| EE2255
2021/03/09 | 電子學 Quiz 1 (CH1~2) | Spring 2021 | |---|---|--| | Student ID: 1080
Name: 木 靖 | 61112
Class: King 🔲 Huang | | | | oice Questions(50%)
ve questions, please choose "one" the mos | st appropriate answer. | | (a) Ge,
(b) As,
(c) B,
(d) P, | possible acceptor for Silicon? | | | (() 2. At room ten (a) Electrons (b) Electrons (c) Holes (d) Ions | | or contains what type of carrier? | | (a) Analog control (b) Digital since (c) The only | ment is NOT correct in description of Digit ircuit such as amplifier must process each pegnal assumes only a finite number of values difference between the analog and digital sircuit are more robust against noise | oint on a waveform s at only certain point of time | | (a) holes, 5x (b) holes, 5x (c) electrons, (d) electrons | 10^3 cm^{-3} , $5 \times 10^{17} \text{ cm}^{-3}$ | $n n_i = 1 \times 10^{10} \text{ cm}^{-3}$. What is its | | | on junction at equilibrium where the doping pectively, which is Correct ? | level in p and n-regions are NA | (a) N_A>N_D (b) N_D>N_A (c) N_A=N_D (d) Can not tell from this figure ## Part 2: Multiple Choice Questions (50%) For the following five questions, please choose the most appropriate answers. 10 points for exact correct answers and -5 points for each wrong choice, the lowest is zero point for each question.) 6. Figure 1.a & Figure 1.b show the carrier transport mechanisms, which cde statements are True? - (a) Figure 1.a is diffusion current, Figure 1.b is drift current - (b) Figure 1.b, current direction is the same as gradient direction - (c) In Figure 1.a, current is proportional to E. - (d) Both mechanisms can occur at the same time - (e) Increase in carrier mobility will lead to increase in both currents Figure1.a Figure 1.b (b d) 7. Which statements for a piece of p-type Si with $N_A=10^{15} cm^{-3}$ are Correct? - (a) Contains donor type dopants - (b)/p >> n - (e) majority carriers are electrons - (**d**) n<n_i - (a) As temperature increases, conductivity increases drastically (abe) 8. Which statements are **True** for an intrinsic Si at equilibrium state? - (a) np= n_i^2 - (b) n=p - (e) When electric field is applied, drift current=0 - (d) As temperature increase, conductivity decrease - (e) Has larger bandgap than Ge (We) 9. For a p-n junction in thermal equilibrium with zero bias. $N_A = 10^{19} \text{cm}^{-3}$ in the p region and $N_D=5x10^{17}$ cm⁻³ in the n region. x_n and x_p are depletion width in the n and p type regions, respectively. Which is **True** in describing the interface? - (a) the level of drift current equals that of diffusion current; - (b) $n=p=n_i$; - (c) electric field =0; - (d) potential difference =0; - (e) net current =0; ($_{DC}$) 16. For a p-n junction with doping levels of N_A , N_D and junction depths x_p , x_n on the p and n sides, respectively. At zero bias, which statements are **True**? - (a) Built-in potential decreases with increasing N_A - **(b)** Built-in potential increases with increasing N_D - (c) Net current is zero - (d) Build-in potential prevents diffusion of electrons from p-region to n-region - (e) Electric field falls to zero at the junction