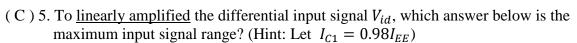
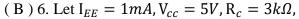

2021/06/08

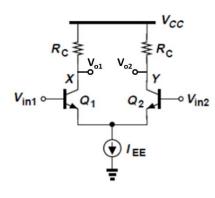
Student ID:	
Name:	


- (A) 1. Which is **NOT** the right description of a differential pair with an ideal tail current source?
 - (a) Differential signals are measured with respect to ground
 - (b) Less pro to common-mode noise
 - (c) Transistor currents remains the constant as input common-level increases
 - (d) Transistor currents change in the opposite direction when a differential signal is applied.

For question 2~6, please answer according to the circuit below, and ignore the base current.

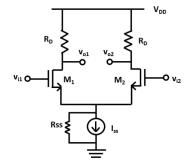

- (C) 2. Which is **NOT** a right description of this BJT differential pair?
 - (a) Q_1 , Q_2 are identical
 - (b) I_{EE} is the tail current source
 - (c) differential gain= V_{o1}/V_{in1}
 - (d) output common-mode level= $(V_{o1}+V_{o2})/2$
- (C) 3. When V_{in1}=V_{in2}, which is **NOT** correct?
 - (a) $I_{C1} = I_{C2}$
 - **(b)** $V_{o1} = V_{o2}$
 - (c) $V_{o1}=V_{CC}-I_{EE}\times R_C$
 - (d) $V_{BE1}=V_{BE2}$

- (a) $I_{C1}=0$
- **(b)** $I_{C1}=I_{EE}$
- (c) $V_{o1}=V_{CC}$
- (d) $V_{o2}=0$



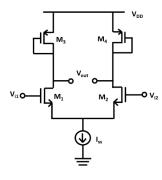
- (a) $-26 \text{mV} < V_{id} < 26 \text{mV}$
- **(b)** $-60 \text{mV} < V_{id} < 60 \text{mV}$
- (c) $-100 \text{mV} < V_{id} < 100 \text{mV}$
- (d) no limitation

Find g_m for each of the two transistors at the operating point.


- (a) 10 mA/V
- **(b)** 20 mA/V
- (c) 26 mA/V
- (d) 40 mA/V

For question 7~9, please answer according to the circuit below (M₁, M₂ are identical). Where R_{ss} represent the output resistance of the tail current source.

(D) 7. Let $I_{ss}=0.8mA$, $\mu_nC_{ox}=0.2mA/V^2$, $\frac{W}{L}=100$, $R_D=5k\Omega$, $R_{ss}=25k\Omega$. Please find the differential gain.


- (a) 141.25 V/V
- **(b)** 100 V/V
- (c) 28.25 V/V
- (d) 20 V/V

- (A) 8. Which is the most efficient way to achieve high input common mode rejection?
 - (a) Increase R_{ss}
 - (b) Increase I_{SS}
 - (c) Increase V_{DD}
 - (d) Increase R_D
- (D) 9. Which is the possible way to extend the differential input swing range under the fixed tail current Iss?
 - (a) Decrease R_{ss}
 - (b) Increase R_D
 - (c) Decrease V_{DD}
 - (d) Decrease W/L of both M_1 and M_2
- (A) 10. Please find the differential mode voltage gain of the circuit shown below.

(a)
$$-g_{m1}(\frac{1}{g_{m3}}||r_{o3}||r_{o1})$$

- **(b)** $-g_{m1}g_{m3}(r_{o3}||r_{o1})$
- (c) $-g_{m1}(r_{o3}||r_{o1})$
- (**d**) $-(g_{m1}r_{o1})*(g_{m3}r_{o3})$

