EE 2245 Microelectronics Labs

Lab 3: Passive Filters

實驗室:_____组別_____Names and ID Numbers: _____

Objectives :

- (1) Become familiar with the characteristics of passive low-pass and high-pass filters.
- (2) Plot the phase response for low-pass and high-pass filters.
- (3) Analyze the frequency response of tuned band-pass and band-stop filters.
- (4) Become adept in the use of semilog graph paper.

Equipment Required :

Resistors: 300Ω , $1 k\Omega$ Capacitors: 0.1μ F Inductors: 10 mH Instruments: Digital multimeter (DMM), digital oscilloscope, function generator.

注意:填寫實驗數據時如有『單位』請記得填入。 Procedure:

Part 1: Low-Pass R-C Filter Design

Figure 1-1

You are required to design a low-pass filter, as shown in Fig. 1-1, with a -3-dB frequency at 20 kHz (with tolerance of $\pm 2\%$, i.e. 19.6 – 20.4 kHz). <u>Please demonstrate your result to a teaching assistant or teacher.</u>

(a) Please show your analysis, and write down the resistor and capacitor values of your choice. Please also record the measured values.
<u>Analysis:</u>

R =____; C =____; $R_{measured} =$ ____; $C_{measured} =$ ____;

(b) Write down the magnitude and phase of $V_o(j\omega)/V_i(j\omega)$ in terms of R and C. <u>Analysis:</u>

 $|V_o(j\omega)/V_i(j\omega)| =$ _____; $\angle (V_o(j\omega)/V_i(j\omega)) =$ _____;

(c) Please complete Table 1-1. The angle θ is the angle by which V_o leads the input voltage V_i , related to the measured difference in time (Δt) between V_o and V_i . The sign of θ is minus when V_o lags the input voltage V_i . Please use the measured and calculated gains and phases in Table 1-1 to complete Graph 1-1 and 1-2.

Frequency	measured	$A_{v} = V_{o(p-p)}/V_{i(p-p)}$	$A_{v} = V_{o(p-p)}/V_{i(p-p)}$	measured ∆t	θ (degree)	θ (degree)
(kHz)	$V_{o(p-p)}(\mathbf{V})$	(measured, dB)	(calculated, dB)	(sec)	(measured)	(calculated)
0.05						
0.1						
0.5						
1						
5						
10						
15						
20						
30						
40						
70						
100						
200						
500						
1000						

Table 1-1

10⁶

Graph 1-2

(d) Please determine the frequency of the measured curve at which the angle is -45° from Graph 1-2.

f =______ Hz How does it compare with the measured -3-dB frequency? Are they the same? <u>Comment</u>:

Part 2: Band-Pass Filter

(a) Construct the network of Fig. 2-1. Fill in the measured resistor value and R_l for the inductor. $R_{measured} = _$, $R_{l measured} = _$, $L_{measured} = _$, $C_{measured} =$

(b) Write down the transfer function of $V_o(s)/V_i(s)$ without considering R_l . By replacing $s = j\omega$ into $V_o(s)/V_i(s)$, what is the dc gain (at $\omega = 0$) of $|V_o(j\omega)/V_i(j\omega)|$? <u>Calculation</u>:

 $V_o(s)/V_i(s) =$ ______, $|V_o(j\omega)/V_i(j\omega)|_{\omega = 0} =$ ______

The natural frequency of the series *LRC* circuit is $f_n = \frac{1}{2\pi\sqrt{LC}}$ (Hz). By neglecting R_l , what is the gain of $|V_o(j\omega)/V_i(j\omega)|$ at the natural frequency ω_n ? Calculation:

$$f_n = \frac{1}{2\pi\sqrt{LC}} = \underline{\qquad} \text{Hz, } |V_o(j\omega_n)/V_i(j\omega_n)| = \underline{\qquad}$$

(c) Please calculate the ratio of V_o/V_i at the natural frequency using the measured resistor values (including that of the inductor). Please also calculate the gain at other frequencies listed in Table 2-1 and fill in the values.

Calculation:

 $|V_o(j\omega_n)/V_i(j\omega_n)| =$

(d) Energize the network of Fig. 2-1 and set the function generator to each of the frequencies appearing in Table 2-1. Make sure $V_i = 8 V_{(p-p)}$ on the scope before you apply to the circuit. You may observe the loading effect of the 300- Ω resistor at some frequencies such that V_i will not be 8 V_(p-p), since the function generator has an impedance of 50 Ω . Please complete Table 2-1.

(e) Plot the measured and calculated A_v vs. frequency on Graph 2-1. Find the maximum value of A_v and compare to the calculated value in part (c). Please comment accordingly.

 $A_{v, max} =$

Comment:

Table 2-1						
Frequency	$V_{o(p-p)}$	$A_v = V_{o(p-p)}/V_{i(p-p)}$	$A_v = V_{o(p-p)}/V_{i(p-p)}$			
(kHz)	(measured)	(measured)	(calculated)			
0.1						
0.2						
0.4						
0.6						
0.8						
1.0						
1.2						

Table 2.1

1.4		
1.6		
1.8		
2.0		
3.0		
4.0		
5.0		
6.0		
8.0		
10.0		
12.0		
14.0		
16.0		
18.0		
20.0		
40.0		
60.0		
100.0		

Part 3: Band-Stop Filter Design

You are required to design a band-stop filter, as shown in Fig. 3-1, with a band-stop frequency at 1 kHz with a tolerance of $\pm 10\%$ (i.e. 0.9 to 1.1 kHz), and a corresponding lowest gain less than -15 dB (i.e. 0.178) at that frequency. <u>Please demonstrate your result to a teaching assistant or teacher</u>.

Figure 3-1

(a) Write down the transfer function of $V_o(s)/V_i(s)$ without considering R_i . By replacing $s = j\omega$ into $V_o(s)/V_i(s)$, what is the dc gain (at $\omega = 0$) of $|V_o(j\omega)/V_i(j\omega)|$? Calculation:

 $V_o(\mathbf{s})/V_i(\mathbf{s}) = \underline{\qquad}, |V_o(j\omega)/V_i(j\omega)|_{\omega=0} = \underline{\qquad}$

The natural frequency of the parallel *LC* network is $f_n = \frac{1}{2\pi\sqrt{LC}}$ (Hz). By neglecting R_l , what is the gain of $|V_o(j\omega)/V_i(j\omega)|$ at f_n ? Calculation:

$$f_n = \frac{1}{2\pi\sqrt{LC}} = \underline{\qquad} Hz, |V_o(j\omega_n)/V_i(j\omega_n)| = \underline{\qquad}$$

(b) By considering R_l , please determine the ratio $|V_o(j\omega_n)/V_i(j\omega_n)|$. Calculation: $|V_o(j\omega_n)/V_i(j\omega_n)| =$

(c) Please write down the inductor, capacitor, and resistor values of your choice, and the measured values.

 $R = _, L = _, C = _$ $R_{measured} = _, R_{l measured} = _, L_{measured} = _, C_{measured} = _$

(d) Energize the network of Fig. 3-1 and set the function generator to each of the frequencies appearing in Table 3-1. Make sure that $V_i = 8 V_{(p-p)}$ is on the scope first. Please complete Table 3-1. R_l should be considered when calculating A_{ν} .

(e) Plot the measured and calculated A_v vs. frequency on Graph 3-1.

Frequency	V _{o(p-p)}	$A_v = V_{o(p-p)} / V_{i(p-p)}$	$A_v = V_{o(p-p)} / V_{i(p-p)}$
(kHz)	(measured)	(measured)	(calculated)
0.1			
0.2			
0.3			
0.4			
0.5			
0.6			
0.7			
0.8			
0.9			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Table 3-1

