

EECS1010 Logic Design Lecture 3 Gate-Level Minimization

Jenny Yi-Chun Liu jennyliu@gapp.nthu.edu.tw

Outline

- Digital systems and information
- Boolean algebra and logic gates
- Gate-level minimization
- Combinational logic
- Sequential circuits
- Registers and counters
- Memory

Chapter Outline

- The map method
- Technology mapping
- Hazards

The Map Method \clubsuit

Logic Simplification

- For a logic function, its truth-table representation is unique, while its algebraic expression is not unique.
- Complexity of digital circuit (gate count) is proportional to the complexity of algebraic expression (literal count).
- The simplest algebraic expression is one that has minimum number of terms with the smallest possible number of literals in each term.

Merging Minterms

- The minterms in a function can be merged to form a simpler product term.
- Example:
	- $-$ m₁ and m₃: $d'c'b'a + d'c'ba = d'c'a(b'+b) = \overline{d} \overline{c} \sim$

$$
- m2 and m3:\nq'c'ba + q'c'ba = dcb\n
$$
c = 8
$$

\n
$$
c = 8
$$

\n
$$
c = 3
$$
$$

$$
\nsubseteq {\sf Implicant}
$$

 $w = 0$ $x = 0$ $y = 1$

- Implicant of a function: a product term that is true implies the \bullet function is true. $S \circ M$
- Example 1: for the prime detector, $F = \Sigma m(1, 2, 3, 5, 7, 11, 13)$. \bullet $m_1 = \overline{w} \times \overline{q}$

implicants: m₁, m₂, m₃, m₅, m₇, m₁, m₁₃,
$$
\overline{w} \overline{x}y
$$
, ...
\n
$$
m_1 + m_3 = \overline{w} \overline{x} y \overline{3} + \overline{w} \overline{x} y \overline{3} = \overline{w} \overline{x} y (\overline{3} + 3) = \overline{w} \overline{x} y
$$
\n
$$
= \frac{1}{2} \overline{w} (7)
$$

 $3, x\overline{3}, x\overline{3}, x\overline{3}, x\overline{3}, x\overline{4}, \underline{4}, \underline{33}, x\overline{3},$ Total: 7 implicants 7

Prime Implicant and Essential Prime Implicant

- Prime implicant (PI)
	- The implicant that cannot be merged into a larger one.
- Essential prime implicant (EPI)
	- The one and only one prime implicant that contains particular minterm of a function. implicants: m₃, m5, m6, m₇, m₃+m₃,
- Example: $F(x,y,z)=m_{3}+m_{5}+m_{6}+m_{7}$

Pls: m_3+m_7 (y 3)
3 $\frac{m_5+m_9}{m_5+m_9}$ (x 3) -
 $\frac{m_6+m_7}{m_6+m_7}$ (x y) -

 $EPI_S: 43, 83, 84$

Karnaugh Map (K-Map) \clubsuit

- A K-map is a collection of squares.
	- Each square represents a minterm | maxterr
	- Each K-map is a graphical representation of a Boolean function.
	- **1** Adjacent squares differ in the value of one variable.
		- Alternative algebraic expressions for the same function are derived by recognizing patterns of squares.
- Each K-map defines a unique Boolean function.
- K-map is a visual diagram of all possible ways a function may be expressed.
	- Provide visual aid to identify PIs and EPIs.
	- Provide a means for finding optimum or near optimum of a Boolean function by combining squares. *

Two-Variable K-Map

Three-Variable K-Map

$$
x_{1} \sqrt{\frac{1}{100}} \sqrt{\frac{m_{0}}{m_{1}} \sqrt{\frac{m_{1}}{m_{1}}}} \sqrt{\frac{m_{0}+m_{2}}{m_{2}+m_{3}}} = \frac{\pi}{3}
$$
\n
\n0.1
\n
$$
\sqrt{\frac{m_{2}}{m_{1}} \sqrt{\frac{m_{3}}{m_{1}}}} \sqrt{\frac{m_{2}+m_{6}}{m_{2}+m_{6}}} = \frac{\pi}{3} \sqrt{\frac{1}{3} + \frac{1}{3}} \sqrt{\frac{1}{3}} = \frac{\pi}{3} \sqrt{\frac{1}{3} + \frac{1}{3}} = \frac{\pi}{3}
$$
\n
\n1.1
\n1.2
\n1.3
\n1.4
\n1.4
\n1.5
\n1.6
\n1.1
\n1.2
\n1.3
\n1.4
\n1.5
\n1.6
\n1.7
\n1.9
\n1.1
\n1.1
\n1.1
\n1.2
\n1.3
\n1.4
\n1.5
\n1.6
\n1.7
\n1.9
\n1.1
\n1.1
\n1.1
\n1.2
\n1.3
\n1.4
\n1.5
\n1.6
\n1.7
\n1.9
\n1.1
\n

Four-Variable K-Map

 \boldsymbol{x}

Î.

Z,

12

Five-Variable K-Map R, B ,C, D, ቴ

• For five variable problems, we use two adjacent K-maps. It becomes harder to visualize adjacent minterms for selecting. You can extend the problem to six variables by using four K-maps.

Covering a Function

- Procedure to select an inexpensive set of implicants
	- Start with an empty cover.
	- Add all essential prime implicants.
	- For the remaining uncovered minterms, add the largest implicant that covers the minterms.
- The procedure results in a good cover, but no guarantee the lowest cost cover.

 ${\mathcal{J}}$

G(x,y,z)=Σm(3,4,6,7)

 $\sqrt{\frac{m(t)}{G(x,y,z)}} = \sum m(3,4,6,7)$

$$
F = m_3 + m_4 + m_6 + m_3
$$

Cube Method

- Implicants can be visualized on a cube. \bullet
	- Vertex: Gray-coded minterm
	- Edge: product (implicant) consisting of 2 minterms
	- Shaded face: product (implicant) consisting of 4 minterms

$$
f = \sum m(1,2,3,5,7)
$$

Example: PIs and EPIs

• $F = \Sigma m(0,1,4,5,7,10)$

Non-Unique Minimum Covering

• When there is no essential prime implicants, more than one solution exist.

. All product terms are not EPI_S .

K-Map Summary

• Any 2^k adjacent squares, $k = 0, 1, ..., n$, in an nvariable map represent an area that gives a product term of n-k literals.

Example: From Cover to Gates

 $f(d, c, b, a) = d'a + d'c'b + cb'a + c'ba$

Practice.

Don't Care

- The output value need not be defined:
	- The input values for the minterm will never occur, or
	- The output value for the minterm is not used
	- Instead, the output value is defined as a "don't care"
- By placing "don't cares" $\binom{n}{x}$ in the map, the cost of the logic circuit may be lowered.
- Example: A logic function using BCD digits as its inputs.

Product of Sums Simplification

- Based on DeMorgan's Theorem \overline{F} : SOP $\Rightarrow \overline{F} = \overline{S_0p} =$
	- Choose 0's in the k-map: simplified F' in the form of sum of products
	- Apply DeMorgan's theorem
	- F': sum of products

*

– F: product of sums

Example: Product of Sums Simplification Pos (cover d's) $F(w,x,y,z)=\Sigma m(0,1,2,5,8,9,10)$ \mathbf{r} $\mathbf{0}$ $\mathbf{0}$ \mathbf{o} $\mathbf{1}$ $F = 43 + 23 + 22$ $0₀$ $F = F = (\frac{1}{43 + 85 + 48})$ \boldsymbol{D} \boldsymbol{O} \mathbf{o} $=(\overline{y_3})\cdot(\overline{x_3})\cdot(\overline{wx})$ \overline{O} D D \overline{D} \mathbf{I} $= (\overline{y} + \overline{y}) \cdot (\overline{x} + \overline{z}) \cdot (\overline{\omega} + \overline{x})$ pos 0 $\overline{0}$

Simplification Example 1 $D_{0} F(w,x,y,z) = \pi(x,15)$

$$
\begin{array}{c}\n\stackrel{\vee}{\wedge} \\
\stackrel{\vee}{\wedge} \\
\stackrel{\vee}{\longrightarrow}\n\end{array}
$$

NAND

 S op $F = \overline{w} + \overline{3} + \overline{x}$ $F = w \times 8$ = $\frac{1}{2} = \left(\frac{1}{w \times 3}\right) = \frac{1}{w+3} + \frac{1}{8}$

NOR

