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Introduction to Sequential Circuits

* A sequential circuit contains:
— Combinational logic

= St%e_el\ement (flip-flops, latches)

Inputs and present state determine the outputs and
next state. v

— Binary information stored in the memory elements defines
the state of the sequential circuit.

* Block diagram of a sequential circuit:
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Synchronous vs. Asynchronous
Sequential Circuits

Timing of the respective signals differ.

Synchronous sequential circuit: inputs and state are only
defined at discrete time.

Asynchronous sequential circuit: inputs and state can change
at any time.

Clock: a periodic train of clock pulses generated by timing
device and distributed throughout the system.
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Setup Time/Hold Time

e Setup time: Input must be maintained at a minimum
amount of time prior to the clock edge.

* Hold time: Input must be maintained at a minimum
amount of time after the clock edge.

Setup, Hold Time
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Storage Elements: Latches



Latches

e Storage element: maintain a binary state indefinitely until
directed by an input signal to switch state.

* Most basic storage element: lathes no clock

— Latches are asynchronous sequential circuit. Its state
changes whenever inputs change.

— Latches have & Stateg
— Common latches: g lo\+clv, D lotel



SR Latch

SR latch can be formed by two cross-coupled NORs or NAND:s.
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SR Latch with NORs

11



[\SSIMML

kel SR Latch with NORs Timing Diagra
8=0, 8=\
’ . |0 O Ifl
. 1010 01 i
i‘ief ;' ;rcSU'" o I, " o
Q—oﬁ' - lI - ‘L M
— | .' ot
2\ A 0] | ",rﬂ— I | | ;
: 1 - N
(::\f’t%ﬂ@ D "ﬂ !
Q 9 I (] O ¢ ' | r
- - f ‘a0 o ( [
_ "0 [ ‘A | ‘ ( [ ll
8 1 ‘\ : ( j 1 \ || R
£ T - s !
o 256 , L | 12



SR Latch with NANDs

(de—}w
* Under normal conditions, both inputs (R, S) = 1 unless the
state is to be changed. | SZ
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Clocked SR Latch (Gated SR Latch)
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e Control input (C): determines when the state can be changed.
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DT = @ — (clocked)
Gated D Latch
D—=—a
(roked

* AD latch has two inputs: D (oLMw '\w?dc)/ ¢ (cloce)
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Storage Elements: Flip-Flops
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Flip-Flops Outline

* Level-triggered vs. edge-triggered

Ve Edge-triggered flip-flop
e Standard symbols for storage elements
* Direct inputs
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Trigger

Trigger

— The state of a latch or flip-flop is switched by a change of
the control input.

Level-triggered ML

~ —— ——

— The state transition starts as soon as the clock is logic 1

(positive level-sensitive) or logic 0 (negative level-
sensitive) level.

Edge-triggered

— The state transition starts only at positive (positive edge-
triggered) or negative edge (negative edge-triggered) of
the clock signal.
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Level-Triggered vs. Edge-Triggerec
N F’T MM

a) Response to positive level
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Edge-Triggered D Flip-Flop
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Edge-Triggered DFF Timing

* A master-slave D flip-flop is formed by two separate latches
— A master D latch (negative level sensitive)
— A slave D latch (positive level sensitive)

A’
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Direct Inputs

* At power up or at reset, all or part of a sequential circuit
usually is initialized to a known state before it begins
operation.

* The direct input asynchronously sets the flip-flop.
— Preset/set: setto 1
— Reset/clear: setto 0

 The direct input can also be controlled by the clock, called

synchronous direct input. Fanchion table ((asgnchvomons reset)
R (Reset) (les) Y
Y(t+ 1) Y(;:St)tb& 1 X o)
C— O @) O
O |

Reset
@ synchronous Reset

(b) Synchronous Reset
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Other Flip-Flop Types

* Four major common FFs
— SR (set-reset) Z%
— D (data)
— JK
— T (toggle) ) K\%
* Basic descriptors for understanding and using
different flip-flop types
— Characteristic tables
— Characteristic equations
— Excitation tables
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JK Flip-Flop

Chavecter L ghic kable

. g milev 4o SREF
( Gunekiow kable) " (3 sel'
+ c: cesed

J e @

O o d we Cl"“"““a&

O ' 0 reset

\ o l Set

|

\ 5 chleW\W’\'

Q' - TA+ €@ Chorecterishc equetion

(. P( a-c{'l'te)

27



AVIAS c\e

T Flip-Flop

T —) cawmb
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* TFF behavior ( 2|

— Has asingle input T
* For T =0, no change to state.

_ : - +
For T =1, changes to opposite state. 1 'D’L Q

N
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* Same as a J-K flip-flop withJ =K =T. NS
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Summary of Flip-Flops

Mptw | hegkp,  Cmmek.  Cpei: i
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Analysis and Design of Sequential Circuits
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Synchronous Sequential Circuits
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Example: Incrementer

* Increment a count on every clock tick.
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Sequential Circuit Analysis

Obtain a table or diagram for the sequence of inputs, outputs,

and internal states
General model

Current State at time (t) is stored in an array of flip-flops
Next State at time (t+1) is a Boolean function of State and inputs

Output(s )at time (t) are a Boolean function of state (t) and (sometimes)
inputs (t

Analysis procedure

Derive excitation (input) equation
Derive next-state and output equations
Generate next-state and output tables
Generate state diagram

Develop timing diagram

Simulate logic circuit

33
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State Table Characteristics

* State table —a multiple variable table with the sections:
\r\?“f — Present State
— Input
o — Next-state
— Output
* From the viewpoint of a truth table:
— The inputs are Input, Present State
— The outputs are Output, Next State

34



#  State Diagram

* The sequential circuit can be represented in graphical form as
a state diagram with the following components:
— Circle: with the name of the state in it.
— Directed line: from the present state to the next state.

1. Outputs depend on present state 2. Outputs depend only on present
and inputs state Maave
\‘3 N\UM\ w\aol@ |
Lnp ot
Ginke?
gukput 3
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Sequential Circuit Example | (1/2)

Input: x(t)
Output: y(t)
 States: A(t), B(t)
* First, find the inputs of the FFs
ﬂ* (¢) = Alt+) = Ale): X&) + Ble) Xt)

g )= ble+) = ple)« X&)

Output equation:

%[t):@l’c')f[}.(-t)jo %)

Next state equation:
Alt+) = Al): XlE) 4 BLE) - Kik)

Bles) - pt) - Kie)




. Grate table

/\/Seqigential Circuit Example | (2/2)
Tapats !_/\/\_/\\ 3

Present State | Input Next State (2utput
A(t) B(t) x(t) | A(t+1) B(t+1) | y(t)
/0 0 0 o0 |/o
Lo o 1 | Co_ 1 0.

0 1 0 0 0

0 1 (1) 1 1 0

1 0 0 0 1

1 0 (1) 1 0 0

1 1 0 0.0

1 1 ()] (1 o) [{o
o /

¢ Skate Aiwa Vor
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Finite State Machine (FSM)

* A synchronous sequential circuit can be modeled by a finite
state machine (FSM).

e Two models for FSM:

— Moore: outputs are function of only the present state

— Mealy: outputs are function of both the present state and inputs

39



Moore and Mealy Example Diagrams
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Moore and Mealy Examples

Moore Mealy

D 19—

> C e

>C

> C

"—T CLK

CLK Reset
[0
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Moore and Mealy Example Tables

l\/\aoV{
Present | Next State | Output
State x=0 x=1
0 0 1 0
1 0O 2 0
2 0O 2 1
[\I\eo\\?
Present | Next State Output
State x=0 x=1 x=0 x=1
0 0O 1 O O
1 0O 1 0O 1
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Mixed Moore and Mealy Outputs

In real designs, some outputs may be Moore type and other
outputs may be Mealy type.

MOON
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State Minimization

e State reduction

— Reductions on the number of flip-flops (states) and the
number of gates.

— For an FSM with m states, we need [log, m] FFs.
* Steps

— Find rows in the state table that have identical next state
and output entries. They are equivalent state. One of them
can be removed.

— Update the state table reflecting the change. Continue
until there is no equivalent state.
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State Minimization Example (1/2)
A Q,% . equ;dw\M Stnte

State table

Next State | Output
i Present State x=0 x=1 x=0 x=1
a a b 0 0
b c d 0 0
os a d 0 0
d e £ 0 1
e a F£ oL 0 |
f % f G 1
—g a £ —6 —
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State Minimization Example (2/2)

°Vroc’me
an the u\:do\'\‘eo\ S‘&o\*‘e Oliaaro\w-.
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State Assighment

Each of the m states must be assigned a unique binary code. @
.. . . . 1 oo O Vv
Minimum number of bits required is n such that I Lojg w vo | L
= vl ov
There are useful state assignments that use more than the minimum f; ‘0 V‘/

number of bits.

Different state assignments result in different circuits for the intended
FSM.

There is no easy state-assignment procedure that guarantees a minimal-
cost or minimum-delay combinational circuits.

— Exploration of all possibilities are impossible

P Codl e
* Minimum-bit change :@ 1) Gro\*/ °
* Prioritized adjacency Q\) A 1) Co““*"“j ovder

O\/ (000, 00\, 0l9.. -)
U O ?) Owe Wot

* One-hot encoding O
c
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State Assignment Example (1/2)

 Counting Order Assignment: A=00,B=01,C=10,D=11
* The resulting coded state table:

Present| Next State Output
& State Xx=0 x=1 Xx=0 x=1
Vo)
00 00 01
CD(}\L

01 00 | 1061
16 1| 13.qg 106
1310 00 01 0)

|0 | O
R OO |0

 Gray Code Assignment: A=00,B=01,C=11,D=10




State Assignment Example (2/2)

* One-hot assignment: for m states, use m bits to form the
codes that contain only one “1” in each code.

Present Next State Output

State x=0 x=1 x=0x=1
00->ooel |00-s000\ 01500190 0
Ol1>00\0 0050001105 ploo|0 0
10>o0to® |[11-21009110 50\2020 0
11 —=1009 00200001 500\29|0 1
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Choice of Memory Elements

* Given the state table, we need to find the FF input
conditions that cause the required transition.
— Excitation table can be used.
— SRFFs are used when different signals set/reset FFs.
— DFFs are good for applications requiring data transfer.
— TFFs are good for applications involving complementation.

— Many digital circuits are constructed entirely with JKFFs
because of their versatility.

50
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Design Procedure of Clocked Sequential Circuits

. SQQC"%WH 7 - describe the design.

[ oveu\oion - obtain a state diagram and state table.

State minimization.

State assignment.

Input and output equations derivation.

Choose memory elements.

Map the circuit to the memory and gates (logic diagram).
Simulation

Verification
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Desigh Example: Traffic Light Counter

* Spec
— Reset to green in north south direction.
— If light is green or yellow in one direction, it must be red in the
other side.
— A light must be yellow between changing from green to red.

— If there is a car waiting at east west (carew=1), make the light
green in east west and return to green in north south.

-
@& -
carew
'l :D rst FSM élights
clk
52




Traffic Light Counter FSM (2/7)

* Four states:
— gns: green north south (red east west)
— yns: yellow north south (red east west)
— gew: green east west (red north south )
— yew: yellow east west (red north south )
* Input
— Carew: indicate if there is a car waiting at east west
— Reset: return to initial state (need not go through yellow)

* Qutput
— 100 001: NS green, EW red; 001 010 NS red, EW yellow
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Traffic Light Counter FSM (3/7)
. Ctuke o\foﬂv’mw .
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Traffic Light Counter FSM (4/7)

* State assignment

@ Binary Code Gray Code
State  Encoding State  Encoding
GNS 00 GNS 00
YNS 01 YNS 01
GEW 10 GEW 1
YEW 11 YEW 10

J Sthsingent with Gray Code

_nextstate | next state
c [si1(t+1) So(t+1)| nsi(t) Igins
o 0 0 —0O 0o o0 o B
0 0 1 0 1 0 1 1 0 0 0 0 1
0 1 0 1 1 1 1 0 1 0 0 0 1
0 1 1 1 1 1 1 0 1 0 0 0 1
1 1 0 1 0 1 0 0 0 1 1 0 0
1 1 1 1 0 1 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 0 0 1 0 1 0 55



Traffic Light Counter FSM (5/7)

Next state equations (use DFFs)

current state |carew | nextstate | excitaon | output |
31(t) nmmmm

1
1
1
0

O O = =4 4 a0
-~ O = 0 =0 = O
S [ = IS I S
O 000 = o
== [ = =
O 00O = =24 =
O 00000 =
O 00O = = O
- 4 4 a4 000
O O = 200 O
-~ - OO0 00 o
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S "G0 o1 110 + G \eCeo 2L (L 1o 4
‘0 _0 KI gl('t“):'gl (t\:SD o 0 C' | S (t_]=9\C+9

9

oLl T raffic Light Counter £SM (6/7)

currentstate |carew | nextstate | excitaton |  output
| nsi(t) | nso(t) | Igns | lyns | Irns | igew | Iyew | Irew _
0 1 0

E
0 0 0 0 0 0 0 0 0 1
0 0 1 0 1 0 1 1 0 0 0 0 1
0 1 0 1 1 1 1 0 1 0 0 0 1
0 1 1 1 1 1 1 0 1 0 0 0 1
1 1 0 1 0 1 0 0 0 1 1 0 0
1 1 1 1 0 1 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 1 0 1 0
1 0 1 0 0 0 0 0 0 1 0 1 0
S1S0 5150 8150
C 00 01 11 10 C 00 01 11 10 C 00 01 11 10
1) ‘I : AT
iney ey 1 G
lgns = s/ s, lyns = s/ sg Irns = s
5150 $1S0 S1S0
C 00 01 11 10 C 00 01 11 10 C 00 01 11 10

)
1 U 1 U 1LJ

lgew = 5159 lyew = s1s, Irew = s} 57




Traffic Light Counter FSM (7/7)

Excitation equation (Input equation)

-.
Output equation C §|
o b Q s1 N\ lyns
lgns = s s, . — s
lyns = sfsg | qew
Irns = s _ )
! ) > o= ! 3
ew — S51S8 ew
gew = $18¢ carow E y |
.-

/
lyew = s15)

lrew = s

'—L\
2
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 Example: A circuit that recognizes the sequence

_9| 1t
wpotle L— O

Zam
° owne Tu\ew\' AN
owe owtput %‘
clocK

( reset, set)
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Sequence Recognizer Example (2/3

e Starting in the initial state (arbitrarily named "A"):
— Add a state that recognizes the first ”1”.

— State "A" is the initial state, and state "B" is the state which represents
the fact that the "first" one in the input subsequence has occurred.

— Output 1 on the arc from D means the sequence has been recognized.

60



Sequence Recognizer Example (3/3

* The state have the following abstract meanings:
— A: no proper sub-sequence of the sequence has occurred
— B: the sub-sequence 1 has occurred
— C: the sub-sequence 11 has occurred
— D: the sub-sequence 110 has occurred

— the 1/1 on the arc from D to B means that the last 1 has occurred and
thus, the sequence is recognized
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Formulation: Find State Table

Present Next State Output
State x=0 x=1 x=0 x=1
A H B 0 (@)

B A G o 0

C D C, O O

D A % o |

62



Example: Moore Model for Sequence 11(
* For the Moore Model, outputs are associated with states.

* We need to add a state "E" with output value 1 for the final 1
in the recognized input sequence.

* The Moore model for a sequence recognizer usually has more

states than the Mealy model. |/\ llo] /
m i Q D )




Example: Moore Model (2/3)

We mark outputs on states for Moore model.
Arcs now show only state transitions.

The new state, E produces the same behavior in the future as state B, but
it gives a different output at the present time. Thus these states do
represent a different abstraction of the input history.
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Potice Example: Moore Model (3/3)

0 S:\—;\H "'0\9\&

Present
State

Next State

x=0 x=1

Output
Yy

A

B
C
D
E

) EOlwhhﬂ’WS .

0 l,obb, C CL(&WI:MM..‘
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Sequence Recognition Design Examfle
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(p.b3) o Bave 5|0 |0
 Use Mealy model "' (| ol O
* Use counting order state assignment r E =b
b = O+ K
Present Next State Output(}) 4+ ok Lo e
T o
State ‘x=0 x=1 x=0 \x=1 b *N2Z _— \
o] o|(D

ol .t Fur
R 00 ‘00 N@ 0

0
0
2 01 ). H - +|\LD‘0/“\‘D\
c 10 1@, 1@ 0 0 b =Kebt xubt x edo
@ m\/ (@ 0 1 ,xo“‘:a o\ l\ 19
| ] \f , | 0|o|o|o
TS SO CI )
% ¥ o o |
O o | %’-"X-Q-'lo

66



Sequence Recognition Design Example (2/2)

u
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