
EE 2245 Microelectronics Labs

Lab 5: Oscillator Design

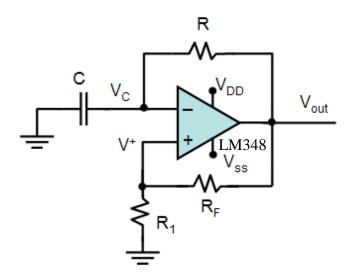
實馬	儉′	室	: 組別:	Names and ID Numbers:	
貝心	IXX _	王	・紅刀」・	Names and 1D Numbers.	

Design Problem I: The Wien-Bridge Oscillator

You are required to implement a Wien-bridge oscillator as shown with an oscillation frequency of 6 kHz and a tolerance of \pm 5%. For your implementation, you can only use resistors with values from 1 k Ω to 40 k Ω . Please show your waveform to a TA.

In the report, you need to provide:

- (1) Design procedure.
- (2) Values of passive elements used in the experiment.
- (3) The measured output waveform with some data points indicating the values.
- (4) Comments on the experimental result compared to your calculation.

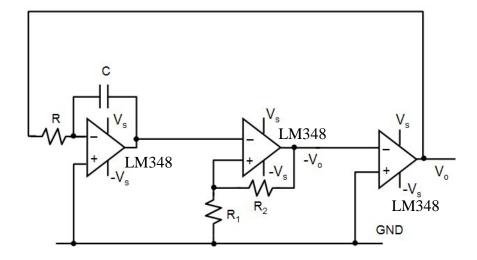

Design Problem II: The Relaxation Oscillator

You are required to implement a relaxation oscillator as shown with an oscillation frequency of 5 kHz and a tolerance of $\pm 5\%$. Before you implement the circuit, please show your calculation of the oscillation frequency to a TA. For your implementation, you can only use resistors with values from 1 k Ω to 10 k Ω . Please show your waveform to a TA.

In the report, you need to provide:

(1) Design procedure.

- (2) Values of passive elements used in the experiment.
- (3) The measured waveforms of V_{out} and V_c with some data points indicating the values.
- (4) Comments on the experimental result compared to your calculation.



Design Problem III: Triangular, Square-Wave Oscillator

You are required to implement a triangular- and square-wave oscillator as shown with a frequency of 1 kHz and a tolerance of \pm 5%. For your implementation, use 1 k Ω \leq R $_1$ \leq 20 k Ω , 1 k Ω \leq R $_2$ \leq 20 k Ω , and 1 k Ω \leq R \leq 30 k Ω . Please demonstrate your waveforms to a TA.

In the report, you need to provide:

- (1) Design procedure.
- (2) Values of passive elements used in the experiment.
- (3) The measured square and triangular waveforms with some data points indicating the values.
- (4) Comments on the experimental result compared to your calculation.

