

EECS1010 Logic Design Lecture 3 Gate-Level Minimization

Jenny Yi-Chun Liu jennyliu@gapp.nthu.edu.tw

Outline

- Digital systems and information
- Boolean algebra and logic gates
- Gate-level minimization
- Combinational logic
- Sequential circuits
- Registers and counters
- Memory

Chapter Outline

- The map method
 - Technology mapping
 - Hazards

✗ ★ The Map Method

Logic Simplification

- For a logic function, its truth-table representation is unique, while its algebraic expression is not unique.
- Complexity of digital circuit (gate count) is proportional to the complexity of algebraic expression (literal count).
- The simplest algebraic expression is one that has minimum number of terms with the smallest possible number of literals in each term.

Merging Minterms

- The minterms in a function can be merged to form a simpler product term.
- Example:
 - m_1 and m_3 : d'c'b'a + d'c'ba = d'c'a(b'+b) = \overline{dc}

-
$$m_2$$
 and m_3 :
 $d'c'ba' + d'c'ba' = \overline{dcb}$
 $L = 8$
 $G = ^{0} + 2 = 10$
 $G = 3 + 2 = 13$
 $G = 3 + 2 = 5$

w =0 x=0 y=1

- Implicant of a function: a product term that is true implies the function is true.
- Example 1: for the prime detector, $F = \Sigma m(1, 2, 3, 5, 7, 11, 13)$. $m_1 = \overline{w} \sqrt[3]{5}$

• Example 2: F(x,y,z) = x'yz + xy'z + xyz' + xyz= $\overline{z}m(?)$

implicants: xyz, xyz, xyz, xyz, xy, yz, xz

Prime Implicant and Essential Prime Implicant

- Prime implicant (PI)
 - The implicant that cannot be merged into a larger one.
- Essential prime implicant (EPI)
 - The one and only one prime implicant that contains particular minterm of a function. implicants; m3, m5, m6, m7, m.

(7)

Example: $F(x,y,z)=m_3+m_5+m_6+m_7$

Pls: $m_3 + m_4$ (y3) 3 Pls. $\frac{m_5 + m_4}{m_5 + m_4}$ (x3) ~ $\frac{m_6 + m_7}{m_4}$ (xy) ~

EPIs: 43, x3, xy

Karnaugh Map (K-Map)

- A K-map is a collection of squares.
 - Each square represents a minterm maxterm
 - Each K-map is a graphical representation of a Boolean function.
 - Adjacent squares differ in the value of one variable.
 - Alternative algebraic expressions for the same function are derived by recognizing patterns of squares.
- Each K-map defines a unique Boolean function.
- K-map is a visual diagram of all possible ways a function may be expressed.
 - Provide visual aid to identify PIs and EPIs.
 - Provide a means for finding optimum or near optimum of a Boolean function by combining squares.

*, **%** Two-Variable K-Map

Three-Variable K-Map

$$xy^{3} \bigcirc 1 \qquad m_{0} + m_{2} = \overline{x}\overline{3}$$

$$xy^{3} \bigcirc 1 \qquad m_{0} + m_{2} = \overline{x}\overline{3}$$

$$m_{1} + m_{3} = \overline{x}y$$

$$m_{2} + m_{3} = \overline{x}y$$

$$m_{2} + m_{6} = \overline{x}y\overline{3} + \overline{x}y\overline{3} = \overline{y}\overline{3}(\overline{x}+\overline{x}) = \overline{y}\overline{3} \cdot 1 = \overline{y}\overline{3}$$

$$m_{4} + m_{5} \qquad m_{2} + m_{6} = \overline{x}y\overline{3} + \overline{x}y\overline{3} = m_{6}$$

$$x=1, y=1, z=0, \text{ minterm} = \overline{x}+\overline{y}+\overline{z}=M_{6}$$

$$maxterm = \overline{x}+\overline{y}+\overline{z}=M_{6}$$
11

Four-Variable K-Map

х

1

	, yz			У		
1	vx	0.0	0.1	(11)	10	
00		w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
(01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
141	11	wxy'z'	wxy'z	wxyz	wxyz'	
w	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	

m_0	m_1	<i>m</i> ₃	<i>m</i> ₂
m_4	m_5	m_7	m_6
<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	<i>m</i> ₁₄
m_8	m_9	<i>m</i> ₁₁	m_{10}

Five-Variable K-Map

• For five variable problems, we use two adjacent K-maps. It becomes harder to visualize adjacent minterms for selecting. You can extend the problem to six variables by using four K-maps.

Covering a Function

- Procedure to select an inexpensive set of implicants
 - Start with an empty cover.
 - Add all essential prime implicants.
 - For the remaining uncovered minterms, add the largest implicant that covers the minterms.
- The procedure results in a good cover, but no guarantee the lowest cost cover.

 $G(x,y,z)=\Sigma m(3,4,6,7)$

 $P(x,y,z) = \Sigma m(3,4,6,7)$

$$F = m_3 + m_4 + m_6 + m_7$$

Cube Method

- Implicants can be visualized on a cube.
 - Vertex: Gray-coded minterm
 - Edge: product (implicant) consisting of 2 minterms
 - Shaded face: product (implicant) consisting of 4 minterms

$$f = \sum m(1,2,3,5,7)$$

Example: PIs and EPIs

• $F = \Sigma m(0, 1, 4, 5, 7, 10)$

Non-Unique Minimum Covering

• When there is no essential prime implicants, more than one solution exist.

· All product terms are not EPIs.

K-Map Summary

 Any 2^k adjacent squares, k = 0, 1, ..., n, in an nvariable map represent an area that gives a product term of n-k literals.

К	# of adjacent squares	# of literals in a term in an n-variable map				
	# OF aujacent squares	n=2	n=3	n=4	n=5	
0	1	2	3	4	5	
1	2	1	2	3	4	
2	4	0	1	2	3	
3	8		0	1	2	
4	16			0	1	
5	32				0 22	

Example: From Cover to Gates

f(d, c, b, a) = d'a + d'c'b + cb'a + c'ba

Practice.

Don't Care

- The output value need not be defined:
 - The input values for the minterm will never occur, or
 - The output value for the minterm is not used
 - Instead, the output value is defined as a "don't care"
- By placing "don't cares" ("x") in the map, the cost of the logic circuit may be lowered.
- Example: A logic function using BCD digits as its inputs.

Product of Sums Simplification

- Based on DeMorgan's Theorem $\vec{F} : S \circ \vec{P} \Rightarrow \vec{F} = \vec{S} \circ \vec{P} =$
 - Choose 0's in the k-map: simplified F' in the form of sum of products
 - Apply DeMorgan's theorem
 - F': sum of products
 - F: product of sums

Example: Product of Sums Simplification pos (cover o's) $F(w,x,y,z)=\Sigma m(0,1,2,5,8,9,10)$ WY 0 0 01 ιD F = y3 + x3 + wx 00 $F = \overline{F} = (\overline{y} + \overline{x} + \overline{y})$ D Ð 0 $= (\overline{y_3}) \cdot (\overline{x_{\overline{b}}}) \cdot (\overline{w_{\overline{x}}})$ D D D D U $= (\overline{y} + \overline{z}) \cdot (\overline{x} + \overline{z}) \cdot (\overline{\omega} + \overline{x}) \quad \rho \circ S$ 0 0

Simplification Example 1 $F(w,x,y,z) = \pi(x_2,y_2)$

$$\frac{w}{z} = \int c - F$$

NAND

NOR

