(*j* $\frac{f(v^{+}(j\omega))}{\omega u^{+}(j\omega)} = \frac{j\omega RC}{\left(1 - \omega^{2}R^{2}C^{2}\right) + j\omega^{3}}$. when at resonant frequency $\omega_r = 1/(RC)$ $(j\omega)$ $\left| \frac{f(j\omega)}{g(x)} \right| = \frac{1}{3}$ $v_{out}(j)$ *v*⁺ $(j$ *out* , Then $(1+R_1/R_2) = 3$ to start the oscillation. $R_1/R_2 = 2$.

(b) Point A: triangular wave

Point B: square waveform

The square waveform oscillates between ± 10 V, so the triangular wave oscillates between ± 8 V (± 10)

$$
-R1/(R1+R2) = \pm 10x0.8 = \pm 8
$$

So for the integrator on the left: for $V_0 = 10$ V

$$
V_o \frac{1}{RC} \cdot \Delta t = 10 \cdot \frac{1}{1k\Omega \cdot 0.1\mu F} \Delta t = 8 V - (-8 V) = 16 V
$$

 $\Rightarrow \Delta t = 0.00016$ sec.

The complete period T = $2\Delta t$ = 0.00032 (after considering Vo = -10 V)

Frequency = $1/T = 3125$ Hz

6. (15%)

(a) (6%) Please draw the schematic of a common-gate amplifier and compare its small-signal gain to that of a common-source amplifier. Which gain is larger? Which amplifier has a smaller input impedance? Please explain.

(b) (9%) Please draw the schematic of a cascode amplifier using n-type MOS transistors and a load resistor RL. Please explain how to make sure the transistors are operated in the saturation region in terms of the gate-to-source voltage (V_{GS}), drain-to-source voltage (V_{DS}), and the threshold voltage (V_T).

Sol.:

(a) The common-gate amplifier:

Compared to the common-source amplifier, CG's overall voltage gain is smaller by a factor of about $1+g_mR_{sig.}$

The input impedance of CG is around $1/gm$, while that of CS is very large (since the gate current is close to zero due to the gate oxide)

(b)

For operation in the saturation region:

 $V_{DS,Q1}$ ≥ $V_{GS,Q1}$ – V_T > 0*;* $V_{DS,Q2}$ ≥ $V_{GS,Q2}$ – V_T > 0