EE225500

電子學 Quiz 4

Spring 2021

2021/05/11

Student I	D: 10	80	611	12
-----------	-------	----	-----	----

Name: 林 婧 Class: King □ Huang ⑰

Part1 Single choice (50%)

For the following seven questions, please choose the most appropriate answer:

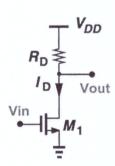
- (B) 1. For a n-channel MOSFET, with V_{TH}=1V, V_D=V_G=2V, V_S=0V, this device is operation in (A) Linear region; (B) Saturation region; (C) Active; (D) Cutoff
- (\bigwedge) 2. MOSFET are often used as an amplifier, which condition is ideal for a voltage amplifier? (A) $R_{in} = \infty$, $R_{out} = 0$; (B) $R_{in} = 0$, $R_{out} = \infty$; (C) $R_{in} = R_{out} = \infty$; (D) $R_{in} = R_{out} = 0$
- (R) 3. For a n-channel MOSFET, which statement is **right**?
 - (A) Source and drain are doped with p+ in n-substrate
 - (B) Source and drain are interchangeable since they are symmetry
 - (C) When V_G > V_{TH}, hole concentration is larger than electron concentration just under the gate, forming inversion layer called "channel"
 - (D) In saturation region, drain current is independent of gate voltage
- () 4. For a p-channel MOSFET in saturation region, which change will **NOT** increase drain current I_D?
 - (A) Increase oxide capacitance Cox
 - (B) Increase channel width
 - (C) Decrease channel length
 - (D) Increase gate voltage
- (\triangle) 5. Which correct statement is for a common-source stage?
 - (A) $R_{in} \sim \infty$; (B) It is a non-inverting amplifier; (C) Gain will increase when a small loading resistor is added to the output. (d) Output resistance is independent of I_D .

Part2 Calculation (50%)

Consider the circuit below, $\mu_n Cox = 200 \mu A/V^2$, W/L = 8um/1um, λ =0.1V⁻¹ for M₁, while V_{DD} = 3V, R_D = 5k Ω and V_{TH} = 0.5V.

- 1. What kind of amplifier it this? (CS, CD, CG)
- 2. What is I_D so that $V_{out} = 2V$?
- 3. Find the small-signal parameters, g_m , r_o of M_1 under this I_D ?
- 4. Find the input, output resistance and small-signal gain of this stage.

2.
$$I_D = \frac{V_{DD} - V_{out}}{R_D} = 200 \,\mu A$$


3.
$$g_{\text{M}} = \sqrt{2 \cdot \mu_{\text{n}} \cos \cdot \frac{W}{L} \cdot I_{\text{D}}} = 8 \cdot 10^{-4}$$

$$r_{\text{D}} = \frac{1}{\lambda I_{\text{D}}} = 50000 \Omega$$

4.
$$R_{in} = \infty$$

$$R_{out} = r_{o} \parallel R_{o} = 4545 \Omega$$

$$A_{v} = -g_{m} R_{D} = -4$$

