EE 2245 Microelectronics Laboratory

Lab 6: Measurement: Parameter extraction of MOSFET SPICE model

實驗室: _____组別 _____Names and ID Numbers: _

Material, instrument and software

- CD4007UB MOSFET array × 1; resistors and capacitors
- Power supply, function generator, oscilloscope, and digital multi-meter.
- HSPICE and Awaves

Procedure

The CD4007UB MOSFET array is chosen for our measurements. This array consists of three N-MOSFETs and three P-MOSFETs. The definition of each pin is depicted in Fig. 1. Note that the body terminal in N-MOSFETs should always be connected to the most negative voltage, while that in P-MOSFETs should be connected to the most positive voltage. Also, the CD4007 is a delicate device. Therefore, **make sure you turn off the power supply before changing any circuit connections.** The measured data will be used to extract the SPICE model parameters. The established model will be simulated and verify with the measured results.

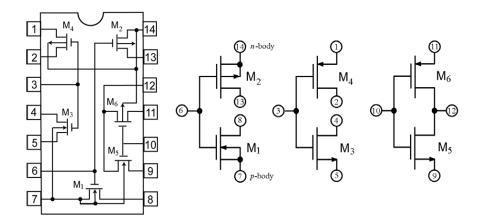


Fig. 1 The CD4007 MOSFET array

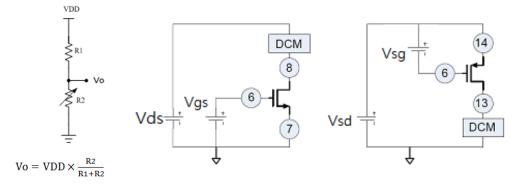


Fig. 2 Test configurations for N-MOSFET (center) and P-MOSFET (right), respectively

A. Measurement of I-V characteristics

Measure the *I_{DS}-V_{DS}* curves of a N-MOSFET (Fig. 2, center) under different *V_{GS}* (*V_{DS}*: 0 V to 5 V, 0.5 V/step; *V_{GS}*: 2 to 5 V, 1 V/step). (你可由 power supply 所提供的固定 5V 經由電阻分壓(Fig. 2, left)產 生 V_{GS} 所需的偏壓)

V _{GS} /V _{DS}	0	0.5	1	1.5	2	2.5
2						
3						
4						
5						
V _{GS} /V _{DS}	3	3.5	4	4.5	5	
2						
3						
4						
5						

Table 1: N-MOSFET (IDS-VDS); unit: mA

2. Measure the I_{DS} - V_{GS} curves of an N-MOSFET under a fixed V_{DS} of 3.3 V (V_{GS} : 1 V to 3.3 V, 0.1 V/step).

V_{DS}/V_{GS}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1
3.3												

Table 2: N-MOSFET (IDS-VDS; VDS= 3.3 V); unit: mA

V _{DS} /V _{GS}	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3
3.3												

3. Repeat steps (1) and (2) for a P-MOSFET (Fig. 2, right). Note: PMOS 的實驗我建議與鄰座同學一起 合作,用兩台電源供應器來產生 V_{SG}及 V_{SD}.

V _{SG} /V _{SD}	0	0.5	1	1.5	2	2.5
2						
3						
4						
5						
V _{SG} /V _{SD}	3	3.5	4	4.5	5	
2						
3						

Table 3: P-MOSFET (IsD-VsD); unit: mA

4			
5			

Table 4: P-MOSFET (IsD-VsD; VsD= 3.3 V); unit: mA

V _{SD} /V _{SG}	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2	2.1
3.3												
V _{SD} /V _{SG}	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0	3.1	3.2	3.3

B .	Parameter	extraction

3.3

請將模擬程式(後面有附範例)與要求的模擬結果列印出來,與這份報告一起繳交。

1. Based on the measured results, extract the DC parameters V_t (threshold voltage; note: the V_t of PMOS is negative), k_p (transconductance parameter , $\not \not = \mu C_{ox}$), and Lambda (channel-length modulation) in SPICE level one MOSFET model for both NMOS and PMOS. Assuming the following parameters are known: $W= 30 \ \mu m$, $L= 10 \ \mu m$, and $t_{ox}= 100 \ nm$ (for PMOS and NMOS).

Please simulate, based on your own model, in HSPICE for the measurement conditions of Table 1 to 4, respectively, and view the results by using the graphical software (Awaves). Please print out these four figures. Then you should mark the measured data from Table 1 to 4 on these figures for comparison. If your procedure is correct, they shall be very close. Within a reasonable range, you can adjust your parameters to fit the measured data better. Also, R_S and R_D (source and drain parasitic resistances) can be added in your model to fit the I_D - V_{DS} curves especially for the triode region.

- 2. Vary the parameters of the N-MOSFET model one at a time to simulate the I_D - V_{DS} (let $V_{GS} = 2V$) curves. Please attach the figures and comment accordingly in your report about the changes in I_D - V_{DS} curves.
 - (1) V_{to} : from 0.8 to 1.6 V (0.2 V/step)
 - (2) k_p : from 50 μ to 250 μ (50 μ /step)
 - (3) Lambda: from 0.02 to 0.06 (0.01/step)

ab6.sp - 記事本	
檔案(F) 編輯(E) 格式(O) 檢視(V) 說明(H)	
lab6 n_mos	\$此為NMOS範例程式
.param Vtn=1.28 + kn=156.8u + lam=0.0098 + toxn=100n + cbd0=2p + cgso=0.1p	\$電晶體參數
.model N_MOS nmos level=1 vto=vtn kp=kn + lambda=lam tox=toxn cgso=cgso + cgdo=cgso cbd=cbd0 cbs=cbd0	\$將參數讀進自訂模型中建立model
*******	\$Table1 範例 ***********************************
M1 d1 g1 gnd! gnd! N_MOS W=30u L=10u Vds1 d1 gnd! 3.3 Vgs1 g1 gnd! 3.3	\$呼叫電晶體M1・並輸入長寬 \$設定電壓工作點
.DC Vds1 0 5 0.1 sweep Vgs1 2 5 1	\$Tablel 直流分析指令・針對Vdsl與Vgsl進行直流掃描。
.probe dc I(M1)	\$選擇I(M1)輸出為圖形模式
**********	\$Table2 範例 ***********************************
M2 d2 g2 gnd! gnd! N_MOS W=30u L=10u Vds2 d2 gnd! 3.3 Vgs2 g2 gnd! 3.3	\$呼叫電晶體M2・並輸入長寬 \$設定電壓工作點
.DC Vgs2 0 3.3 0.1	\$Table2 直流分析指令,針對Vgs2進行直流掃描。
.probe dc I(M2)	\$選擇I(M2)輸出為圖形模式
*********	\$Vary the parameters 範例
M3 d3 g3 gnd! gnd! N_MOS W=30u L=10u Vds3 d3 gnd! 3.3 Vgs3 g3 gnd! 2	\$呼叫電晶體M3・並輸入長寬 \$設定電壓工作點
.DC Vds3 0 5 0.5 sweep Vtn 0.8 1.6 0.2 *.DC Vds3 0 5 0.5 sweep kn 50u 250u 50u *.DC Vds3 0 5 0.5 sweep 1am 0.02 0.06 0.01	\$針對不同參數進行直流掃描分析, \$必須消除註解符號("*")分開跑圖形。
.probe dc I(M3)	\$選擇I(M3)輸出為圖形模式
.option post probe .end ************************************	\$設定顯示輸出 \$結束模擬所需指令 \$範例結束 **********************************
4	