
EECS1010 Logic Design
Lecture 3 Gate-Level Minimization

Jenny Yi-Chun Liu
jennyliu@gapp.nthu.edu.tw



Outline

• Digital systems and information
• Boolean algebra and logic gates
• Gate-level minimization
• Combinational logic
• Sequential circuits
• Registers and counters
• Memory
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Chapter Outline

• The map method
• Technology mapping
• Hazards
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The Map Method
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Logic Simplification

• For a logic function, its truth-table representation is 
unique, while its algebraic expression is not unique.

• Complexity of digital circuit (gate count)  is 
proportional to the complexity of algebraic 
expression (literal count).

• The simplest algebraic expression is one that has 
minimum number of terms with the smallest 
possible number of literals in each term.
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Merging Minterms

• The minterms in a function can be merged to form a 
simpler product term.

• Example:
– m1 and m3:

d’c’b’a + d’c’ba = d’c’a(b’+b) =  

– m2 and m3:
d’c’ba’ + d’c’ba =
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Implicant

• Implicant of a function: a product term that is true implies the 
function is true.

• Example 1: for the prime detector, F = Σm(1, 2, 3, 5, 7, 11, 13).

• Example 2: F(x,y,z) = x’yz + xy’z + xyz’ + xyz. 
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Prime Implicant and Essential Prime Implicant

• Prime implicant (PI)
– The implicant that cannot be merged into a larger one.

• Essential prime implicant (EPI)
– The one and only one prime implicant that contains 

particular minterm of a function.
• Example: F(x,y,z)=m3+m5+m6+m7

PIs:
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Karnaugh Map (K-Map)

• A K-map is a collection of squares.
– Each square represents a 
– Each K-map is a graphical representation of a Boolean function.
– Adjacent squares differ in the value of              variable.
– Alternative algebraic expressions for the same function are 

derived by recognizing patterns of squares.
• Each K-map defines a unique Boolean function.
• K-map is a visual diagram of all possible ways a function 

may be expressed.
– Provide visual aid to identify PIs and EPIs.
– Provide a means for finding optimum or near optimum of a 

Boolean function by combining squares.

9

"

?$W Hcd? #?%C Hcd?

[ ;Wc

^ *



Two-Variable K-Map

10

CL =

Ve ;
# C =

*

<#M <#M
M 5 I;

5 IM ?=
M # I#

= &M f.- # 5 ?4

K-.- < *A # # # IJ

#
?4=.M?1=.F



Three-Variable K-Map
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Four-Variable K-Map
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Five-Variable K-Map

• For five variable problems, we use two adjacent K-maps. It becomes 
harder to visualize adjacent minterms for selecting. You can extend the 
problem to six variables by using four K-maps.
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Covering a Function 

• Procedure to select an inexpensive set of implicants
– Start with an empty cover.
– Add all essential prime implicants. 
– For the remaining uncovered minterms, add the largest 

implicant that covers the minterms.
• The procedure results in a good cover, but no 

guarantee the lowest cost cover.
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K-Map Example 1
F(x,y,z)=Σm(2,3,6,7)

G(x,y,z)=Σm(3,4,6,7)
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K-Map Example 1
F(x,y,z)=Σm(2,3,6,7)

G(x,y,z)=Σm(3,4,6,7)
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K-Map Example 2
F(w,x,y,z)=Σm(0,2,4,5,6,7,8,10,11,15)
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K-Map Example 3
F(A,B,C,D)=B’CD’+A’B’C’+A’BCD’+AB’C’
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Cube Method

• Implicants can be visualized on a cube.
– Vertex: Gray-coded minterm
– Edge: product (implicant) consisting of 2 minterms
– Shaded face: product (implicant) consisting of 4 minterms
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4D Hypercube for 4-Bit Input
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Example: PIs and EPIs

• F = Σm(0,1,4,5,7,10)
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Non-Unique Minimum Covering

• When there is no essential prime implicants, more 
than one solution exist.
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K-Map Summary

• Any 2k adjacent squares, k = 0, 1, …, n, in an n-
variable map represent an area that gives a product 
term of n-k literals.

K # of adjacent squares
# of literals in a term in an n-variable map

n=2 n=3 n=4 n=5
0 1 2 3 4 5
1 2 1 2 3 4
2 4 0 1 2 3
3 8 0 1 2
4 16 0 1
5 32 0
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Example: From Cover to Gates
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Don’t Care

• The output value need not be defined:
– The input values for the minterm will never occur, or
– The output value for the minterm is not used
– Instead, the output value is defined as a “don't care”

• By placing “don’t cares” (“x”) in the map, the cost of the logic circuit 
may be lowered.

• Example: A logic function using BCD digits as its inputs. 
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Example: Boolean Function with Don’t Cares
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• F = Σm(1,2,3,5,7) + d(10, 11, 12,13, 14, 15).
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Product of Sums Simplification

• Based on DeMorgan’s Theorem
– Choose 0’s in the k-map: simplified F’ in the form of sum of 

products
– Apply DeMorgan’s theorem
– F’: sum of products
– F: product of sums
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Example: Product of Sums Simplification
F(w,x,y,z)=Σm(0,1,2,5,8,9,10)
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Simplification Example 1
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