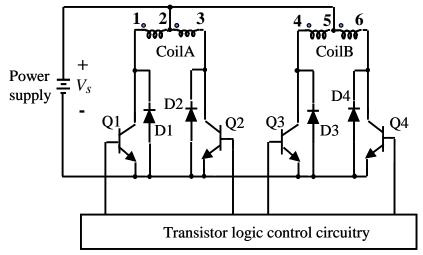
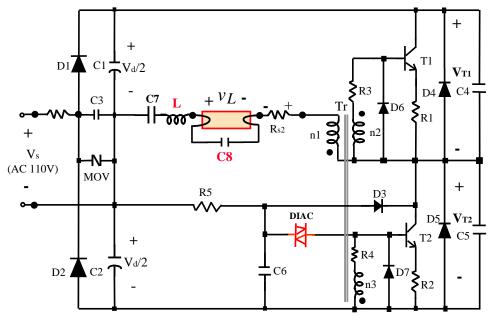

姓名:______ 學號:_____ Score: Total/2.16 = _____

Electrical Machinery Laboratory: Final Test (2022.06.15, 15:30-18:00)


A. Power Electronics

- 1. The commonly used power devices include diode, SCR, MCT, BJT, MOSFET, IGBT, TRIAC, etc.
 - (1) Which device is uncontrolled turn-on and turn-off: _____. (2%)
 - (2) Give the devices that requires continuous gate signal: _____, ____, (6%)
 - (3) Give the devices that requires pulse gate signals: _____, ____. (6%)
- The wide-bandgap devices can be turn-on and turn-off faster than Si-based devices. There are two kinds of wide-bandgap devices:
 and
 (4%)
- 3. Which device has **negative** temperature coefficient and is **not** suitable for parallel operation? MOSFET or BJT: ______. (2%)
- 4. A IGBT is the combination of ______ and _____. (4%)
- 5. Indicate the conduction loss and switching losses for a power semiconductor switch: (6%)

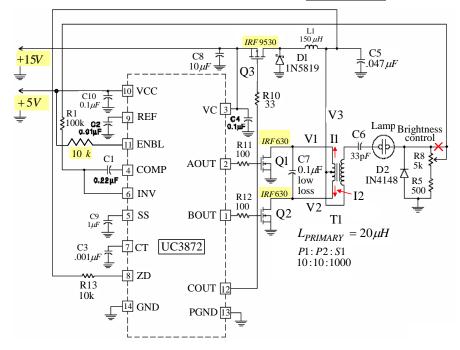

B. Stepping Motors

- 1. For the stepping motor drive circuit as shown:
 - (1) The winding is bifilar or unifilar? _____. (2%)
 - (2) The drive is bipolar or unipolar? _____. (2%)
 - (3) Draw or describe the current paths as: (a) Q_1 is ON; and (b) Q_1 is off. (6%)
 - (4) Indicate the possible places for the speed up resistor. (6%)

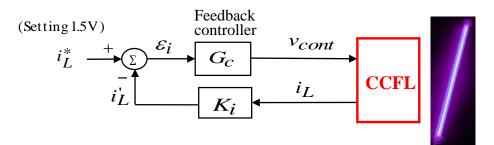
C. Electronic Fluorescent Lamp

- 1. For the half-bridge electronic fluorescent lamp circuit as shown:
 - (1) Briefly describe its operation principle. (10%)

(2) Refer to given schematic, give the purposes of the following circuit components: (9%)


MOV:

D4,C4,D5,C5:_____


DIAC:

D. Cold Cathode Fluorescent Lamp (CCFL)

- 1. Briefly describe operation principle of this experiment circuit (given below). (8%)
- 2. IRF 9530 is P-channel or N-channel power MOSFET? . (2%)

3. For the brightness control scheme as given, $K_i = 2k\Omega$ is set, find the set current $i_L =$

A.(6%)

4. The devices (Q3, D1, L1) form what type of DC-DC converter? (4%)

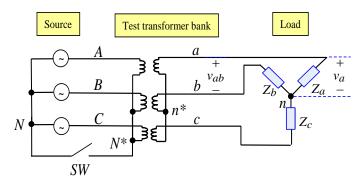
E. Power Transformers and Power Quality

1. Some test data of the given transformer are measured as follows:

OCT: $V_{oc} = __(V), I_{oc} = 2.5(A), P_{oc} = 150 (W)$ SCT: $V_{sc} = 150(V), I_{sc} = __(A), P_{sc} = 250 (W)$

- (1) For a correct measurement procedure being made, fill in the values of Voc and Isc. (6%)
- (2) Find efficiencies at (full load, PF= 0.8 lagging) and at (50% rated load PF= 0.8 lagging): (8%)

$$\eta_{1.0} =$$


 $\eta_{0.5} =$

 At the a given load, its measured no-load and full-load terminal voltages respectively are: 120V/60Hz and 108V/60Hz. Find the voltage regulation: (4%)

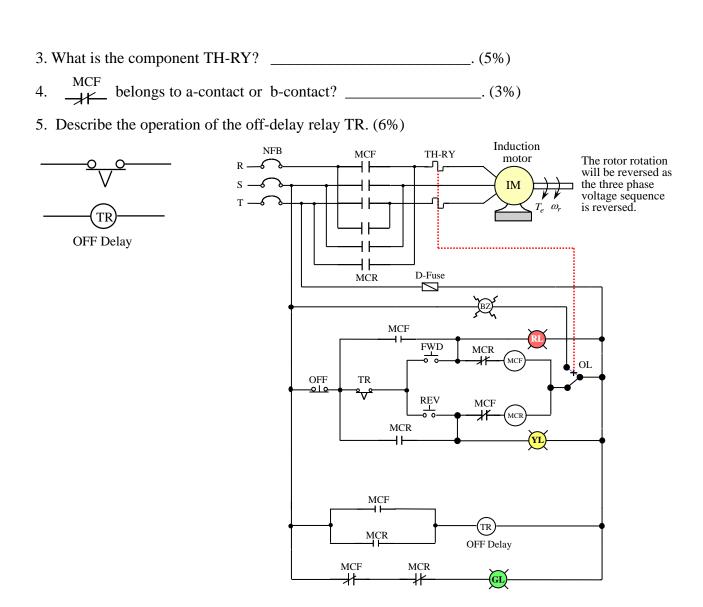
VR = _____.

- 3. The rating of a Delta-Delta connected three-phase transformers is 10kVA. Now a single-phase transformer is removed to form the V-V connection, find its VA rating. (6%)
- 4. (1) Explain the inrush current generation process of a transformer. (6%)

5. For the Y-Y connected transformer system as shown:

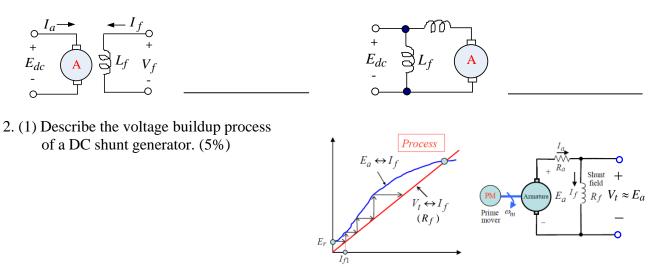
- (1) In which case $v_a(t)$ possesses 3rd-order harmonics: SW is closed or opened? _____. (2%)
- (2) If SW is closed, $Z_a = Z_b = Z_c$ and $i_A(t) = 5\sin 377t + 1.5\sin(3 \times 377t)$, find: (4%)

 $i_{N*-N} =$ _____.


(3) Explain what is roving ground? (6%)

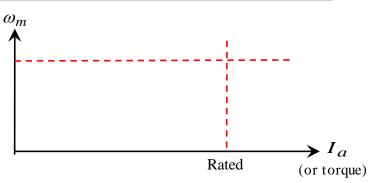
6. For the 18-pulse rectifier system applied by multi-phase transformers:

- (1) What phase shifts of the output voltage are provided by this system? _____. (4%)
- (2) If the frequency of input AC voltage is 60Hz. What is the frequency of the DC-link
 - voltage ripple? _____Hz. (3%)
- 7. For an incandescent lamp (白熾燈) load:
 - (1) Its power factor PF =___; (2%)
 - (2) Describe why it possesses inrush current? (4%)

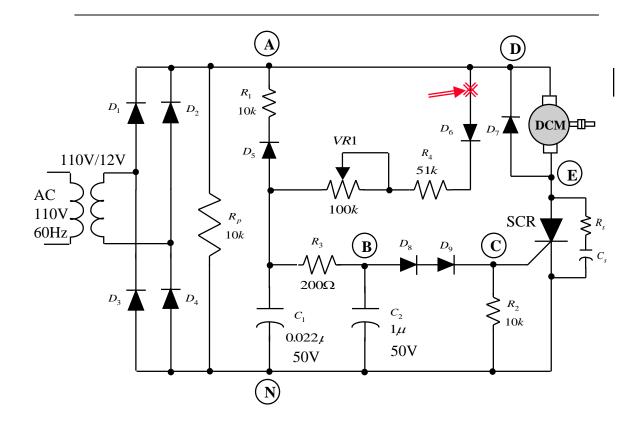

<u>F.</u> Industrial Control Distribution:

- 1. How to change the rotational direction of a three-phase induction motor. (3%)
- 2. For the circuit as shown, as the push button REV is pushed down, describe all the events (including the operations of contacts, lamps, motor, ...) to occur. (15%)

DC Machines:


1. Give the name of the following DC machines: (4%)

3. (1) Sketch the terminal voltage vs. load (armature current) curves of the following <u>DC generators</u> in the same figure: *Shunt, series, over cumulative compound, differential compound.* (8%)



(2) Sketch the speed vs. load (armature current) curves of the following <u>DC motors</u> in the same figure: *Shunt, series, cumulative compound, differential compound,* (8%)

SCR Phase Speed Control of DC Motors:

1. Why we can not add a filtering capacitor between nodes (A) and (N)? (4%)

- 3. Describe the purpose of D_7 . (3%)
- 4. Describe the purpose of VR1. (3%)
- 5. Describe the difference for the anode D6 being connected to point (D) and (E). (5%)