EE2255 2021/03/09	電子學 Quiz 1 (CH1~2)	Spring 2021
Student ID: 1080 Name: 木 靖	61112 Class: King 🔲 Huang	
	oice Questions(50%) ve questions, please choose "one" the mos	st appropriate answer.
(a) Ge, (b) As, (c) B, (d) P,	possible acceptor for Silicon?	
(() 2. At room ten (a) Electrons (b) Electrons (c) Holes (d) Ions		or contains what type of carrier?
(a) Analog control (b) Digital since (c) The only	ment is NOT correct in description of Digit ircuit such as amplifier must process each pegnal assumes only a finite number of values difference between the analog and digital sircuit are more robust against noise	oint on a waveform s at only certain point of time
(a) holes, 5x (b) holes, 5x (c) electrons, (d) electrons	10^3 cm^{-3} , $5 \times 10^{17} \text{ cm}^{-3}$	$n n_i = 1 \times 10^{10} \text{ cm}^{-3}$. What is its
	on junction at equilibrium where the doping pectively, which is Correct ?	level in p and n-regions are NA

(a) N_A>N_D
(b) N_D>N_A
(c) N_A=N_D
(d) Can not tell from this figure

Part 2: Multiple Choice Questions (50%)

For the following five questions, please choose the most appropriate answers. 10 points for exact correct answers and -5 points for each wrong choice, the lowest is zero point for each question.

) 6. Figure 1.a & Figure 1.b show the carrier transport mechanisms, which cde statements are True?

- (a) Figure 1.a is diffusion current, Figure 1.b is drift current
- (b) Figure 1.b, current direction is the same as gradient direction
- (c) In Figure 1.a, current is proportional to E.
- (d) Both mechanisms can occur at the same time
- (e) Increase in carrier mobility will lead to increase in both currents

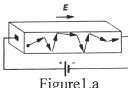


Figure1.a

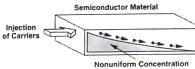


Figure 1.b

(b d) 7. Which statements for a piece of p-type Si with $N_A=10^{15} cm^{-3}$ are Correct?

- (a) Contains donor type dopants
- (b)/p >> n
- (e) majority carriers are electrons
- (**d**) n<n_i
- (a) As temperature increases, conductivity increases drastically

(abe) 8. Which statements are **True** for an intrinsic Si at equilibrium state?

- (a) np= n_i^2
- (b) n=p
- (e) When electric field is applied, drift current=0
- (d) As temperature increase, conductivity decrease
- (e) Has larger bandgap than Ge

(We) 9. For a p-n junction in thermal equilibrium with zero bias. $N_A = 10^{19} \text{cm}^{-3}$ in the p region and $N_D=5x10^{17}$ cm⁻³ in the n region. x_n and x_p are depletion width in the n and p type regions, respectively. Which is **True** in describing the interface?

- (a) the level of drift current equals that of diffusion current;
- (b) $n=p=n_i$;
- (c) electric field =0;
- (d) potential difference =0;
- (e) net current =0;

($_{DC}$) 16. For a p-n junction with doping levels of N_A , N_D and junction depths x_p , x_n on the p and n sides, respectively. At zero bias, which statements are **True**?

- (a) Built-in potential decreases with increasing N_A
- **(b)** Built-in potential increases with increasing N_D
- (c) Net current is zero
- (d) Build-in potential prevents diffusion of electrons from p-region to n-region
- (e) Electric field falls to zero at the junction