2021/04/13

Student ID:	108	061	112
Nama: tot			

Class: King Huang Name: 本下 耳

Part I (50%)

For the following questions, please choose the most appropriate answer:

- (C) 1. For a npn BJT with $V_{BE} = 0.8V$, $V_{CE} = 1V$, which mode does this transistor operates in? (A) Saturation; (B) Reverse active; (C) Active; (D) Cut off.
- (Δ) 2. For a npn BJT, which statement is true?
 - (A) Election diffusion in base determines the collector current
 - (B) Hole drift current in base determines the base current
 - (C) Election drift current in base determines the collector current
 - (D) Hole diffusion in base determines the emitter current
- (()) 3. Most of the holes in the base of a pnp transistor in active mode flow:
 - (A) into its emitter; (B) into its base; (C) into its collector; (D) out of its base
- (R) 4. Which of the following parameter will NOT affect the transconductance (gm) of a BJT? (A) Collector current; (B) Early voltage; (C) V_{BE}; (D) Temperature
- () 5. For a npn BJT in active mode with all device parameters and bias voltages fixed, while the Is changes by increasing the emitter area, which factor will remain the same.
 - (A) Collector current; (B) Output resistance; (C) Base current; (D) Early voltage

Part II (50%) For the npn transistor, let $V_{CE,sat} = 0.4V$, $\beta = 100$, $V_T = 26mV$

- 1. For the circuit on the right, let Q1 with $V_{BE,on} = 0.8V$.
 - (a) Find Ic and IB.
 - (b) Find the voltage at point Y.
 - (c) Find the small-signal parameters, r_{π} , and g_m of Q_1
 - (d) What is the maximum allowable value of Rc to keep Q1 in active region?

(a)
$$I_B = \frac{V_{cc} - V_{BE}}{R_B} = 1.7 \cdot 10^{-5} A$$

 $I_C = \beta I_B = 1.7 \cdot 10^{-3} A$

(b)
$$V_y = V_{cc} - I_c R_c = 0.8 \text{ V}$$

(c)
$$g_m = \frac{I_c}{V_T} = 0.065 \# S$$

$$r_{\pi} = \frac{\beta}{\beta_m} = 1829 \Omega$$

(d)
$$V_{cc} = V_{CE} + R_c I_c$$

 $2.5 = 0.4 + R_c \times 1.7 \cdot 10^{-3}$
 $R_c = 1235 \Omega$

